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ABSTRACT
As part of our long-term campaign to understand how cold streams feed massive galaxies at
high redshift, we study the Kelvin–Helmholtz instability (KHI) of a supersonic, cold, dense gas
stream as it penetrates through a hot, dilute circumgalactic medium (CGM). A linear analysis
(Paper I) showed that, for realistic conditions, KHI may produce non-linear perturbations to
the stream during infall. Therefore, we proceed here to study the non-linear stage of KHI, still
limited to a 2D slab with no radiative cooling or gravity. Using analytic models and numerical
simulations, we examine stream break-up, deceleration, and heating via surface modes and
body modes. The relevant parameters are the density contrast between stream and CGM (δ),
the Mach number of the stream velocity with respect to the CGM (Mb) and the stream radius
relative to the halo virial radius (Rs/Rv). We find that sufficiently thin streams disintegrate
prior to reaching the central galaxy. The condition for break-up ranges from Rs < 0.03Rv for
(Mb ∼ 0.75, δ ∼ 10) to Rs < 0.003Rv for (Mb ∼ 2.25, δ ∼ 100). However, due to the large
stream inertia, KHI has only a small effect on the stream inflow rate and a small contribution
to heating and subsequent Lyman-α cooling emission.
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1 IN T RO D U C T I O N

1.1 General

According to the standard �CDM model of cosmology, the most
massive galactic dark-matter haloes at any epoch lie at the inter-
sections of cosmic web filaments (Zel’dovich 1970; Bond, Kofman
& Pogosyan 1996; Springel et al. 2005). During the peak phase of
star formation, at redshift z ∼ 2, these include haloes with a virial
mass exceeding Mv ∼ 1012 M�, above the critical mass for shock
heating (Birnboim & Dekel 2003; Dekel & Birnboim 2006), which
contain hot gas at the virial temperature, Tv ∼ 106K. However,
the gas flowing along the filaments that feed such massive haloes
is significantly denser than the halo gas, allowing it to cool more
rapidly and preventing the formation of a stable virial shock within
the filaments. Instead, these gas streams are expected to penetrate
through the hot circumgalactic medium (CGM) on to the central
galaxy, all the while remaining cold and dense (Dekel & Birnboim
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2006; Dekel et al. 2009), with a typical temperature of Ts � 104K,
set by the steep drop in the cooling rate below that temperature
(Sutherland & Dopita 1993).

In cosmological simulations, cold streams with diameters of a
few to 10 per cent of the virial radius are seen to penetrate deep
into the haloes of massive star-forming galaxies (SFGs), confirming
the theoretical picture described above (Kereš et al. 2005; Ocvirk,
Pichon & Teyssier 2008; Dekel et al. 2009; Ceverino, Dekel &
Bournaud 2010; Faucher-Giguère, Kereš & Ma 2011; van de Voort
et al. 2011). The gas accretion rate via cold streams in simulations
is on the order of ∼100 M� yr−1, comparable to both the theo-
retical cosmological gas accretion rate (Dekel et al. 2009) and the
observed star formation rate (SFR) in SFGs (Genzel et al. 2006;
Förster Schreiber et al. 2006; Elmegreen et al. 2007; Genzel et al.
2008; Stark et al. 2008). This suggests that cold streams must bring
a significant fraction of the cosmological gas inflow into the central
galaxy (Dekel et al. 2009), as is the case in cosmological simulations
(Dekel et al. 2013).

The simulated streams maintain roughly constant inflow veloci-
ties when traversing the CGM, instead of accelerating as expected
due to free fall into the halo gravitational potential (Dekel et al. 2009;
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Goerdt & Ceverino 2015). This indicates that a dissipation process,
as yet unidentified, acts upon the streams along the way. The asso-
ciated loss of kinetic energy may be observed as Lyman-α emission
(Dijkstra & Loeb 2009; Goerdt et al. 2010; Faucher-Giguère et al.
2010), possibly accounting for Lyman-α ‘blobs’ (LABs) observed
at z > 2 (Steidel et al. 2000; Matsuda et al. 2006, 2011). Since cold
streams consist of mostly neutral Hydrogen, they may also be visi-
ble in Lyman-α absorption and may explain some observed systems
(Fumagalli et al. 2011; Goerdt et al. 2012; van de Voort et al. 2012;
Bouché et al. 2013). Recent observational evidence reveals massive
extended cold components in the CGM of high-redshift SFGs, with
kinematic properties consistent with predictions for cold streams
(Cantalupo et al. 2014; Martin et al. 2014a,b; Danovich et al. 2015;
Bouché et al. 2016; Borisova et al. 2016; Fumagalli et al. 2017).

Despite the growing evidence that cold streams are a fundamental
part of galaxy formation at high redshift, several important questions
regarding their evolution remain unanswered. Do the streams break-
up as they traverse the CGM? How much of their energy is dissipated
in the journey? Should the dissipation be observable in emitted
radiation? How does it affect the mass inflow rate? What is the state
of the gas when it accretes on to the galaxy? How does this affect
the angular momentum and SFR in the disc?

Most attempts to address these questions have used cosmological
simulations. The current generation of cosmological simulations,
such as the VELA suite of zoom-in simulations (Ceverino et al.
2014; Zolotov et al. 2015; Tacchella et al. 2016), reach a resolu-
tion of ∼100 pc within streams at large radii. This is comparable to
the stream width itself, so hydrodynamic and other instabilities at
smaller scales are not captured properly, although the global stream
properties such as its radius and mean density may be resolved.
Thus, cosmological simulations are presently ill-suited to investi-
gate the ultimate fate of cold streams. This difficulty may be the
cause of apparent contradictions between properties of cold streams
predicted by different simulations. For example, based on moving
mesh AREPO (Springel 2010) simulations, Nelson et al. (2013) argue
that cold streams heat up and become diffuse in the inner halo, con-
trary to comparable Eulerian Adaptive Mesh Refinement (AMR)
simulations, where the streams remain cold and collimated. The
interpretation of these results is uncertain due to insufficient resolu-
tion (see also Nelson et al. 2016), motivating a more careful study
of cold stream evolution in the CGM.

As an alternative approach to full cosmological simulations, in
this series of papers we use analytic models and idealized simu-
lations, progressively increasing the complexity of our analysis by
adding fundamental physical processes one-by-one. In parallel to
this methodical approach, cosmological zoom-in simulations tai-
lored to resolve stream instabilities will be presented in a separate
paper (Roca-Fabrega et al., in preparation).

1.2 Main results of Paper I

Mandelker et al. (2016), hereafter Paper I, took the first step in
our long-term campaign, by studying the linear phase of Kelvin–
Helmholtz instability (KHI) of a cold, dense stream confined in a
hot, dilute background, under fully compressible conditions1 with
no radiative cooling or gravity. Three geometrical variants of the
problem were considered:

1 We use ‘compressible’ to refer to flows with arbitrary Mach number:
supersonic (M > 1), transonic (M ≈ 1), and subsonic (M < 1). We use
‘incompressible’ to refer to the limit M → 0.

(i) A planar sheet, where two semi-infinite fluids are initially
separated by a single planar interface at x = 0.

(ii) A planar slab, where the stream fluid is initially confined
to a slab of finite thickness, −Rs < x < Rs, surrounded by the
background fluid.

(iii) A cylindrical stream, where the stream fluid is initially con-
fined to a cylinder of finite radius Rs, surrounded by the background
fluid.

The fluids are characterized by their respective densities and speeds
of sound, ρb, s and cb, s, and are assumed to be in pressure equi-
librium. The reference frame is chosen so that the background is
initially stationary, Vb = 0, while the stream has velocity Vs = V
parallel to the stream/background interface.

The chosen setup, with Vb = 0, is a reasonably accurate rep-
resentation of the conditions of our astrophysical scenario, where
cold streams flow through hydrostatic gas that has been shocked to
the virial temperature (Birnboim & Dekel 2003; Dekel & Birnboim
2006). While there are indications that some turbulent motion is
present in hydrostatic haloes, the associated turbulent pressure is
expected to be small compared to the thermal pressure. An upper
limit on the turbulent pressure can be inferred from measurements
of velocities under 100 kms−1 in OVI absorbing objects in galaxies
observed with the Cosmic Origins Spectrograph (Green et al. 2012).
This is roughly half of the virial velocity, limiting the turbulent pres-
sure to �1/4 of the thermal pressure. For galaxy clusters, this ratio
is even smaller, estimated to be 10 per cent at most (Churazov et al.
2008; Rebusco et al. 2006). These estimates are also supported by
current cosmological simulations that should, in principle, correctly
capture the large-scale motions in gaseous haloes.

The stability of the configurations described above, and the linear
growth rate in the unstable regime, is determined by two dimen-
sionless parameters: the density contrast, δ ≡ ρs/ρb, and the Mach
number with respect to the background speed of sound, Mb ≡ V /cb.
Due to pressure equilibrium, the temperatures and speeds of sound
satisfy Tb/Ts = δ and cb/cs = √

δ. The Mach number with respect
to the stream speed of sound satisfies Ms ≡ V /cs = √

δMb.
Linear stability analysis for each of the three problems considered

in Paper I yields an eigenvalue equation for the perturbations, which
is further reduced to a dispersion relation, ω(k), where ω is the
frequency, k = 2π/λ is the perturbation wavenumber and λ is its
wavelength along the stream. The growth rate2 is given by the
imaginary part of the frequency, ωI ≡ Im(ω). The KH time, i.e. the
characteristic time for perturbation growth in the linear regime, is
therefore tKH ≡ 1/ωI (k). If ωI > 0 for some eigenmode, it grows
exponentially with time as exp (t/tKH).

The planar sheet admits unstable eigenmodes which decay ex-
ponentially away from the initial interface and are therefore called
surface modes (see fig. 2 in Paper I). Linear stability analysis shows
that instability occurs if and only if the Mach number is below a
critical value,

Mb < Mcrit = (
1 + δ−1/3

)3/2
, (1)

2 Generally, there are two approaches to linear stability analysis; temporal
and spatial. In the former, the wavenumber k is real, while the frequency
ω is complex. This represents seeding the entire system with a spatially
oscillating perturbation and studying its temporal growth. In the latter, ω is
real, while k is complex. This represents seeding a temporally oscillating
perturbation at the stream origin and studying its downstream spatial growth.
The analysis performed in Paper I was temporal.
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In cases where equation (1) is satisfied, perturbations at all wave-
length are unstable with

tKH = 1

	IkV
= 1

2π	I

λ

V
, (surface modes) (2)

where 	 ≡ ω/(kV), and 	I = Im(	 ) is a dimensionless function of
(Mb, δ). Note that tKH scales as the time associated with the pertur-
bation wavelength, λ/V, so smaller wavelength modes experience
faster growth.

The slab and cylinder also admit surface mode solutions, which
are equivalent to the planar sheet eigenmodes and converge to the
same dispersion relation in the incompressible (Mb 	 1), short
wavelength (λ � Rs) limit. As the Mach number is increased, sur-
face modes become stable and are replaced by another class of
unstable solutions, called body modes. These are associated with
waves reverberating back and forth between the stream boundaries,
forming a pattern of nodes inside the stream, much like standing
waves propagating through a waveguide (see fig. 5 in Paper I). A
necessary condition for body modes to grow is

Mtot ≡ V

cs + cb
=

√
δ

1 + √
δ
Mb > 1, (3)

which is roughly the opposite of equation (1). Therefore, the (Mb, δ)
parameter space is divided into a surface-mode-dominated regime
and a body-mode-dominated regime, with a narrow range of param-
eters allowing coexistence.

For a given wavelength, body modes can appear in infinitely
many orders, forming a discrete set with different growth rates,
{ωn

I
(k)}∞

n=−1, where n + 1 corresponds to the number of transverse
nodes in the pressure perturbation within the stream. In a planar slab,
even values of n correspond to sinusoidal modes (S modes), which
cause a symmetric displacement of the slab boundaries, whereas
odd values are pinch modes (P modes), characterized by an anti-
symmetric displacement. The effective KH time, determined by the
mode with the largest growth rate at a fixed wavelength, is approx-
imately

tKH � 1

ln
(
2π	I

Rs
λ

) tsc, (body modes) (4)

where tsc = 2Rs/cs is the sound crossing time of the stream and
	I (Mb, δ) is some dimensionless factor.3 While the slab admits
only two symmetry modes, S and P modes, a cylinder admits in-
finitely many symmetry modes, corresponding to the azimuthal
mode number, m ≥ 0, which represents the number of nodes on
the circumference of the cylinder. Despite this and other qualita-
tive differences between a planar slab and a cylindrical stream, the
effective growth rates of body modes are similar and equation (4)
represents both cases with reasonable accuracy.

Comparing equations (2) and (4), we find two notable differences
between the KH time for surface and body modes: first, for body
modes tKH scales as Rs/cs instead of λ/V; second, although in both
cases smaller wavelength perturbations have larger growth rates,
the dependence on λ is weaker for body modes (logarithmic instead
of linear).

3 This is a slight divergence from the notation in Paper I, where we used
	I ≡ ωI /(kV ) throughout.

The importance of KHI in the evolution of cosmic cold streams
was assessed in Paper I by estimating the number of e-foldings
achieved by a perturbation,

Ne folding = tgrowth

tKH
, (5)

where tgrowth is the time available for growth before the stream
joins the central galaxy, on the order of the virial crossing time, tv.
In Paper I, we estimate tgrowth � tv for surface modes and tgrowth �
tv − tsc for body modes. By substituting tKH from either equation (2)
or (4), we can evaluate equation (5) as a function of four parameters:
Mb, δ, Rv/Rs, and Rs/λ, where the virial radius, Rv, is introduced
through tv. Paper I included a rough estimation4 for the allowed
range of parameters for cosmic cold streams, namely Mb ∼ 1–2,
δ ∼ 10–100, Rs/Rv ∼ 0.005–0.05, and Rs/λ � 1. These estimates
are repeated more accurately here in Section 5.1, including a mutual
constraint on Mb, δ and Rv/Rs. For the aforementioned parameter
range, Paper I found Ne folding between 0.1 and 100, showing that
KHI could in principle have an important role in the evolution of
cold streams. In general, for both surface and body modes, the
instability is attenuated as either the Mach number or the density
contrast are increased. When surface modes dominate, the stream
is highly unstable and even very small perturbations are expected to
become non-linear. However, only a very minor change in velocity
pushes the stream into the regime where body modes dominate, the
growth rate is slower and the outcome of the instability is expected
to depend largely on the stream width. These conclusions motivate
the study of the subsequent non-linear instability in cold streams
feeding massive galaxies at high redshifts.

1.3 Validity of the 2D adiabatic slab model

In this paper, we address the non-linear evolution of both surface
and body modes in 2D planar sheet and slab geometries, still with
no radiative cooling or gravity, using 2D hydrodynamic simulations
and simple analytic models. The use of a 2D slab model instead of
a 3D cylinder is justified by analysis, experiments and simulations
as follows. Linear analysis shows the aforementioned agreement in
growth rates of the slab and cylinder problems. Specifically for slab
surface modes, experiments show that the large-scale non-linear
evolution is dominated by nearly 2D structures with little spanwise
variability (Brown & Roshko 1974; Papamoschou 1989). Numerical
studies comparing perturbation growth and fragmentation in 2D and
3D simulations of body modes reach similar conclusions in both
cases, despite differences in morphology (e.g. Bassett & Woodward
1995; Bodo et al. 1998).

Nevertheless, the 2D model has some limitations. First, as will
be noted below, cylindrical streams are likely to decelerate faster
than 2D planar slabs, raising a caveat to our findings regarding
stream inflow rates. Second, although the large-scale behaviour of
KHI is captured in 2D, a proper treatment of turbulence requires
3D simulations, and is therefore beyond the scope of this work.
Third, the strict separation between a surface- and a body-mode-
dominated regime is an accurate description only in 2D; in 3D,
we expect to find unstable surface modes at high Mach numbers

4 Since growth rates diverge as λ → 0, the cited values Rs/λ deserve partic-
ular scrutiny. In a realistic stream, various physical processes are expected to
suppress the growth of small-wavelength perturbations, resulting in a finite
fastest growing mode. The assumed range of Rs/λ is a crude estimation (see
section 5 of Paper I) and awaits more rigorous study in the future.
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Figure 1. Unperturbed initial conditions for planar sheet and planar slab geometry. In planar sheet simulations, the instability involves one interface at x = 0.
In planar slab simulation, the instability involves two interfaces at x = ±Rs.

as well.5 In future communication, we will address these caveats
using 3D simulations of cylinders and investigate the effects of
additional physical processes absent from the current treatment,
such as cooling, thermal conduction, the external potential of the
host halo, self-gravity, and magnetic fields.

1.4 Outline

This paper is organized as follows. In Section 2, we discuss the
numerical simulations and techniques used for their analysis. In
Section 3, we address the non-linear evolution of surface modes in
the planar sheet and slab. In Section 4, we discuss the non-linear
evolution of body modes in the planar slab. In Section 5, we esti-
mate the relevant parameter range for KHI in cosmic cold streams
and apply the results of our idealized models to the astrophysical
scenario to obtain estimations of the potential reduction of inflow
rates, fragmentation, and Lyman-α emission due to KHI in cold
streams. We summarize our conclusions in Section 6.

2 N U M E R I C A L M E T H O D S

2.1 Hydrodynamic code

We use the Eulerian AMR code RAMSES (Teyssier 2002), with a
piecewise-linear reconstruction using the MonCen slope limiter
(van Leer 1977) and an HLLC approximate Riemann solver (Toro,
Spruce & Speares 1994), identical to Paper I. All of our simulations
are 2D.

5 The Mach number determining surface mode stability in equation (1)
corresponds to the velocity component parallel to the perturbation wave
vector, Vk = V · k̂. Therefore, perturbations at sufficiently oblique angles
relative to the flow can be considered effectively subsonic, even in highly
supersonic streams. For slabs, this means that surface modes with sufficiently
large ky are unstable even if Mb > Mcrit. For cylinders, surface modes with
sufficiently high azimuthal order m are unstable even if Mb > Mcrit.

2.2 Unperturbed initial conditions

The simulation domain is a square of side L = 1, representing
the xz plane, extending from 0 to 1 in the z-direction and from
−0.5 to 0.5 in the x-direction. The unperturbed initial conditions
are illustrated in Fig. 1. For sheet geometry, the interface between
the fluids is centred at x = 0, with the background fluid occupying
x < 0 and the stream fluid occupying x > 0. For slab geometry, the
slab is centred around x = 0, such that the stream fluid occupies
−Rs < x < Rs and the background fluid fills the rest of the domain.
Both fluids are ideal gases with adiabatic index γ = 5/3, and initial
uniform pressure P0 = 1. The background is initialized with density
ρb = 1 and velocity vb = 0. The stream is initialized with ρs = δ

and vs = V ẑ = Mbcbẑ, where cb = √
5/3 is the background sound

speed in simulation units.
In the setup described above, the density and velocity are dis-

continuous at the interfaces, either xint = 0 in sheet geometry or
xint = ±Rs in slab geometry. This generates numerical perturbations
at the grid scale, which grow faster than the intended perturbations
in the linear regime, and may dominate the instability, depending
on their initial amplitude. This is remedied by smoothing the unper-
turbed density and velocity around each interface using the same
ramp function as in Paper I,

f (x) = fb + fs − fb

2
×

[
1 ± tanh

(
x − xint

σ

)]
. (6)

where f stands for either ρ or v and the sign is chosen for each
interface separately such that f = fs inside the stream (positive
for xint ≤ 0 and negative otherwise). Different values of the width
parameter σ are used in surface- and body-mode simulations. In
all cases, σ is sufficiently small, on the order of a few cells, to
guarantee that our conclusions do not depend on its exact value.

2.3 Boundary conditions

We use periodic boundary conditions at z = 0 and 1, and outflow
boundary conditions at x = ±0.5, such that gas crossing the bound-
ary is lost from the simulation domain. The boundary conditions at
x = ±0.5 may affect the interface region once sound waves have
propagated back and forth between the interface and the boundary.
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For an interface at x = 0, the minimal time for this interaction to
occur is Tbox � L/cb � 0.775 in simulation units.6 Our planar sheet
simulations end at t ≤ Tbox, guaranteeing that the results are not
influenced by the outflow boundary conditions. Much longer simu-
lations were performed in order to observe the late-time evolution
of planar slabs with high-density contrasts. The influence of the
boundary conditions on these simulations was estimated by com-
paring runs with the fiducial domain size, L = 1, to runs with a
larger domain, L = 2, and found to be negligible (see Sections 3.3.7
and 4.3.2).

2.4 Computational grid

We used a statically refined grid throughout all runs. The inner-
most region, |x| < 0.2, has the highest resolution with cell size
� = 2−13 = 1/8192 in simulation units. The cell size increases by
a factor of 2 every 0.05 simulation units in the x-direction, up to a
maximal cell size of 2−9 in runs with L = 1. The grid used in runs
with L = 2 is exactly identical to L = 1 in the region |x| < 0.5,
which is padded with a uniform cell size of 2−8 for |x| > 0.5.

Overall, our results are converged in terms of the computational
grid. For planar sheet simulations, convergence is tested by doubling
the resolution of the entire grid, reaching a minimal cell size of
� = 2−14, with negligible effect on our conclusions. This is reported
in Appendix A. For slabs, the important parameter for convergence
is the number of cells across the slab width, Rs/�. Convergence is
therefore tested by varying the stream radius and all other physical
length-scales by the same factor, while keeping the computational
grid the same. The effect on our results is small for slabs as well.
These tests are reported in Sections 3 and 4 where appropriate.

2.5 Tracing the two fluids

Our simulations include a passive scalar field, denoted by ψ(x, z, t).
The passive scalar is initialized such that ψ = 1 in the stream and
ψ = 0 in the background. Since this field is advected with the flow,
it serves as a Lagrangian tracer for the fluid in the simulation (which
is Eulerian). An element characterized by passive scalar value ψ ,
density ρ, and volume dV contains a mass of stream and background
fluid given by

dms = ψρ dV and dmb = (1 − ψ)ρ dV . (7)

The volume-weighted line average of ψ along the ẑ-axis is given
by

ψ(x, t) =
∫ L

0 ψ(x, z, t) dz∫ L

0 dz
. (8)

In the unperturbed state, each stream/background interface is char-
acterized by a sharp transition7 between ψ = 0 in the background
and ψ = 1 in the stream. Hence, ψ(x, t = 0) is a step function
for planar sheet geometry and a top-hat function for planar slab
geometry.

Due to the non-linear growth of surface modes, the initial dis-
continuities of ψ(x) are smeared over a finite width around each
interface. In the neighbourhood of each interface, we assume that
ψ(x, t > 0) remains monotonic and reaches its asymptotic values

6 Any outgoing shocks in our simulations are sufficiently weak such that
their velocity is roughly cb, so the estimated value of Tbox represents sound
and shock waves alike.
7 Neglecting the smoothing introduced in equation (6).

ψ = 0 and 1. Therefore, we can use the inverse x(ψ) to define the
edges of the perturbed region around an interface, x(ψ = ε) on the
background side and x(ψ = 1 − ε) on the stream side, where ε is an
arbitrary threshold. The background-side thickness of the perturbed
region in our simulation is then defined by

hb ≡

⎧⎪⎨
⎪⎩

−x(ψ = ε) sheet

max x(ψ = ε) − Rs slab(top)

−Rs − min x(ψ = ε) slab(bottom)

, (9)

whereas the stream-side thickness is

hs ≡

⎧⎪⎨
⎪⎩

x(ψ = 1 − ε) sheet

Rs − max x(ψ = 1 − ε) slab(top)

min x(ψ = 1 − ε) + Rs slab(bottom)

, (10)

and the overall thickness of the perturbed region is the sum,

h ≡ hb + hs (11)

The different cases in equations (9) and (10) correspond to our
various possible initial interface positions, namely x = 0 for planar
sheet geometry and x = ±Rs for planar slab geometry. The signs
are chosen such that hb, s ≥ 0. In the following sections, the position
of the interface in question will be either irrelevant or made clear
by the context.

A related metric is used to estimate the total width of a planar
slab perturbed by either surface or body modes. We define the time-
dependent ‘stream width’, w, as the extent of the region satisfying
ψ ≥ ε,

w ≡ max x(ψ = ε) − min x(ψ = ε). (12)

The metrics presented above depend on ε and are expected to con-
verge for ε → 0+. The exact dependence of h and w on ε depends on
the shape of ψ(x), which varies somewhat with (Mb, δ), introduc-
ing minor systematic differences between estimations in different
cases. Through experimentation, we find that the thickness with ε

of a few per cent traces the limits of the perturbed region reasonably
well in all runs. Unless stated otherwise, we use ε = 0.02. This is
analogous to the common experimental approach of estimating the
‘visual thickness’ by tracing the visible limits of the largest per-
turbations in high-speed photography (e.g. Brown & Roshko 1974;
Papamoschou 1989; Rossmann 2002), and is therefore useful for
comparison with experiments.

2.6 Numerical mixing

In our simulations, the stream and the background fluid eventually
become tangled in complex, small-scale structures. Therefore, a
non-negligible fraction of the stream mass might occupy cells with
a mixed composition of stream and background fluid. Depending on
the mixing ratio, the temperature8 of a mixed cell can be dominated
by the hot background, creating the false impression that the cold
fluid has been heated considerably. When attempting to numerically
evaluate the heating experienced by the stream, it is important to
take into account only cells with sufficiently pure composition, so
as not to be mislead by this numerical artefact.

8 Temperature and specific internal energy are closely related by
e = 1/(γ − 1) · kT/(μmp), where k is the Boltzmann constant and μmp is
the particle mass, and are therefore used interchangeably.
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Consider a cell containing masses dmb, s of background fluid and
stream fluid respectively. Assuming both components maintain their
initial thermodynamic state, the specific internal energies are

eb,s ≡ 1

γ − 1

P

ρb,s
, (13)

for the background and the stream, respectively. The specific inter-
nal energy of the mixed cell, e, must be equal to the mass-weighted
mean of its components,

e = esdms + ebdmb

dms + dmb
= [1 + (δ − 1)(1 − ψ)] es. (14)

For δ > 1, we see that an impure composition, corresponding to
0 < ψ < 1, leads to an overestimation of the internal energy of the
stream when using the cell-averaged energy, e > es. We require that
the associated relative error be less than some threshold,

e − es

es
< εener. (15)

Substituting equation (14) for e yields the condition

ψ > 1 − εener

δ − 1
> 1 − εener

δ
, (16)

where the last inequality holds for any δ > 1. Note that the numeric
heating discussed above is of no concern for δ = 1. Nevertheless,
for consistency, we use equation (16) to define ‘pure’ or ‘unmixed’
stream fluid for all δ. The results show little sensitivity to the exact
value of εener (see Sections 3.3.8 and 4.3.3).

The mass fraction of stream fluid in unmixed cells is given by

fpure =
∫

�
(
ψ − 1 + εener

δ

)
dms∫

dms
, (17)

where � is the Heaviside step function and the integration is done
over the entire simulation domain. The mass-weighted mean density
and temperature of the unmixed stream fluid are therefore

Tpure =
∫

�
(
ψ − 1 + εener

δ

)
T dms∫

�
(
ψ − 1 + εener

δ

)
dms

, (18)

ρpure =
∫

�
(
ψ − 1 + εener

δ

)
ρdms∫

�
(
ψ − 1 + εener

δ

)
dms

. (19)

3 TH E N O N - L I N E A R E VO L U T I O N
O F S U R FAC E MO D E S

This section extends the study of surface modes into the non-linear
stage for both the planar sheet and planar slab. In Section 3.1, we
present a qualitative description of the non-linear evolution to guide
the intuition. The numerical simulations used for this section are
described in Section 3.2. The results are presented in Section 3.3.

3.1 Qualitative description

It is instructive to begin our discussion by considering two thought
experiments. We first present these experiments and then discuss
their implications.

In the first thought experiment, let a single-mode perturbation
of wavelength λ grow in a KH-unstable planar sheet. Assume
that the initial displacement amplitude is small, h(t = 0) 	 λ,
where h(t) is the peak-to-valley amplitude of the perturbation at the

interface.9 As long as the limit h(t) 	 λ holds, linear analysis yields
h(t) = h(0) exp [t/tKH(λ)]. At some finite time, the perturbation is
bound to reach an amplitude comparable to its wavelength, h(t) ≈
λ, rendering the assumptions of linear analysis invalid. How will
the single-mode perturbation evolve from this point and on, outside
the linear regime?

In the second thought experiment, let a multimode initial pertur-
bation comprising a set of wavelengths {λj} with initially small
amplitudes {hj(t = 0)} grow in a KH-unstable planar sheet. As
long as hj 	 λj holds for all j, each mode grows independently
of the rest, according to its own respective linear growth rate,
hj(t) = hj0 exp [t/tKH(λj)]. How will the system evolve once some
of the modes leave the linear regime?

One can seek solutions to these problems by applying dimen-
sional arguments. There are two different ways of constructing a
length-scale for the peak-to-valley amplitude. One is

h ∼ λ, (20)

where the growth of a given perturbation mode saturates at an
amplitude comparable to its wavelength, λ, and the other is

h ∼ V t, (21)

where the perturbed region grows indefinitely in a self-similar man-
ner.

If we assume that the initial conditions dominate the evolution of
the instability indefinitely, we must prefer the saturated solution in
equation (20). Conversely, if we require that initial conditions are
‘forgotten’ at late times, the self-similar solution in equation (21)
must hold. As we demonstrate shortly, while the saturated behaviour
may appear as a transient, a practical system will inevitably converge
to the self-similar form.

A single-mode initial perturbation is known to evolve into a
row of identical singular point vortices, often called ‘eddies’ (e.g.
Corcos & Sherman 1976). The vortices add more windings with
time but their height reaches a finite asymptotic value proportional
to the wavelength, as predicted in equation (20). In particular, for
an incompressible flow, the evolution of a row of vortices can be
solved using methods of complex potential, yielding an asymptotic
value of h(t → ∞) = [arcsin (1)/π] λ ∼= 0.56λ for the height of
an individual eddy (Corcos & Sherman 1976; Rikanati, Alon &
Shvarts 2003). This analysis assumes a perfect single-wavelength
perturbation in an infinite or periodic domain.

The growth of a multimode initial perturbation is driven by an
attractive interaction between saturated corotating vortices, leading
to vortex mergers, sometimes referred to as ‘pairing’ or ‘amalga-
mation’. This was first observed in the pioneering experiments by
Brown & Roshko (1974) and Winant & Browand (1974). The re-
sult of a merger between two vortices with heights h1 and h2 is the
formation of a larger vortex with its height approximately equal
to the sum of the component heights, h � h1 + h2 (Winant &
Browand 1974; Rikanati et al. 2003). These interactions cause the
vortex population to increase in size and decrease in number with

9 The peak-to-valley amplitude refers to the distance along the x-axis be-
tween the top (peak) point of the perturbed interface to the bottom (valley)
point. This differs from Paper I, where h was used for the one-sided ampli-
tude. Since the eigenmodes of the linearized problem displace the interface
an equal amount in both directions, this corresponds to replacing h by h/2.
Note that the displacement is not necessarily symmetric in the non-linear
regime, i.e. the one-sided amplitudes can differ from h/2. This is discussed
in Section 3.3.5.
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Figure 2. Snapshots of ψ(x, z), a passive scalar field used as a Lagrangian tracer for the stream fluid (see Section 2.5), taken from a planar sheet simulation.
The values ψ = 0 (background) and ψ = 1 (stream) correspond to cells with a pure fluid composition, while cells with 0 < ψ < 1 contain a mixture of both
fluids. The different times are represented by the self-similar coordinate, Vt. The numerical setup is described in Section 3.2. The unperturbed initial conditions
were (Mb = 0.5 and δ = 1) and the initial perturbations were full eigenmodes with a sparse white noise spectrum of type A, as described in Section 3.2.

time, resulting in a self-similar growth of the perturbed region with
h(t) = αVt as predicted in equation (21). The coefficient

α ≡ h

V t
(22)

is referred to as the dimensionless growth rate and the flow confined
within the perturbed region is often called a ‘shear layer’ or ‘mixing
layer’. This behaviour was demonstrated in numerous experiments
and numerical simulations (see references in Section 3.2).

Fig. 2 shows the evolution of a multimode initial perturbation via
vortex pairing in a sequence of snapshots from one of our planar
sheet simulations. The small initial perturbations quickly develop
into a row of saturated eddies, which then undergo repeated merg-
ers with each other. Each ‘generation’ of eddies is characterized
by a typical size, which increases with time, while their number
decreases. Fig. 3 shows the vorticity, defined as ωy ≡ ∂vx

∂z
− ∂vz

∂x

(not to be confused with the frequency), in the same snapshots.
High-vorticity peaks in Fig. 3 correspond to the centres of eddies in
Fig. 2.

In Fig. 4, we plot the average vorticity along the x-axis, � ≡∫
ωy(x, z, t)dx /

∫
dx, as a function of the z-coordinate and of time.

By tracing the trajectory of high-vorticity peaks along the z-axis, we
can follow the evolution of the vortex population in a ‘vortex merger
tree’, similar to the plots extracted from experiments by Brown &
Roshko (1974) and from models by Rikanati et al. (2003). This
representation highlights the decrease in the number of vortices
with time. In addition, Fig. 4 shows that, on average, the eddies
‘drift’ downstream at a characteristic velocity, corresponding to the
‘convection velocity’ discussed in Section 3.3.3.

In a periodic or infinite row of identical vortices with equal spac-
ing, symmetry dictates that any vortex experiences zero net attrac-
tion to its neighbours. Namely, the attraction induced on some vortex
by another vortex in the row is always cancelled out due to an iden-
tical vortex at an equal distance in the opposite direction. Therefore,
in an ideal single-mode scenario, the eddies remain stationary and
never merge, producing the saturated solution, equation (20). An
immediate corollary is that any slight deviation from perfect sym-
metry will result in net attraction between the vortices, triggering
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Figure 3. Snapshots of vorticity, ωy, at different times, represented by the self-similar coordinate, Vt. The snapshots are taken from the same run as in Fig. 2.

a transition to growth via vortex mergers (Rikanati et al. 2003) at
a finite time and eventually achieving the self-similar solution of
equation (21). In this sense, self-similar growth can be seen as the
only long-lived solution possible in a non-ideal system.

The inflow of gas in cold streams into galactic haloes occurs in
a noisy environment, riddled with perturbations at various scales,
due to minor mergers, galactic winds, filament–filament interac-
tions, and other sources. It is therefore reasonable to assume that
non-linear KHI in cold streams lacks the fine-tuning required for
maintaining the saturated solution for any significant length of time.
Hence, we focus our attention on the problem of self-similar shear
layer growth, characterized by equation (21).

The discussion so far assumed a planar sheet geometry. We now
extend our argumentation to the problem of non-linear surface
modes in a planar slab. Consider a planar slab in the surface-mode-
dominated regime, perturbed with a multimode initial perturbation
at both interfaces. Since the linear growth rate of surface modes
decreases as the wavelength is made larger,10 non-linear evolution

10 Both the slab and the sheet growth rates vanish as λ → ∞. A careful
analysis of the long-wavelength limit in slab geometry, λ � Rs, reveals that

begins with the smallest wavelength perturbations. For sufficiently
short wavelengths, λ 	 Rs, the slab geometry can be ignored al-
together, because the additional boundary of the stream should not
affect perturbations at much smaller scales. Therefore, the descrip-
tion of shear layer growth in a planar sheet can, by and large, also
be applied to a planar slab at early times, h 	 Rs. We expect to
see shear layers growing independently on opposite sides of the
slab, subject to the self-similar scaling equation (21) with the same
growth rate as in a planar sheet. This is demonstrated in the top
two panels of Fig. 5, showing how a multimode initial perturbation
develops into two independent shear layers on both sides of a planar
slab unstable to surface modes.

In principle, the argument above breaks down when the shear
layer thickness is on the order of the slab thickness, h ≈ Rs. There-
fore, we may expect a deviation from the planar sheet growth
rates as h → Rs. Moreover, since eddies on opposite sides of the
slab are counter-rotating, they repel rather than attract each other

the decay is more rapid than implied by equation (2), with tKH ∝ λ1.5 instead
of tKH ∝ λ (see Section 2.3 in Paper I). This only serves to reinforce the
argument above.
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Figure 4. Average vorticity profiles as a function of time, represented by the
self-similar coordinate, Vt, and the streamwise position, z, in a planar sheet
simulation. The colour corresponds to magnitude of the average vorticity,
|�|, where � is the volume average of ωy along the x-axis. The red streaks
mark the trajectory of the dominant eddies, producing a ‘merger tree’-like
plot. The initial conditions are identical to Figs 2 and 3, but the resolution
was reduced by a factor of 4 to reduce run time.

(Paterson 1984). This leads to more complex vortex trajectories, due
to the combination of attractive interactions between neighbours and
repulsive interactions between opposite counterparts. Nevertheless,
further vortex mergers are inevitable, driving the continued growth
of the perturbed region as shown in the bottom three panels of
Fig. 5. This process continues until the initial kinetic energy of
the stream has been fully converted into turbulent motion and heat,
with subsequent mixing absorbing the stream into the background
fluid. Dimensional analysis shows that the relevant time-scale for
the terminal evolution of the stream is the typical turnover time for
an eddy at the scale of the stream radius,

tRs = Rs

V
. (23)

3.2 Simulations

The range of parameters studied in the numerical simulations pre-
sented in this section is listed in Table 1. These span the range of
density contrast and Mach number relevant to cosmic cold streams
with 0.5 < Mb < 1.5 and 1 < δ < 100, and include a few effectively
incompressible cases with Mb = 0.05. In most cases, we simulated
both a planar sheet and a planar slab. The combination (Mb = 1.5
and δ = 100) is skipped because it is stable to surface modes by
virtue of equation (1).

Each simulation run was initialized with a random realization
of a set of periodic perturbations. We used different types of ini-
tial perturbations, varying by functional form and by power spec-
trum. To comply with periodic boundary conditions, all wave-
lengths were harmonics of the box length, kj = 2πj , with j ≥ 1
an index representing an individual perturbation mode. To gener-
ate a specific realization, we assigned each mode a random phase,
φj ∈ [0, 2π).

For a given run, we used one of three functional forms for the
perturbations:

(i) ‘Interface-only’ – each mode is a cosine perturbation to the
x-position of the interface, hj(z) = Hjcos (kjz + φj), where Hj is the
displacement amplitude.

(ii) ‘Velocity-only’ – each mode is a cosine perturbation to the
transverse velocity decaying exponentially away from the interface,
vj(x, z) = Wj cos

(
kjz + φj

)
exp

(−kj|x|)ẑ, where Wj is the velocity
amplitude.

(iii) ‘Full eigenmodes’ – each mode includes the same cosine per-
turbation to the interface as in the first case, as well as self-consistent
perturbations to the density, pressure, and velocities according to
the eigenmode solution of the linear problem (Paper I).

The different spectra we used appear in Table 2. In each case,
some subset of modes j ∈ {jmin, jmin + �j, jmin + 2�j, . . . , jmax} was
given a non-zero amplitude, identical for all j’s. If �j = 1 all modes
in the range jmin ≤ j ≤ jmax are included, representing white noise
within this band, whereas �j > 1 corresponds to a sparse subset of
modes.

In Section 3.3.1, we demonstrate that the key results of this work
exhibit little sensitivity to the chosen type of initial perturbations.
Subsequently, most of our results will be obtained using realiza-
tions of interface-only perturbations with a broad-band white noise
spectrum.

Numerical simulations were previously used to study shear layer
growth in various other contexts. Particular attention was devoted
to studying the effect of compressibility on temporal shear layer
growth in 2D and 3D simulations (e.g. Sandham 1994; Vreman,
Sandham & Luo 1996; Pantano & Sarkar 2002; Mahle et al. 2007;
Foysi & Sarkar 2010). Other work presented simulations of spatial
growth in planar and cylindrical geometry (e.g. Wilson & Demuren
1994; Freund, Lele & Moin 2000; Laizet, Lardeau & Lamballais
2010; Bogey, Marsden & Bailly 2011; Zhou, He & Shen 2012).
The validity of these investigations notwithstanding, this work im-
proves upon them in a number of ways. We explore cases with very
high-density contrast, up to δ = 100, whereas previous studies con-
centrated on δ ≤ 10 and are therefore of lesser relevance to cosmic
cold streams. In addition, we present the first comprehensive study
of the deceleration induced on a slab due to shear layer growth and
the first comparison of shear layers in sheet and slab geometries.

Shear layer growth was also studied extensively in laboratory ex-
periments (e.g. Browand 1966; Brown & Roshko 1974; Winant &
Browand 1974; Dimotakis & Brown 1976; Konrad 1977; Chinzei
et al. 1986; Papamoschou & Roshko 1988; Hall, Dimotakis & Rose-
mann 1993; Slessor 1998; Rossmann 2002; additional references
in Freeman 2014). These experiments are limited to δ ≤ 7, so their
conclusions are not directly applicable to the astrophysical appli-
cation in mind, further motivating our present work. Nevertheless,
since we compare our numerical results to the findings of these in-
vestigations, we briefly describe the experimental systems and how
they differ from our simulations. In a typical experiment, two flows
of unequal velocities are separated by a wall or a wedge, parallel to
the flow direction. The wall ends at some point, bringing the flows
into contact and thus initiating the growth of the instability. A per-
turbed region is observed to extend downstream from this point of
origin, its width growing linearly with the downstream coordinate,
h ∝ z. The spatial growth rate is defined as

h′ = dh

dz
(24)

Experiments therefore typically study spatial evolution, in contrast
to most theoretical work, including our own, which studies tempo-
ral evolution. While these two classes of problems can be related
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Figure 5. As in Fig. 2, but for a planar slab simulation where the times are rescaled by the dynamic time tRs = Rs/V . The unperturbed initial conditions
are (Mb = 0.5 and δ = 1), placing the stream in the surface-mode-dominated regime. The initial stream radius is Rs = 1/64. The initial perturbations are
interface-only with a broad-band white noise spectrum (see Section 3.2).

using the proper transformation (see Section 3.3.3), allowing us to
compare our results to available experimental data, one important
difference cannot be bridged: while temporal systems are invariant
to Galilean transformations, spatial systems are not, because the
laboratory frame of reference is unique in being stationary with re-
spect to the origin of the perturbations. This introduces an additional
governing parameter to the spatial case, on top of the parameters
controlling the temporal case. A typical choice for this parameter
(e.g. Dimotakis 1991) is the ratio of background velocity to stream
velocity, evaluated in the laboratory reference frame,

r ≡ Vb

Vs
. (25)

Spatial growth experiments are thus parametrized by the Mach num-
ber, Mb, the density contrast, δ, and the velocity ratio, r. Temporal
shear layer growth in our numerical simulations depends on the
former two quantities alone.

3.3 Results

Motivated by the qualitative picture presented in Section 3.1 and
using the set of simulations described in Section 3.2, this section
addresses the following quantitative questions:

(i) How sensitive are shear layer growth rates to the detailed
properties of the initial perturbations? Is there a ‘universal’ growth
rate?

(ii) How does the growth rate depend on the unperturbed con-
ditions, namely density contrast, δ, and Mach number, Mb, in the
parameter range relevant to cold streams?

(iii) Does the growth of the shear layer differ in the stream and
the background? How does the ratio hs/hb (see Section 2.5) depend
on (Mb, δ)?

(iv) How does the growth rate in a planar slab diverge from the
planar sheet solution as the shear layer thickness becomes compa-
rable to the slab width, h ≈ Rs?

(v) For slabs, what is the rate of deceleration of the stream fluid
due to shear layer growth as a function of (Mb, δ)?
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Table 1. Parameters of simulations studying the non-linear evolution of
surface modes. The first four entries correspond to effectively incompress-
ible planar sheet runs. The next eight entries are compressible combinations
of (Mb, δ) for which we performed both planar sheet and planar slab sim-
ulations. The last three entries are planar slab simulations which study the
scaling with Rs, the boundary effect and convergence with respect to Rs/�.
We performed three simulation runs with different realizations of broad-
band white noise interface-only perturbations (see Table 2) in all cases,
except for the last three entries where only one realization was tested. In
addition, we repeated the case (Mb = 0.5 and δ = 1) with different functional
forms of initial perturbations, as described in Section 3.3.1. The smoothing
width parameter in equation (6) was σ = � in all cases.

Mb δ Mtot Rs L Rs/�

0.05 1 0.025 N/A 1.0 N/A
0.05 5 0.034 N/A 1.0 N/A
0.05 20 0.041 N/A 1.0 N/A
0.05 50 0.044 N/A 1.0 N/A

0.50 1 0.250 1/64 1.0 128
0.50 10 0.380 1/64 1.0 128
0.50 100 0.454 1/64 1.0 128
1.00 1 0.500 1/64 1.0 128
1.00 10 0.760 1/64 1.0 128
1.00 100 0.909 1/64 1.0 128
1.50 1 0.750 1/64 1.0 128
1.50 10 1.140 1/64 1.0 128

1.00 10 0.760 1/128 1.0 64
1.00 10 0.760 1/64 2.0 128
1.00 10 0.760 1/32 2.0 256

Table 2. Parameters of initial perturbation spectra. In all cases,
we used a fixed amplitude for all wavelengths. For planar sheet
simulations with a broad-band or a sparse noise spectrum, the dis-
placement amplitude was Hj = � and the velocity amplitude was
wj = (2Hj/L)V = (2�/L)V. For narrow-band white noise, we used
Hj = 2�. For planar slab simulations, all amplitudes were reduced
by a factor of 4 in order to keep the total displacement as small as
possible compared to the slab width, h = ∑

jhj 	 Rs.

Name Number of modes jmin jmax �j

Broad-band white noise 897 128 1024 1
Narrow-band white noise 129 128 256 1
Sparse white noise A 113 128 1024 8
Sparse white noise B 97 256 1024 8
Sparse white noise C 49 128 512 8

(vi) For slabs, how much of the stream kinetic energy is converted
into stream internal energy (which can subsequently be emitted as
Lyman-α radiation)? How does this depend on (Mb, δ)?

The answers to these questions, presented below, are used in Sec-
tion 5 to predict the outcome of KHI in cold streams feeding massive
SFGs at high redshift.

3.3.1 Weak dependence on initial perturbations

Self-similar shear layer growth is expected to become indepen-
dent of the initial perturbations at late times. We demonstrate this
behaviour in Fig. 6, which shows the shear layer thickness as a func-
tion of Vt in planar sheet simulations with equal densities, δ = 1,
and relatively low Mach number, Mb = 0.5, seeded with various
types of initial perturbations. The results for other values of (Mb,
δ) show a similarly weak dependence on the details of the initial
perturbations.

Figure 6. Shear layer thickness, h, defined in equation (11), for different
initial perturbations in planar sheet simulations with Mb = 0.5 and δ = 1. The
colours denote different spectra and functional forms for the initial pertur-
bations (see Section 3.2). For each of these cases, we ran three realizations,
spanning the shaded areas of different colours. A linear curve was fitted to
the mean thickness of each three realization at times Vt ≥ 0.15, plotted in
solid lines. The dashed black line is a linear fit to the overall mean, obtained
by averaging over the coloured lines. The slopes of all the linear curves,
representing the dimensionless growth rates, α, are printed in the plot.

The different initial perturbations shown in Fig. 6 have a variety
of initial thicknesses and evolve differently at early times. For ex-
ample, interface-only perturbations initially grow at a slower rate
than both eigenmode and velocity-only perturbations, since the for-
mer lack a disturbance to the bulk flow at t = 0. The perturbations to
velocity and pressure take finite time to develop (see discussion in
section 3.3 of Paper I), thus delaying the growth of an interface-only
perturbation at early times.

At later times, Vt � 0.15, the different cases converge to a univer-
sal linear curve. The mean growth rates obtained for different types
of initial perturbations are within ±10 per cent of the overall mean.
While there are systematic differences between different types of
initial perturbations, these are small and comparable to the span of
growth rates among different realizations of the same kind. This
±10 per cent scatter can be considered as the typical uncertainty of
our numerical analysis. It must be stressed that this scatter is largely
a result of the finite size of the simulation domain; at late times, the
number of eddies in the simulation is rather small, typically 10–20,
so the growth rate becomes dominated by stochastic variations. For
an infinite domain, the scatter is expected to vanish.

In the following discussion, we assume that shear layers in cold
streams reach their asymptotic, ‘universal’ growth rate early during
the infall. This assumption makes the outcome of the instability
independent of whatever complex conditions seed the initial pertur-
bations.

3.3.2 Density contrast and Mach number scaling

Encouraged by the fact that the growth rate depends weakly on the
specific initial perturbations, we turn our attention to its dependence
on the unperturbed conditions. The left-hand panel in Fig. 7 shows
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Figure 7. The dimensionless growth rate, α, in planar sheet simulations with different unperturbed initial conditions parametrized by (Mb, δ). Both panels
show the same data, plotted with different horizontal axis: Mb in the left-hand panel and Mtot in the right-hand panel. The colours denote different values of
δ. One incompressible case is shown (Mb = 0.05 and δ = 1) as well as eight compressible cases: Mb = 0.5, 1.0, and 1.5 for δ = 1, 10 and Mb = 0.5 and 1.0
for δ = 100. For each of these cases, we ran three realizations of broad-band white noise interface-only perturbations. The circles mark the mean growth rate
α, while the error bars bound the best-fitting values of different realizations. The dotted magenta line on the right-hand panel is a curve fitted to experimental
data, equation (26).

the dimensionless growth rate α, introduced in equation (22), as a
function of Mb for different values of δ. Qualitatively, the scaling
with both parameters is similar to the linear regime (see fig. 1 in
Paper I). For a fixed background Mach number, α decreases with
the density contrast. For a fixed density contrast, α decreases with
the background Mach number, with the exception of δ = 100, where
the mean growth rate at Mb = 1.0 is higher than at Mb = 0.5,
similar to the results of the linear regime. The incompressible case
(Mb = 0.05 and δ = 1) is consistent with the known incompressible
temporal growth rate, α ≈ 0.2, observed in experiments (Brown &
Roshko 1974) and statistical models Rikanati et al. (2003). Note that
the error bars are consistent with the previously cited ±10 per cent.

In the incompressible limit, temporal shear layer growth is in-
dependent of density contrast (Rikanati et al. 2003), i.e. α(Mb →
0, δ) � 0.2 is a constant. On the other hand, the spatial growth
rate, equation (24), does depend on the density contrast in the in-
compressible limit (Konrad 1977; Dimotakis 1986). Many authors
(e.g. Dimotakis 1991; Slessor, Zhuang & Dimotakis 2000; Free-
man 2014) observed that the spatial growth rate can be expressed
as the product of a density contrast dependent factor and a com-
pressibility dependent factor. If this observation is also correct for
temporal shear layers, then the temporal growth rate must be com-
pletely independent of density contrast, and can be expressed as a
function of a single parameter quantifying compressibility effects.
The parameter typically used to scale the compressibility depen-
dence of spatial growth rates is the total Mach number, defined in
equation (3).

The right-hand panel in Fig. 7 shows the same growth
rates as the left-hand panel, plotted against Mtot, defined in
equation (3), instead of Mb. Our results support the claim that α

depends on compressibility alone, parametrized by Mtot. This be-
haviour is unique to the non-linear phase of temporal KHI, since
the dispersion relation for the planar sheet does depend on δ at the
incompressible limit and in general it cannot be expressed as func-
tion of Mtot only (see equations 18–19 in Paper I). The subject of
compressibility scaling is discussed in further detail in Appendix B,

including a comparison of the results of this work with previous
publications. Our results are roughly consistent with the empirical
fit proposed by Dimotakis (1991),

αDim. = α0 × [0.8 exp (−3M2
tot) + 0.2], (26)

using α0 = α(Mtot → 0) � 0.21. As can be seen in Fig. 7, equa-
tion (26) underestimates the growth rate in our simulations by
∼50 per cent for the parameter range appropriate for cosmic cold
streams, Mtot � 0.8. For these values of Mtot, the growth rate varies
slowly and can be crudely approximated by a constant value, α ≈
0.1, approximately half the incompressible growth rate.

3.3.3 Convection velocity

In a planar sheet, the mean downstream velocity transitions from
vz(x → −∞) = Vb to vz(x → ∞) = Vs over the thickness of
the shear layer. The shear layer is populated by large coherent
structures (eddies), which drift downstream at approximately the
centre-of-mass velocity of the shear layer,

Vc ≡
∫ hs

−hb

∫ L

0 ρvzdzdx∫ hs

−hb

∫ L

0 ρdzdx
, (27)

often called the ‘convection velocity’. For incompressible flow, an
expression for Vc can be obtained by recognizing that stagnation
points exist between each pair of eddies and requiring continuity in
total pressure at these points, i.e. Bernoulli’s principle (Coles 1985;
Dimotakis 1986). The resulting expression is

Vc = Vb + Vs

2
+

[√
δ − 1√
δ + 1

]
Vs − Vb

2
, (28)

where the first term is the average velocity of the stream and the
background and the second term implies the eddies tend to drift
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Figure 8. The convection velocity, Vc, estimated using thickness hb, s with
ε = 0.02 to define the edges of the shear layer in equation (27). The colours
correspond to different values of Mb. The solid black line corresponds to
the incompressible or isentropic prediction, based on Bernoulli’s princple
equation (29). For each combination (Mb, δ), we ran three realizations of
broad-band white noise interface-only perturbations. Circles mark the mean
convection velocity. The error bars are due to the span of velocities for differ-
ent realizations. The points at δ = 1 were shifted slightly along the horizontal
axis to make them distinguishable. The values in the figure represent the
convection velocity after shear layer growth has become independent of the
detailed properties of the initial perturbations (see Section 3.3.1). At this
stage, the fluctuations in convection velocity are small.

more with the dense stream as δ is increased. In our simulations
Vb = 0, hence

Vc =
√

δ√
δ + 1

V . (29)

Intuitively, this satisfies Vc(δ = 1) = V/2 and Vc(δ → ∞) = V.
The derivation of Vc was extended for compressible isen-

tropic (adiabatic and reversible) flow by Bogdanoff (1983) and
Papamoschou & Roshko (1988). If the adiabatic indices of both
fluids are identical, γ b = γ s (as they are in our case), the isentropic
derivation recovers the incompressible result in equation (29). De-
spite the high Mach numbers, the heating observed in our simula-
tions is quite small (see Section 3.3.8), implying nearly isentropic
flow, so equation (29) is expected to predict Vc reasonably well. This
expectation is validated by the results shown in Fig. 8. The convec-
tion velocity was deduced from the planar sheet simulations by
applying equation (27) for a few snapshots in which the shear layer
is already well developed and taking the mean value. The fluctua-
tions around the mean are small. For a wide range of Mach numbers,
the relation Vc(δ) in our simulations is well approximated by equa-
tion (29). We note a systematic underestimation of <5 per cent for
δ � 20.

It must be noted that compressible experiments show a significant
deviation from equation (29), even at Mach numbers comparable to
or smaller than those considered in this work (Papamoschou 1989).
Dimotakis (1991) proposed a semi-empirical model that reproduced
this phenomena by taking into account the formation of shocks.
The model is not Galilean invariant, hinting that the effect observed

in experiments may be inherent to spatial, rather than temporal
systems. Consequently, the correction to equation (29) ought to
depend on the velocity ratio, r = Vb/Vs (see discussion of laboratory
experiments in Section 3.2). We are interested specifically in the
convection velocity for cold streams feeding galaxies, where the
background gas is nearly stationary compared to the cold stream,
Vb 	 Vs, i.e. r � 0. Our simulations, which correspond to r = 0,
show good agreement with equation (29). We therefore conclude
that compressibility-related corrections for equation (29) are small
in the case of our astrophysical scenario, despite the caveat cited
here.

3.3.4 Transformation to spatial growth

The convection velocity, obtained in the previous section, can be
used to transform back and forth between temporal growth rate and
spatial growth rate. Consider a spatial system with velocity ratio r
and density contrast δ. Viewed in the frame of reference moving
at the velocity of the large structure, Vc, every individual eddy
undergoes temporal growth. Returning to the laboratory reference
frame, the time it takes an eddy to reach position z is t = z/Vc.
Therefore, the predicted amplitude at position z is

h(z) = α
V

Vc
z, (30)

and the spatial growth rate, equation (24), is

h′ = α
V

Vc
=

√
δ + 1√

δ
α, (31)

where equation (29) is used to obtain the last equality, assuming
Vb = 0 (i.e. r = 0). This reasoning was used by Brown (1975) and
Rikanati et al. (2003) to successfully reproduce the experimental
dependence of spatial growth on the density contrast and the velocity
ratio.11

Fig. 9 translates the temporal growth rates from Fig. 7 to spatial
growth rates, using equation (31). The large convection velocity at
high-density contrast, Vc(δ � 1) ≈ V, translates to a factor of ∼2
decrease in the spatial growth rate relative to the δ = 1 runs, on
top of the decrease in temporal growth rate due to compressibility
effects shown in Fig. 7. This brings the predicted spatial growth rate
for the conditions of cosmic cold streams down to h′ ≈ 0.1, a factor
of ∼4 less than the (δ = 1, Mtot → 0) value.

3.3.5 Entrainment ratio

As the shear layer grows, either temporally or spatially, it entrains
an increasing amount of fluid from the unperturbed regions on both
sides. So far, we have essentially discussed the total rate of en-
trainment (inclusion in the shear layer) from both fluids, without
addressing the relative contribution of each component, i.e. the en-
trainment ratio. Experiments show that shear layer growth can be
asymmetric, hs �= hb, implying an entrainment ratio far from unity
(Brown & Roshko 1974; Konrad 1977). Since, in the astrophysi-
cal context, we are specifically interested in the disruption of the
stream rather than the background, it is important to quantify this
asymmetry.

11 Dimotakis (1986) introduced an additional multiplicative factor to equa-
tion (31) accounting for the increasing size of vortices along the downstream
coordinate in spatial shear layers. The resulting correction is small for the
conditions relevant to our problem, namely δ �10 and r � 0, and is therefore
not incorporated into our analysis.
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Figure 9. Spatial growth rate, h′, based on the temporal growth rates, α

in Fig. 7. The transformation from temporal to spatial growth rates was
achieved by using equation (31).

The entrainment ratio can be derived using simple arguments.
Consider two fluids with unperturbed densities ρb, s and velocities
Vb, s, initially separated by an interface at x = 0. At some later
time, a shear layer has developed around the interface, extending
a distance hb, s into the two fluids, respectively. Assume only the
region −hb < x < hs is perturbed, while the flow outside the shear
layer maintains its initial conditions. Conservation of mass between
the initial and final states then reads∫ hs

−hb

∫ L

0
ρ dzdx = ρbhbL + ρshsL, (32)

where L is the extent of the computational domain in either direction.
Conservation of z-momentum yields∫ hs

−hb

∫ L

0
ρvzdzdx = ρbhbLVb + ρshsLVs. (33)

Substituting equation (27) into equation (33) and then using equa-
tion (32), we have

Vc = ρshsVs + ρbhbVb

ρshs + ρbhb
, (34)

The volume entrainment ratio, Ev, is defined as

Ev ≡ hs

hb
. (35)

By substituting equation (28) for Vc in equation (34), we obtain the
entrainment ratio as a function of the dimensionless parameters,

Ev = 1√
δ
. (36)

Since equations (32) and (33) are Galilean invari-
ant, it is not surprising to find that the final result
equation (36) is independent of r. Interestingly, Brown (1975)
reached the same conclusion based on scaling arguments and
empirical data. This prediction is consistent with experimental
entrainment ratios reported therein, with fixed r = 0.38 and
varying δ.

Figure 10. Volume entrainment ratios, Ev = hs/hb, based on the one-sided
thicknesses equations (9) and (10) with ε = 0.02, averaged on snapshots
in which the shear layer is already well developed (see Section 3.3.1). At
this stage, hb, s grow linearly with time, so fluctuations around the mean
entrainment ratio are small. The colours correspond to different values of
Mb. The solid black line corresponds to the analytic prediction, equation
(36). For each combination (Mb, δ), we ran three realizations of broad-band
white noise interface-only perturbations. Circles mark the mean entrainment
ratio. The error bars are due to the span of Ev for different realizations. The
points at δ = 1 were shifted slightly along the horizontal axis to make them
distinguishable.

Experiments (e.g. Konrad 1977) also indicate a dependence of Ev

on r in spatial systems. Dimotakis (1986) explained this observation
and derived an expression for the entrainment ratio in spatial, in-
compressible shear layers, Ev, spat.(r, δ). Using a modified expression
for compressible flow presented in Dimotakis (1991), we find

Ev,spat.(r, δ � 10, Mtot � 0.5) � 1√
δ

(
1 + 0.2

1 − r

1 + r

)
. (37)

For cold streams feeding galaxies, r = 0, we get Ev,spat. ≈ 1.2/
√

δ.
A similar value was used by Dimotakis & Hall (1987). We there-
fore propose using equation (36) for the entrainment ratio in cold
streams feeding galaxies, bearing in mind the risk of a small under-
estimation.

Fig. 10 shows the actual volume entrainment ratio in our set of
simulations. Overall, the numerical results agree with the predic-
tions of our simple model, equation (36). Some scatter about the
predicted curve is observed. Around δ = 10, the simulated values
differ by as much as 30 per cent from the mean curve. At δ = 100,
the simulations seem to produce systematically lower entrainment
ratios than the model predicts, by a factor of �2.

Using equations (22), (36), and (30), we can write separate ex-
pressions for hb, s in temporal and spatial growth,

hs(t) = 1

1 + √
δ
αV t hb(t) =

√
δ

1 + √
δ
αV t (38)

hs(z) = 1√
δ
αz hb(z) = αz. (39)
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Figure 11. Shear layer growth in planar slab (red) and planar sheet (blue)
simulations. The vertical axis shows the stream-side thickness hs (solid)
and background-side thickness hb (dashed) normalized by the stream ra-
dius in the slab simulations Rs = 1/64. The unperturbed initial conditions
are (Mb = 1.0 and δ = 10). Three different realizations of broad-band
white noise interface-only perturbations were used. For each realization, the
x = −Rs interface in the slab simulation was seeded with exactly the same
initial perturbations as the x = 0 interface in the corresponding planar sheet
simulation. The plotted values of hb, s refer to this interface. The shaded
regions are spanned due to the variability among the different realizations
and the lines correspond to the mean values. The dashed black vertical line
marks the stream sound crossing time, t = tsc. The shear layer consumes the
entire stream at t � 27tRs , after which hs(t) = Rs by definition.

3.3.6 Planar slab growth rates

The growth rates predicted from planar sheet simulations, shown
in Fig. 7, apply to planar slab geometry as well, as long as h 	
Rs. Planar slab simulations might be expected to diverge from the
planar sheet results when the shear layer thickness is on the order
of the slab thickness, h ≈ Rs. In Fig. 11, we compare shear layer
growth in planar sheet and planar slab geometries for (Mb = 1.0
and δ = 10). The opposite sides of the slab do not come into causal
contact before one stream sound crossing time has passed and are
therefore equivalent to two independent planar sheets. This is clearly
visible in Fig. 11, where slab and sheet simulations seeded with the
same initial perturbations follow exactly the same history for t <

tsc = 2Rs/cs, corresponding to t/tRs < 6. Although the simulations
are no longer identical at later times, the slab growth rates remain
indistinguishable from the sheet results as hs → Rs. Furthermore,
hb continues to grow at roughly the same rate predicted by equation
(38) even after the entire slab has been consumed by the shear layer,
hs = Rs. The same behaviour was observed for other combinations
of (Mb, δ). We therefore conclude that the planar sheet growth rates
deduced in Section 3.3.2 are applicable to planar slab geometry as
well, except that the slab thickness hs is limited by Rs.

In principle, a different conclusion might be expected for a cylin-
drical stream. Simulations of 2D axisymmetric cylindrical streams
performed using the moving mesh code RICH (Yalinewich, Steinberg
& Sari 2015) show a decrease in overall growth rates as hs → Rs,
possibly by as much as a factor of ∼2 at late times when hs � 0.8Rs.

On the other hand, preliminary RAMSES simulations of cylindrical
streams in full 3D show that hs increases compared to the slab re-
sult for hs � 0.5Rs. The growth rate and entrainment ratio in 3D
cylindrical streams are studied both analytically and numerically in
the next paper of this series (Mandelker et al., in preparation).

3.3.7 Stream deceleration

During the process of shear layer growth, the stream shares its
momentum with an increasing amount of background fluid, lead-
ing to a gradual deceleration of the stream itself. In the context
of cosmic cold streams, this deceleration may lead to a slowdown
compared to the accelerated free fall in the halo potential and pos-
sibly to a reduced inflow rate of cold, dense gas into the galaxy.
The deceleration rate can be deduced from simulations by evaluat-
ing the centre-of-mass velocity of the stream along the downstream
direction,

vz,cm =
∫

vz dms, (40)

at different times. The integration is done over the entire simulation
domain and the integration variable ms is the mass of the stream
fluid only, defined in equation (7).

Fig. 12 shows the evolution of vz, cm in various planar slab simu-
lations (see parameters in Table 1). The left-hand panel shows the
streams are indeed losing momentum with time, at a rate that de-
pends primarily on the density contrast δ and only weakly on Mb.
For fixed δ, the deceleration rate scales according to

v̇z,cm ∼ V

tRs

∼ V 2

Rs
, (41)

as can be predicted from dimensional analysis. The correct scaling
with the stream radius is demonstrated by the different simulations
with Rs = 1/128, 1/64, and1/32 shown in Fig. 12. It is interesting
to note that only a small amount of deceleration occurs at early
times, namely prior to hs = Rs. The velocities reached at this time
are roughly vz, cm = 0.75V, 0.90V, and 0.95V for δ = 1, 10, and 100,
respectively. These values are notably higher than the corresponding
convection velocities, Vc = 0.5, 0.76, and 0.91V respectively (see
Section 3.3.3). This is to be expected, since the convection velocity
is the mean velocity of the entire shear layer, while equation (40)
includes only the stream fluid, which initially carries all of the
momentum.

The observed scaling and δ-dependence of the deceleration rate
can be explained with the following simple argument. We define
the deceleration time-scale, τ surface, as the time it takes the stream to
lose half of its initial velocity. Roughly speaking, this occurs when
the stream shares its momentum with a mass of background fluid
equal to its own mass. Assuming the stream exchanges momentum
efficiently with any background fluid entrained in the shear layer,
this translates to

hbLρb = RsLρs, (42)

for hb = hb(t = τ surface). Assuming that equation (38) holds for hb(t)
at late times, hs � Rs, as observed in Section 3.3.6, we obtain

τsurface = δ + √
δ

α

Rs

V
. (43)

The right-hand panel in Fig. 12 shows that this prediction fits the
simulations. With the exception of (Mb = 0.5 and δ = 1) and
(Mb = 1.0 and δ = 1), which are the least relevant to cold streams
feeding galaxies, our results collapse to a single curve when the
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Figure 12. Stream deceleration in planar slab simulations. The vertical axis shows the centre-of-mass velocity of the stream in the downstream direction,
vz, cm, normalized by its initial velocity, V. Both panels show the same data, plotted with different scaling for time in the horizontal axis: t/tRs in the left-hand
panel and t/τ surface in the right-hand panel. The legend in the right-hand panel refers to both panels. The values of (Mb, δ) are the same as the eight compressible
cases appearing in Fig. 7. For each of these cases, we ran three realizations of broad-band white noise interface-only initial perturbations, with the fiducial
domain size L = 1 and stream radius Rs = 1/64. The different realizations span the black (δ = 1), blue (δ = 10) and red (δ = 100) shaded areas, whereas the
mean is marked by solid (Mb = 0.5), dashed (Mb = 1.0), and dotted (Mb = 1.5) lines. The green, magenta, and cyan dashed lines correspond to (Mb = 1.0 and
δ = 10) with the same realization of initial perturbations but different domain sizes and stream radii. The circles on each of the lines correspond to the time
when the stream is entirely consumed by the shear layers growing on either side, i.e. hs = Rs.

rescaled time t/τ surface is used for the horizontal axis. Furthermore,
we find vz, cm(t = τ surface) � V/2, in remarkable agreement with the
above derivation.

Simulations with δ � 1 must run for a long time, equivalent to
several Tbox = L/cb, before significant deceleration can be observed.
In order to test whether the outflow boundary conditions influence
the deceleration rate at t > Tbox, we performed a few simulations
where the size of the computational domain was made twice as
large in both directions, L = 2. As can be seen in Fig. 12, these tests
produce similar results to those obtained with L = 1, ruling out any
major boundary effects. Furthermore, given sufficient time to run,
the stream is expected to distribute its initial momentum over the
entire simulation domain and vz, cm(t → ∞) is expected to reach
an asymptotic value, determined by the size of the domain. Our
simulations were designed not to reach this stage. A comparison of
simulations with L = 1 to those with L = 2 in Fig. 12 confirms that
this is indeed the case, as the final velocities shown for L = 1 are
roughly equal to those in the L = 2 simulation at the same time.

By varying the stream radius, while keeping the size of the grid
cells the same, we studied how our conclusions depend on Rs/�,
the number of cells resolving the thickness of the stream. In these
tests, the initial perturbation amplitudes were scaled with the stream
radius. As can be seen in Fig. 12, the change in velocity at t = τ surface

when changing Rs/� by a factor of 4 is negligible for our purposes.
We therefore consider our results to be converged with respect to
this numerical metric.

In Section 5.3, we use the results of this section to predict the
effect of KHI on the inflow rate of cosmic cold streams, taking
into account both the deceleration due to KHI and the gravitational
acceleration. Comparing these terms, we conclude that the deceler-

ation induced by KHI is too small to account for the constant inflow
velocity observed in cosmological simulations, which do not resolve
stream instabilities. One important caveat to this conclusion is that
cylindrical streams are expected to decelerate more efficiently than
planar slabs; preliminary analysis and 2D axisymmetric cylindrical
simulations using RICH (Yalinewich et al. 2015) suggest that cylin-
der deceleration time-scales may be ∼10 (∼3) times shorter than
slab deceleration time-scales for δ ∼ 100 (δ ∼ 10). This will be
presented and compared with full 3D simulations in the next paper
of this series (Mandelker et al., in preparation).

3.3.8 Heating

The momentum exchange taking place inside the shear layer is ac-
companied by some conversion of kinetic energy to internal energy,
resulting in heating of the stream fluid. This is potentially impor-
tant in the astrophysical context, since any heat generated in the
dense stream will be efficiently radiated away, possibly producing
observable emissions, particularly in Lyman-α.

Fig. 13 shows how the thermodynamic state of the stream, rep-
resented by Tpure and ρpure, evolves in simulations of shear layer
growth in a planar slab. The pure mass fraction, fpure, decreases
with time as more fluid is entrained in the shear layers. The time
evolution of Tpure and ρpure depends on (Mb, δ). For (Mb = 0.5 and
δ = 1), the density and temperature of the stream are completely
unaffected, even as the shear layer consumes it entirely. As we in-
crease either Mb or δ alone, some scatter around the initial values is
observed, but the mean temperature does not indicate any heating.
For combinations (Mb � 1.0, δ � 10), we find that the temperature
of the stream steadily grows, achieving a 20 per cent−40 per cent
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Figure 13. The thermodynamic state of the stream in simulations of shear layer growth in a planar slab. Each panel represents the time evolution of a single
run with a different value of (Mb, δ). In all cases, the initial conditions included the same realization of broad-band white noise, interface-only perturbations.
Different realizations produce nearly identical results. The vertical axis shows the temperature and density of the unmixed stream fluid, Tpure and ρpure,
normalized by their respective initial values, Ts and ρs, as well as the mass fraction of unmixed fluid, fpure. The horizontal axis shows the time normalized by
tRs . Two different values of the threshold εener in equation (16) are used to define unmixed fluid. For εener = 0.1, the solid lines show Tpure (red), ρpure (blue),
and fpure (black), whereas the shaded red/blue areas span the 10th–90th mass percentiles of temperature/density. For εener = 0.01, the black dashed line shows
fpure and the red/blue dashed lines span the 10th–90th mass percentiles of temperature/density. The results obtained using both values of εener are very similar,
indicating that any observed heating is a physical phenomenon affecting the bulk of the stream, rather than a numerical artefact affecting some small boundary
layer.

increase at Vt/Rs ∼ 100. The density decreases by a similar amount.
Thus, Fig. 13 implies that the amount of heating experienced by the
stream depends primarily on the total Mach number, Mtot, defined in
equation (3). A non-negligible increase in temperature is observed
for Mtot � 1. This is in agreement with the role Mtot plays in quan-
tifying the effect of compressibility on shear layer growth rates, as
discussed in Section 3.3.2 and Appendix B.

Although KHI can cause a non-negligible increase in stream
temperature compared to its initial value, the energy deposition is
small compared to the total stream energy budget, which is domi-
nated by kinetic and gravitational rather than internal energy. Hence,

surface-mode instability is a significantly weaker power source for
Lyman-α emission from cold streams than the driving considered
in Dijkstra & Loeb (2009) and Goerdt et al. (2010). We elaborate
on this point in Section 5.4.

The results of this section are based on adiabatic simulations,
neglecting radiative cooling. Previous studies in other contexts
(Hardee & Stone 1997; Vietri, Ferrara & Miniati 1997; Stone, Xu &
Hardee 1997) indicate that radiative cooling can have a significant
and non-trivial effect of KHI, which is sensitive to the details of the
cooling function. This motivates a study of surface-mode instability
with the specific cooling function applicable to cosmic cold streams,
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to be reported in subsequent papers of this series (Mandelker et al.,
in preparation).

4 TH E N O N - L I N E A R E VO L U T I O N O F BO DY
M O D E S

This section extends the study of body modes in a planar slab
from Paper I into the non-linear stage. In Section 4.1, we present
a qualitative description. The numerical simulations used for this
section are described in Section 4.2. The results are presented in
Section 4.3.

4.1 Qualitative description

Body modes are fundamentally related to the length-scales and
dynamical times of the entire stream, represented by its radius Rs

and sound crossing time tsc = 2Rs/cs. This observation is in stark
contrast to the scale invariance observed in surface modes. Due
to the existence of these preferred physical scales, the evolution
and final states of a slab perturbed by body modes will depend on
the initial conditions, unlike the results presented in Section 3 for
surface modes. Nevertheless, some insight into non-linear body-
mode instability can be gained by considering the results of linear
analysis. The arguments presented in this section were first laid
out by Hardee, Clarke & Howell (1995) and are reiterated here for
completeness.

According to equation (4), the linear growth rate diverges as
λ → 0. At first glance, this suggests that short-wavelength pertur-
bations are the first to reach non-linear amplitudes and therefore
dominate the late-time evolution of body modes. However, the op-
posite conclusion is reached when we consider the maximum ampli-
tude attained by different modes in the linear stage. Linear analysis
shows that the transverse displacement of the stream fluid scales
as h ∼ ux/ω, where ux is the transverse velocity perturbation, (see
Appendix C; Hardee et al. 1995; Hardee & Stone 1997). In the
linear regime, by definition, the velocity perturbation cannot signif-
icantly exceed the speed of sound in the stream, ux � cs. Assuming
the transition from linear to non-linear behaviour occurs when this
limit is reached, we find h ∝ ω−1 (Hardee et al. 1995; Hardee &
Stone 1997). Because ω decreases as λ is increased, we conclude
that h must increase with λ. This implies that long wavelengths
dominate the non-linear evolution of body modes, contrary to the
naive assumption; although shorter wavelength modes grow faster,
they saturate at smaller amplitudes.

A perturbation is disruptive to the stream when its amplitude
satisfies

h ≈ Rs. (44)

Consequently, the perturbation expected to ultimately break the
stream is the fastest growing among those that satisfy equation (44)
in the linear stage. We refer to this as the critical perturbation mode
or critical mode. The precise wavelength λcrit and order ncrit of the
critical mode can be predicted analytically and confirmed in simu-
lations. This was done in previous studies in the context of dilute
jets (see references in Section 4.2) and is repeated in Section 4.3.1
for the range of parameters applicable to cold streams. In most
scenarios, the critical mode is a low-order, long-wavelength mode,
roughly in the range (ncrit ≤ 1, 10Rs � λcrit � 20Rs). Sometimes
the disruption of the stream is attributed to a combination of two or
three different order modes in this wavelength range, but the fun-
damental S mode (n = 0) is often the dominant among them (e.g.
Hardee et al. 1995; Bodo et al. 1998).

Table 3. Parameters of simulations studying the non-linear evolution of
body modes. The first five entries comprise a survey of the (Mb, δ) parameter
space with the fiducial stream radius, domain size, and smoothing width. For
these cases, we performed three simulation runs with different realizations
of initial perturbations. The next four entries study the scaling with Rs, the
boundary effect and convergence with respect to Rs/�. The last entry tests
the effect of doubling the smoothing width, σ .

Mb δ Mtot Rs L Rs/� Rs/σ

2.5 5 1.73 1/128 1.0 64 32
2.5 10 1.90 1/128 1.0 64 32
2.5 20 2.04 1/128 1.0 64 32
5.0 1 2.50 1/128 1.0 64 32
5.0 10 3.80 1/128 1.0 64 32

2.5 10 1.90 1/64 1.0 128 32
2.5 10 1.90 1/64 2.0 128 32
5.0 1 2.50 1/64 1.0 128 32
5.0 1 2.50 1/64 2.0 128 32

2.5 10 1.90 1/128 1.0 64 16

After the critical mode becomes dominant, it continues to grow,
bending the stream and leading to its eventual disintegration. This
occurs when the amplitude of the critical mode is comparable to its
wavelength, typically h ≈ λcrit/2 ∼ 5–10Rs. The stream becomes
discontinuous and its fragments occupy a broad region, about ∼10–
20Rs across, perturbed by significant turbulent motion. The evolu-
tion beyond this time is driven by turbulence, gradually mixing the
stream into the background fluid (e.g. Bodo et al. 1998; Micono
et al. 2000).

4.2 Simulations

We performed a comprehensive set of simulations tailored to in-
vestigate the non-linear temporal evolution of body modes in dense
streams. The range of parameters studied in our simulations is listed
in Table 3. The chosen values of (Mb, δ) represent the values rele-
vant to cosmic cold streams, with a preference for slightly higher
Mach numbers in order to steer clear of the region in which body
modes and surface modes coexist. This choice makes the simula-
tions less prone to unintended growth of grid-scale surface modes,
while preserving the applicability of our conclusions, which do not
depend strongly on the Mach number. The fiducial stream radius
was Rs = 1/128, half the value used for surface mode simulations
(see Section 3.2), in order to compensate for the relatively long
dynamical time-scales associated with body modes.

Each simulation run was initialized with a random realization
of interface-only perturbations with the functional form described
in Section 3.2. An identical spectrum was used in all cases. The
spectrum included harmonics of both the box length and the stream
radius, corresponding to resonant wavenumbers of the slab (see
appendix H in Paper I), specifically kj = 2π/λj where λj = 2jRs

and −2 ≤ j ≤ 4. This band was selected in order to excite long-
wavelength modes, known to play an important role in the non-
linear stage, as previously discussed, in addition to a few modes
with λ < Rs. The random phases assigned to each mode ensure that
the initial perturbations represent a mixture of P and S modes. The
initial displacement amplitude was uniform for all wavelengths and
scaled with stream radius, Hj = 2� × 128Rs.

The smoothing width parameter in equation (6) was also scaled
with the stream radius according to σ = 2� × 128Rs. The resulting
transition layer between the slab and the background has a width
of ∼10 per cent the stream radius. In one of the simulations the

MNRAS 477, 3293–3328 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/477/3/3293/4953435
by University of Cambridge user
on 06 July 2018



Non-linear KH instability in cold streams 3311

width parameter was increased by a factor of 2 in order to test the
sensitivity of our results to the ratio Rs/σ .

Numerical simulations were previously used to study the non-
linear evolution of body modes, primarily with connection to as-
trophysical jets. As such, most studies considered hot, dilute jets
surrounded by a dense, cold background, i.e. δ < 1, the exact inverse
of the cosmic cold streams scenario considered here. These include
2D simulations of planar slabs (Norman & Hardee 1988; Hardee &
Norman 1989; Bodo et al. 1995; Bassett & Woodward 1995), 2D
simulations of axisymmetric cylinders (Bodo et al. 1994) and full
3D simulations of cylindrical streams (Hardee et al. 1995; Bassett &
Woodward 1995; Bodo et al. 1998). Two notable exceptions, study-
ing a dense jet confined in a dilute medium, are Bodo et al. (1998),
who studied the case (Mb = 3.16 and δ = 10), and Stone et al.
(1997), who investigated the spatial evolution of cooling jets with
(Mb = {5, 20} and δ = 10). Our work offers the first comprehensive
study of temporal non-linear growth of body modes in dense slab
streams (δ > 1) and the first study focusing on deceleration due to
KHI in these systems.

4.3 Results

Motivated by the ideas presented in Section 4.1 and using the set
of simulations described in Section 4.2, this section addresses the
following quantitative questions:

(i) Does the critical perturbation mode depend on (Mb, δ)? What
are the critical modes for values relevant to cold streams feeding
galaxies?

(ii) How does the stream width evolve with time, prior to and
during the growth of the critical mode? Does this behaviour depend
on (Mb, δ)?

(iii) What is the rate of deceleration of the stream fluid due to
body mode instability? How does this depend on (Mb, δ)?

(iv) How much of the stream kinetic energy is converted into
stream internal energy due to non-linear growth of body modes
(potentially producing Lyman-α emission)?

The answers to these questions, presented below, are used in Sec-
tion 5 to predict the outcome of KHI in cold streams feeding massive
SFGs at high redshift.

4.3.1 Critical perturbation modes

Following the qualitative discussion in Section 4.1, we present more
accurate analytic predictions for the critical perturbation modes and
compare them to simulations. This is accomplished by carefully
defining the transition from linear to non-linear dynamics, following
the procedure first presented by Hardee et al. (1995) and Hardee &
Stone (1997).

An eigenmode perturbation displaces each fluid element in the
transverse direction by a certain amount ξ x(x, z, t), which grows
exponentially with time for unstable modes. This quantity is de-
rived in detail in Appendix C based on the linear stability analysis
performed in Paper I. At some finite time, the displacement ξ x

causes fluid elements somewhere in the stream to cross. This de-
fines the time of transition to non-linear evolution, tNL, because
crossing streamlines, combined with transonic velocities, imply the
formation of shocks. The temporal and spatial dependencies of ξ x

vary with the wavelength λ and the order n of the mode, resulting
in different tNL for different eigenmodes. In order to compare the
amplitude reached by different eigenmodes in the linear stage, we

define hNL = max z|ξ x( ± Rs, z, tNL)|, i.e. the magnitude of displace-
ment to the stream/background interface at time t = tNL. We note
that while the amplitude of transition to non-linearity, hNL(λ, n),
does not depend on the initial perturbation amplitude, the transition
time, tNL(λ, n), satisfies

tNL = ln

(
hNL

H

)
tKH (45)

where H is the initial displacement amplitude given to the eigen-
mode in question and tKH is its KH time. The logarithmic depen-
dence of tNL on hNL is a result of taking the inverse of the exponential
growth in the linear stage.

The results of this analysis are shown in Fig. 14 for a planar slab
with (Mb = 2.5 and δ = 10). The initial perturbation amplitude
is assumed to be H = 0.03Rs for all wavelengths. The left-hand
panel shows hNL as a function of λ for different orders, n. For all
wavelengths, the largest values of hNL are achieved by the n = −1
and 0 modes, corresponding to the fundamental P and the S modes,
respectively. Both of the modes satisfy equation (44), the P mode for
λ � 1Rs and the S mode for λ � 10Rs, making them the candidate
critical modes in these wavelength ranges. The right-hand panel in
Fig. 14 shows that the S mode is the faster growing of the two,
having smaller tNL by a factor of ∼5 across all wavelengths. Thus,
we conclude that in the case (Mb = 2.5 and δ = 10), the critical mode
ought to be an S mode (ncrit = 0) with wavelength λcrit � 10Rs. For
H = 0.03Rs, the break-up of the stream is expected to commence at
tNL � 3.5tsc, corresponding to the transition to non-linearity for the
aforementioned (λcrit, ncrit).

Fig. 15 follows a simulation of body modes growing in a planar
slab with (Mb = 2.5 and δ = 10) and Rs = 1/128. The initial per-
turbations included several wavelengths in the range 0.25Rs ≤ λ ≤
16Rs (see Section 4.2) with initial amplitude H = 2� � 0.03Rs, as
assumed for the analysis presented in Fig. 14. The second panel of
Fig. 15 shows the shape of the stream at t � 1.6tsc. A few of the
initial perturbation wavelengths can be identified, most notably an
S mode with λ = 4Rs, which is roughly the dominant wavelength
predicted by Fig. 14 for this time. In the third panel of Fig. 15,
corresponding to t � 3.2tsc, the dominant mode is an S mode with
λ = 16Rs, although some contribution from λ = 8Rs may be ob-
served. The total displacement at this time is h ≈ Rs relative to
the initial stream/background interface. The combination of time,
wavelengths, and amplitude is in excellent agreement with the ana-
lytic prediction for the critical perturbation mode. Accordingly, the
subsequent growth of the critical mode leads to the final disintegra-
tion of the stream, seen in the bottom two panels in Fig. 15.

The same analytic method is used in Appendix D to produce
plots analogous to Fig. 14 for other values of Mach number, Mb,
and density contrast, δ. These yield nearly identical conclusions,
namely (λcrit � 10Rs, ncrit = 0), throughout the range of parameters
relevant to cold streams feeding galaxies. Fig. 16 shows a few
examples of simulations exhibiting this behaviour. Although some
differences in morphology are visible, in all cases the stream breaks
up due to a sinusoidal perturbation with λcrit = 16Rs, following a
very similar timetable.

Assuming roughly the same initial amplitude is given to all per-
turbation modes (white noise), the transition to non-linearity for a
given combination of (Mb, δ) is determined by tNL of the critical
perturbation mode, tNL, crit = tNL(λcrit, ncrit). According to equation
(45), this depends on the KH time for that mode and on the ratio
of the initial amplitude, H, to the amplitude at transition, hNL. For
the critical perturbation mode, we have hNL � Rs by definition. In
Appendix E, we show that the KH time for the critical perturbation
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Figure 14. Transition from linear to non-linear evolution of body modes as predicted by linear analysis for (Mb = 2.5 and δ = 10). The first eight body modes
are shown in different colours. The legend on the right-hand panel applies to both. The left-hand panel shows the displacement amplitude reached by each
mode at the onset of non-linearity, hNL, as a function of the wavelength, λ, with both axes normalized by the stream radius Rs. The right-hand panel shows the
time of transition to non-linearity, tNL, normalized by the stream sound crossing time, tsc. The initial perturbation amplitude is assumed to be H = 0.03Rs for
all wavelengths.

mode in cosmic cold streams is roughly the stream sound cross-
ing time, tKH � tsc = 2Rs/cs, with little dependence on (Mb, δ).
Therefore, we predict that in cosmic cold streams, the transition to
non-linearity will occur at

tNL,crit = ln

(
Rs

H

)
tsc = ln

(
Rs

H

)
2Rs

cs
(46)

4.3.2 Deformation and deceleration

The non-linear growth of the critical mode and the subsequent dis-
ruption of the stream can be observed by following the evolution of
its width, defined in equation (12). Fig. 17 shows w(t) for the sim-
ulations listed in Table 3. In all cases, the streams experience only
modest widening at early times, with no more than a ∼20 per cent
increase in width during the first ∼3tsc. Around this point in time,
corresponding to the analytic prediction for tNL (see Section 4.3.1),
we observe a sharp transition to rapid growth. This is interpreted
as the critical perturbation mode taking over and initiating the dis-
integration of the stream. The width of the stream increases to
approximately a factor of ∼5–10 of its initial value within ∼1–2tsc,
at which point the stream breaks up and the growth rate starts to
decrease again.

At later times, Fig. 17 shows significant scatter among different
combinations of Mach number and density contrast, with larger
values of δ corresponding to higher late-time growth rates. Never-
theless, both the time of transition to non-linearity and the maximum
growth rate are similar in all cases. All of the cases with Mb = 2.5,
which are the most relevant to cold streams feeding galaxies, show
tNL, crit � 3.5tsc regardless of δ, in excellent agreement with the
analytic predictions.

The critical perturbation mode bends the stream into a sinusoidal
shape, effectively driving a piston through the background medium
at every crest of the sinusoid. This produces a periodic pattern of

weak shocks, propagating away from the stream at approximately
the speed of sound cb, as shown in Fig. 18. These waves facilitate
the transfer of momentum from stream to background fluid. We
denote the characteristic time for deceleration due to this interac-
tion by τ body. The appropriate time-scale can be derived by requir-
ing that the mass of background fluid overtaken by the outward-
propagating waves be equivalent to the mass of the stream, namely
cbτ bodyLρb ∼ RsLρs. Thus, we obtain the definition

τbody ≡ δRs

cb
=

√
δ

2
tsc. (47)

Fig. 19 shows the evolution of vz, cm, the centre-of-mass velocity
of the stream defined in equation (40), for the same set of simulations
used previously. The results are consistent with those in Fig. 17.
During the first ∼3tsc, the streams maintain their initial velocity,
followed by a period of sharp deceleration due to the non-linear
evolution of the critical perturbation mode. This corresponds to
the rapid growth in width seen in Fig. 17, as demonstrated by the
triangles and circles marking w = 4Rs and 16Rs, respectively, in
Fig. 19. The rate of deceleration during this stage fits the predicted
time-scale, equation (47). All cases show roughly the same slope
when the velocity is normalized by the initial velocity, V, and the
time is normalized by the deceleration time-scale, τ body, namely

v̇z,cm � −0.12
V

τbody
(48)

regardless of (Mb, δ). After the stream breaks, roughly at the time
corresponding to w = 16Rs (i.e. h ≈λcrit/2), we observe a significant
reduction in the deceleration rate, to values in the neighbourhood
of

v̇z,cm � −0.016
V

τbody
, (49)

with somewhat greater variability with (Mb, δ).
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Figure 15. Snapshots of ψ(x, z), a passive scalar field used as a Lagrangian tracer for the stream fluid (see Section 2.5), taken from a planar slab simulation
at different times. The times are presented both in terms of the stream sound crossing time, tsc, and the deceleration time-scale, τ body (see Section 4.3.2). The
unperturbed initial conditions are (Mb = 2.5 and δ = 10), placing the stream in the body-mode-dominated regime. The initial stream radius is Rs = 1/128. The
initial perturbations are interface-only with a spectrum spanning 0.25Rs ≤ λ ≤ 16Rs and a fixed initial amplitude H = 2� � 0.03Rs (see Section 4.2). This
setup matches the assumed initial conditions for Fig. 14.

The velocity of the stream immediately after its disintegration,
denoted vbreak, can be estimated by evaluating vz, cm at the mo-
ment corresponding to a suitable width threshold. Fig. 20 shows
vbreak using two different criteria for the moment of breaking,
vbreak = vz, cm(w = 12Rs) and vbreak = vz, cm(w = 16Rs), marked
by circles and crosses respectively. Intuitively, denser streams end
up with higher vbreak.

The observed dependence of vbreak on δ can be interpreted on the
basis of the following toy model. By the time it breaks, the stream
shares its momentum with some amount of background fluid, pre-
sumed to initially occupy the volume Rs < |x| < xeff. Conservation
of momentum between the initial and the final states then indicates
2RsLρsV = [2RsLρs + 2(xeff − Rs)Lρb]vbreak. Assuming that xeff is
independent of (Mb, δ), we find

vbreak(δ) = δ

δ + xeff−Rs
Rs

V . (50)

Fig. 20 shows that our results fit this form12 with xeff ≈ 3Rs,

vbreak(δ) � δ

δ + 2
V . (51)

In addition to the dependence on density contrast, Fig. 20 shows
that vbreak changes with Mach number. However, when considering
the actual range of Mach numbers for which cosmic cold streams
are susceptible to body modes, 1.5 � Mb � 2, this dependence can
be largely ignored and equation (51) can be used to predict vbreak

with reasonable accuracy.
The results presented in this section show little sensitivity to

the specific realization of initial perturbations used, the value of
the smoothing width, σ , and the domain size, L. The transition
time, tNL, the deceleration rate, equation (48), and the velocity at

12 The value of xeff is notably less than the extent of the perturbed region
after the stream has been broken, w/2 ∼ λcrit/2 ∼ 8Rs, implying that the
momentum exchange in this process is relatively inefficient.
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Figure 16. Snapshots of ψ(x, z), a passive scalar field used as a Lagrangian tracer for the stream fluid (see Section 2.5), taken from different body mode
simulations a short time after the transition to non-linear evolution. The simulations have different (Mb, δ), but share the same specific realization of interface-
only initial perturbations with a spectrum spanning 0.25Rs ≤ λ ≤ 16Rs and a fixed initial amplitude H = 2� � 0.03Rs (see Section 4.2). The initial stream
radius is Rs = 1/128 in all cases. The second panel in this figure is identical to the third panel in Fig. 15.

disintegration, vbreak, are particularly robust. The resolution effect is
somewhat more important. In particular, the (Mb = 2.5 and δ = 10)
case shows some variability both in deceleration rate and in stream
width when Rs is changed at a fixed resolution, changing the number
of cells resolving the width of the stream, Rs/�. Nevertheless, these
difference can be considered small for the purposes of our analysis
of KHI in cold streams feeding galaxies.

The results of this section are used in Section 5.3 to predict the
effect of KHI-induced deceleration on the inflow rate of cosmic
cold streams. We find that streams unstable to body modes undergo
negligible deceleration, too small to account for the constant in-
flow velocity observed in (unresolved) cosmological simulations.
Whether this result extends to cylindrical streams in 3D remains to
be seen (Mandelker et al., in preparation).

4.3.3 Heating

The non-linear growth of the critical perturbation mode drives weak,
oblique shock waves through the stream fluid itself, seen in Fig. 18,

in addition to the outward-propagating waves mentioned in Sec-
tion 4.3.2. These waves reverberate back and forth inside the stream,
causing it to heat up. As in case of surface modes (see Section 3.3.8),
this heating is interesting in the astrophysical context primarily due
to its potential to produce observable Lyman-α or other emissions.

Fig. 21 shows how the temperature and the density of the stream
evolve with time in three simulations with different (Mb, δ). All cases
show a mild increase in temperature at early times, followed by a
short period of rapid heating around t � tNL � 3.5tsc, corresponding
to stream break-up, and a plateau at later times. For Mb = 2.5, the
mean temperature of the stream increases by a factor of ∼1.5–2,
with a weak dependence on δ. For (Mb = 5.0 and δ = 10), the
shock waves are stronger, resulting in a factor of 2.5–3 increase in
temperature. The densities decrease by a similar factor.

The increase in stream temperature seen in Fig. 21 for body modes
is greater, in relative terms, than the increase seen in Section 3.3.8 for
surface modes. Nevertheless, this still represents a small fraction of
the overall energy budget of the stream. As was the case for surface
modes, this means that body mode instability is a significantly
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Figure 17. Non-linear growth of body modes in different planar slab sim-
ulations listed in Table 3. The vertical axis shows the stream width, w,
normalized by its initial radius, Rs. The initial width is w(t = 0) = 2Rs.
For the fiducial domain size L = 1 and stream radius Rs = 1/128, each
combination of (Mb, δ) was repeated with three realizations of interface-
only initial perturbations, as described in Section 4.2. The shaded areas of
different colours correspond to the range of results spanned by the different
realizations, whereas the solid lines show mean values. The dashed lines
show runs with a larger stream radius, Rs = 1/64, with one realization for
each case. The dotted lines show runs with both a larger stream radius,
Rs = 1/64, and a larger domain size, L = 2. The solid cyan line marks a
simulation with a larger smoothing width, σ , in the initial conditions.

weaker power source for Lyman-α emission than those appearing
in previous works (Goerdt et al. 2010; Dijkstra & Loeb 2009). We
discuss this point in detail in Section 5.4.

The results of this section are based on adiabatic simulations and
therefore do not take into account the effect of radiative cooling
on KHI, which are potentially significant. In the same vein as Sec-
tion 3.3.8, a careful study of body-mode instability with a realistic
cooling function is necessary. This will be reported in a forthcoming
paper (Mandelker et al., in preparation).

5 A P P L I C AT I O N TO C O L D ST R E A M S
FEEDI NG G ALAXI ES

In this section, we use the results obtained in Sections 3 and 4 to
predict the outcome of KHI in cold streams feeding galaxies. In
Section 5.1, we estimate the values of the parameters controlling
KHI in cold streams. In Section 5.2, we predict the potential for
break-up of streams. Section 5.3 addresses the effect on their inflow
rate. Finally, in Section 5.4, we comment on heating of the streams,
in particular with regard to the potential for Lyman-α emission.

5.1 Estimating Mb, δ, and Rs/Rv for cold streams

Our results depend primarily on three dimensionless parameters: the
Mach number, Mb, the density contrast, δ, and ratio of stream radius
to virial radius, Rs/Rv. In order to estimate these three parameters,
we assume that cosmological simulations can be used to infer the
large-scale properties of cold streams and the hot halo gas, reduced
to a number of more fundamental parameters listed in Table 4. The
values therein are meant as a rough guide, to be refined in future
work. We use the resulting expressions for (Mb, δ, Rs/Rv) to assess,
based on our numerical and analytic models of KHI, the effects of
KHI on cold streams.

Cosmological simulations indicate that the stream velocity is
approximately constant during infall (Dekel et al. 2009; Goerdt &

Figure 18. Snapshots of pressure, p(x, z), taken from the same run as in Fig. 15. The times are presented both in terms of the stream sound crossing time, tsc,
and the deceleration time-scale, τ body (see Section 4.3.2). The initial pressure was p = 1 in simulation units throughout the computational domain.
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Figure 19. Stream deceleration due to non-linear growth of body modes
in the planar slab simulations listed in Table 3. The vertical axis shows the
centre-of-mass velocity of the stream in the downstream direction, vz, cm,
normalized by its initial velocity, V. The legend is identical to Fig. 17. The
triangles on each of the lines correspond to w = 4Rs, marking the transition to
non-linear evolution, whereas the circles correspond to w = 16Rs, marking
the disruption of the stream.

Figure 20. Stream velocity at the time of disintegration. Two defi-
nitions are used: vbreak = vz, cm(w = 12Rs) marked by circles and
vbreak = vz, cm(w = 16Rs) marked by crosses. The colours represent dif-
ferent Mach numbers: Mb = 2.5 (blue) and Mb = 5.0 (red). The data are
based on the same simulations shown in Fig. 19. The solid black line corre-
sponds to the toy model, equation (50), with the calibrated value xeff = 3Rs.
The dashed black lines use xeff = 2.5Rs, 3.5Rs as a crude representation of
the uncertainty.

Ceverino 2015; Goerdt et al. 2010) and comparable to the halo virial
velocity,

V = ηVv, (52)

with 0.5 � η � 1 (Goerdt & Ceverino 2015). Using the simplifying
assumption that the halo CGM is isothermal, with a temperature
proportional to the virial temperature, Tb = �bTv, the sound speed
in the halo is

cb =
√

γKBTb

μmp
=

√
γKB�bTv

μmp
, (53)

where KB is the Boltzmann constant, Tv is the virial temperature,
μmp is the mean particle mass, γ = 5/3 is the adiabatic index of
the gas, and �b � 3/8 (Dekel & Birnboim 2006). The temperature,
Tv, can be related to the velocity, Vv, using virial equilibrium,

3

2
KBTv � 1

2

GMvμmp

Rv
= 1

2
μmpV

2
v , (54)

where Mv is the virial mass of the halo. Combining equations (54)
and (53), we obtain Vv/cb = √

3/γ�b � 2.2, and plugging this into
equation (52), we find

Mb = V

cb
= η

Vv

cb
� 2.2η (55)

Taking the uncertainties in �b and η into account, we assume values
in the range Mb ∼ 0.75–2.25, as was done in Paper I.

To estimate δ, we assume that the halo CGM and the stream are in
pressure equilibrium. Hence, as in the previous sections, the density
contrast is the inverse of the temperature ratio, δ = ρs/ρb = Tb/Ts.
Assuming that both the halo CGM and the stream are isothermal,
this ratio is constant at any halocentric radius. Due to efficient
cooling in the dense streams, they do not support a stable shock at
the virial radius, and their temperature is set by the cooling curve,
Ts = �s104K, with typical values of 1 � �s � 3 (Dekel & Birnboim
2006). Therefore, we write

δ = �b

�s

Tv

104K
= �

Tv

104K
, (56)

where � ≡ �b/�s is roughly in the range 0.3 � � � 1.1.
The virial temperature can be related to the redshift and the virial

mass (see appendix A in Dekel & Birnboim 2006)

Tv = 1.5 × 106K × M
2/3
12 (1 + z)−1

3 , (57)

where (1 + z)3 = (1 + z)/3 and M12 = Mv/1012 M�. Substituting
equation (57) for Tv in equation (56), we get

δ = 150 × �M
2/3
12 (1 + z)−1

3 . (58)

Using the aforementioned range of �, this results in 40 � δ �
160 for Mv = 1012 M� haloes at redshift z = 2. This is somewhat
higher than the range we assumed in Paper I, which we adopt here as
well for consistency, δ ∼ 10–100. The latter is also consistent with
cosmological simulations (Ocvirk et al. 2008; Dekel et al. 2009;
Goerdt et al. 2010).

In Paper I, we assumed Rs/Rv ∼ 0.005–0.05, based on cosmo-
logical simulations. This can be improved by relating Rs/Rv to the
density contrast and Mach number, using the cosmological accre-
tion rate as a constraint, as shown below. A similar idea is used
to estimate dark-matter filament properties in Birnboim, Padnos &
Zinger (2016).

On the one hand, the accretion rate of gas with density ρs flowing
with velocity V along a stream with radius Rs is

Ṁs = πR2
s ρsV . (59)
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Figure 21. The thermodynamic state of the stream in simulations of non-linear growth of body modes. Each panel represents the time evolution of a single run
with a different value of (Mb, δ). In all cases, the initial conditions included the same realization of interface-only perturbations. Different realizations produce
nearly identical results. The vertical axis shows the temperature and density of the unmixed stream fluid, Tpure and ρpure, normalized by their respective initial
values, Ts and ρs, as well as the mass fraction of unmixed fluid, fpure. The horizontal axis shows the time normalized by the sound crossing time, tsc. Two
different values of the threshold εener in equation (16) are used to define unmixed fluid. For εener = 0.1, the solid lines show Tpure (red), ρpure (blue), and fpure

(black), whereas the shaded red/blue areas span the 10th–90th mass percentiles of temperature/density. For εener = 0.01, the black dashed line shows fpure and
the red/blue dashed lines span the 10th–90th mass percentiles of temperature/density. The results obtained using both values of εener are very similar, indicating
that any observed heating is a physical phenomenon affecting the bulk of the stream, rather than a numerical artefact affecting some small boundary layer.

On the other hand, the overall accretion rate of matter into the virial
radius can be expressed as (Dekel et al. 2013),

Ṁv = sMv(1 + z)5/2, (60)

where s = Ṁv/Mv is the specific accretion rate. The accretion rate
of gas along the stream is then

Ṁs = fsfgsMv(1 + z)5/2, (61)

where fs is the fractional contribution of the stream to the overall
accretion rate and fg is the gas fraction of the accreting matter. A
typical major stream is assumed to carry roughly half of the overall
accretion rate, whereas the second and third streams typically carry
a quarter or less (Danovich et al. 2012), so 0.2 � fs � 0.5. The gas
fraction fg will cancel out in the final expression for Rs/Rv.

The stream gas density in equation (59) can be expressed in terms
of the density contrast and the mean virial density,

ρs = δρb = δfhfg�̃(r)ρV (62)

where fh is the hot-to-total gas mass fraction in the halo and �̃(r)
is the local overdensity factor at a halocentric radius r relative to
the mean virial density. In cosmological simulations, we find 0.3 �
fh � 0.4 (Roca-Fabrega et al., in preparation). For a standard NFW
profile, the overdensity at the virial radius is �̃(Rv) = 1/6, reaching
unity at ∼0.5Rv. The mean virial density is simply

ρV = 3

4π

Mv

R3
v

. (63)

Using equations (52), (54), (63), and (58), we express the velocity
in equation (59) in terms of the virial density and radius,

V = η

√
GMv

Rv
�

(π

3

)1/2
Mb (GρV)1/2 Rv. (64)

Plugging equations (62) and (64) into equation (59), we get

Ṁs �
(

π3

3

)1/2

fhfg�̃δMbR
2
s RvG

1/2ρ
3/2
V . (65)

Using equation (63), we rewrite equation (61) as

Ṁs =
(

4π

3

)
fsfgsR

3
vρV(1 + z)5/2 (66)

We equate equations (65) and (66) to obtain

Rs

Rv
�

(
16

3π

)1/4 (
fs

fh�̃δMb

)1/2

(stv)1/2 (1 + z)5/4 (67)

where tv = Rv/Vv = (GρV)−1/2 is the virial crossing time. In the
Einstein–deSitter regime, which is a good approximation for z > 1,
the virial crossing time is given by tv � 0.49 Gyr × (1 + z)−3/2

3 (e.g.
Dekel et al. 2013). Plugging this into equation (67), we find

Rs

Rv
� 0.06 ×

(
fs,0.5s0.03

fh,0.4�̃0.17

)1/2 (
1

δ75Mb,1.5

)1/2

(1 + z)1/2
3 , (68)

where all the parameters were set to their fiducial values. For redshift
z = 2, taking all parameters to their extreme values (see Table 4)
results in Rs/Rv ∼ 0.01 − 0.10 × δ

−1/2
75 M

−1/2
b,1.5 . This is similar to

the range used in Paper I, but includes the dependence of Rs/Rv

on (Mb, δ), as a consequence of constraining equation (59) to the
cosmological inflow rate equation (61).

5.2 Break-up

The terms ‘break-up’ or ‘disintegration’ are to be interpreted slightly
differently in the surface- and the body-mode-dominated regimes,
defined by equations (1) and (3), respectively.

In the surface-mode-dominated regime, we define break-up as
the entrainment of the entire stream in the shear layer, hs = Rs.
We now estimate the critical stream radius, Rsurface

s,break, to satisfy this
condition just as the stream reaches the central galaxy, namely

hs(z = Rv) = Rsurface
s,break. (69)

Substituting equation (39) for hs(z), we find

Rsurface
s,break

Rv
= α(Mb, δ)√

δ
, (70)
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Table 4. Different quantities used to evaluate the Mach number Mb, the density contrast δ, and the ratio
of stream radius to virial radius, Rs/Rv.

Description Values

η Ratio of stream velocity to virial velocity 0.5–1.0
�b Ratio of halo CGM temperature to virial temperature � 3/8
�s Ratio of stream temperature to 104K 1–3
� �b/�s 0.3–1.1
fs Fractional contribution of the stream to the overall mass accretion rate 0.2–0.5
fh Hot-to-total mass gas fraction in the halo CGM 0.3–0.4
s Specific cosmological accretion rate of total matter 0.015–0.060 Gyr−1

�̃ Local overdensity factor relative to the mean virial density 0.17–1

Figure 22. Critical stream radius for break-up due to non-linear KHI, equations (70), (73), and (74), as a function of the density contrast, δ, and Mach number,
Mb. Realistic values for cold streams feeding galaxies are Mb ∼ 0.75–2.25 and δ ∼ 10–100, shown in the dashed square. Streams with Rs < Rs, break are
expected to disintegrate before they reach the central galaxy. The colour map is identical for both panels, with realistic values for the stream radius being
Rs/Rv ∼ 0.005–0.05. These can be related to (Mb, δ) using equation (68). The condition for break-up ranges from Rs < 0.003Rv to <0.03Rv for realistic values
of (Mb, δ). The temporal shear layer growth rate, α, appearing in equation (70), is estimated using equation (26). The solid black line shows the maximal
Mach number allowing surface mode instability, equation (1). The dotted black line shows the minimal Mach number allowing body mode instability, equation
(3). In the body-mode-dominated regime, Rs, break depends on the initial displacement amplitude of the critical perturbation mode, H. The different panels
show different values of H. The results in the surface-mode-dominated regime are independent of H. The discontinuity in Rs, break across the dotted line in the
left-hand panel and across the solid line in the right-hand panel corresponds to the transition from surface modes to body modes in equation (74).

where α can be reasonably approximated by using equation (26).
Streams with Rs < Rsurface

s,break(Mb, δ) are expected to disintegrate due
to surface-mode instability, while traversing the hot CGM.

In the body-mode-dominated regime, the stream becomes dis-
continuous approximately 1–2 stream sound crossing times after the
critical perturbation mode begins non-linear evolution (see Figs 15
and 17). This provides a natural definition for the break-up time,

t
body
break � tNL,crit + tsc (71)

where tNL, crit is the time of transition to non-linearity for the critical
perturbation mode. Substituting equation (46) for tNL, crit results in

t
body
break �

[
1 + ln

(
Rs

H

)]
tsc =

[
1 + ln

(
Rs

H

)]
2Rs

cs
. (72)

Since body modes cause negligible deceleration prior to break-
up, this can be easily translated into a break-up distance, V t

body
break.

Requiring V t
body
break = Rv yields the critical stream radius for break-up

to occur just as the stream reaches the central galaxy,

R
body
s,break

Rv
=

[
2
√

δMb

(
1 + ln

Rs

H

)]−1

. (73)

Streams with Rs < R
body
s,break(Mb, δ) are expected to disintegrate due

to body-mode instability, while traversing the hot CGM.
We combine equations (70) and (73) into a critical Rs for break-up

by either surface or body modes,

Rs,break = max
{

Rsurface
s,break, R

body
s,break

}
, (74)

where we define Rsurface
s,break(Mb > Mcrit) = 0 and R

body
s,break(Mtot < 1) =

0 in order to comply with equations (1) and (3). Fig. 22 shows
Rs, break as a function of (Mb, δ). For the parameter range relevant
to cold streams (0.75 < Mb < 2.25, 10 < δ < 100), we find that
streams up to a radius of ≈0.03Rv may disintegrate prior to reaching
the galaxy, depending on the exact values of (Mb, δ). Overall, the
critical stream radius decreases with both density contrast and Mach
number, decreasing from roughly 0.03Rv for (Mb = 0.75 and δ = 10)
to 0.003Rv for (Mb = 2.25 and δ = 100). The critical stream radius
at the highest relevant density contrast and Mach number (Mb �
2.25 and δ = 100) weakly depends on the initial amplitude of the
critical mode, varying in the range 0.003Rv < Rs, break < 0.007Rv

for 0.001Rs < H < 0.1Rs.
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Figure 23. Critical stream radius for a factor of 2 reduction in inflow velocity due to non-linear KHI, equations (76), (78), and (79). The axis, dashed square,
lines, and colour map are the same as in Fig. 22. Streams with Rs < Rs, inflow lose at least half of their initial mass inflow rate by the time they reach the
central galaxy. In the relevant range of Mach number, Mb, density contrast, δ, and stream radius, Rs, deceleration due to KHI is found to be weak compared
to the gravitational acceleration, which is absent from this figure altogether; gravity is supposed to increase the inflow velocity by a factor of ∼2 or more
(see Section 5.3 and Appendix F). Significant deceleration is expected only for very narrow streams. We note that a 3D analysis of cylindrical streams, to be
reported in the next paper of this series (Mandelker et al., in preparation), is likely to raise the estimated critical stream radius.

It is interesting to note that the dominant type of modes in the
coexistence region (Mb < Mcrit and Mtot > 1) is determined by H. If
H/Rs is sufficiently small, less than a few per cent, then the coex-
istence region is dominated by surface modes and the transition to
body modes occurs only when surface modes stabilize completely,
as shown in the right-hand panel of Fig. 22. If the opposite is true,
then the coexistence region is dominated by body modes and the
transition occurs close to Mtot = 1, as in the left-hand panel of
Fig. 22. The overall conclusions remain the same for both cases.

5.3 Inflow rate

The deceleration of stream fluid due to KHI is interpreted in the
cosmological context as a reduction in cold mass inflow rate into the
central galaxy. As a crude estimation of the magnitude of this effect,
we evaluate the critical stream radius for a factor of 2 reduction
in inflow rate to occur due to KHI before the stream reaches the
central galaxy, which we denote by Rs, inflow. This does not take into
account gravitational acceleration compensating for some or all of
this reduction in inflow rate.

In the surface-mode-dominated regime, deceleration from the
initial velocity vz, cm = V to vz, cm = V/2 occurs at an approximately
constant deceleration rate (see Section 3.3.7, in particular Fig. 12),

v̇z,cm � −1

2

V

τsurface
(75)

By requiring vz, cm(tv) = V/2, we find the critical stream radius,

Rsurface
s,inflow

Rv
= α(Mb, δ)

δ + √
δ

, (76)

Streams with Rs < Rsurface
s,inflow(Mb, δ) are expected to lose more than

50 per cent of the inflow rate they had at the virial radius while
traversing the CGM.

In the body-mode-dominated regime, we use the approximate
deceleration profile obtained in Section 4.3.2,

v̇z,cm =

⎧⎪⎨
⎪⎩

0 t < tNL

−0.12V /τbody tNL < t < t(vz,cm = vbreak)

−0.016V /τbody t(vz,cm = vbreak) < t

, (77)

where vbreak/V � δ/(δ + 2). Using equation (77) and requiring
vz, cm(tv) = V/2, we find the critical stream radius,

R
body
s,inflow

Rv
=

⎧⎪⎨
⎪⎩

[
2
√

δMb

(
ln Rs

H
+ 2.1

√
δ
)]−1

δ < 2[
2
√

δMb

(
ln Rs

H
+ 15.6 δ−22.8

δ+2

√
δ
)]−1

δ > 2
. (78)

Streams with Rs < R
body
s,inflow(Mb, δ) are expected to lose more than

50 per cent of the inflow rate they had at the virial radius while
traversing the CGM.

As in the previous section, we combine equations (76) and (78)
by using the expression

Rs,inflow = max
{

Rsurface
s,inflow, R

body
s,inflow

}
, (79)

where we define Rsurface
s,inflow(Mb > Mcrit) = 0 and R

body
s,inflow(Mtot < 1) =

0 in order to comply with equations (1) and (3). Fig. 23 shows
Rs, inflow as a function of (Mb, δ). We find that most streams in the
relevant parameter range experience very little deceleration. Even
when streams are expected to disintegrate, the high-density contrast
means that their inertia is too large for significant deceleration to
occur in a virial time. Only dilute (δ � 10), slow (Mb � 1) and narrow
(Rs ≤ 0.01Rv) streams are expected to lose 50 per cent or more of
their inflow rate before they reach the central galaxy. By virtue of
equation (68), streams at the dilute, slow and narrow extreme of the
allowed parameter space should be a rare occurrence, since such
cases will deviate considerably from the cosmological accretion
rate.
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Our findings are robust with regard to the assumed value of the
initial amplitude of the critical mode, H, as demonstrated in Fig. 23.
For initial amplitudes in the range 0.001Rs ≤ H ≤ 0.1Rs, shown
in the figure, the values of Rs, inflow vary by less than ∼25 per cent
for realistic values of (Mb, δ). Even if the critical mode is seeded
with non-linear initial amplitude, H/Rs ∼ 1, we find that Rs, inflow

remains largely below the lower bound for Rs in cold streams feeding
galaxies.

As mentioned previously, Fig. 23 neglects the gravitational ac-
celeration acting on the inflowing stream. Appendix F presents a
simple toy model for the evolution of the inflow velocity, including
an acceleration term due to gravity and a deceleration term due
to KHI, for the specific case of surface-mode instability. The re-
sults therein show that, in most cases, the contribution of KHI to
the stream inflow rate is negligible compared to the gravitational
acceleration. Except for dilute and narrow streams (δ � 10, Rs �
0.01Rv), the inflow velocity in the toy model approximately follows
the free-fall solution.

In cosmological simulations, stream velocity is nearly constant
during the infall (Dekel et al. 2009; Goerdt & Ceverino 2015),
indicating that the gravitational acceleration is counteracted by a
rapid dissipation process. This dissipation process has yet to be
studied in detail and its physical origins are unclear. The extent
to which insufficient resolution contributes to the high dissipation
rate observed in cosmological simulations is also uncertain. Based
on the discussion in this section, we conclude that KHI is not a
potential source for efficient dissipation in cold streams feeding
massive SFGs.

An important caveat to the conclusions above arises when con-
sidering potential differences between deceleration in 2D slabs,
studied here, and 3D cylinders, which resemble the shape of cosmic
cold streams more closely. In the surface-mode-dominated region,
analysis and preliminary simulations suggest that stream decelera-
tion time-scales are ∼10(∼3) times shorter than slab deceleration
time-scales for δ ∼ 100(δ ∼ 10). The differences between body
modes in slabs and cylinder are expected to be similar or smaller.
In terms of the toy model studied in Appendix F, this corresponds
to multiplying the parameter B by the same factors. Performing
this manipulation one sees that the KHI-induced deceleration still
amounts to a small effect on the stream infall velocity profile. These
issues will be addressed in the following paper of this series (Man-
delker et al., in preparation).

5.4 Lyman-α emission

Goerdt et al. (2010) predicted the Lyman-α luminosity from cold
streams based on cosmological simulations where the stream veloc-
ity is roughly constant, implying any gravitational energy released
during the infall is completely dissipated into internal energy and
subsequently radiated away. The resulting Lyman-α sources have
properties consistent with observed LABs, with a luminosity of
1042–1044erg s−1 for haloes in the mass range 1011–1013 M� at
z = 3. Similarly, Dijkstra & Loeb (2009) worked out an analytic
model for Lyman-α luminosity from cold streams based on the
general properties of the streams reported in simulations, where
the fraction of gravitational energy radiated away, fgrav, is a free
parameter. This work concludes that emission from cold streams
is comparable to observed LABs if fgrav � 0.2. The cosmological
simulations considered by Goerdt et al. (2010) effectively have fgrav

� 1.
Neither Goerdt et al. (2010) nor Dijkstra & Loeb (2009) inves-

tigate the dissipative process powering the radiation. As can be

expected from the discussion in Section 5.3, we find that KHI can-
not provide the necessary high dissipation rate. This is explained in
detail below.

The adiabatic simulations presented in Sections 3.3.8 and 4.3.3
demonstrate that non-negligible heating of the stream fluid due
to KHI occurs if Mtot = Mb

√
δ/(1 + √

δ) � 1. In the surface-
mode-dominated regime, this heating takes place at a roughly
constant rate as the shear layer grows, raising the temperature of
the stream fluid by �40 per cent until it reaches the halo centre.
In the body-mode-dominated regime, the heating occurs abruptly
when the stream breaks up, raising its temperature by a factor
∼2–3.

The overall energy budget of a cold stream can be broken into
three components,

e = egrav + ekin + eint, (80)

where e is the specific energy and the different terms correspond
to gravitational, kinetic, and internal energy respectively. As the
stream flows into the halo, gravitational energy is converted into
kinetic energy, which can then be dissipated into internal energy. At
the initial time, when the stream fluid enters the halo at radius ∼Rv

with a velocity ∼Vv, we have

egrav(t = 0) = GMv

Rv
= V 2

v , (81)

ekin(t = 0) = 1

2
V 2, (82)

eint(t = 0) = 3

2

KBTs

μmp
. (83)

Combining equations (80) to (83), we obtain

e(t = 0)

egrav(t = 0)
= 1 + η2

2
+ 3η2

2γ

1

M2
s

= 1 + η2

2
+ 9η2

10

1

M2
s

, (84)

where γ = 5/3 is used in the last equality and 0.5 � η = V/Vv � 1.
Equation (84) shows that the energy budget of the stream is

initially dominated by the gravitational and kinetic terms, with the
internal energy contributing only ∼M−2

s = δ−1M−2
b of the total

energy. For the relevant values of (Mb, δ), this factor is in the range
∼0.001–0.1. Hence, although the aforementioned gain in stream
temperature due to KHI is non-negligible compared to the initial
state, it corresponds to the dissipation of only a small fraction of the
gravitational energy released during the infall. This is true for both
surface and body modes.13 In conclusion, we expect KHI to add only
∼0.1 per cent−10 per cent to the Lyman-α luminosity estimated by
Goerdt et al. (2010) from cosmological simulations, depending on
(Mb, δ).

Our adiabatic simulations do not account for the effects of ra-
diative cooling on KHI. Previous investigations done in other con-
texts (Hardee & Stone 1997; Vietri et al. 1997; Stone et al. 1997)
found that the evolution KHI in a cooling fluid can deviate con-
siderably from the adiabatic case, both in the linear and non-linear
phases. Whether this strengthens or weakens the instability depends
strongly on the details of the cooling function. Cold streams feeding
massive SFGs at z ∼ 2 are at a temperature of a few 104K, slightly

13 Streams disrupted by body mode instability heat up more than those sus-
ceptible to surface mode instability (compare Figs 13 and 21). This is com-
pensated by the fact that Ms is typically higher in the body-mode-dominated
regime than in the surface-mode-dominated regime, so the amount of energy
dissipated remains small compared to the total stream energy.
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below the peak associated with Lyman-α emission from atomic hy-
drogen (Birnboim & Dekel 2003; Dekel & Birnboim 2006). The
cooling function rises steeply in this region (Sutherland & Do-
pita 1993), increasing by more than an order of magnitude for a
factor of ∼2 increase in temperature. Linear analysis for a simi-
larly steep power-law cooling function shows reduced KHI growth
rates (Hardee & Stone 1997). On the other hand, non-linear sim-
ulations with a full cooling function, qualitatively similar to the
Sutherland & Dopita (1993) function, exhibit more violent disin-
tegration of the stream than identical adiabatic simulations (Stone
et al. 1997). In a forthcoming paper (Mandelker et al., in prepa-
ration), we perform 3D simulations of non-linear KHI and study
the effect of realistic radiative cooling on both surface and body
modes.

The arguments above offers a strong indication that the heat
deposited in cold streams due to KHI, q, is small compared to
the gravitational energy scale, egrav. Although this does not imply
that the instantaneous power must obey the same hierarchy at any
instant, i.e. dq/dt < degrav/dt, this is the most likely conclusion
(see Appendix F). A more careful study of the power balance in
cold streams feeding galaxies awaits later stages in our long-term
campaign, when we will turn to examine the combined effects of
cooling and gravity.

Throughout this work, we referred primarily to Lyman-α emis-
sion, because it is expected to be a dominant coolant in cold streams
feeding massive galaxies. However, our analysis is not limited to
any single cooling mechanism. The conclusions above rely on esti-
mations of the overall energy deposition due to KHI, without con-
sidering the specific mechanisms expected to radiate the deposited
energy away. The relative importance of different cooling channels
will be assessed as part of our future work on simulations including
realistic cooling functions (Mandelker et al., in preparation).

6 SU M M A RY A N D C O N C L U S I O N S

Motivated by the conclusions of the linear analysis of Paper I, we
presented a detailed study of the non-linear stage of purely hydro-
dynamic, adiabatic KHI in 2D planar sheet and slab geometries,
using a combination of analytic models and RAMSES numerical sim-
ulations. We then applied our results to the problem of cold streams
feeding massive SFGs at high redshift. Our main results can be
summarized as follows.

(i) For surface modes, which dominate at lower Mach numbers,
the non-linear evolution is driven by vortex mergers resulting in
self-similar shear layer growth. The late-time evolution is inde-
pendent of the exact properties of the initial perturbations. The
temporal growth rate in this regime depends primarily on the total
Mach number, Mtot = Mb

√
δ/(1 + √

δ), consistent with previously
reported simulations and terrestrial experiments performed in other
contexts with significantly smaller density contrasts. We find good
agreement between our analytic models and our simulation results
in terms of the convection (drift) velocity of the vortices, the entrain-
ment ratio (stream/background asymmetry) and the stream decel-
eration rates. Overall, as either the density contrast, δ, or the Mach
number, Mb, are increased, the shear layer growth rates decrease,
the entrainment ratio diverges from unity and the deceleration rates
decrease.

(ii) For body modes, which are slower to grow but dominate at
higher Mach numbers, the non-linear evolution is driven by long-
wavelength sinusoidal perturbations. We found good agreement be-
tween the analytical predictions for the critical perturbation mode

that is expected to break the stream, and the dominant mode ob-
served at late times in numerical simulations. We proposed simple
scaling relations for the deceleration rate, which fit the simulation
results. The disruption and deceleration time-scales are largely in-
dependent of Mb and decrease with δ.

(iii) The range of parameters relevant to cold streams feeding
massive galaxies at z ∼ 2 is estimated, refining the arguments made
in Paper I and obtaining 0.75 � Mb � 2.25, 10 � δ � 100, and
0.005 � Rs/Rv � 0.05. In addition, we find a mutual constraint on
these three parameters based on the cosmological accretion rate,
expressed by Rs/Rv ∝ δ−1/2M

−1/2
b .

(iv) Using these estimates, we predict the following outcomes of
KHI in a virial time. In part of the allowed parameter range, streams
are expected to disintegrate prior to reaching the central galaxy.
The upper limit for the stream radius that results in disintegration
is between 0.003Rv for the fastest (Mb ∼ 2.5), densest (δ ∼ 100)
streams, and 0.03Rv for the slowest (Mv ∼ 0.75), most dilute (δ ∼ 10)
streams.

(v) In most cases, only a small effect on the inflow rate is
expected in a virial time, except for very narrow streams. This
is due to the significant inertia of the stream compared to the
CGM.

(vi) For streams with Mtot � 1, some heating of the stream fluid
is observed. For surface modes this heating is gradual, whereas
for body modes, it occurs abruptly when the stream disinte-
grates. Compared to the overall energy budget of cosmic cold
streams, the observed dissipation due to KHI is negligible. There-
fore, KHI is not a viable power source for the efficient Lyman-
α emission considered in Goerdt et al. (2010) and Dijkstra &
Loeb (2009).

Two caveats to items (v) and (vi) are worth noting. First, prelim-
inary estimates of the deceleration rates in cylinders suggest that
they may be significantly higher than the results cited above for
slab geometry. Nevertheless, when compared with the gravitational
acceleration experienced by streams during infall into the halo po-
tential, KHI-induced deceleration is likely to have a minor effect on
the infall velocity, even for a cylindrical stream. Second, although
the dissipation rates are small compared to the overall energy bud-
get, they can result in a significant increase of the radiative cooling
rate, due to the steepness of the cooling curve in the relevant tem-
perature range. This can have a non-trivial effect on the evolution of
KHI, either amplifying or damping the instability depending on the
exact shape of the cooling function. These effects are absent from
our adiabatic simulations.

Both of the caveats above will be addressed in the next two
papers of this series (Mandelker et al., in preparation), where we
will present simulations and analysis of 3D cylindrical streams first
without and then with radiative cooling. In future work, we will
introduce additional physical processes, including the self-gravity
of the stream, the gravitational potential of the underlying dark-
matter halo, and eventually magnetic fields and thermal conduction.
In parallel, we make progress on cosmological simulations with
adaptive refinement in the streams to resolve the desired instabilities
(Roca-Fabrega et al., in preparation).
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A P P E N D I X A : C O N V E R G E N C E T E S T S
I N P L A NA R S H E E T G E O M E T RY

In this section, we demonstrate the resolution effect on the results
presented in Section 3.3, by comparing simulations carried out with
the nominal resolution, described in Section 2.4, to a simulation with
double resolution throughout the computational grid. Fig. A1 com-
pares the two in terms of shear layer growth. The high-resolution
run is confined within the span of runs with nominal resolution,
and the slopes (growth rates) are consistent. We therefore conclude
that our simulations are sufficiently converged for the purposes of
evaluating large-scale properties, such as the shear layer growth rate
and the convection velocity. These conclusions come as no surprise.
Although the linear growth rates of the shortest wavelength pertur-
bations included in our simulations are somewhat reduced due to
the finite resolution, this only slightly delays the onset of non-linear
evolution. At later times, the extent of the shear layer spans ≈1000
cells at the nominal resolution, and the results are converged.

Figure A1. Shear layer thickness (see Section 2.5), h, for Mb = 0.5 and
δ = 1. The shaded area is spanned by three runs with different realizations of
sparse white noise full eigenmode perturbations (see Section 3.2), all with
the nominal resolution described in Section 2.4, reaching a minimal cell size
of � = 2−13. The solid line is a linear fit to the mean thickness at times Vt ≥
0.15. The dashed line corresponds to a single realization of the same kind of
initial conditions, with the resolution doubled throughout the computational
grid, reaching a minimal cell size of � = 2−14.

APPENDI X B: C OMPRESSI BI LI TY SCALING
O F S H E A R L AY E R G ROW T H R AT E
A N D C O M PA R I S O N W I T H E X P E R I M E N T S

There has been considerable debate as to which parameter should be
used to scale the compressibility dependence of shear layer growth
rates. Bogdanoff (1983) and Papamoschou & Roshko (1988) sug-
gested that compressibility effects in experiments can be scaled by
the convective Mach numbers,

Mcb ≡ Vc − Vb

cb
(B1)

Mcs ≡ Vs − Vc

cs
(B2)

where Vc is the velocity at which large structures are con-
vected downstream inside the shear layer, see Section 3.3.3, and
Vb < Vc < Vs is assumed. By manipulating equation (28), one finds
that for isentropic flow and identical adiabatic indices in both fluids
the Mach numbers should be equal, Mcb � Mcs.

Papamoschou (1989) pointed to the significance of the to-
tal Mach number, defined in equation (3). This parameter has
been used to scale compressibility effects in most subsequent
work.14 Note that the total Mach number is the sound speed
weighted average of the individual convective Mach numbers,
Mtot = (cbMcb + csMcs)/(cb + cs). Since it is Galilean invariant,
Mtot is viable as a scaling parameter for temporal growth simula-
tions as well as spatial experiments.

Slessor et al. (2000) proposed an alternative parameter, �c, mo-
tivated by the scaling of kinetic-to-thermal energy conversion in the
dimensionless energy equation,

�c ≡ max
i

[√
γi − 1

V

ci

]
. (B3)

where the index i denotes either of the two fluids. In our set of runs
γ b = γ s = 5/3 and Ms ≥ Mb, yielding �c � 0.82Ms. For γ b = γ s

and δ � 1, the new scaling parameter is practically equivalent to
the total Mach number. However, if the density contrast is far from
unity, �c and Mtot can differ significantly. Slessor et al. (2000)
reported improved collapse of experimental growth rates to a single
curve, when plotted against �c rather than Mtot. Despite this, the
new compressibility parameter has not gained much popularity in
later publications. Freeman (2014) showed that when taking into
account a larger data base of experimental results, the differences
in scatter between both scaling parameters reported in Slessor et al.
(2000) become hardly noticeable.

To evaluate the relative merits of both parameters, we follow the
normalization procedure. Slessor et al. (2000) employed to extract
the compressibility dependence of spatial growth rates. Denote the
incompressible spatial growth rate as h′

0. It can be expressed as
h′

0(r, δ) = C�(r, δ), where � is a known function for the incom-
pressible (r, δ) dependence with �(r = 0, δ = 1) = 1. Slessor
et al. (2000) allowed individual experimental apparatuses to differ
in the value of C and inferred these values directly from the available
measurements in each experiment. The measured growth rates, h′(r,
δ, Mtot), were then normalized by the incompressible growth rates
h′

0(r, δ), with the appropriate value of C for each data set. To apply

14 This parameter is commonly referred to as the total convective Mach
number or simply the convective Mach number. It is denoted by Mc in most
publications. In the interest of consistency, we retain the notation Mtot used
in Paper I.
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Figure B1. Shear layer growth rate compressibility scaling. The left-hand panel uses Mtot, defined in equation (3) as the scaling parameter, while the right-hand
panel uses �c, defined in equation (B3). The legend on the right-hand panel applies to both panels, except for the dotted Magenta line, which corresponds to
the empirical fit h′/h′

0 = 0.8 exp (−3M2
tot) + 0.2 in the left-hand panel (Dimotakis 1991) and h′/h′

0 = (1 + 4�2
c )−0.5 in the right-hand panel (Slessor et al.

2000). Black, blue, and red circles correspond to the results of this work for δ = 1, 10, and100, respectively. These growth rates are obtained by plugging the
values of α(Mtot) from Fig. 7 into equation (B4). The error bars bound the values consistent with different realizations of initial perturbations. The magenta
symbols are experimental and numerical results digitized from Slessor et al. (2000), Pantano & Sarkar (2002), and Foysi & Sarkar (2010).

the analogous procedure for our temporal results, we assume that the
temporal growth rate depends only on the compressibility parame-
ter, whatever it may be (see discussion in Section 3.3.2). We then
use equation (31) to write h′(r, δ, Mtot) = 2α(Mtot)�(r, δ), where
�(r, δ) = V/(2Vc), and V/(2Vc) can be substituted for equation
(28). The incompressible growth rate is thus h′

0(r, δ) = 2α(Mtot →
0)�(r, δ) and the normalized growth rates will read

h′(r, δ, Mtot)

h′
0(r, δ)

= α(Mtot)

α(Mtot → 0)
. (B4)

Unsurprisingly, this is simply the ratio of temporal growth rates.
Our results of Section 3.3 are plotted against Mtot and �c in

Fig. B1, along with a compilation of previously published exper-
imental and numerical growth rates. When plotted against either
parameter, the normalized growth rates obtained by equation (B4)
are clearly reduced with compressibility. In accordance with Slessor
et al. (2000), our results exhibit less scatter when using �c rather
than Mtot. However, this is possibly a result of our specific choices
of (Mb, δ), with rather large strides in δ. More importantly, when
plotted against �c, our results for δ ≥ 10 are at odds with existing
literature. In particular, for �c � 1, the growth rates reported in this
work seem to be much larger than both experimental and numerical
studies.

On the other hand, when plotted against Mtot, the results of this
work are in agreement with existing literature throughout the range
of Mtot. Although our values typically still lie somewhat higher
than most experimental data suggests, they agree very well with
previously reported numerical simulations. We therefore adopt Mtot

as the compressibility scaling parameter for Section 3.3, in line with
common practice.

It should be mentioned that �c � 1 corresponds to cases with
δ = 10 and 100 in this work, while none of the existing experiments
or simulations reaches such extreme density contrast, with values

typically well under 10. This is of potential importance because �c

is expected to differ considerably from Mtot as δ is increased. Thus,
the discrepancy between our estimated growth rates and the results
of previous studies, when presented as a function of �c, may stem
from incorrect δ dependence introduced by this scaling.

Regardless of the scaling parameter chosen, the agreement be-
tween this work and previous publications is far from perfect, al-
though it is greatly improved when comparing only with previous
numerical studies. Since different thickness definitions are known
to exhibit different scaling with compressibility (Freeman 2014),
the cause for the apparent discrepancies between numerical and ex-
perimental growth rates may lie in the analysis methods rather than
the physics itself. A thorough study of this question is deferred to
future work.

APPENDI X C : FLUI D DI SPLACEMENT
I N P L A NA R S L A B B O DY M O D E S

In Section 4.3.1, we defined the fluid displacement, ξ x(x, z, t). As
this quantity was not explicitly addressed in Paper I, we define it here
using the formalism developed in sections 2.1–2.3 of Paper I. The
basic idea is that velocity perturbations perpendicular to the flow,
ux, induce spatial displacements of the fluid elements relative to
their unperturbed positions, ξ x. Expanding this in the same Fourier
modes used for the other perturbed quantities, we write

ξx(x, z, t) = ξx(x) exp [i(kz − ωt)], (C1)

where without loss of generality we have assumed the wave vector to
be in the ẑ-direction, parallel to the bulk flow in the slab. Otherwise,
in the analysis below we must change the bulk velocity V to the
component of the velocity parallel to the wave vector, Vk = V · k̂

(see section 2.1 in Paper I).
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To first order, the displacement ξ x is related to the transverse
velocity perturbation ux by

(C2)
ux = ∂ξx

∂t
+ (v · ∇) ξx = i (kvk − ω) ξx.

Note that equation (C2) is a generalization of equation (13) from
Paper I, which was specific to the displacement of the interface
between the fluids, defined therein as h.

Since by definition ux and ξ x have the same dependence on z and
t given by the Fourier expansion above, equation (C2) relates the
x-dependent amplitudes of the two perturbed quantities. Equation
(9) of Paper I relates ux to the unperturbed density and velocity,
ρb, s and Vb, s, the Fourier components k and ω, and the x-dependent
amplitudes of the pressure perturbation P1(x). Inserting this into
equation (C2) yields for the fluid displacement

(C3)
ξx = 1

ρb,s(kVb,s − ω)2

∂P1

∂x
.

The expression for P1(x) inside the slab is given by equation (24)
in Paper I, repeated here for convenience,

P1(x) =

⎧⎪⎨
⎪⎩

A sinh(qsx)
sinh(qsRs) S modes

A cosh(qsx)
cosh(qsRs) P modes

, (C4)

where A is an integration constant corresponding to the initial am-
plitude of the pressure perturbation at the interface between the two
fluids at t = 0, and qs is a modified wavenumber defined in equation
(12) of Paper I,

qs = k

[
1 −

(
ω − kVs

kcs

)2
]1/2

. (C5)

Note that since in general ω is complex, qs is complex as well.

Inserting equations (C4) into (C3) yields the displacement inside
the stream

ξx(x) =

⎧⎪⎨
⎪⎩

A coth(qsRs)
ρs(kVs−ω)2

cosh(qsx)
cosh(qsRs) S modes

A tanh(qsRs)
ρs(kVs−ω)2

sinh(qsx)
sinh(qsRs) P modes

, (C6)

Equation (C6) can be further simplified by recognizing that the
initial amplitude of the fluid displacement at the interface is
H = ξ ( ± Rs). This yields

ξx(x) =

⎧⎪⎨
⎪⎩

H cosh(qsx)
cosh(qsRs) S modes

H sinh(qsx)
sinh(qsRs) P modes

. (C7)

Since in general ω and qs are complex, ξ x(x) is complex and both
its amplitude and its phase depend on x. Therefore, the amplitude
and the phase of ξ x(x, z, t) from equation (C1) both depend on x
as well. Since the amplitude and phase of this function vary with
x, fluid elements that began at different x coordinates can cross at a
finite time. This fluid crossing time is denoted tNL in Section 4.3.1,
and the magnitude of displacement at that time is denoted hNL.

APPENDI X D : TRANSI TI ON TO N ON-LI NEAR
E VO L U T I O N IN BO DY MO D E S

Fig. D1 shows the predicted amplitude and time of transition to non-
linearity for different values of (Mb, δ), according to the analysis
presented in Section 4.3.1. The magnitude of displacement to the
stream/background interface at the time of transition, hNL, depends
on the initial displacement, which is assumed to be H = 0.03Rs.
Following the arguments laid out in Section 4.3.1, Fig. D1 shows
that a long-wavelength S mode is the critical perturbation mode
expected to cause the break-up of the stream (λcrit � 10Rs, ncrit = 0)
regardless of (Mb, δ).
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Figure D1. Same as Fig. 14 for additional values of (Mb, δ). In each row, the left-hand panel shows tNL and the right-hand panel shows hNL for some
combination of (Mb, δ). The legend in the top left panel refers to all panels. The initial perturbation amplitude is assumed to be H = 0.03Rs for all wavelengths.

A P P E N D I X E: LI N E A R G ROW T H R AT E S O F
B O DY M O D E S IN SE L E C T E D C A S E S

Fig. E1 shows the KH time of different order body modes for
various combinations of (Mb, δ). The KH time of the fundamen-

tal S mode with λ = 10Rs, corresponding to the critical pertur-
bation mode responsible for stream break-up (see Section 4.3.1,
and Appendix D) is 1tsc < tKH < 1.2tsc for 1.5 < Mb < 5.0 and
10 < δ < 100.
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Figure E1. Linear growth rates of the first five body modes in planar slab geometry with various combinations of (Mb, δ). The vertical axis shows the growth
rates, derived in Paper I, normalized by the inverse of the sound crossing time in the stream. The horizontal axis shows the wavenumber, normalized by the
inverse of the stream radius. The solid lines of different colours correspond to different order modes. The legend in the top left panel refers to all panels. The
vertical dashed black line marks λ = 10Rs. The critical perturbation mode (see Section 4.3.1, and Appendix D) typically corresponds to (ncrit = 0, λcrit �
10Rs).

A P P E N D I X F: A TOY MO D E L F O R TH E
I N F L OW V E L O C I T Y O F C O L D S T R E A M S
D E C E L E R AT E D D U E TO K H I

We present here a simple toy model describing the evolution of
the inflow velocity of a cold stream as it penetrates through the
halo CGM. The stream fluid is modelled as a rigid body falling
radially into the halo under the influence of gravity, on the one
hand, and a friction-like force associated with KHI, on the other
hand. We limit the discussion to surface mode instability, since it
gives rise to a simpler deceleration term than body mode instability
(see Sections 3.3.7 and 4.3.2).

The gravitational acceleration given by

ag = −GM(r)

r2
, (F1)

where r is the halocentric radius and M(r) is the total mass within
a sphere of radius r, assumed to be distributed roughly spherisym-
metrically. We approximate the mass distribution using the singular
isothermal sphere model,

M(r) = Mv

Rv
r. (F2)
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Plugging in equations (F2) and (54) into equation (F1) gives

ag = −V 2
v

r
. (F3)

We assume that the deceleration of the stream due to sheer layer
growth can be modelled using the term

aKH = α

2(δ + √
δ)

v2

rs
, (F4)

which is a generalization of equations (75) and (43) where v = v(t)
is the time-dependent radial velocity of the stream and rs = rs(r)
is the stream radius at a given halocentric radius. The stream is
assumed to be roughly conical in shape, i.e.

rs = Rs

Rv
r, (F5)

where Rs is the stream radius at r = Rv (see Section 5.1). This
assumption is equivalent to assuming that both the stream and the
halo are isothermal with temperatures Tb, s.

Combining equations (F3) and (F4) yields a differential equation
for the stream velocity,

dv

dt
= ag + aKH = −V 2

v

r
+ αRv

2(δ + √
δ)Rs

v2

r
, (F6)

which can be simplified to obtain

dy

dx
= − 2

x
+ By

x
, (F7)

by substituting y = v2/V 2
v , x = r/Rv, and

B = αRv

(δ + √
δ)Rs

. (F8)

The solution to equation (F7) is

y(x) =

⎧⎪⎨
⎪⎩

1
B

(CxB + 2) B �= 0

1 − 2 log(x) B = 0

(F9)

where C is a constant of integration and the case B = 0 corre-
sponds to free fall without friction. Applying the initial condition
v(Rv) = −Vv or y(1) = 1, we find the solution to equation (F6),

v(r) =

⎧⎪⎪⎨
⎪⎪⎩

−Vv

√
(B−2)xB+2

B
B �= 0

−Vv
√

1 − 2 log(x) B = 0

(F10)

Figure F1. Stream radial velocity during infall into the virial halo according
to solutions of a toy model including gravitational acceleration and a friction-
like deceleration due to shear layer growth, equations (F6) and (F10). The
vertical axis shows the magnitude of the radial velocity, v, normalized by
the virial velocity, Vv. The horizontal axis shows the halocentric radius, r,
normalized by the virial radius, Rv. The significance of the friction term is
determined by the parameter B = B(α, δ, Rs/Rv), defined in equation (F8).
The figure shows five cases with different B: free fall (B = 0) and four
cases with B > 0 varying by δ and Rs/Rv. For simplicity, we use α = 0.1
throughout, as a reasonable approximation for (Mb, δ) relevant to cosmic
cold streams (see Section 3.3.2).

Fig. F1 shows solutions to equation (F10) for different values of B,
quantifying the significance of the KH deceleration term, equation
(F4). In most cases relevant to cosmic cold streams, this term is
negligible compared to the gravitational acceleration, equation (F1),
so the resulting v(r) profile barely differs from free fall. Only streams
at the most dilute (δ = 10) and narrow (Rs/Rv = 0.01) point in the
allowed parameter range diverge considerably from free fall. This
combination of parameters is particularly unlikely given equation
(68), which suggests Rs/Rv is inversely correlated with δ.
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