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ABSTRACT
We address a simple model where the Kennicutt–Schmidt (KS) relation between the
macroscopic densities of star formation rate (SFR, ρsfr) and gas (n) in galactic discs emerges
from self-regulation of the SFR via supernova feedback. It arises from the physics of supernova
bubbles, insensitive to the microscopic SFR recipe and not explicitly dependent on gravity. The
key is that the filling factor of SFR-suppressed supernova bubbles self-regulates to a constant, f
∼ 0.5. Expressing the bubble fading radius and time in terms of n, the filling factor is f ∝ S n−s

with s � 1.5, where S is the supernova rate density. A constant f thus refers to ρsfr ∝ n1.5, with
a density-independent SFR efficiency per free-fall time ∼0.01. The self-regulation to f ∼ 0.5
and the convergence to a KS relation independent of the local SFR recipe are demonstrated
in cosmological and isolated-galaxy simulations using different codes and recipes. In parallel,
the spherical analysis of bubble evolution is generalized to clustered supernovae, analytically
and via simulations, yielding s � 1.5 ± 0.5. An analysis of photoionized bubbles about pre-
supernova stars yields a range of KS slopes but the KS relation is dominated by the supernova
bubbles. Superbubble blowouts may lead to an alternative self-regulation by outflows and
recycling. While the model is oversimplified, its simplicity and validity in the simulations may
argue that it captures the origin of the KS relation.

Key words: stars: formation – supernovae: general – galaxies: evolution – galaxies: forma-
tion – galaxies: ISM.

1 IN T RO D U C T I O N

The global Kennicutt–Schmidt relation commonly refers to the
observed correlation between the surface densities of star formation
rate (�sfr) and molecular gas (�g), either in galactic discs as a whole
or in macroscopic regions within the discs (e.g. Kennicutt 1998b;
Daddi et al. 2010b). The quantities are averaged on scales larger
than the disc height, namely from ∼ 100 pc to several kiloparsecs,
where the average gas number densities are n ∼ 1 cm−3. The global
relation is typically �sfr ∝ �s

g, with the slope ranging about s � 1.5
in the range 1−2, as summarized in Section 8.5. This global relation
may or may not be related to the local, microscopic relation between
the densities on the scales of the star-forming clouds, typically
smaller than 10 pc, where the number densities are n ∼ 102−4 cm−3.

� E-mail: avishai.dekel@mail.huji.ac.il

Different galaxy types and sub-galactic regions, at different
redshifts and environments and on different scales, may show
somewhat different KS relations, which makes the overall compiled
relation look rather loose. However, it has been demonstrated
(Krumholz, Dekel & McKee 2012) that the local correlation
becomes particularly tight and universal once �g is replaced by
�g/tff, where tff is the proper free-fall time in the relevant star-
forming regions. This is consistent with a universal local 3D star
formation law,

ρsfr = εff
ρg

tff
, (1)

where ρsfr is the star formation rate (SFR) density and ρg is the local
molecular gas density, averaged over the star-forming molecular
cloud.

The microscopic SFR efficiency, εff, appears to be constant,
independent of density, at a value εff ∼ 0.01. This comes from direct
measurements in individual resolved clouds (Krumholz et al. 2012;
Evans, Heiderman & Vutisalchavakul 2014; Salim, Federrath &
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Kewley 2015; Heyer et al. 2016; Vutisalchavakul, Evans & Heyer
2016; Leroy et al. 2017), and from the correlation of SFR with HCN
luminosity, which is a proxy for density (Krumholz & Tan 2007;
Garcı́a-Burillo et al. 2012; Usero et al. 2015; Onus, Krumholz &
Federrath 2018).1

To make equation (1) more quantitative, the free-fall time can
be expressed in terms of the gas density as tff = [32 Gρ/(3π )]−1/2.
With a nucleon number density n = nH = ρ/(μHmp),2 denoting
n = 1 cm−3 n0 and εff = 0.01ε−2, equation (1) becomes

ρsfr � 0.66 × 10−2 M� yr−1 kpc−3 ε−2 n
3/2
0 . (2)

It seems that this kind of relation can be extrapolated from the local
star-forming clouds to larger macroscopic scales, and considered
as the macroscopic KS relation in 3D, the origin of which we wish
to understand. In particular, we wish to figure out the origin of the
slope s � 1.5 in the macroscopic relation

ρsfr ∝ ns , (3)

which is equivalent to asking why the global εff a constant as a
function of n. We also wish to figure out the origin of the amplitude
of the macroscopic relation, namely the global value of εff ∼ 0.01,
which seems to resemble the local value.

There are in general two types of theoretical attempts to un-
derstand the KS relation (see Krumholz 2017). The bottom-up
approach, applied to the local SFR law, is based on the expected
probability distribution function (PDF) of gas densities in molecular
clouds and the assumption that stars form only above a constant
threshold density (e.g. Padoan et al. 2014; Burkhart 2018). The
characteristic density PDF in supersonic turbulence, largely based
on simulations, is expected to be lognormal, while self-gravity
is expected to generate a power-law high-density tail. Integrating
above the threshold density yields the microscopic εff, which may be
subject to an uncertainty in the value and constancy of the threshold
density.

The top-down approach, applied macroscopically, attempts to
model the KS relation as a result of self-regulation by the combined
effects of gravity, accretion, star formation, and feedback. These
models may attempt to study the evolution of molecular clouds
in a realistic inter-stellar medium. They commonly consider the
balance between the momentum provided by feedback and the
vertical self-gravity. They address gravitational disc instability and
the driving of turbulence by feedback, by internal inflow in the disc
driven by disc instability, and by accretion into the disk (e.g. Dekel,
Sari & Ceverino 2009; Ostriker & Shetty 2011; Faucher-Giguère,
Quataert & Hopkins 2013; Krumholz et al. 2017). These models
typically assume a form for the SFR law, e.g. equation (1) with εff

a constant, without attempting to explain its origin.
Here we explore the possibility that the macroscopic KS relation

is naturally driven by self-regulation of the SFR by supernova
(SN) feedback, insensitive to the specific small-scale star formation
recipe, and not even involving gravity in an explicit way. The simple
key hypothesis is that the mass filling factor of the gas in which the
SFR is suppressed by feedback self-regulates to a constant value f
∼ 0.5. The SFR is suppressed (boosted) when f exceeds (falls short
of) this attractor value. We assume that a proxy for this filling factor

1One should bear in mind, however, that there are conflicting indications for
variations in εff (Murray 2011; Lee, Miville-Deschênes & Murray 2016),
which are argued to be due to a bias in the methodology (Krumholz et al.
2017; Leroy et al. 2017).
2We adopt μH = 1.355 for Solar metallicity.

is the volume filling factor of hot gas in supernova bubbles when
they fade away. If the final bubble radius and fading time can be
expressed as power laws of the ISM gas density n, then the hot
volume filling factor can be expressed as

f ∝ S n−s , (4)

where S is the SN rate density (e.g. Section 2.2). In this case a
constant f would automatically imply a macroscopic star formation
law of the desired form in equation (3),

ρsfr ∝ S ∝ ns . (5)

Indeed, as we will see in Section 2 based on the standard evolution
of single-SN bubbles (e.g. Draine 2011, chapter 39), the predicted
slope is s = 1.48, suspiciously close to the macroscopic star
formation law, equation (3). Seed ideas along similar lines have
been proposed in earlier work (McKee & Ostriker 1977; Dekel &
Silk 1986; Silk 1997).

The weak dependence of the global KS relation on the assumed
local SFR recipe was indicated in hydro simulations (Hopkins,
Quataert & Murray 2011; Hopkins, Narayanan & Murray 2013).
Here we explore how this self-regulation is materialized through
the hypothesis that the hot volume filling factor of SN bubbles
is self-regulated into a constant value. This key hypothesis will
be tested below using isolated and cosmological simulations of
galaxies, confirming the insensitivity of the global relation to the
local SFR recipe and the dominant role of SN feedback in it. In
parallel, we will analytically compute the hot filling factor as a
function of ISM density for different sequences of co-local SNe
in star-forming clusters, which for a constant hot filling factor will
provide predictions for the KS relation. These analytic results will
be tested and refined using simple spherical simulations.

Our analytic modelling makes several simplifying assumptions,
including the following (to be discussed in Sections 7 and 8):

(i) The medium outside the SN bubbles is uniform, ignoring the
complexities associated with the multiphased ISM and the origin of
molecular hydrogen for star formation.

(ii) Supernova feedback is negative, such that SFR is suppressed
in the gas that has been swept by the SN bubbles (discussed in
Section 8.1).

(iii) The bubbles are largely confined to the galactic disc, while
the possible effects of superbubble blow-out are discussed in
Section 8.4.

(iv) The SN bubbles overwhelm the photoionized bubbles about
the pre-SN O/B stars. This is argued analytically in Section 7, and
demonstrated in simulations in Section 4.

The paper is organized as follows. In Section 2 we address
the idealized case of randomly distributed single SNe, where in
Section 2.1 we summarize the standard evolution of a single SN, and
in Section 2.2 we introduce the concept of self-regulated hot filling
factor, compute it for single SN bubbles and derive the KS relation.
In Section 3 we test the validity of self-regulation into a constant
hot filling factor using ART hydro-gravitational simulations of
discs in a cosmological setting. The simulations are elaborated
on in Appendix A. In Section 4, using RAMSES simulations of
isolated galaxies, we reproduce the self-regulation to a constant
filling factor and the generation of a global KS relation, and show
that it is insensitive to the local SFR recipe and is determined
by SN feedback. In Section 5 we return to analytic modelling,
derive the evolution of a co-local multiple SNe in different time
sequences, and obtain the associated filling factor and KS relation.
In Section 6 we use spherical simulations to test and modify the
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analytic predictions for such clustered SNe. In Section 7 we address
the alternative of photoionized bubbles. In Section 8 we discuss
our modelling, where in Section 8.1 we address the assumption of
negative feedback, in Section 8.2 we comment on the dominance of
molecular hydrogen, in Section 8.3 we refer to the relevance of self-
gravity, and in Section 8.4 we comment on the effects of superbubble
blowout. In Section 9 we summarize our results and discuss our
conclusions.

2 K S R ELATION – ISOLATED SUPERNOVA E

2.1 Standard SN-bubble evolution

We first summarize the standard evolution of single spherical
SN bubbles (e.g. Draine 2011, chapter 39). One assumes that
a supernova of energy E = 1051 erg e51 explodes in a uniform
medium of Hydrogen number density n and with a speed of sound
(or turbulence velocity dispersion) c = 10 km s−1c1.

2.1.1 The Sedov–Taylor phase and cooling

After a free expansion phase, dominated by the mass of the ejecta,
the SN bubble enters the Sedov–Taylor adiabatic phase, where it
is approximated as a point explosion ejecting energy into a cold
medium of uniform density, neglecting radiative losses, the mass of
the ejecta and the pressure in the medium. Based on dimensional
analysis, the shock radius, velocity, and temperature are

Rs = 1.15

(
Et2

ρ

)1/5

= 5.1 pc e
1/5
51 n

−1/5
0 t

2/5
3 , (6)

Vs = 2

5

Rs

t
= 1950 km s−1 e

1/5
51 n

−1/5
0 t

−3/5
3 , (7)

Ts = 3

16

μmp

kB
V 2

s = 5.3 × 107K e
2/5
51 n

−2/5
0 t

−6/5
3 , (8)

where the time is t = 103 yr t3. The internal profiles within the
bubble are assumed to obey the Sedov–Taylor similarity solution
and are obtained numerically.

Cooling just behind the shock front eventually makes the bubble
leave the adiabatic phase and enter the radiative phase. In order to
estimate the cooling time tc, the cooling function in the relevant
temperature range is idealized by

� � λ(Z) T −0.7
6 , λ(Z�) � 1.1 × 10−22 erg s−1 cm3 . (9)

This is a fair approximation for solar-metallicity gas, our fiducial
case below, at temperatures in the range 105−107.3 K. The cooling
rate is obtained by spatial integration over the bubble,

Ė(t) = −
∫ Rs(t)

0
�[T (r ′)] ne(r ′)nH (r ′) 4πr ′2 dr ′ , (10)

where ne = ρ/(μemp) and nH = ρ/(μHmp) (with μe = 1.15 and
μH = 1.355 for solar metallicity). The integral over T −0.7(r) n2(r) r2

is evaluated numerically for the Sedov–Taylor similarity solution.
The energy loss by time t is

	E(t) =
∫ t

0
Ė(t ′) dt ′ . (11)

The SN bubble ends its adiabatic phase, e.g. having lost one-third
of its energy to radiation, after a time tc when the shell is at a radius
Rc given by

tc � 4.93 × 104 yr e0.22
51 n−0.55

0 , (12)

Rc � 24.4 pc e0.29
51 n−0.42

0 . (13)

The shock velocity and temperature are then

Vc = 188 km s−1 e0.066
51 n0.13

0 , (14)

Tc = 4.86 × 105K e0.13
51 n0.26

0 . (15)

2.1.2 The snow-plow phase and fading

At t > tc, after a significant fraction of the original SN energy has
been lost to radiation, a dense shell of cold gas is pushed by the
pressure of the enclosed hot central volume. The mass of the dense
shell increases as it sweeps up the ambient gas, and it slows down
accordingly,

Rs � Rs(tc)

(
t

tc

)2/7

, (16)

Vs � 2

7

Rs

t
. (17)

At the beginning of the snow-plow phase Vs ∼ 150 km s−1 propa-
gating into a medium of T � 104 K, namely it is a strong shock.

The snow-plow phase fades away when Vs becomes comparable
to the speed of sound of the ambient medium c. This occurs after a
fading time tf, leaving behind a bubble of fade-away radius Rf,

tf � 1.87 Myr e0.32
51 c

−7/5
1 n−0.37

0 , (18)

Rf � 69.0 pc e0.32
51 c

−2/5
1 n−0.37

0 . (19)

The mass affected by the SN bubble, which is mostly in the
broadened, faded away shell, is the mass that was initially within the
volume encompassed by Rf. As discussed in Section 1, we assume
that the SFR in the shell is suppressed by mechanical effects.

2.1.3 Weak dependence on metallicity and SN Ia

Slower cooling because of a lower metallicity Z would make the final
bubble larger. For a lower metallicity, the factor λ(Z) in equation (9)
is smaller. For example, for Z/Z� � 0.1 the value drops by a factor
of �7 (e.g. Draine 2011, fig. 34.1). In the expressions above, one
obtains tc ∝ λ−1/3 and Rc ∝ λ−2/15. This leads to Rf ∝ tf ∝ λ−0.053.
The volume of a bubble at fading is then Vsn ∝ λ−0.21. For example, if
Z = 0.1 Z�, for which λ � 0.14 λ(Z�), the volume per SN bubble
becomes larger by about 50 per cent. Given that the metallicity in
massive disk galaxies is within a factor of two of solar at the low
and intermediate redshifts addressed here, we find the metallicity
dependence to be weak relative to the dependencies on density and
other parameters. It may influence the amplitude of the KS relation,
but less so the slope. Given the idealized nature of our analysis, and
the focus on the slope of the KS relation, we will therefore not deal
with metallicity further here.

Small changes in the power-law fit to the T dependence of the
cooling curve, equation (9), lead to small changes in the power
indices of n. For example, Dekel & Silk (1986) assumed � ∝ T−1

(instead of T−0.7), relevant for a gas with lower metallicity, and
obtained at the end of the radiative phase a somewhat larger bubble
with tc ∝ n−0.53 and Rc ∝ n−0.41 compared to the powers of −0.55
and −0.42 in equation (12) and (13). These are again relatively
small effects, which we ignore here.

We also ignore the effect of SNe type Ia, as the self-regulation
is primarily due to core-collapse SNe, whose rate is proportional
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to the SFR. The mechanical energy of an SN Ia is comparable to
that of a core-collapse SN (Khokhlov, Mueller & Hoeflich 1993),
but the SN Ia rate is lower by an order of magnitude (Maoz &
Mannucci 2012; Maoz, Mannucci & Brandt 2012). While the
rate of core-collapse SNe peaks ∼10 Myr after the burst of star
formation, the SN Ia occur several hundred years later, so they
reflect the stellar mass more than the SFR. With a dynamical time
of ∼10 Myr in the star-forming clouds, the core-collapse SNe are
capable of regulating the SFR, while the SN Ia are expected to
have a negligible effect on the self-regulation of the star formation
process.

2.2 Bubble filling factor and the KS relation

We now derive the KS relation from the bubble fading radius and
time and their dependence on n.

2.2.1 Constant filling factor as an attractor

Consider first the idealized case where the supernovae occur at ran-
dom positions within a uniform galactic disc (of a constant height,
say), with a SN rate per unit volume S = 10−4 kpc−3 yr−1 S−4. The
volume filling factor of hot bubbles of radius Rf after a fade-away
time tf, tentatively neglecting overlaps between bubbles, is

f0 = Vsnnsn = 4π

3
R3

f S tf , (20)

where Vsn is the volume of each bubble and nsn is the number density
of pre-fading bubble centres. Substituting Rf and tf from equations
(19) and (18) one obtains

f0 = 0.24 e1.26
51 c−2.6

1 S−4 n−1.48
0 . (21)

Thus, a filling factor of a fixed value of order one-half defines
a critical line in the S−n diagram, S ∝ n1.48. This has been
demonstrated to be approximately reproduced in simulations (Li
et al. 2015). For a system above that line, most of the ISM is ‘hot’
within the bubbles, where SFR is suppressed, while below the line
it is unperturbed, cold, and available for star formation.

Our main point here is that the natural proportionality of the
SN rate and the SFR, for a given stellar initial mass function
(IMF), makes this line in the S−n diagram an attractor. When
the galaxy is above the line, with an excessive SN rate at the given
density, most of the ISM is ‘hot’, the SFR is suppressed, so S is
suppressed and decreases down towards the critical line. When the
galaxy is below the line, underproducing SNe, most of the ISM is
cold, the SFR is free to grow, so S increases towards the critical
line. The galaxies are thus expected to populate a line in the S−n
diagram,

ρsfr ∝ S ∝ n1.48 , (22)

reminiscent of the KS law.

2.2.2 The KS relation for isolated SNe

In order to obtain the normalization of the KS relation one should
translate S to SFR density, given the IMF,

ρsfr = μsnS, (23)

where μsn = 100 μ2 M� is the mass in forming stars that generate
one supernova, namely the ratio of SFR to the SN rate. We obtain
from equation (21)

ρsfr = 1.26 × 10−2 M� yr−1 kpc−3μ2e−1.26
51 c2.6

1 f0 n1.48
0 . (24)

Figure 1. The actual filling factor f as a function of the filling factor as
derived by neglecting overlaps, f0 = nsnVsn. The symbols are the results of
numerical experiments, and the fitting function is shown and quoted.

Using the Milky Way as an example, the speed of sound is c �
6 km s−1, the global SFR is SFR � 2 M� yr−1 (Chomiuk & Povich
2011; Licquia & Newman 2015) and the SN rate is 1/60 yr−1,
yielding μsn � 120 M�. With e51 = 1 and f0 = 0.5 we obtain (for
isolated SNe, ignoring overlaps)

ρsfr � 0.66 × 10−2 M� yr−1 kpc−3 n1.48
0 . (25)

Equation (25) coincides with equation (2) representing the observed
KS relation for εff � 0.016. This simple analysis predicts a universal
relation of the form in equation (1) with a constant εff independent of
n and a value in the observed ball park, though with a non-negligible
dependence on the sound speed in the ISM.

2.2.3 Estimated correction for overlaps

The filling factor as computed above, f0 = nsnVsn, ignored overlaps
between bubbles. If bubbles overlap, the actual volume filling factor
f is smaller. At low filling factors f approximately coincides with
f0, but at large filling factors f0 may become a severe overestimate
of the actual f. In order to estimate f(f0), we tentatively consider a
random distribution of bubble centres in the volume. Fig. 1 shows
the result of a numerical experiment, which is well fitted by the
function

f = (φ2 + f 2
0 )−1/2f0 , φ � 1.375 . (26)

This gives for example f0 � 0.60, 0.79, 1.03 for f = 0.4, 0.5, 0.6,
respectively. While f is limited from above by unity, f0 could in
principle be larger than unity. With f ∼ 0.5, the effect of overlap
is of the order of 50 per cent, keeping the filling factor in the
same ball park. Equation (26) can be used to correct f0 into f,
especially for larger filling factors. Recall, however, that this is a
crude approximation for single SNe at random positions. In reality,
the SNe are clustered (Section 5), and the correction for overlap
between superbubbles should be recalculated accordingly.
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3 C OSM OLOGICAL SIMULATIONS: A
C O N S TA N T H OT FI L L I N G FAC TO R

Before generalizing the analytic estimates to cases of clustered
SNe and testing the analytic models with spherical simulations,
we turn to galactic discs in full hydro-gravitational simulations
that incorporate star formation and supernova feedback, both in
cosmological simulations (this section) and in isolated galaxies
(next section). Our main goal here is to explore the validity of
the key hypothesis of self-regulation by feedback into a constant
hot volume filling factor. Using the isolated-galaxy simulations we
will also explore the robustness to different local recipes for star
formation, and the dominance of SN feedback.

We first utilize the suite of 35 VELA zoom-in cosmological
simulations. Its relevant characteristics are mentioned here, while
more details are provided in Appendix A and in references therein.
The simulations are based on an Adaptive Refinement Tree (ART)
code (Kravtsov, Klypin & Khokhlov 1997; Ceverino & Klypin
2009). The suite consists of 35 galaxies that were evolved to z

∼ 1, with a unique maximum spatial resolution ranging from 17.5
to 35 pc at all times. The dark-matter halo masses range from 1011

to 1012 M� at z = 2.
The local SFR recipe allows stochastic star formation in grid

cells where the gas temperature is below 104 K and the gas density
is above a threshold of 1 cm−3. If we attempt to approximate the
local stochastic star formation recipe by an expression of the sort
ρsfr = εffρg/tff (equation 1), the efficiency would be εff ∼ 0.02. Being
close to the desired global KS relation by construction through the
local SFR recipe, these simulations by themselves do not explore
the predicted insensitivity of the KS relation to the local SFR
recipe.

Supernova feedback is implemented as a local injection of ther-
mal energy (Ceverino & Klypin 2009; Ceverino, Dekel & Bournaud
2010; Ceverino et al. 2012). The energy from SN explosions (and
stellar winds) is released at a constant heating rate over the 40 Myr
following the formation of the stellar particle, comparable to the
age of the least massive star that explodes as a type-II, core collapse
supernova. A velocity kick of ∼ 10 km s−1 is applied to 30 per cent
of the newly formed stars to mimic the effect of runaway from the
densest region where the cooling is rapid. The later effects of type-
Ia supernovae are also included. Naturally, the ∼ 25 pc grid does
not resolve the main phases of the SN-bubble evolution, making the
treatment of SN feedback rather approximate.

In addition, radiation pressure from massive stars is implemented
at a moderate level with no infrared trapping (Ceverino et al. 2014).
This is incorporated through the addition of a non-thermal pressure
term in cells neighbouring massive star particles younger than 5 Myr
and whose column densities exceed 1021 cm−2.

Galactic discs are selected for analysis from all the snapshots
available in the redshift range z = 5.6−1 in time intervals of ∼
100 Myr. The adopted selection criterion for a disc is that the cold-
gas (T < 3 × 104 K) axial ratio is Rd/Hd > 4, where Rd and Hd are the
disc radius and half-height as defined in Mandelker et al. (2014), see
Appendix A, yielding 25 galaxies with long periods as discs. At z >

1, these disks are thicker and more turbulent than the Milky Way, as
predicted by self-regulated disk instability (e.g. Dekel et al. 2009)
and as observed (Förster Schreiber et al. 2018). The radii and half-
height Rd and Hd at z = 2 span the ranges 2.5–12.6 and 0.4–2.1 kpc,
respectively, but these rather thick cylinders may include regions
off the main bodies of the discs, given that many discs are warped or
asymmetric. The analysis here is conservatively confined to central
thin cylinders of radii 0.8Rd and height ±0.25 kpc as representing

Figure 2. A cosmological-simulation VELA disc, V07 at z = 1. The
projected density of the cold gas is shown face-on (top) and edge-on
(bottom). Distance in kpc is marked along the axes. The cylindrical disc as
defined in Mandelker et al. (2014), with a radius Rd and half-height Hd, is
marked by the solid line, while the volume selected for analysis here, a thin
cylinder of radius 0.8Rd and height ±0.25 kpc, is marked by the dashed line.
Shown are the nine equal-area patches used when macroscopic sub-volumes
are desired, consisting of eight patches covering the ring between 0.27Rd

and 0.8Rd and one circular central patch of radius 0.27Rd.

the main bodies of the gas discs (Fig. 2). When macroscopic sub-
volumes are desired, each disc is divided into nine patches as in
Fig. 2, consisting of eight equal orthogonal patches covering the
ring between 0.27Rd and 0.8Rd and one circular central patch of
radius 0.27Rd such that it has the same area as the other patches.

Our main result from the cosmological simulations is presented
in Fig. 3, which shows the evolution of the hot volume filling factor
in the whole disc in all snapshots of all galaxies in their discy phase,
where ‘hot’ refers to T > 3 × 104 K. The snapshots of each galaxies
are connected by a line of a random colour. We learn that the filling
factor for each galaxy oscillates about a self-regulated fixed value,
roughly f � 0.6 ± 0.07, and that this is similar for all galaxies. We
find that the filling factor is largely independent of redshift and of
galaxy mass. There may be an apparent weak decline of f with time,
and an apparent slight increase of f with the mass ranking at a fixed
redshift (not explicitly shown in this figure), but the significance of
these trends are questionable. This supports our basic ansatz that
the feedback self-regulates the bubble volume filling factor in the
discs into a roughly constant value of order one-half.

The choice of T > 3 × 104 K in Fig. 3 was rather arbitrary. To
test for robustness, Fig. 4 shows the cumulative volume-weighted
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