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ABSTRACT
Gaia DR2 provides an unprecedented sample of stars with full 6D phase-space measurements,
creating the need for a self-consistent means of discovering and characterizing the phase-
space overdensities known as moving groups or associations. Here we present Chronostar,
a new Bayesian analysis tool that meets this need. Chronostar uses the Expectation–
Maximization algorithm to remove the circular dependency between association membership
lists and fits to their phase-space distributions, making it possible to discover unknown
associations within a kinematic data set. It uses forward-modelling of orbits through the
Galactic potential to overcome the problem of tracing backward stars whose kinematics
have significant observational errors, thereby providing reliable ages. In tests using synthetic
data sets with realistic measurement errors and complex initial distributions, Chronostar
successfully recovers membership assignments and kinematic ages up to ≈100 Myr. In tests
on real stellar kinematic data in the phase-space vicinity of the β Pictoris Moving Group,
Chronostar successfully rediscovers the association without any human intervention,
identifies 10 new likely members, corroborates 48 candidate members, and returns a kinematic
age of 17.8 ± 1.2 Myr. In the process we also rediscover the Tucana-Horologium Moving
Group, for which we obtain a kinematic age of 36.3+1.3

−1.4 Myr.

Key words: methods: statistical – stars: kinematics and dynamics – stars: statistics – galaxy:
kinematics and dynamics – open clusters and associations: general.

1 IN T RO D U C T I O N

With the advent of Gaia DR2 (Gaia Collaboration 2018) we have
access to an all-sky, magnitude complete survey that provides full
6D kinematic information for over 7 000 000 stars. Within this
wealth of data reside the kinematic fingerprints of star formation
events in the form of moving groups, stars that were formed in
close proximity (both spatially and temporally) that have since
become unbound and are now following approximately ballistic
trajectories through the Galaxy. The development of an accurate
and reliable method to infer the origin site of a moving group is a
critical step in using kinematic information to constrain stellar ages,
which in turn would allow calibration of model-dependent ageing
techniques. Accurate ages are important for many applications.
They set the clock for circumstellar disc evolution and planet
formation. Exoplanets are most easily directly imaged when they
are young, so accurate ages enable better target selection for direct

� E-mail: timothy.crundall@anu.edu.au

imaging campaigns. Accurate ages are required for calibration of
massive stellar evolution models, but are nearly impossible to obtain
directly due to these stars’ short Kelvin–Helmholtz contraction
times; however, they can be age-dated approximately via their
association with less massive members of a moving group.

However, current kinematic analysis methods have proven unable
to deliver age estimates that are consistent with one another, or
with other age estimators. One common kinematic approach is to
estimate a traceback age by following the orbits of group members
backwards through time to identify the age at which they occupied
the smallest spatial volume. Ducourant et al. (2014) employ this
technique to obtain a kinematic age for the TW Hydrae Association
(TWA) of 7.5 ± 0.7 Myr. However Donaldson et al. (2016) obtain a
different age of 3.8 ± 1.1 Myr using the same method, a discrepancy
that they attribute to Ducourant et al. not properly propagating
measurement uncertainties. Mamajek & Bell (2014) review age
estimates for the β Pictoris Moving Group (henceforth βPMG) and
find that traceback ages (Ortega et al. 2002; Song, Zuckerman &
Bessell 2003, Ortega et al. 2004) are 4σ -discrepant with the
combined lithium depletion boundary (LDB) and isochronal age of
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23 ± 3 Myr; the sole exception is the traceback age of 22 ± 12 Myr
determined by Makarov (2007), which has such a large uncertainty
that it provides little discriminatory power.

An alternative kinematic estimator is the expansion age, which
one determines using a method analogous to the measurement of
Hubble flow: one plots the positions of stars against their velocities
in the same direction. If the stars are expanding, their positions and
velocities will be correlated, and the slope of the correlation is just
the inverse of the time since expansion began. Torres et al. (2006)
apply this method to the X positions and velocities of βPMG stars
to obtain an age of ∼ 18 Myr.1 While this is less than 2σ from the
combined LDB and isochronal age of 23 ± 3 Myr, Mamajek & Bell
(2014) point out that the expansion slope is not consistent across
dimensions. Indeed performing the same analysis in the Z direction
yields a negative slope, implying contraction rather than expansion.

The problems in current kinematic techniques likely have two
distinct causes. First, the methods are not robust when applied to
moving groups whose origin sites have complex structures in space
or time. For example, Wright & Mamajek (2018) investigate the
expansion rate of the Scorpius-Centaurus OB Association (Sco-Cen
hereafter) by assuming it could be decomposed into three distinct
subgroups (despite evidence that the true structure is significantly
more complex; e.g. Rizzuto, Ireland & Kraus 2015), but find that the
kinematics are more consistent with contraction than expansion, so
that any expansion or traceback age one might derive is meaningless.
Even in cases where stars are expanding, both traceback and
expansion methods are likely to yield misleading results if there is a
non-negligible spread in the spatial distribution or age of formation
sites.

A second problem is membership determination. In order to apply
a kinematic ageing technique to a moving group, one must start with
a list of its members, constructed either by hand or using an auto-
mated tool such as LACEwING (Riedel et al. 2017) or BANYAN
(Gagné et al. 2018b) that assigns membership probabilities based
on fits in 3D position or 6D phase space. Using hand-selected
membership lists often produces results that depend significantly
on which stars are included. However, with the automated methods
the process is somewhat circular: the centre and dispersion of a
purported moving group depends on which stars are included as
probable members, but which stars are included in turn depends on
the adopted centre and dispersion of the group. When one attempts a
kinematic traceback using member lists determined in this fashion,
the errors compound to the point where the method is not viable.
Riedel et al. (2017) find that they cannot determine kinematic
ages for any known association, or even for a synthetic association
described by a single age and a Gaussian distribution in space.

In this paper we introduce a new method called Chronostar
that addresses many of the problems discussed above. Compared
to existing methods, Chronostar has several advantages: (1)
it simultaneously and self-consistently solves the problems of

1Here and throughout we adopt a standard XYZ right-handed Cartesian
coordinate system where the Sun’s position projected on to the Galactic
plane lies at the origin in position, the Local Standard of Rest lies at the
origin in velocity, and, at the origin, the positive X direction is towards the
Galactic centre, the positive Y direction lies in the plane aligned with the
direction of Galactic rotation, and the positive Z direction is orthogonal to
the Galactic plane. We use U = Ẋ, V = Ẏ , and W = Ż to denote velocities
in this coordinate system, with U = V = W = 0 corresponding to the local
standard of rest. As the coordinate system evolves through time it corotates
as the origin travels along its circular orbit around the Galaxy, maintaining
the axes directions as defined above.

membership determination and kinematic ageing; (2) it does not
assume or require that moving groups have a single, simple origin
in space and time, and thus allows for a more realistic representation
of the complex structure of star-forming regions; (3) it uses forward
modelling rather than traceback, thereby eliminating the need for
complex and uncertain propagation of observational errors. Our
layout for the remainder of this paper is as follows. We present the
formal derivation of our method in Section 2, and in Section 3 we
test it on a variety of synthetic data sets, demonstrating that it is both
robust and accurate. In Section 4 we present a simple application
to the β Pictoris Moving Group, showing that, for the first time,
we are able to recover a kinematic age with tight error bars that
is consistent with ages derived from other methods. We discuss
Chronostar’s performance in comparison with other methods in
Section 5. Finally, we summarize and discuss future prospects for
our method in Section 6. The code for Chronostar can be found
at https://github.com/mikeireland/chronostar.

2 ME T H O D S

2.1 Setup

Our ultimate goal is to find the most likely kinematic description
of an association’s origin, such that evolving it through time by
its modelled age to its current-day distribution, best explains the
observed kinematic distribution of the association’s members. In
this section we detail our Bayesian approach to finding the best
kinematic description of a stellar association by modelling its
origins as the sum of Gaussians in 6D Cartesian phase-space with
independent ages, means, and covariance matrices. We refer to
each Gaussian as a component,2 and for the simplified models
presented here, each component has the same standard deviation
in each position dimension, and the same standard deviation in each
velocity dimension. We define the origin of an association as the
point in time at which stars become gravitationally unbound and
begin moving ballistically through the Galaxy. We approximate the
initial positions and velocities to be uncorrelated with one another,
but as the association evolves in time those quantities will become
correlated – consequently the covariance matrix, and in particular
the terms within it describing position-velocity covariance, are
functions of time. We fit these components to a set of observed
stars by maximizing the overlap between the observed stellar
position-velocity information, including the full error distribution
and its covariances, and the Gaussian that describes the current-day
structure of a component in phase-space. We include an assessment
of membership probability as part of this analysis. We decide how
many components to use to fit a given set of stars by comparing the
likelihood of the best fit in each case using the Bayesian Information
Criterion (BIC). The BIC is a metric that balances the likelihood
against a term that takes into account the number of parameters
used to build the model. This term penalizes the BIC (Schwarz
1978) as more parameters are included, which lowers the chance
of overfitting the data (see equation 14 and the surrounding text for
details). We provide Table 1 as a quick reference for the variables
and parameters introduced throughout this section.

2A component is a collection of stars with similar 6D phase-space prop-
erties and similar age. A simple association may only require a single
component, whereas an association with complex substructure like the
Scorpius-Centaurus OB Association might be better described with multiple
components.
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Table 1. Variables and parameters used in Section 2.

Symbol Units Meaning

X, Y, Z pc Positional Cartesian dimensions, centred on the Sun’s position projected on to the plane of the Galaxy, positive towards
Galactic centre, circular rotation, and Galactic North, respectively.

U, V, W km s−1 Cartesian velocity dimensions, centred on the local standard of rest, with same orientation as X, Y, and Z, respectively.
θ – 6D phase-space position in XYZUVW.
N (θ ; μ, �) – Evaluation of the 6D Gaussian with mean μ and covariance � at the phase-space point θ .
μ0 – Modelled centroid of the 6D Gaussian distribution in XYZUVW representing the initial kinematic distribution of a component

of an association.
t Myr Modelled age of a component of an association.
σ xyz pc Modelled standard deviation in X, Y, and Z of initial distribution.
σ uvw km s−1 Modelled standard deviation in U, V, and W of initial distribution.
�0 – Modelled covariance matrix of a 6D Gaussian distribution in XYZUVW representing the initial kinematic distribution of a

component of an association, constructed from σ xyz and σ uvw.
C – A component modelled as a 6D Gaussian in phase-space defined by nine parameters: initial phase-space centroid (x0, y0, z0,

u0, v0, w0), initial standard deviations in position and velocity space (σ xyz, σ uvw) and time since becoming gravitationally
unbound, t.

p(d|M) – The likelihood (unscaled probability) of seeing data point d assuming that d was drawn from the modelled distribution M.
f(θ, t) – Abstracted function from galpy that numerically integrates the orbit of θ through the Galactic potential as a function of

time t.
�i, k – The overlap integral of the ith star with the kth component. We calculate this by integrating over the convolution of the two

associated 6D Gaussians.
Z – 2D array of membership probabilities with a row for each star and a column for each component.
wk – Expected fraction of stars belonging to component k. We calculate this by summing the kth column of Z, and normalizing by

the total number of stars.

We begin this section with a top-down description of the algo-
rithm (Fig. 1). We must first decide how many components to use in
our fit. A priori we do not know how many components are required
to describe an association and so we run the following algorithm
iteratively, incrementing the number of components each time,
halting when the extra component yields a worse BIC value. For a
given component count we use the Expectation Maximization (EM)
algorithm (e.g. McLachlan & Peel 2004) to simultaneously find the
best parameters of each of the model components as well as the
relative membership probabilities of the stars to each component.
After initialization of the model parameters, EM iterates through
the Expectation step (E-step) and the Maximization step (M-step)
until convergence is reached. The E-step consists of calculating
membership probabilities to not only each of the components
but also to the background field distribution. The M-step utilizes
the membership probabilities to find the best parameters for each
component through the maximization of an appropriate likelihood
function.

We now describe the model bottom up. We begin with the
parametrization of a single component’s origin as a spherical
Gaussian (Section 2.2) and how we evolve this initial distribution
to its current-day distribution. Next we summarize the Bayesian
approach to computing the likelihood function (Section 2.3) for
a single component. Finally we incorporate multiple Gaussian
components using the EM algorithm, as well as the background
distribution, which is critical for accounting for interlopers.3

The basic data on which our method will operate are a set of
stars taken from Gaia DR2 (Gaia Collaboration 2018). For the
purposes of this paper we focus on stars in and around known
associations, but in future work the same algorithm can be applied
to search for new associations and moving groups. We transform
the 6D astrometry of each star into 6D phase-space data XYZUVW,

3The likelihood function provides a metric on how well a given set of
parameter values explains the data.

which describes the position and velocity of the star in Galactic
coordinates as described in Table 1. In addition to the central
values for each star, we have an associated set of measurement
errors encapsulated by a covariance matrix. We use the transforms
from Johnson & Soderblom (1987) to create a Jacobian from
observed astrometry space to Cartesian XYZUVW space then use
this to transform the covariance matrices (similar to the process
detailed in Appendix A). For the spatial coordinate origin we
choose a point that coincides with the projection of the Sun on
to the Galactic plane (the Sun being 25 pc above it) and whose
velocity coordinate origin is given by the local standard of rest
(LSR) as given by Schönrich, Binney & Dehnen (2010). For con-
venience we label this as θLSR = [0, 0, −25, −11.1, 12.24, −7.25]
with units as given in Table 1, denoting our coordinate system
origin with respect to the Sun. We apply this offset to the data
to translate the initially heliocentric data to our chosen coordinate
system.

2.2 Modelling a single component

As stated earlier, we use a spherical 6D Gaussian distribution to
model the origin of a component. We define the kinematic origin of
a collection of stars as the approximation of some precise time and
place when the stars become gravitationally unbound. A bound set
of stars forms an ellipsoid in both position space and velocity space,
with no correlation between the three pairs of position and velocity
dimensions (X − U, Y − V, and Z − W). We refer to these three planes
as mixed-phase planes henceforth. We further simplify matters
by approximating the ellipsoid as spherical, thereby removing all
correlations between any dimensions. We explore the validity of
these assumptions in the discussion.

We parametrize the origin of a component as a Gaussian in 6D
phase-space θ = [x, y, z, u, v,w] with mean μ0 representing the
vector of expectation values in each dimension:

μ0 = [x0, y0, z0, u0, v0, w0]. (1)
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Figure 1. Layout of the overall fitting algorithm to a set of stellar 6D
astrometric data. We first convert the data into Cartesian coordinates
XYZUVW, centred on the local standard of rest. We then perform an
Expectation Maximization (EM) fit (detailed in Section 2.4), initially with
the number of components (described in Section 2.2) n set to 1, then
subsequently incremented until the inclusion of an extra component worsens
the fit, as determined by the Bayesian information criterion (BIC). As part
of the maximization step, we maximize each component’s set of parameters
using Markov Chain Monte Carlo sampling, by first constructing a Gaussian
distribution in 6D phase-space as defined by the parameters, then projecting
it forward through time by the modelled age, before comparing it to its
assigned members (see Fig. 2).

To satisfy the criteria stated above we parametrize the covariance
matrix �0 as:

�0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
xyz 0 0 0 0 0

0 σ 2
xyz 0 0 0 0

0 0 σ 2
xyz 0 0 0

0 0 0 σ 2
uvw 0 0

0 0 0 0 σ 2
uvw 0

0 0 0 0 0 σ 2
uvw

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Note that since we restrict our model to be separately spherical in
both position and velocity space we can denote the initial standard
deviation in each position axis (i.e. the radius of the association) as
σ xyz and the initial velocity dispersion in each velocity axis as σ uvw.
Hence we can express the probability density associated with each
component as a Gaussian distribution over θ :

N (θ ; μ0, �0) = exp
[ − 1

2 (θ − μ0)T �−1
0 (θ − μ0)

]
√

(2π )6|�0|
. (3)

In order to relate the distribution of a component to observed
stellar data we require the phase-space values of both the component

Figure 2. A basic schematic detailing how a single Gaussian component
is fitted to stellar data. The red points represent stellar data at current-day
(e.g. as measured by Gaia DR2) with 2σ uncertainties denoted by ellipses.
The grey ellipse and cross depict the modelled initial distribution, a 6D
Gaussian with mean μ0 and covariance matrix �0. The fitting process
projects the initial distribution forward by the component’s modelled age
which generates the current-day distribution with mean μc and covariance
matrix �c , depicted by the blue ellipse and cross, respectively. The orbital
trajectory is denoted by the grey arc, with arrows denoting travel forward
through time. For simplicity, we only show the Z − W slice through the
6D phase-space but Chronostar makes use of the full 6D phase-space
information.

model and the stellar data to be evaluated at the same time.
We transform the distribution of a component from its origin
(parametrized by μ0 and �0) forward through the Galactic potential
by its modelled age t, to its current-day distribution, another
Gaussian described by μc and �c, i.e. N (θ ; μc, �c) (see Fig. 2).
Using galpy (Bovy 2015) to calculate orbits, we transform the
shape of the Gaussian by considering the orbital projection of
the distribution as a transformation between coordinate frames.
We use galpy’s model MWPotential2014 as our model for
the Galactic potential, but we show in Appendix B that choosing
other plausible potentials does not lead to large differences in
the results. We can thus calculate the current-day distribution by
performing a first-order Taylor expansion about μ0, and generating
the current-day covariance matrix �c under the approximation that
this coordinate transformation is linear (details in Appendix A).

2.3 Fitting approach

Now that we have the means to get the current-day distribution of a
component from its modelled origin point, we can use a Bayesian
approach to generate a probability distribution of the model’s
parameter space, which will allow us to identify each parameter’s
most likely value and associated uncertainty. As is standard with a
Bayesian approach, we write the posterior probability distribution
of the model parameters (C = {μ0,�0, t}) given the data as the
product of the prior probabilities with the likelihood function:

p(C|D) ∝ pprior(C)p(D|C). (4)

The prior (pprior) represents our initial guess at the parameters in
the absence of data, for example a restriction that the initial spread,
dispersion, and approximate mass of the system be super-virial (see
Section 2.5 for details). The likelihood function p(D|C) is simply
the probability density of the data given the model.
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In our context the data D are composed of a set of N stars
{s1, s2, . . . , sn} that are candidate members of a component
C, each with full 6D kinematic information. From the method
described in Section 2.2 we produce a current-day distribution
(μc, �c) from the model component parameters. We interpret
the current-day Gaussian as the probability density of finding a
member of C at phase-space position θ . If measurements were
infinitely precise this would be N (θ ; μc,�c) and the likelihood
function for a set of N stars drawn independently would simply
be p(D|C) ∝ ∏N

i N (θ i ; μc, �c). However, measurements of θ i

have finite errors, which we take to be Gaussian, described by
the probability distribution N (θ ; μi , �i), where μi is the central
estimate and �i is the covariance of measurement errors. The
likelihood product therefore becomes the product of convolutions
of the Gaussian for component C with the Gaussians describing the
error ellipse for each star:

p(D|C) ∝
N∏

i=1

∫
N (θ ; μi , �i)N (θ ; μc, �c) dθ ≡

N∏
i=1

�i,c, (5)

where μi and �i are the central estimate and covariance matrix for
the ith star, respectively, and

�i,c =
exp

[
− 1

2

(
μi − μc

)T
�−1

i,c

(
μi − μc

)]
√

(2π )6 |�ic|
(6)

�i,c = �i + �c. (7)

Equation (6) is the standard result for the convolution of N-
dimensional Gaussians; note that in the limit of no errors (�i → 0),
the result trivially reduces to �i,c = N (μi ; μc, �c) as described
above. For convenience in what follows, we shall refer to �i, c as
the overlap integral of star i with component C.

2.4 Fitting many components with the expectation
maximization algorithm

We now describe how to extend our formalization so as to incorpo-
rate multiple Gaussian components, i.e. a Gaussian Mixture Model.
Our model M is a linear combination of K components {C1, C2,
. . . , Ck}, and has the probability distribution function (PDF):

p(θ |M) =
K∑

k=1

wkN (θ ; μk,�k), (8)

where wk is the weighting of each component such that
∑

kwk = 1.
Intuitively wk is the expected fraction of stellar members belonging
to component k. We calculate wk by summing the kth column of Z
(defined below) and normalizing by the total number of stars.

To simplify the maximization of the likelihood function, the
common approach is the Expectation Maximization (EM) algorithm
(McLachlan & Peel 2004). There are many derivations of this
algorithm, but for convenience we provide a brief summary. The
central problem in mixture models is how to assign particular stars to
particular components. EM addresses this by introducing a so-called
hidden variable Z that tracks each star’s membership probabilities.
Z is a matrix of N rows (for each star) and K columns (for each
component). Each entry is a decimal number between 0 and 1 such
that each row sums exactly to 1. In this way the ikth element of Z is
the probability that the ith star is a member of the kth component.

The expectation step (E-step) and maximization step (M-step)
have a circular dependency: one cannot know the membership

probabilities without a fit to the components, and one cannot fit
the components without knowing which stars are members. This is
solved by, after a carefully chosen initialization (described below),
the algorithm alternating between the E-step (evaluating Z) and the
M-step (maximizing each component’s likelihood function) until
convergence is achieved. We can initialize this method by either
using membership probabilities from the literature to guess our Z,
or by using fits to the distribution from the literature to guess the
model parameters for the origin. We defer a more detailed discussion
of how we initialize our fits to Section 2.7.

The E-step is the calculation of Z for a fixed set of components.
The relative probability that star i is a member of component k with
properties Ck is given by its overlap integral with that component
scaled by the component weight wk, so the total probability that it
is a member of component k is

Zik = wk�i,k∑K

j=1 wj�i,j

, (9)

where we use �i, k to denote the overlap integral (equation 6)
evaluated using μc = μk and �c = �k , i.e. using the central
location and covariance matrix for component k.

The M-step maximizes the likelihood function for fixed member-
ship probabilities. By the introduction of Z, the likelihood function
becomes separable, allowing us to maximize each component’s
contribution in isolation.

The likelihood function for each component is the same as the
likelihood function evaluated for a single component (equation 5),
modified so that each star is weighted by the probability that it is a
member:

p(D|Ck, Z) ∝
N∏

i=1

(wk�i,k)Zik (10)

In the M-step, we use Markov Chain Monte Carlo (MCMC)
(implemented by Foreman-Mackey et al. 2013 as emcee) to find
the maximum likelihood values of μk and �k given the likelihood
function p(D|Ck, Z) and the priors we place on Ck (see below).
We reset μk and �k to these maximum likelihood values and then
return to the E-step for another iteration. The algorithm continues in
this manner until converged, which we take to be when the previous
iteration’s best-fitting parameters all fall within the central 70th
percentile of the new fit’s respective posterior distribution.

2.5 Priors

Our Bayesian treatment of data requires a prior on the parameters
tk, μk,0 , and �k,0 that describe each component. We first discuss
our non-informative priors. We have a uniform prior on tk and
each element in μk,0. The covariance matrix �k,0 is parametrized
by only two values, σ xyz and σ uvw, both of which are standard
deviations. Since standard deviations are by definition restricted
to be positive, the natural non-informative prior is uniform in
ln σ rather than in σ itself, which corresponds to pprior(σ ) ∝ 1/σ .
Therefore, our prior on �k,0 is

pprior(�) ∝ pprior(σxyz)pprior(σuvw) ∝ 1

σxyzσuvw

. (11)

We also add an informative prior regarding the dynamical state
of purported origin sites. In testing we found that there is a mild
degeneracy shared by the initial spatial volume of an association
and its age, whereby some fits would collapse to an extremely small
σ xyz. This is unphysical, since such a tightly packed association
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would have been gravitationally bound and thus would not have
dispersed in the first place. To counter this, we introduce a prior on
the virial ratio α of our components, which we approximate as

α = 2σ 2
uvwσxyz

GM
, (12)

where M is the mass of the proposed component and G is the
gravitational constant. The mass of the association is not precisely
known, since often the masses of individual stars are constrained
only poorly, and our lists of candidate members are magnitude-
limited and thus likely omit a significant number of low-mass stars.
As a very rough estimate we adopt M = nM� for the purpose
of computing α, where n is the number of stars in a proposed
component. This amounts to assuming solar mass stars. We apply
a prior with a Gaussian distribution on the natural logarithm of α

with a mean of 2.1 and a standard deviation of σα = 1.0. We select
these values such that the mode of the corresponding lognormal
distribution occurs at α = 3. We find that smaller values of σα

smoothly increase the fitted age when applied to real data as the fit
prioritizes more compact origins regardless of the data, whilst the
age fit converges for σα ≥ 1.

2.6 Characterizing field stars

For any proposed member of an association there is always a chance
that it is not truly a member, but rather an interloper that happens
to share similar kinematic properties. We label these stars as field
stars, and call the PDF of all field stars the background distribution.
We use the background distribution to consider the probability that
a star is a member of the background, and thus properly quantify
the star’s membership probability to our association fits.

We determine our background distribution, which is held fixed,
as follows. We select all Gaia DR2 stars with radial velocities
and parallax errors better than 20 per cent (n = 6 376 803 stars),
and then transform the data into Galactic Cartesian coordinates
(XYZUVW) as described in Section 2.1. We estimate the background
PDF shape in these coordinates using a Gaussian Kernel Density
Estimator (KDE) to approximate a continuous PDF. The KDE we
use4 represents the PDF as a sum of Gaussians centred on each of
the n input data points; these Gaussians have a covariance matrix
equal to the covariance matrix of the input data set, scaled down
by the square of a dimensionless factor called the bandwidth. To be
precise, we estimate the background stellar density at a point θ in
parameter space as

p(θ) =
∑

i

N (θ ; μi , h
2�G), (13)

using notation from equation (3), where the sum runs over the n
stars in the Gaia DR2 catalogue with acceptably small errors, �G is
the covariance matrix of this catalogue, μi is the XYZUVW position
of star i, and h is the bandwidth. We determine h using Scott’s Rule
(Scott 1992):

h = n−1/(d+4),

where d = 6 is the number of dimensions, resulting in a bandwidth
of ≈0.2.

We treat the background as simply another component in our
multicomponent fits, i.e. in a fit with K components, the parameter
Z is an N × (K + 1) matrix, with the final column K + 1 giving

4scipy.stats.Gaussian kde (Jones et al. 2001)

the probability that a given star is a background star rather than a
member. Our treatment of the background differs from that of other
components only in that the background is static and does not have
any parameters that can change, so the overlap integral between it
and each star �i, K + 1, is a constant that may be computed once at the
beginning of our calculation and then stored for use when needed.
We further note that the background is essentially constant over
scales in XYZ and UVW comparable to the sizes of measurement
uncertainties, and thus we can approximate the overlap integrals
�i, K + 1 as simply the value of the background evaluated at the
central position and velocity estimates for each star.

2.7 Initialization and adding components

Each run of Chronostar begins with a single component,
which is described by nine scalar quantities: the six components
of the central phase-space position μ0, the initial spatial, and
velocity dispersions σ xyz and σ uvw, and the age t. We initialize
an MCMC search for the maximum likelihood in the 9D space
these parameters describe by placing walkers randomly around a
central starting guess, which is that the components of μ0 are equal
to the mean of the stellar data to which we are fitting, σ xyz =
20 pc, σuvw = 7 km s−1, and t = 3 Myr. We then run the MCMC
algorithm to maximize the likelihood function as described in
Section 2.4, stopping when we reach convergence. At this point
we have predicted posterior probability distributions for all nine
quantities.

To trial an alternative two-component fit, we must specify a
starting guess for the parameters of each of the two components,
which will serve as starting points about which to distribute initial
MCMC walker positions. We choose these starting guesses as
follows. For each proposed component, we take our starting guesses
for σ xyz and σ uvw to be equal to the maximum posterior probability
value derived from the one-component fit. We set the starting time
guesses for our two proposed components equal to the 16th and
84th percentile values of the posterior probability distribution for
t from the one-component fit. Finally, we set our starting guess
for the phase-space position μ0 of each of the two trial components
such that their current-day positions match the current-day centroid
position of the maximum posterior probability value for the one-
component fit. From these starting guesses, we run the EM algorithm
as described in Section 2.4, stopping when we converge. We then
compute the BIC for the one-component versus the two-component
fit using the following formula:

BIC = ln (n)k − 2 lnL, (14)

where n is the expected number of stars assigned to the components,
k is the number of parameters, and L is the evaluated likelihood.
If the two-component BIC is inferior to the one-component result,
we stop and accept the one-component result. If not, we accept the
two-component fit, and consider the possibility of adding a third
component.

The procedure for going beyond two components is much the
same as for going from one to two: we initialize a search by
splitting an existing component into its 16th and 84th percentile
ages, setting our central guesses for the initial phase-space positions
and dispersions exactly as we did when going from one to two
components. The primary complication is that there is no obvious
means to identify which existing component should be split in order
to yield the best fit. Thus Chronostar explores all possible splits,
carries out EM to find the posterior probability for each possibility,
then selects the best option between these and the previous fit to one
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fewer components based on the BIC. We stop adding components
when the fit with N components has a superior BIC compared to
any of the possible fits using N + 1 components.

We caution that this procedure does not necessarily guarantee the
identification of the best possible fit, especially when the number of
components is relatively large. As is usual with MCMC over high-
dimensional spaces (a fit to N components has 9N dimensions), there
is in general no way to guarantee that the true global maximum
likelihood has been found. However, Section 3.3 demonstrates
that even this basic approach successfully decomposes complex
associations with multiple components.

The time taken to complete a fit is strongly dependent on the
number of components required, but also depends on the number
of stars and the age of the components. Each EM iteration takes
an average 500–1000 MCMC steps per component. The number
of EM iterations needed for convergence can vary from about 30
iterations (in the case where there is a clear sub-component needing
characterization) to upwards of 150 iterations (where the introduced
component has not identified a separate distinct overdensity).
Simple arrangements, such as the multicomponent tests we present
in the next section, require only ∼10 h for convergence running on
a workstation or a single node of a cluster. A blind fit to ∼2000 stars
will take upwards of a week on the same hardware. In the case of our
βPMG fit (see Section 4), we ran the fit with 19 threads (1 per each
of the 18 walkers plus one master thread)5 and the computation took
about a week to converge. Due to these limitations, ifChronostar
were to fit to all of Gaia, the data would need to be parcelled into
subsets of a few thousand stars at a time.

3 TESTIN G C HRONOSTA R W ITH SYNTHE TI C
DATA

We investigate the reliability and accuracy of our fitting approach by
testing it on an extensive suite of 1080 synthetic single-component
associations, three scenarios with multiple components, a set of
stellar kinematics taken from a star formation simulation (Federrath
2015; Federrath, Krumholz & Hopkins 2017), and a two-component
association within a uniform background. We describe each of these
tests in turn in the following sections.

3.1 Single-component analysis

Our first test is the simplest, and uses as its mock data single
components constructed from the same distributions we have
assumed can be used to describe real associations. Thus we consider
origin sites that are spherical in both position and velocity space,
and are parametrized by five values: age t (i.e. how many years have
passed since becoming unbound), σ xyz, the standard deviation in
each position dimension, σ uvw, the velocity dispersion or standard
deviation in each velocity dimension, n, the number of stars drawn
from the distribution, and η, which characterizes the uncertainty of
the observed current-day properties as described below. The purpose
of this test is to ensure that our code can recover input data whose
properties match our assumptions, and to characterize the level of
accuracy we can expect in this optimal case.

We use our chosen parameters to construct a synthetic data set
in several steps, which we explain in more detail below: (1) we

5Each component could, in principle, be fitted concurrently in the maxi-
mization stage. However, we have thus far not implemented parallelism in
this step, so each component is maximized sequentially.

use t, σ xyz, and σ uvw to compute the starting centroid position
μ0 and covariance matrix �0 for our synthetic association; (2)
we use μ0 and �0 plus the specified number of stars n to create
a set of synthetic initial positions and velocities, which we then
integrate forward by time t to produce a set of synthetic current-day
positions and velocities; (3) we add synthetic errors, whose sizes
are parametrized by η, to yield a set of ‘observed’ stars on which
we run the Chronostar code.

Step (1) is to compute μ0 and �0. For the latter we set �00 =
�11 = �22 = σ 2

xyz and �33 = �44 = �55 = σ 2
uvw , following the

assumption that our initial conditions are spherical distributions; all
off-diagonal components of �0 are zero. For the former, we choose
a starting position so that the current-day centroid position of our
synthetic association matches that of Lower Centaurus-Crux (LCC),
μLCC = [50, −100, 25, 1.1, 7.76, 2.25] (see Table 1 for units) by
integrating an orbit backwards through time for the desired age t,
beginning at the desired current-day centroid μc. In other words:
f(μ0, t) = μLCC, where f(μ0, t) is the function that maps an initial
position μ0 to a final position μ after orbiting a time t through the
Galactic potential. This choice ensures the synthetic associations
are all at the same heliocentric radius, thus preserving consistency
with measurement uncertainties that are distance dependent.

Step (2) is drawing n stars from a 6D Gaussian distribution
with centroid μ0 and covariance matrix �0. We then integrate
these stars forward through the Galactic potential for a time t.
We convert the current-day position of each star from Cartesian
Galactic coordinates to astrometric coordinates (RA, DEC, μRA,
μDEC, parallax, and radial velocity).

Step (3) is to add synthetic errors. We use the median uncertainties
of Gaia DR2 to inform our artificial measurement uncertainties. Of
all the Gaia DR2 stars with radial velocities and parallax uncertainty
better than 20 per cent, the median uncertainties for parallax,
proper motion, and radial velocity are 0.035 mas, 0.05 mas yr−1

and 1 km s−1, respectively. We set the uncertainties on our synthetic
data by multiplying these values by a dimensionless scale factor η,
so that the parallax uncertainty is 0.035η mas, the proper motion
uncertainty is 0.05η mas yr−1, and the radial velocity uncertainty
is 1η km s−1. For each synthetic star, we add a random offset to
its astrometric coordinates chosen by drawing from a Gaussian
distribution of the specified size.

We generate 1080 synthetic associations by creating four realiza-
tions for each possible combination of the parameters:

age, t = [5, 15, 30, 50, 100] Myr,

radius, σxyz = [1, 2, 5] pc,

velocity dispersion, σuvw = [1, 2] km s−1,

star count, n = [25, 50, 100],

error scaling, η = [0.5, 1, 2].

We choose this range of parameters to be broadly representative of
known or claimed moving group origin sites. However, the maxi-
mum values of σ uvw and t for which we test deserve special mention,
because they are driven in part by the limitations of our method.
In deriving the likelihood function we have approximated the time
evolution of the PDF of phase-space density with a linear transfor-
mation, and we show below that this approximation breaks down
for association ages 
100 Myr, or velocity dispersions 
2 km s−1.

For each synthetic association we run Chronostar using a
single component; the output of the run is a set of MCMC walker
positions in the space (t, μ0, σxyz, σuvw). From these positions, we
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3632 T. D. Crundall et al.

Figure 3. Histograms of residuals tfitted − ttrue resulting from application of
Chronostar to 1080 synthetic associations, grouped by true age (panels,
increasing from top to bottom) and degree of measurement uncertainty
(histograms in each panel). The catastrophic failures (featured in the insets)
all cluster around 20 Myr, which is equal to the quarter period of vertical
oscillations through the Galactic plane.

Figure 4. Same as Fig. 3, except that we show the distribution of normalized
residuals (tfitted − ttrue)/σ fitted rather than the distribution of raw residuals.
For comparison, the black lines in each panel show Gaussian distributions
with zero mean and unit variance, scaled such that the area under the curve
matches the area under the η = 0.5 histogram in each panel, and thus shows
the distribution of normalized residuals we would expect if the true posterior
PDF were Gaussian. We do not include the catastrophic failures in this figure.

define tfitted as the median t coordinate of the walkers, and the
corresponding fit uncertainty σ fitted as half the difference between
the 16th and 84th percentiles of t.

Fig. 3 shows the distribution of raw residuals, tfitted − ttrue (where
ttrue is the true age used to generate the synthetic data set) that we
obtain from our experiment, and Fig. 4 shows the corresponding
normalized residuals, (tfitted − ttrue)/σ fitted; in both cases the data
are grouped by values of ttrue and η. The raw residuals characterize

the absolute accuracy of the method, while the distribution of
normalized residuals characterize the accuracy of the error estimate
it returns.

We find that, except for a small number of catastrophic failures
that are easy to spot and discussed below, Chronostar recovers
the correct ages to accuracies of ∼1 Myr almost independent of
ttrue or η. There is a systematic bias towards younger ages that
increases with ttrue, reaching a maximum net offset of ∼ 0.3 Myr at
ttrue = 100 Myr. We attribute this offset to the associations’ minor
yet potential departures from the linear regime. The normalized
residuals show distributions that are close to Gaussians with unit
dispersion, indicating that the error distribution for our method is
close to Gaussian, and that the returned σ fitted is an accurate estimate
of the true uncertainty. Again we see a slight bias towards younger
ages that worsens for older ttrue.

It may seem surprising that the age fits have an uncertainty so
robust to ttrue. However ultimately the uncertainty of the age fit
depends on how accurately Chronostar fits the correlation in the
three mixed phase-space planes (X − U, Y − V, and Z − W), as
these are the signatures of expansion. The stars mostly remain in the
linear regime so these correlations are linear regardless of the age,
therefore the reliability of the age fit is almost independent of age.

Fig. 3 shows that our method catastrophically fails for a small
number of cases where the true age is 30 or 50 Myr, and the error
normalization is η = 2 (i.e. double the fiducial errors of Gaia
measurements). In these cases, the fitted ages consistently fall short
by about 20 Myr. This is a consequence of a degeneracy in the Z − W
plane. The matter density in the Galaxy is reasonably constant with
≈100 pc of the Galactic plane (formally, for our standard model
of the Galactic potential, the density at 100 pc is 85 per cent of
the mid-plane density), making the vertical restoring force close
to linear in a star’s distance from the mid-plane, and thus similar
to that of a simple harmonic oscillator. Consequently, each star
in our synthetic associations has nearly the same period in the Z
direction, and thus for a particular current-day distribution of stellar
positions and velocities there is a degeneracy between two possible
starting states: stars could have started at similar heights but a wide
range of velocities, or with a small range of velocities but a large
variation in starting heights. The phase-space distribution of the
stellar population in the Z − W plane is therefore uncorrelated
at multiple distinct epochs, separated by a quarter of the vertical
oscillation period, which is ≈20 Myr. Our catastrophic failure mode
consists of the MCMC walkers settling into the first of these many
degenerate minima that yields a reasonable fit in other phase-space
dimensions. This failure mode only occurs for errors larger than
usual for Gaia, because for smaller errors, constraints in the phase-
space components that lie in the Galactic plane are sufficient to
break the degeneracy in the out-of-plane directions. Thus, these
failures are not a concern for practical applications, as long as the
relative uncertainties for the majority of stars in question do not
significantly exceed 100 per cent that of Gaia.

3.2 Stars with realistic initial kinematics

In the previous section, all our synthetic associations had initial
conditions that matched our assumptions (spherical, uncorrelated
initial distribution; instantaneous gravitational unbinding). Here
we consider a much more realistic initial stellar distribution by
using stellar positions and velocities drawn from a simulation of
star formation. The simulation we use is the run referred to as
case ‘GTBJR’ in Onus, Krumholz & Federrath (2018); its initial
conditions and physics are identical to the ‘GvsTMJ’ case presented
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in Federrath (2015), which includes turbulence, magnetic fields,
and jet feedback, but with the addition of radiation feedback as
implemented in Federrath et al. (2017). The simulation tracks
the collapse of a molecular cloud in a 2 pc cube with periodic
boundaries. In the simulation, stars are represented by sink particles,
and for this test we take the positions and velocities of the sink
particles in the final snapshot of the simulation as the initial positions
and velocities of synthetic stars. As in the previous tests, we choose
the absolute position and velocity of the stars in Galactic coordinates
such that their current-day central position and velocity match that
of LCC. We project the stars forward through time for 20 Myr,
ignoring any gravitational interactions between them, convert their
positions and velocities to astrometric coordinates, and add random
errors with a distribution equal to our fiducial Gaia DR2 median
uncertainty (η = 1; see Section 3.1). We then run Chronostar
on the resulting synthetic data set.
Chronostar retrieves an age of 20.1 ± 0.2 Myr, demonstrating

that, in this instance, approximating the initial kinematic distribution
of the association as spherically Gaussian is a sufficiently accurate
approximation. Fig. 5 shows the current and starting positions of
the stars, along with the fit, in four different 2D projections (X − Y,
X − U, Y − V and Z − W). We see that the current-day fit provides
a good match to the current-day position and velocity, and the
corresponding fit to the origin falls within 3 pc of the true average
initial position of the stars. One particularly noteworthy feature of
this plot is that the correct fit is recovered despite the fact that,
due to the relatively large uncertainties in the current-day kinematic
properties of the stars, an attempt to trace the stars back in time
by integrating their orbits does not show any significant amount of
convergence. Thus attempts to reconstruct these stars’ origin point
by looking for a minimum volume or similar, the approach used in
traceback methods, would be unlikely to succeed.

We also note that the reconstruction strongly favours a single-
component fit to this data set. Following the procedure outlined
above, after finding a single component fit, Chronostar at-
tempted a two-component fit. However, the BIC of the single-
component fit, 546.5, is significantly better than that of the best
two-component fit, 576.5.

3.3 Multiple components

Our next tests increase the complexity by introducing data sets
with multiple components, arranged so that they have significant
overlap in position, velocity, or both with incorporated observational
uncertainties equal to our fiducial Gaia DR2 median uncertainty
(η = 1). The goal is to test Chronostar’s ability to separate such
overlapping sets of stars. We initialize each fit in the default way as
described in Section 2.4.

In the following text, for convenience we will refer to stars being
assigned to components. We remind the reader that Chronostar
does not assign discrete memberships but rather utilizes continuous,
probabilistic memberships. However, for convenience of plotting
and discussion we will describe a star as being assigned to the
component for which Chronostar gives the highest membership
probability.

3.3.1 Four distinct components

The first test features four components, each containing 30–80
stars, that have distinct ages from 3 to 13 Myr yet have current-day
distributions that overlap when viewed solely in position space or

solely in velocity space. However, because these components have
different ages, they are separable in joint position-velocity space
(e.g. in the Z − W plane). We give the full set of initial parameters
for each component, and the best fits to them that Chronostar
retrieves, in Table 2. We also show the current-day positions of the
stars, and Chronostar’s fits to them, in two 2D projections of 6D
phase-space in Fig. 6.
Chronostar successfully fits the ages, initial positions, and

dispersions of each component, and correctly classifies the mem-
berships of all 200 stars, despite the fact that the four components
overlap in multiple dimensions. The reason it is able to accomplish
this separation becomes clear if we examine panel (b) of Fig. 6,
which shows the distribution of stars, and our fits to them, in the
Z − W plane. Consider the ellipses in (b) in order of ascending
age (C, D, B, A): the angle that the semimajor axes of each
component makes with the vertical increases systematically with
age. In the Z − W plane these angles rotate with time, completing
a full rotation after 80 Myr. Similar rotation occurs with time in
the X − U and Y − V planes (not shown), but with a different
period. Chronostar is able to separate four components, despite
their overlap in both position and velocity, because position–
velocity correlations provide a sensitive measure of age since
expansion.

3.3.2 Two components with shared trajectory

The second test uses two components with distinct ages of 7 and
10 Myr, but with origin points carefully selected such that the
centroids of their current-day distributions are identical. This gives
each association an identical orbital trajectory, which results in two
distributions that overlap in every possible 2D projection of the
6D phase-space. This scenario presents a challenge to our fitting
approach as there is no separation between the components along
any dimension. The only distinction between the two components
is the tilt or degree of correlation in the mixed-phase (i.e. position-
velocity) planes. We give the full parameters of the two components
used in this test, and the fits to them derived by Chronostar, in
Table 3, and we show two projections of phase-space in Fig. 7.
Chronostar recovers the ages of both of our overlapping com-
ponents within a 0.2 Myr uncertainty. Only six stars (blue triangles
in Fig. 7) of 120 are misclassified, corresponding to a success
rate of 95 per cent, which is consistent with the mean membership
probability that Chronostar estimates for all stars to their correct
component: 94.3 per cent. Thus Chronostar not only returns
the correct assignment for the great majority of stars, it provides
an accurate estimate of the confidence level of the assignments
as well.

3.3.3 Two components against a uniform background

The third test uses two components with distinct ages of 12
and 25 Myr and star counts of 50 and 40, along with a top-
hat PDF background with density 10−7 ( pc km s−1)−3, chosen
to be representative of the density of Gaia DR2 stars in the
vicinity of βPMG (see Section 2.6 for details). We refer to the
two Gaussian components as an association, and to the third
component as the background. We set the bounds of the top-
hat PDF representing the background to be twice the extent of
the association in each dimension, and centre it on the mid-
range of the association stars. The resulting bounds of the top-hat
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Figure 5. Results from our test using synthetic stars drawn from a star formation simulation (Federrath 2015; Federrath et al. 2017). Panels show the
positions of stars at formation 20 Myr ago (grey squares) and at the current-day (blue circles) in several different 2D projections of the 6D phase-space. Faint
ellipses around the current-day positions show the error distributions for the synthetic measurement. The dashed red ellipse shows the best-fitting current-day
distribution retrieved by Chronostar; a similar best-fitting ellipse for the origin point is also plotted in solid red. The red lines show the trajectory of the
centre of the distribution, with arrows pointing forwards through time. The grey lines show the trajectories for selected current-day stars traced back from that
star’s central estimate by 20 Myr. Note that, due to the relatively large uncertainties, these trajectories show minimal convergence in X − U and Y − V planes
despite being traced back to their true seeded age. This is not the case for the trajectories in the Z − W plane, which do indeed show convergence in Z. This is
a consequence of the almost linear restoring force in the Z direction, resulting in stars having similar periods. See Section 3.1 for further discussion. We note
that our choice of a co-rotating reference frame introduces added motion in the X and Y dimensions due to the Coriolis force. As a consequence orbits in the X
− U plane curve towards larger values of X despite having U values around −2 km s−1.
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Table 2. Parameters for our test using four distinct components with distinct ages but overlapping current-day positions. For each parameter, the ‘True’ value
is the input value used to construct the synthetic data, while the ‘Fit’ value is the 50th percentile value for the posterior PDF returned by Chronostar, with
error bars indicating the ranges from the 16th to 50th and 50th to 84th percentiles. The quantity we report for the ‘Fit’ value of number of stars (nstars) is the
sum of the membership probabilities for that component in the final, converged output of the EM algorithm.

Component A Component B Component C Component D
True Fit True Fit True Fit True Fit

x0 (pc) 274.8 267.2+7.2
−6.8 132.8 120.7+7.0

−6.4 98.0 99.9+3.8
−4.1 125.5 123.8+3.3

−3.1

y0 (pc) 220.4 216.7+5.2
−5.3 85.0 62.2+9.9

−9.9 − 46.8 −48.0+3.0
−3.1 − 52.2 −54.3+1.9

−2.0

z0 (pc) − 55.6 −51.6+2.4
−2.4 11.4 18.0+3.9

−4.1 45.6 48.3+3.0
−2.9 59.6 57.7+2.6

−2.7

u0 ( km s−1) − 17.3 −17.4+0.6
−0.6 − 12.5 −11.5+0.5

−0.5 − 21.8 −22.7+0.6
−0.6 − 12.4 −11.8+0.6

−0.6

v0 ( km s−1) − 25.1 −25.1+0.6
−0.6 − 22.7 −23.3+0.4

−0.4 − 18.4 −18.6+0.6
−0.6 − 8.2 −7.6+0.6

−0.6

w0 ( km s−1) 2.6 1.8+0.5
−0.6 7.8 7.6+0.3

−0.3 − 14.6 −15.0+0.6
−0.6 − 9.0 −8.9+0.6

−0.6

σ xyz (pc) 20.0 19.4+1.0
−1.0 10.0 9.6+0.8

−0.7 10.0 9.4+0.6
−0.5 7.0 7.8+0.7

−0.6

σuvw ( km s−1) 5.0 4.9+0.2
−0.2 2.0 2.0+0.1

−0.1 5.0 4.4+0.3
−0.2 3.0 3.0+0.3

−0.2

Age (Myr) 13.0 12.7+0.3
−0.3 10.0 9.0+0.5

−0.5 3.0 3.0+0.2
−0.2 7.0 6.9+0.3

−0.3
nstars 80 80.00 40 40.00 50 50.00 30 30.00

(a) (b)

Figure 6. Results from our test using four distinct components with distinct ages but overlapping current-day positions. Panels show the positions of stars
at current-day in several different 2D projections of the 6D phase-space. Faint ellipses around the current-day positions show the error distributions for the
synthetic measurement but are often smaller than the data points. The dashed ellipses show the best-fitting current-day distributions retrieved by Chronostar
for each component; see Table 2 for the numerical values of the true and fitted parameters of each component. Marker styles show the component to which
each star truly belongs, while marker colours show the component to which Chronostar assigns that star; colours and symbols match in all cases because
in this test Chronostar assigns all stars correctly. Flanking plots show the 1D projection of densities in each dimension. In these plots, histograms show the
distribution of synthetic stars, while curves show the probability densities for Chronostar’s best fit, and colour indicating component. The grey histogram
and black line show the sum of all components.

PDF are:

X = (−61.4, 197.6) pc,

Y = (−205.5, 12.6) pc,

Z = (−58.1, 56.8) pc,

U = (−16.5, −4.8) km s−1,

V = (−25.4, −13.9) km s−1,

W = (−9.9, −0.5) km s−1.

We draw the true kinematics of 810 stars from this distribution
as this achieves the desired overall density. It is straightforward
for Chronostar to identify the association as it is a prominent

overdensity in both position and velocity space. The challenge lies
in how Chronostar handles the membership boundaries of an
association against a ubiquitous, fixed background distribution.

We give the full parameters of the two components of the
association used in this test, and the fits to them derived by
Chronostar, in Table 4, and we show two projections of phase-
space in Fig. 8. Chronostar satisfactorily deduces memberships,
with only 3 (of 810) background stars misclassified as being part
of the association, and only 5 (of 90) association stars misclassified
as part of the background. Thus the success rate is 91.4 per cent.6

6Since the boundary of the uniform background stellar distribution is
arbitrary, and thus the number of background stars is arbitrary, we disregard
correctly assigned background stars when calculating success rates.
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Table 3. Parameters for our test using two components with distinct ages
but with identical current-day centroids in both position and velocity. See
caption to Table 2 for an explanation of the meaning of various table entries.

Component A Component B
True Fit True Fit

x0 (pc) 179.7 179.4+2.6
−2.7 129.5 128.0+2.3

−2.3

y0 (pc) 59.1 57.7+0.9
−0.9 19.5 16.0+2.2

−2.1

z0 (pc) 46.1 46.2+0.6
−0.5 34.1 31.8+1.2

−1.3

u0 ( km s−1) − 16.2 −15.8+0.9
−0.9 − 14.3 −14.2+0.5

−0.5

v0 ( km s−1) − 16.4 −17.6+0.9
−0.9 − 17.8 −17.6+0.5

−0.5

w0 ( km s−1) − 3.6 −4.5+0.9
−0.9 − 4.3 −4.6+0.5

−0.5

σ xyz (pc) 2.0 1.9+0.3
−0.2 10.0 10.3+0.5

−0.5

σuvw( km s−1) 5.0 4.4+0.4
−0.3 5.0 4.9+0.2

−0.2

Age (Myr) 10.0 9.9+0.1
−0.1 7.0 6.8+0.1

−0.1

nstars 20 23.90 100 96.10

This is similar to the mean membership probability returned by
Chronostar of all component stars to their true component of
origin: 89.2 per cent. If we include the membership probabilities
of the misclassified background stars to the background, the mean
membership probability is 86.6 per cent. In either case, we see
both that Chronostar’s membership assignments are reasonably
accurate, and, as importantly, that the level of confidence it returns
in those assignments is accurate as well.

4 FI T T I N G TO TH E β P I C TO R I S M OV I N G
G RO U P

In this section we present the results of Chronostar blindly
applied to stars in and around the βPMG. The goal is to recover
the majority of βPMG members, along with a viable kinematic age,
without any manual intervention.

Table 4. Parameters for our test using two components and a uniform
background. See caption to Table 2 for an explanation of the meaning of
various table entries.

Component A Component B
True Fit True Fit

x0 (pc) 546.5 606.2+55.5
−58.1 269.1 278.3+24.4

−22.8

y0 (pc) 91.5 69.2+21.9
−26.8 63.4 64.8+8.1

−9.1

z0 (pc) 58.7 50.9+5.4
−5.9 51.8 52.6+3.1

−3.3

u0 ( km s−1) − 26.2 −27.5+1.4
−1.4 − 18.1 −18.7+0.8

−0.8

v0 ( km s−1) − 6.2 −4.4+1.6
−1.7 − 15.3 −15.1+0.7

−0.6

w0 ( km s−1) 2.1 2.8+0.6
−0.7 − 2.9 −2.7+0.4

−0.4

σ xyz (pc) 10.0 10.2+1.0
−0.8 10.0 9.3+0.7

−0.6

σuvw ( km s−1) 0.7 0.7+0.1
−0.0 1.0 1.0+0.1

−0.1

Age (Myr) 25.0 27.0+1.8
−2.0 12.0 12.5+1.1

−1.1

nstars 40 38.22 50 46.86

4.1 Input data

The first step in our analysis is to prepare a list of stars on
which to run Chronostar. We start with the list of βPMG
members derived by the BANYAN software package provided by
Gagné et al. (2018c), most of which are provided with proper
motions and radial velocities compiled from the literature (see
Table 7 for details). We cross-match each star in this list with
the Gaia DR2 catalogue to obtain parallax distances along with
improved proper motions and radial velocities where available. In
cases where a given piece of kinematic information is available
from multiple sources, we use the measurement with the lowest
reported uncertainty. We convert all astrometric measurements to
XYZUVW coordinates as described in Section 2.1. We then remove
stars that lack full 6D phase-space information. The result is a set
of previously identified βPMG members with full 6D phase space
information, including uncertainties. We note that stars without
full 6D phase-space information can be included by replacing their

(a) (b)

Figure 7. Results from our test using two components with distinct ages but with identical current-day centroids in both position and velocity. See caption to
Fig. 6 for an explanation of figure details. Note that six stars (blue triangles) are misclassified corresponding to a success rate of 95 per cent, which is consistent
with the mean membership probability that Chronostar estimates for all stars with respect to their correct component: 94.3 per cent.
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(a) (b)

Figure 8. Results from our test using two components combined with a fixed, uniform background. See caption to Fig. 6 for an explanation for figure details.
The grey circles show positions of background stars that are correctly classified as part of the background. The grey square and triangular markers show stars
that are in fact part of one of the two components of the association, but that are incorrectly classified as part of the background by Chronostar. There are
only five such markers, because Chronostar correctly classifies 85 (of 90) component stars.

Table 7. Astrometry and memberships to βPMG (Comp A) as well as reference to previous work listing star as member of βPMG. Full table available in
machine-readable format in online version.

Main R.A. Decl Parallax μαcos δ μδ RV Comp. A RV ref Prev.
Designation (deg) (deg) (mas) (mas yr−1) (mas yr−1) ( km s−1) Memb. Prob. βPMG ref

HD 203 1.709 − 23.108 25.02 ± 0.06 96.8 ± 0.1 − 47.12 ± 0.07 7 ± 4 0.9836 20 1
RBS 38 4.349 − 66.753 27.17 ± 0.03 103.04 ± 0.05 − 16.87 ± 0.05 10.7 ± 0.2 0.99927 21 1
GJ 2006 A 6.960 − 32.552 28.66 ± 0.07 109.8 ± 0.1 − 47.39 ± 0.07 8.8 ± 0.2 0.99731 21 1
| GJ 2006 B 6.960 − 32.557 28.68 ± 0.08 112.2 ± 0.1 − 44.64 ± 0.07 8.5 ± 0.2 – 21 1
Barta 161 12 23.808 − 7.215 26.82 ± 0.09 97.5 ± 0.2 − 49.09 ± 0.09 6.8 ± 0.8 0.93598 21 1
G 271-110 24.231 − 6.794 41.7 ± 0.1 173.5 ± 0.3 − 100.1 ± 0.2 12.2 ± 0.4 0.0 27 1
HD 14082 A 34.356 28.745 25.13 ± 0.04 86.92 ± 0.07 − 74.07 ± 0.07 5.4 ± 0.5 0.89691 22 1
| HD 14082 B 34.353 28.741 25.16 ± 0.05 85.97 ± 0.08 − 71.11 ± 0.08 4.7 ± 0.2 – 15 1
AG Tri A 36.872 30.973 24.36 ± 0.05 79.68 ± 0.08 − 72.00 ± 0.07 4.8 ± 0.1 0.8783 15 1
| AG Tri B 36.867 30.978 24.45 ± 0.08 82.7 ± 0.1 − 73.49 ± 0.09 5 ± 1 – 24 1
BD+05 378 40.358 5.988 22.50 ± 0.08 79.12 ± 0.10 − 56.6 ± 0.1 5.7 ± 0.4 0.0 15 1

Note. βPMG membership references: (1) Gagné et al. (2018b), (2) Schlieder, Lépine & Simon (2010), (3) Alonso-Floriano et al. (2015), (4) Moor et al. (2006),
(5) Elliott et al. (2014), (6) Moór et al. (2013), (7) Torres et al. (2008), (8) Gagné et al. (2018c), (9) Zuckerman et al. (2001), (10) Malo et al. (2013), (11)
Malo et al. (2014), (12) Kiss et al. (2011), (13) Elliott et al. (2016), (29) Gagné & Faherty (2018), (30) Gagné, Faherty & Fontaine (2018a), (31) Neuhäuser &
Forbrich (2008). RV references: (14) Torres et al. (2006), (15) Gaia Collaboration et al. (2018), (16) Kiss et al. (2011), (17) Allers et al. (2016), (18) Shkolnik
et al. (2017), (19) Torres et al. (2009), (20) Gontcharov (2006), (21) Malo et al. (2014), (22) Valenti & Fischer (2005), (23) Anderson & Francis (2012), (24)
Song et al. (2003), (25) Montes et al. (2001), (26) Kharchenko et al. (2007), (27) Shkolnik et al. (2012), (28) Faherty et al. (2016).

lacking measurements with placeholder values with extremely large
uncertainties.

We next extend our list by adding stars from the Gaia DR2
catalogue that have not been identified as βPMG members by
BANYAN, but are none the less nearby in phase-space. To accomplish
this, we draw a box in 6D phase-space around the centre of the
BANYAN stellar list, with its size chosen to be twice the span of
the BANYAN stars in each dimension. The dimensions of this box
are X = (−84.6, 133.1) pc, Y = (−60.8, 47.3) pc, Z = (−34.3,
45.9) pc, U = (−7.1, 9.5) km s−1, V = (−9.4, 2.0) km s−1, and
W = (−8.5, 7.5) km s−1. We add to our star list all Gaia DR2 stars
whose central estimates of position and velocity fall within this box,
and which are not already in the BANYAN list. Our final stellar list
consists of 859 stars, of which 52 are from the BANYAN catalogue
and 807 are nearby Gaia DR2 stars that have not been identified as
βPMG members by BANYAN.

Our final data preparation step is to handle binary and multiple
star systems. The velocities of these stars may contain a large
contribution from their orbital motion, and thus even if the centre
of mass velocity of a binary system is consistent with being a
group member, the component stars may be falsely flagged as
non-members because their velocities are inconsistent with that
of the group. To avoid this problem, whenever possible we replace
multiple star systems with a single pseudo-star whose position and
velocity (and the associated uncertainties on these quantities) are
mass-weighted averages of the values for the individual stars in the
multiple system. For stars in the BANYAN catalogue that are flagged
as multiple, we compute the mass-weighted average by converting
their spectral types (also taken from the BANYAN catalogue) to
masses using the conversion table provided by Kraus & Hillenbrand
(2007). Unfortunately we cannot make a similar correction for Gaia
DR2 stars that are not in the BANYAN catalogue, because we have no
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Figure 9. Results from Chronostar’s decomposition of stars identified as βPMG members by BANYAN, plus surrounding Gaia DR2 stars. Panels show
current-day positions and velocities of stars in several different 2D projections. Colours indicate component assignments derived by Chronostar, while
marker styles show assignments of stars to groups and associations in the BANYAN catalogue; circles, labelled ‘Background’ in the legend, are stars not identified
as members of any moving group or association by BANYAN, while grey points are stars assigned to the background component by Chronostar. Filled
ellipses around the current-day positions show the error distributions for the measurements; for clarity we only show error ellipses for probable members of
components A and D. The dashed ellipses show the best-fitting current-day distributions retrieved by Chronostar, coloured by component. Component
properties derived by Chronostar are provided in Table 5, while a list of likely βPMG members is given in Table 7.

straightforward method of identifying which of them are members
of multiple systems. Consequently, there may be true βPMG
members in the Gaia DR2 catalogue that are not identified as such
by Chronostar because their kinematics are contaminated by
orbital motion. However, since these are only false negatives, rather
than false positives, we do not expect this effect to substantially
influence the overall group properties that we determine. This step
merges the 52 BANYAN βPMG members into 38 stars with this
change reflected in the following plots.

4.2 Results of the fit

We run Chronostar on the star list constructed as described
above. The resulting fit identifies six components, which we denote
A through F. We show this decomposition in Fig. 9. Of the six
components, A clearly corresponds to the known βPMG; it includes
34 of the 38 stars in the BANYAN βPMG catalogue, along with

an additional 27 members that we discuss in detail below.7 The
estimated age for this component is 17.8 ± 1.2 Myr; we report
this and other fit results in Table 5. The α value for the βPMG
component is 50, indicating that perhaps there is mass missing in
the form of unidentified members. This component is definitively
identified as single by Chronostar: a six-component model that
attempts to divide component A from the best five-component into
two sub-parts yields a BIC value that is 39 higher (see Table 6 for
summary of BIC values across entire run), strongly favouring the
six-component fit.

Of the other five components returned by Chronostar, we can
identify D with the previously known Tucana-Horologium moving

7We remind the reader that Chronostar actually returns fractional
membership probabilities, so when we refer to a star as being identified
as a member of a particular component, we mean that this is the component
for which the star has the highest membership probability.
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Table 5. Parameters for the βPMG and part of the Tuc-Hor moving group
(see the main text) derived by Chronostar’s fit to βPMG and nearby
Gaia DR2 stars (components A and D in Fig. 9, respectively). We suppress
here the correlations between dimensions in the covariance matrices, but the
full covariance matrices can be found in the online version.

βPMG Partial Tuc-Hor
Origin Current Origin Current

x (pc) 33.7+3.8
−3.4 30.0+3.2

−3.1 232.0+16.4
−16.5 12.0+3.6

−3.6

y (pc) 46.6+3.3
−3.2 −5.5+2.8

−2.8 155.8+5.3
−6.4 −17.2+3.0

−3.0

z (pc) 22.2+1.9
−1.8 7.5+1.7

−1.7 −20.1+8.7
−8.6 −11.8+0.9

−0.8

u ( km s−1) −0.7+0.2
−0.2 1.5+0.2

−0.2 −7.7+0.4
−0.4 1.6+0.1

−0.1

v ( km s−1) −3.4+0.2
−0.2 −3.5+0.1

−0.1 −2.5+0.5
−0.5 −8.6+0.1

−0.1

w ( km s−1) 0.2+0.2
−0.2 −1.6+0.1

−0.1 −6.3+0.2
−0.2 6.3+0.1

−0.1

σ x (pc) 12.8+0.9
−0.8 24.5+1.5

−1.4 4.8+0.4
−0.4 23.2+1.7

−1.5

σ y (pc) 12.8+0.9
−0.8 21.6+1.2

−1.1 4.8+0.4
−0.4 19.2+1.4

−1.2

σz (pc) 12.8+0.9
−0.8 13.7+0.9

−0.8 4.8+0.4
−0.4 5.6+0.4

−0.4

σu ( km s−1) 1.0+0.1
−0.1 1.2+0.1

−0.1 0.53+0.04
−0.03 0.8+0.1

−0.1

σv ( km s−1) 1.0+0.1
−0.1 0.9+0.1

−0.1 0.53+0.04
−0.03 0.40+0.03

−0.02

σw ( km s−1) 1.0+0.1
−0.1 1.0+0.1

−0.1 0.53+0.04
−0.03 0.49+0.03

−0.03

Age (Myr) – 17.8+1.2
−1.2 – 36.3+1.3

−1.4

nstars – 59.3 – 41.1

group: of the 46 stars identified as members of this component, 17
are listed as Tucana-Horologium members in the BANYAN catalogue
(Gagné et al. 2018c). Our age estimate for this component is
36.3+1.3

−1.4 Myr which is consistent with the LDB age estimate of
≈40 Myr given by Kraus et al. (2014). We report this and other
fit parameters for Tuc-Hor in Table 5. However, we warn that,
because the component that we identify with Tuc-Hor lies at the
edge of the selection box used to construct our stellar list, and thus
a substantial number of Tuc-Hor stars are missing from our input
stellar list, the recovered position and velocity should be regarded
as unreliable. The slopes in phase-space, and thus the age, are more
robust to incomplete data. Independent of this issue, we emphasize
that Chronostar’s identification of Tuc-Hor represents a true,
blind discovery of an association in the Gaia DR2 data, since our
input stellar list was not in any way selected to favour known Tuc-
Hor stars.

The remaining four components identified by Chronostar do
not obviously correspond to any known associations. Because these
components, like Tuc-Hor, lie at the edge of our sample selection
box, and because unlike Tuc-Hor there is at present no evidence

Figure 10. Colour-magnitude diagram of our fit to βPMG, featuring all
stars in the set described by Section 4.1. The grey dots are background Gaia
stars, with a clear clustering on the main sequence. The dashed orange line
is an empirical fit to the main sequence. The blue markers denote βPMG
members according to Chronostar. Stars that are also βPMG members
according to BANYAN have circle markers, while those that are new members
have triangle markers. BANYAN members that are rejected by Chronostar
are shown as pink circles. The three Chronostar members that appear
photometrically inconsistent are coloured red.

that these stellar groups are truly coeval, we do not consider their
properties reliable at this point. We defer further investigation of
these components to future work.

4.3 New βPMG members

Component A of the Chronostar decomposition, which we
identify with the βPMG, has 61 stars with membership probabilities
greater than 50 per cent (46 greater than 90 per cent). Of these, 34
are identified by BANYAN as βPMG members. Five further stars are
classified as βPMG members in follow up BANYAN papers (Gagné &
Faherty 2018; Gagné et al. 2018b; Gagné, Faherty & Mamajek
2018d), and nine have been identified as likely βPMG members by
other authors (see Table 5 for references), leaving 13 stars identified
by Chronostar as likely βPMG members for the first time. A
colour magnitude diagram (Fig. 10) reveals that 10 of these 13 are
consistent with lying on an isochrone that is substantially above
the main sequence formed by the background stars and consistent
with an isochrone formed by previously identified βPMG members,
further supporting their identification. Thus the Bayesian forward-

Table 6. The BICs scored by various multicomponent fits to βPMG. Each column has an entry for each unique
initialization for the given number of components. In each column the lowest BIC (in bold) is taken as the best fit for
the given component count. The fit that yielded this BIC is then used to initialize multiple fits with n + 1 components.
The row denotes which component from the previous best fit Chronostar decomposes. For example, Chronostar
performed two three-component fits, initializing the first by decomposing Component A of the two-component result.
Chronostar initialized the second by decomposing Component B, which yielded a better BIC. Chronostar
terminated with six components because all of the attempted seven component fits failed to improve the BIC.

1 Comp 2 Comps 3 Comps 4 Comps 5 Comps 6 Comps 7 Comps

Comp A 28 702.90 27 984.69 28 311.91 27 505.76 27 566.69 27 501.87 27 479.64
Comp B – – 27 752.75 27 818.54 27 449.76 27 489.28 27 481.18
Comp C – – – 27 761.06 27 558.12 27 449.33 27 506.65
Comp D – – – – 27 563.82 27 481.90 27 494.94
Comp E – – – – – 27 440.57 27 500.21
Comp F – – – – – – 27 448.21
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modelling method of Chronostar, coupled with the quality of
Gaia DR2, has allowed us to expand the list of known βPMG
members by about 20per cent.

Most of the newly identified βPMG stars have large X and
U, indicating that the βPMG extends further in X (towards the
Galactic Centre) than previously thought. These stars were likely
missed in previous surveys because their greater distances im-
ply larger astrometric uncertainties. The reason we are able to
identify these stars at likely members, while previous studies
missed them, is that Chronostar’s forward-modelling method is
significantly more robust against uncertainties than earlier traceback
methods.

5 D ISCUSSION

In this paper we have described the Chronostar method for
kinematic age estimation and membership classification of unbound
stellar associations. Chronostar models an initial association
component as a 6D Gaussian with uncorrelated positions and
velocities, projects this forwards in the Galactic potential and
maximizes the likelihood of the component parameters by overlap
with current-day stellar measurements. Multiple components are
treated with an expectation maximization (EM) algorithm, and
individual components have a physical, virial prior on position and
velocity dispersions. This approach differs from Rizzuto, Ireland &
Robertson (2011) and BANYAN (Gagné et al. 2018c), which do
not consider time evolution, and differs from LACEWING (Riedel
et al. 2017) and Miret-Roig et al. (2018), which trace stellar
measurements backwards through time.

The first distinguishing feature of Chronostar is how it
handles kinematic fitting and membership assignment in a self-
consistent way, treating the two aspects as a single problem,
and iterating through their circular dependency until convergence.
Other approaches (e.g. BANYAN, LACEWING) derive association
parameters from pre-defined membership lists, which in effect (after
potential removal of suspected interlopers) restricts the discovery of
new members to the vicinity of known members. This also impedes
applying constraints on the current-day distributions of associations
based on what is physically plausible. For example, the classical
decomposition of the Scorpius Centaurus OB association into three
sub-groups has minimal physical justification (Rizzuto et al. 2011),
and indeed impedes kinematic ageing techniques when performed
on the large-scale structure enforced by this classification (Wright &
Mamajek 2018).

The second significant difference is Chronostar’s forward
modelling of an initial, compact distribution through the Galactic
potential to its current-day distribution, intrinsically anchoring the
various variances and covariances of all dimensions of the 6D
ellipsoid to the modelled age. One obvious benefit of this approach is
the provision of kinematic ages. A second and less obvious benefit is
that the tight position–velocity correlations induced by the motions
of stars through the Galactic potential allow us to more confidently
reject interlopers that fall well within the extent of the distribution
of association members in one or more dimensions (position or
velocity), but do not lie on the correct position–velocity correlation.
This approach is similar to the principle behind expansion ages
(e.g. Torres et al. 2008; Wright & Mamajek 2018), but whereas past
applications assume linear expansion, Chronostar accounts for
the effects of the Galactic potential on stellar orbits. This difference
is crucial in pushing to ages �10−20 Myr, because the vertical
oscillation period of stars through the Galactic plane is ≈80 Myr
(74 Myr in our model of the Galactic potential, and 87 ± 4 Myr using

Oort constants from Bovy 2017). Position–velocity correlations
rotate 90◦ in the Z−W plane over a quarter period (c.f. the discussion
in Section 3.1), so the assumption of purely linear expansion begins
to fail seriously after only ≈10−20 Myr. A third benefit to forward
modelling as done in Chronostar is that it is considerably more
robust than traceback or similar methods against observational
uncertainties. Typical radial velocity errors are ≈1 km s−1 (e.g.
Kraus & Hillenbrand 2008), comparable to the intrinsic velocity
dispersions of associations. As a result, as one attempts to trace stars
backward, the volume of possible stellar positions balloons rapidly.
Attempts to sample this volume using Monte Carlo or similar
techniques have thus far proven relatively unsuccessful at delivering
reliable kinematic ages (e.g. Donaldson et al. 2016; Riedel et al.
2017; Miret-Roig et al. 2018). In contrast, trace-forward combined
with analysis of the overlap between a proposed association and
observed stars in 6D phase-space does not suffer from this explosion
of possibilities, because the phase-space volume occupied by a
proposed stellar distribution is conserved as one traces it forward.

6 C O N C L U S I O N A N D F U T U R E WO R K

In this paper we have presented the methodology forChronostar,
a new kinematic analysis tool to identify and age unbound stars that
share a common origin. The tool requires no manual calibration
or pre-selection, and simultaneously and self-consistently solves
the problems of assigning stars to associations and determining the
properties of those associations. We test Chronostar extensively
on synthetic data sets, including ones containing multiple, overlap-
ping components and ones where the initial positions and velocities
are stars are drawn directly from a hydrodynamic simulation of
star formation, and show that it returns very accurate membership
assignments and kinematic ages. In tests on real data, we show that
Chronostar is capable of blindly recovering the β Pictoris and
Tucana-Horologium moving groups (Fig. 9), with the kinematic
data used to find the latter originating solely from Gaia DR2.
In the future we intend to apply Chronostar to other known
associations, with incorporated radial velocities from dedicated
spectroscopic surveys (i.e. RAVE, Kunder et al. 2017; GALAH,
Buder et al. 2018). This should for the first time provide reliable
kinematic ages. Since Chronostar has proven to be capable of
blind discovery, we also intend to search the phase-space near the
Sun for previously unknown associations.

Due to the Bayesian nature of Chronostar, it is also straight-
forward to extend it by adding extra dimensions to the parameter
space for even stronger membership classification. This includes
placing priors on the ages of individual stars based on spectroscopic
types, and incorporating chemical tagging into the fitting mecha-
nism. Two further possible enhancements that we intend to pursue
in future work include allowing for the possibility that associations
might be born with significant position–velocity correlations (as
suggested for example by Tobin et al. 2009 and Offner, Hansen &
Krumholz 2009), and allowing Chronostar to fit not only
unbound associations but also bound open clusters that are slowly
evaporating.
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Malo L., Artigau É., Doyon R., Lafrenière D., Albert L., Gagné J., 2014,
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SUPPORTI NG INFORMATI ON

Supplementary data are available at MNRAS online.

Table 7. Astrometry and memberships to βPMG (Comp A) as well
as reference to previous work listing star as member of βPMG.

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

A P P E N D I X A : PRO J E C T I N G A C O M P O N E N T
T H RO U G H T I M E

This appendix details our method of taking a component’s initial
distribution in 6D phase-space N (θ ; μ0,�0) and, using GALPY’s
orbit calculations (Bovy 2015), projecting it forward through time
by its modelled age tc to its current-day distribution N (θ ; μc, �c).

The technical details of the implementation used by galpy8 to
calculate orbits are irrelevant for our method so we abstract the
galpy orbit calculation as a function f that maps a starting point
θ0 in the 6D phase-space forward over an arbitrary time to a new
point θf . Thus we use f to project μ0 and �0 to their current-day
values, μc and �c. Acquiring the current-day central value is simply

8We used the integrator option ’odeint’ which utilizes scipy’s
odeint.
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a matter of evolving the initial central point forward by the modelled
age. In our abstracting notation this reads:

μc = f(μ0, tc). (A1)

To transform the covariance matrix �0 it is useful to think in
terms of a coordinate transformation between two systems: the
initial coordinates, and the current-day coordinates. To linear order,
the covariance matrix �B in the new coordinate system B is given
by the usual law for error propagation,

�B = JA�AJT
A, (A2)

where �A is the covariance matrix in the original coordinates A, and
J is the Jacobian for the mapping between the two coordinate sys-
tems; specifically, if some function g(a) maps a point a in coordinate
system A to a corresponding point in B, then Jij = ∂gi/∂aj .

In our case of orbit evolution, the mapping function g is simply
f(μ0, tc), and thus the Jacobian evaluated at starting phase-space
position μ0 is

Jij = ∂

∂θ0,j

(f (μ0, tc)i) = ∂θc,i

∂θ0,j

, (A3)

where θ0, i and θ c, i are the ith components of μ0 and μc = f(μ0, tc),
respectively. That is, θ0, i and θ c, i are the ith components of the
phase-space coordinates of the association’s centre at the time of its
birth and at the current time, respectively. We cannot evaluate the
Jacobian J analytically because evaluation of f requires numerical
integration of an orbit through the Galactic potential. Instead, we
evaluate the partial derivatives numerically using a second-order
approximation:

∂θc,i

∂θ0,j

≈ f (θ0 + h, t)i − f (θ0 − h, t)i
2|h| , (A4)

where h is a 6D vector with hj = 10−5 (pc or km s−1, depending on
dimension) and all other components zero.

One might worry about the numerical stability of this procedure,
and this would indeed be a concern if the potential through which
we were integrating the orbits were tabulated numerically, or
contained significant small-scale structure. However, our potential
is both analytic and very smooth, and as a result both the orbit
integration and the numerical derivative returned by equation (A4)
are extremely robust to changes in h as long as all components of h

are much smaller than the size scale on which the potential varies,
and much larger than the ≈10−8 error tolerance in the numerical
integrator. To confirm this directly, we have experimented with
varying h from 10−1 to 10−6. We find that, over this range, the non-
zero components of ∂θ c, i/∂θ0, j vary by < 0.01 per cent in the vast
majority of cases, and by < 1 per cent in all cases.

A P P E N D I X B: EX P L O R I N G D E P E N D E N C E O N
POTENTI AL MODEL

The choice of the potential model influences the calculated orbits
and thus the resulting age fits. To explore the dependence we repeat
the test described in Section 3.3.2 using two different potential
models. In both cases we use the same synthetic data which we
generated using the potential modelMWPotential2014, but then
use Chronostar to fit the stellar population using a different
potential, in order to determine how sensitive our results are to
uncertainties in the potential.

The two key time-scales of our potential model are the vertical
oscillation frequency and the epicyclic frequency. We expect the
vertical oscillation period to have the greater effect on the age fit as
this is the shorter time-scale by a factor of 2. Therefore in the two
following tests we alter the potential by varying the scale height
of the disc component. In the first test we halve the scale height,
and in the second we double it. These new potentials have vertical
oscillation periods scaled by 0.73 and 1.33, respectively.

Fitting the synthetic data described in Section 3.3.2 using
a potential with a halved scale height continues to yield two
components, with estimated ages of 6.8+0.2

−0.1 and 9.9+0.1
−0.2 Myr. The

corresponding results for a potential with a doubled scale height
are 6.8 ± 0.1 and 9.9 ± 0.1 Myr. These compare well with the
true ages of 7 and 10 Myr, and with the ages determined using the
correct potential. Thus, despite the vertical oscillation frequency
differing significantly in these two tests, and thus distorting the best
fit in the Z−W plane, there is sufficient constraining information
in the remaining dimensions to accurately retrieve the ages. The
implication of this test is that our age estimates are relatively robust
to errors in any particular dimension of the potential.
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