
MNRAS 480, 3468–3482 (2018) doi:10.1093/mnras/sty2105
Advance Access publication 2018 August 2

Resolution requirements and resolution problems in simulations
of radiative feedback in dusty gas

Mark R. Krumholz1,2‹

1Research School of Astronomy and Astrophysics, Australian National University, Canberra 2611, ACT, Australia
2Centre of Excellence for Astronomy in Three Dimensions (ASTRO-3D), Australia

Accepted 2018 July 31. Received 2018 July 13; in original form 2018 May 1

ABSTRACT
In recent years, a number of authors have introduced methods to model the effects of radiation
pressure feedback on flows of interstellar and intergalactic gas, and have posited that the
forces exerted by stars’ radiation output represents an important feedback mechanism capable
of halting accretion and thereby regulating star formation. However, numerical simulations
have reached widely varying conclusions about the effectiveness of this feedback. In this
paper, I show that much of the divergence in the literature is a result of failure to obey an
important resolution criterion: whether radiation feedback is able to reverse an accretion flow
is determined on scales comparable to the dust destruction radius, which is �1000 au even
for the most luminous stellar sources. Simulations that fail to resolve this scale can produce
unphysical results, in many cases leading to a dramatic overestimate of the effectiveness of
radiation feedback. Most published simulations of radiation feedback on molecular cloud and
galactic scales fail to satisfy this condition. I show how the problem can be circumvented by
introducing a new subgrid model that explicitly accounts for momentum balance on unresolved
scales, making it possible to simulate dusty accretion flows safely even at low resolution.

Key words: accretion, accretion discs – hydrodynamics – radiation: dynamics – radiative
transfer – methods: numerical.

1 IN T RO D U C T I O N

Newborn massive stars produce intense radiation fields that effi-
ciently heat the interstellar gas and dust around them. While this
heating is critical to the observable properties of star-forming re-
gions and the galaxies in which they are embedded, a number of
authors have also considered the possibility that the forces exerted
by starlight might be significant for gas flows as well. On the scales
of individual stars, Larson & Starrfield (1971) and Kahn (1974)
were the first to point out that a sufficiently massive star might ex-
ert enough radiation pressure on the gas and dust around it to halt
continuing accretion, thereby putting an upper limit on the masses
of stars. On the larger scales of star clusters, molecular clouds, and
galaxies, O’dell, York & Henize (1967) and Scoville et al. (2001)
similarly suggested that radiation pressure might disrupt clouds and
ultimately limit the masses of the star clusters to which they give
birth. Numerous analytic and semi-analytic models of this phe-
nomenon have been published, considering scales from stellar (e.g.
Wolfire & Cassinelli 1986, 1987; Nakano 1989; Jijina & Adams
1996) to cluster (e.g. Krumholz & Matzner 2009; Fall, Krumholz
& Matzner 2010; Murray, Quataert & Thompson 2010; Thompson
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& Krumholz 2016; Reissl et al. 2018), to galactic (e.g. Murray,
Quataert & Thompson 2005; Thompson, Quataert & Murray 2005;
Murray, Ménard & Thompson 2011; Zhang & Thompson 2012;
Crocker et al. 2018).

However, the interaction between radiation fields and gas is suf-
ficiently complex, and the predictions of analytic models suffi-
ciently uncertain, that investigators in the last two decades have
invested significant efforts in numerical study as well. There are
a wide variety of numerical methods currently in use, including
simple subgrid prescriptions that do not solve the equation of ra-
diative transfer at all (Hopkins, Quataert & Murray 2011; Hop-
kins et al. 2018), characteristic and hybrid-characteristic methods
(Kuiper et al. 2010b; Rosen et al. 2017), Monte Carlo methods
(e.g. Tsang & Milosavljević 2015), and moment methods using
the diffusion (e.g. Krumholz et al. 2007), M1 (e.g. Skinner & Os-
triker 2013; Rosdahl et al. 2015; Kannan et al. 2018), and vari-
able Eddington tensor (Davis, Stone & Jiang 2012; Jiang, Stone
& Davis 2012) closures. A primary goal of this numerical work
has been to determine under what circumstances radiation feed-
back is able to halt accretion on to forming stars – either individual
stars or stellar populations – and thereby limit the rate and effi-
ciency of star formation. This work has largely been carried out
on two parallel tracks, one focusing of the formation of individual
stars or small multiple systems, or at most individual star clus-
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ters, and a second focusing on the scales of molecular clouds and
galaxies.

On the scales of individual stars, Yorke & Sonnhalter (2002) car-
ried out pioneering 2D radiation-hydrodynamic (RHD) simulations
of accretion flows inhibited by radiation pressure, and this was fol-
lowed by the first 3D RHD simulations by Krumholz et al. (2009).
Since then numerous other authors have published RHD simula-
tions that reach stellar masses where radiation pressure begins to
have significant impacts on the accretion flow (e.g. Kuiper et al.
2010a, 2011; Cunningham et al. 2011; Myers et al. 2013; Kuiper,
Yorke & Turner 2015; Klassen et al. 2016; Kuiper, Turner & Yorke
2016; Rosen et al. 2016; see Tan et al. 2014 for a review). The
consensus finding of these studies is that radiation feedback is not
particularly effective at halting accretion or limiting stars’ ultimate
masses. For example, in 2D with laminar initial conditions, Kuiper
et al. (2010a) find star formation efficiencies of 30–50 per cent (i.e.
this fraction of the initial gas mass is ultimately accreted). In 3D us-
ing turbulent initial conditions, Rosen et al. (2016) set a lower limit
of 40 per cent on the star formation efficiency, with strong hints that
this number would rise above 50 per cent if the simulation contin-
ued. No simulations of individual massive star formation published
in the past decade have reported star formation efficiencies below
∼30 per cent.

At larger scales, the results have been much less consistent. Hop-
kins et al. (2011), Hopkins, Quataert & Murray (2012), and Hopkins
et al. (2012) find that radiation pressure feedback is critical to the
regulation of star formation in massive, rapidly star-forming galax-
ies but is unimportant in more modestly star-forming galaxies, while
Ceverino et al. (2014) reach exactly the opposite conclusion, that
radiation pressure is an effective feedback in low-mass galaxies at
modest star formation rates, but not in dense starbursts; Sales et al.
(2014) and Rosdahl & Teyssier (2015) find that the stellar radiation
pressure is generally ineffective as a feedback mechanism, at least
compared to photoionization, while Agertz et al. (2013) find that
it is critical to regulating star formation. Zooming in to individual
molecular clouds and clusters, but still working at scales much larger
than the simulations of individual stars, Skinner & Ostriker (2015),
Raskutti, Ostriker & Skinner (2016, 2017), Kim et al. (2017), Tsang
& Milosavljević (2018), and Kim, Kim & Ostriker (2018) find that
radiation pressure feedback (as distinct from the effects of photoion-
ization) is not able to limit star formation efficiencies to less than
30–50 per cent in clouds with column densities typical of observed
giant molecular clouds (�100 M� pc−2), while Grudić et al. (2018)
find star formation efficiencies an order of magnitude smaller for
similar initial conditions; Hopkins & Grudic (2018) attribute this
difference to the numerical method used to couple the radiation
momentum to the gas.

The divergence between the findings of simulations of the for-
mation of individual massive stars, which uniformly show that ac-
cretion is not stopped by radiation pressure and that star formation
efficiencies are high, and simulations focusing on the formation
of star clusters and galaxies, with their much wider array of out-
comes, is at first puzzling. The light-to-mass ratio of a zero-age
stellar population that fully samples the initial mass function (IMF)
is ≈1100 L�/M� (e.g. Krumholz 2017, chapter 7), while that of
an individual 60 M� star is ≈8300 L�/M� (e.g. Ekström et al.
2012), a factor of ≈7 larger. How can we then make sense of the
seemingly paradoxical result that simulations of the formation of
individual massive stars none the less consistently indicate that stel-
lar radiation feedback is much less effective than do at least some
simulations of the formation of star clusters or galactic-scale stellar
populations?

Some of the difference in outcome is doubtless due to differences
in the choice of initial condition, since the simulations of individual
massive star formation generally begin from smaller, denser scales.
However, this cannot be the entire explanation. Simple analytic
estimates suggest that the effectiveness of radiation feedback should
depend on the ratio of surface density to light-to-mass ratio (e.g.
Fall et al. 2010), and many of the massive star formation simulations
that reach efficiencies of �50 per cent with accretion still ongoing
start with surface densities that are only a factor of a few larger
than cluster simulations where all mass is expelled at much smaller
star formation efficiencies. Just to pick one example, Rosen et al.
(2016)’s run ‘TurbRT+FLD’ starts at surface density � = 1 g cm−2

and forms a single 60 M� star that is still strongly accreting at an
efficiency above 40 per cent, while Grudić et al. (2018)’s ‘standard’
cluster simulation, with � = 1270 M� pc−2 ≈ 0.3 g cm−2 and a
light-to-mass ratio seven times smaller, converts only 30 per cent
of its mass to a stars before the cluster’s radiation ejects all the
remaining mass and causes star formation to cease.

In this paper, I show that the key issue is one of resolution: the
simulations of individual massive star formation (mostly) satisfy
an important resolution criterion, while the larger-scale simulations
do not. When the resolution criterion is not satisfied, the results
depend sensitively on the exact details of the numerical implemen-
tation, and for some implementations the effectiveness of radiation
feedback will be drastically overestimated. In Section 2, I begin this
demonstration by providing a simplified model for the structure of
a radiatively inhibited dusty accretion flow, which can be solved
analytically, and which will provide a baseline against which to test
simulations. In Section 3, I carry out simulations that attempt to
reproduce this analytic solution and show that simulations that fail
to satisfy a critical resolution requirement fail to do so. In Section 4,
I describe a subgrid model for radiation feedback that avoids these
problems and successfully reproduces the analytic results even at
low resolution. I summarize my findings in Section 5.

2 A NA LY TI C MODEL FOR D USTY,
R A D I AT I O N - M E D I ATE D AC C R E T I O N F L OW S

The basic structure of dusty, radiation-inhibited, spherically sym-
metric accretion flows on to point sources was first computed a se-
ries of seminal papers by Larson & Starrfield (1971), Kahn (1974),
Leung (1975, 1976), and Wolfire & Cassinelli (1986, 1987); for a
modern update of these papers, see Reissl et al. (2018). These pa-
pers for the most part involve numerical calculations of the transfer
of the stellar radiation field through the dusty envelope, but our goal
in this section is to arrive at a simplified model for these flows that
is roughly consistent with the numerical results, but is amenable
to analytic solution and therefore suitable to serve as the basis for
testing numerical methods. The general goal of this analysis is to
understand under what circumstances radiation is and is not able
to stop accretion flows and drive mass and momentum into the
larger environment. For now I omit any discussion of the effects of
photoionization, and I justify this omission below.

2.1 Opacity and temperature structure

The temperature and opacity structure around a point source can be
roughly divided into three zones, as illustrated in Fig. 1. The first of
these is very close to the point source, where the radiation field is
intense enough that solid dust grains cannot survive because in ther-
mal equilibrium their temperature would be above the sublimation
temperature of their constituent materials. In the absence of dust,
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Figure 1. Schematic diagram of the temperature and opacity structure of
a dusty accretion flow. A central source (yellow circle) creates a dust-free
region for tens to hundreds of au around itself, depending on its luminosity.
Ultraviolet stellar photons free-stream through this region, before eventually
being absorbed in a very thin shell of dust. In this shell, the photons are
down-converted to infrared, and then they diffuse outwards through the dust
envelope, before finally diffusing far enough in either radius or frequency
to escape.

the only sources of opacity are, depending on the chemical state of
the gas, Thomson scattering by free electrons, absorption of ioniz-
ing photons by neutral hydrogen, or resonant absorption of photons
by molecules (e.g. Malygin et al. 2014). At interstellar densities,
the flux-mean opacities to starlight provided by these sources are
relatively small, κF � 1 cm2 g−1, and thus the region where they
dominate is generally optically thin.

As one moves away from the radiation source, the radiation field
becomes less intense due to geometric dilution, and at some critical
radius, dust grains are able to survive. Because the stellar spectrum
carries most of its power at wavelengths smaller than the typical
grain size, the interaction between the starlight and the grains is
close to the limit of geometric optics, and the resulting opacity
is large; typical values are κF ∼ 103 cm2 g−1, depending on the
stellar spectrum and the grain size distribution (Wolfire & Cassinelli
1986). The corresponding distance rs at which grains of radius a
and sublimation temperature Ts can survive around a source of
luminosity L is given implicitly by the condition of energy balance
between absorption and emission at temperature Ts:

L

4πr2
s

πa2 = 4πa2σSBT 4
s 〈Q〉 , (1)

where σ SB is the Stefan–Boltzmann constant and 〈Q〉 is the grain
absorption efficiency averaged over a Planck function at temperature
Ts. Thus, the dust sublimation radius is

rs =
√

L

16π 〈Q〉 σSBT 4
s

= 780L
1/2
6 Q

−1/2
−2 T −2

s,3 au, (2)

where L6 = L/106 L�, Q−2 = 〈Q〉/0.01, and Ts, 3 = Ts/1000 K;
typical values for interstellar grains are Q−2 ≈ 1, Ts, 3 ≈ 1.5. The high
opacity of grains to starlight photons guarantees that almost all of the
stellar photons are absorbed within a shell of width � ∼ (κFρ)−1 ∼
3 × 10−3κ−1

F,3n
−1
10 au, where κF, 3 = κF/103 cm2 g−1 and n10 is the gas

number density in units of 1010 cm−3. This thin absorption region,
which has � � rs, is the second zone.

After the photons are absorbed, they are re-emitted in the infrared
(IR). Because the grains are much smaller than the characteristic
wavelength for blackbody emission at temperature Ts, the flux-mean
opacity for the re-emitted photons is much smaller, κF � 10 cm2 g−1.
Thus, while the region within which the stellar photons are absorbed
is of optical depth τ ∗ ∼ 1 to those photons, it is completely trans-
parent, τ IR ∼ 0.01, to the re-emitted IR photons. However, because

there is generally a large column of material outside the absorption
region, the IR photons generally do not immediately escape to infin-
ity. Instead, they escape the absorption region but then must diffuse
outwards through the remainder of the dusty accretion flow, ex-
periencing repeated absorptions and re-emissions that shift them to
ever-lower frequencies and result in lower flux-mean opacities, until
they finally escape. The flux-mean opacity in this diffusion region
is a complex function of temperature, governed by temperature-
dependent sublimation and condensation of different grain species,
but it can be roughly approximated as (Semenov et al. 2003)

κIR ≈ κIR,0

⎧⎪⎪⎨
⎪⎪⎩

(T /T0)2, T < T0

1, T0 ≤ T < Ts

0, Ts ≤ T

(3)

where T is the radiation temperature, κ IR, 0 ≈ 7 cm2 g−1, T0 ≈ 150 K.
The radiation temperature is similarly a complex function of opacity,
which for full accuracy must be obtained numerically. However, it
can reasonably be approximated as a power law in radius (e.g.
Wolfire & Cassinelli 1986; Chakrabarti & McKee 2005, 2008),

T ≈ φTs

(
r

rs

)−kT

, (4)

where kT ≈ 0.5 and φ ≈ 0.3.

2.2 Kinematic structure

Next, let us consider the kinematic structure of the flow, which
is determined by the balance between gravitational and radiative
forces; since dusty accretion flows near point sources are generally
highly supersonic, we can neglect pressure forces. The gravitational
force per unit mass is simply G(M∗ + Mr)/r2, where M∗ is the mass
of the central source and Mr is the gas mass interior to radius r.
For the purpose of calculating the radiation force, I assume that
the dust temperature obeys equation (4). The luminosity L passing
through any given radius is constant, and can be divided up into a
direct starlight component of luminosity L∗ and a dust-processed IR
component of luminosity LIR = L − L∗; the opacities of the material
to these two components are

κ∗ =
{

κ∗,0, T < Ts

0, T ≥ Ts

, (5)

and κ IR (equation 3), respectively. Combining these considerations,
we can write the full equation of motion for a fluid element at radius
r as

dv

dt
= −G(M∗ + Mr )

r2
+ L

4πr2c

[
κ∗e−τ∗ + κIR

(
1 − e−τ∗

)]
, (6)

where dv/dt is the Lagrangian derivative of the velocity,

Mr =
∫ r

0
4πr ′2ρ dr ′ (7)

τ∗ =
∫ r

rs

κ∗ρ dr ′ (8)

are the mass interior to radius r and the optical depth to starlight
photons at radius r, respectively, and ρ is the gas density. Note that
κ IR and κ∗ are both functions of temperature and thus of position.
In equation (6), the first term inside the square brackets represents
the force exerted by the direct starlight field, carrying a luminosity
L∗ = Le−τ∗ , while the second represents the force exerted by the
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reprocessed IR radiation field, carrying a luminosity LIR = L(1 −
e−τ∗ ).

It is convenient to non-dimensionalize this equation via the
change of variables

x = r

rs
u = v√

GM∗/rs
s = t√

r3
s /GM∗

b = ρ

M∗/r3
s

, (9)

which produces

du

ds
= −1 + mx

x2
+ fE

x2

[
k∗e−τ∗ + kIR

(
1 − e−τ∗

)]
(10)

mx =
∫ x

0
4πx ′2b dx ′, (11)

τ∗ = fτ

∫ max(1,x)

1
b dx ′, (12)

k∗ =
{

0, x < 1

η, x ≥ 1
, (13)

kIR =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 1

1, 1 ≤ x < xT

(x/xT )−2kT , x ≥ xT

. (14)

The dimensionless ratios appearing in this equation are

η = κ∗,0

κIR,0
≈ 100, (15)

fE = κIR,0L

4πGM∗c
= 0.78κ1�3, (16)

fτ = 16π〈Q〉σSBT 4
s ηκIR,0

�
= 1.4 × 107 κ1Q−2T

4
s,3

�3
, (17)

xT =
(

φ
Ts

T0

)1/kT

≈ 10, (18)

and physically they represent the ratio of dust opacities for stellar
photons and IR photons, the Eddington ratio for the maximum IR
opacity, the dimensionless optical depth per unit column to stellar
photons, and the ratio of the radius where the temperature drops to
T0 to the dust sublimation radius, respectively. In the numerical eval-
uations, κ1 = κ IR, 0/10 cm2 g−1 and � = L/M∗ = 103(L�/M�)�3,
so �3 ≈ 1 for a zero-age stellar population that samples the IMF,
and �3 ≈ 10 for the most massive individual stars.

Since our goal is to determine under what conditions this equation
of motion permits a steady-state inflow solution with mass moving
inwards at a time- and space-independent rate Ṁ = 4πr2ρ|v|, and
what should happen when no such solution is possible, it is helpful
to introduce an additional dimensionless parameter. I define

fp = Ṁ(GM∗/rs)1/2

L/c
= 1.6Ṁ−3Q

1/4
−2 Ts,3L

−3/4
6 �

−1/2
3 . (19)

as the ratio of the momentum carried by a flow of gas freely falling
in stellar gravity to radius rs to the momentum carried by the stellar
radiation field; here, Ṁ−3 = Ṁ/10−3 M� yr−1. With this definition,
one can equivalently express the dimensionless density, mass, and
optical depth for any steady-state inflow solution as

b = ηfEfp

fτ

1

|u|x2
, (20)

mx = 4π
fEfpη

fτ

∫ x

0

1

|u|dx ′, (21)

τ∗ = ηfEfp

∫ max(1,x)

1

1

|u|x ′2 dx ′. (22)

2.3 Inflow solutions

We are now in a position to determine when a steady-state inflow
solution is possible. First note that, since fEfpη/fτ � 1 for our fiducial
parameters (or indeed for any plausible set of physical parameters,
since fτ is so large), we expect the gas mass at x ∼ 1 to be negligible
in comparison to the stellar mass, and we can therefore drop the
term mx in equation (10) for the purposes of this analysis; I confirm
this explicitly below.

Consider the region inside the dust destruction front, x < 1, where
the equation of motion is simply

du

ds
= u

du

dx
= − 1

x2
. (23)

If the velocity is u1− just inside the dust destruction front at x = 1,
then the we can solve the equation of motion immediately to find

u = −
√

u2
1− + 2

(
1

x
− 1

)
. (24)

Next, consider the region near x = 1, where ultraviolet (UV)
photons are absorbed. We can solve for the flow in this region
by making two important observations. First, since ηfEfp � 1, the
coefficient in front of the integral that defines τ ∗ (equation 22) is
very large, ∼100. Thus, we will have τ ∗ � 1 for any x even slightly
larger than unity, implying that the transition from τ ∗ = 0 to τ ∗ �
1 occurs entirely within a thin region near x = 1, consistent with the
sketch in Fig. 1. All UV photons will be absorbed in this thin region.
Secondly, since η ≈ 100, within the region where τ ∗ � 1, the middle
term on the right-hand side of equation (10) that represents the UV
radiation force, fEk∗e−τ∗/x2, is roughly two orders of magnitude
larger than either the gravity term (the first term) or the IR force term
(the third term). The UV force term does not become comparable
to the others until τ ∗ � 5. Consequently, in the thin region where τ ∗
is transitioning from 0 to �1, we can to good approximation drop
the gravity and IR force terms in the equation of motion, obtaining

u
du

dx
= ηfE

x2
exp

(
−ηfpfE

∫ x

1

1

|u|x ′2 dx ′
)

. (25)

We can integrate this by making a change of variables from x to τ ∗,
which yields

du

dτ∗
= − 1

fp

e−τ∗ . (26)

Integrating from τ ∗ = 0 to τ ∗ � 1, we find that the velocity u1−

just inwards of the absorption region is related to the velocity u1+

just outside it by

u1− = u1+ + 1

fp

. (27)

This result becomes exact as η → ∞, and the UV absorption region
becomes arbitrarily thin. Thus, we conclude that an inflow, with
u1− ≤ 0, can exist only if u1+ < −1/fp .

Finally consider the region where τ ∗ � 1, within which the
equation of motion becomes

u
du

dx
= 1

x2

{−1 + fE min
[
1, (x/xT )−2kT

]}
. (28)
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We can then solve for u directly, subject to the boundary condition
that u → 0 as x → ∞. The result is

u = −
√

2

x

⎧⎪⎪⎨
⎪⎪⎩

√
1 − fE

1+2kT

(
1 + 2kT − 2kT

x
xT

)
, 1 < x ≤ xT√

1 − fE
1+2kT

(
x
xT

)−2kT

, x > xT

. (29)

Thus, our condition that u1+ < −1/fp is satisfied only if

fp > fp,crit ≡
{

2

[
1 −

(
1 − 2kT

xT + 2xT kT

)
fE

]}−1/2

≈ [2 (1 − 0.95fE)]−1/2 , (30)

where the numerical evaluation is for kT = 0.5 and xT = 10. In
dimensional terms, for a zero-age stellar population and our fiducial
opacity choice (�3 = 1.1, κ1 = 0.7), we have fE = 0.6, and thus we
can express the condition for accretion to be possible as fp > 1.1,
or, in dimensional terms,

Ṁ > 6.5 × 10−4Q
−1/4
−2 T −1

s,3 L
3/4
6 M� yr−1. (31)

We can also use this solution to verify directly that mx is indeed
negligible. The maximum possible mass of gas at a given accre-
tion rate corresponds to the minimum possible gas velocity. This is
achieved when fE and fp are such that the inflow condition equa-
tion (30) is just satisfied, and u1− = 0. In this case, we can evaluate
the integral in equation (21) for mx, using equation (24) inside x
= 1 and equation (29) outside x = 1. Doing so we find that mx

� 1 at x = 100 for all fp � 100, and that at fp = 10 (close to the
upper limit we expect for realistic parameters) mx ≈ 0.1 at x = 100.
Thus for realistic values of fp, the radius at which gas self-gravity
becomes significant is much larger than the radii at which the great
majority of the radiative and gravitational acceleration occurs, and
where the balance between the two is determined. We are therefore
justified in ignoring self-gravity for the purposes of determining
when accretion is possible.

What happens if no steady inflow is possible, fp < fp,crit? In
this case, the velocity must become 0 or positive at r = rs, leading
to formation of a shock. Since gas will cool rapidly behind the
shock, there will be a large density jump, and as a result mass must
accumulate in a dense shell. Since the net force on the shell will
be outwards, the shell will begin to move out and sweep up the gas
around it. The flow in that case will approach the analytic similarity
solution for radiation-driven spherical shells derived by Krumholz
& Matzner (2009). It will deviate from this solution only once the
surface density through the shell becomes large enough that the
gravitational force on the shell exceeds the radiative force:

�sh = L

4πG(M∗ + Msh/2)c

= 0.077 �3

(
1 + Msh

2M∗

)−1

g cm−2, (32)

where �sh is the shell mass per unit area, and Msh is the shell mass.

2.4 Photoionization

Thus far in this calculation I have neglected pressure forces under the
assumption that accretion flows are highly supersonic. However, this
assumption might break down if gas becomes ionized by photons
from the central source, which would raise its temperature to ≈104

K, and its sound speed to ≈10 km s−1. I now show that this does not
generally happen, because if fp is large enough to admit an inflow
solution, then it is also large enough that we can safely neglect the

pressure of photoionized gas; the calculation here closely follows
that of Walmsley (1995), and echoes the conclusions previously
drawn by Keto (2002, 2003).

First note that inside the dust sublimation radius the magnitude
of the velocity is bounded above by |v| = vff = √

GM∗/r (i.e. the
velocity cannot exceed the free-fall speed from infinity), and thus the
density obeys ρ > Ṁ/(4πr2vff ). Photoionization balance requires
that, if the central source has an ionizing luminosity S (measured
in photons per unit time), and the photoionized region has an inner
radius r0, it must have an outer radius ri given implicitly by the
condition

S =
∫ ri

r0

4πr2αBxe

(
ρ

μHmH

)2

dr, (33)

where αB ≈ 2.54 × 10−13(T/104K)−0.82 cm3 s−1 is the case B re-
combination coefficient (Draine 2011b), xe is the free electron abun-
dance per H nucleus (≈1.1 if He is singly ionized, ≈1.2 if it is
doubly ionized) and μH is the mean mass per H nucleus in units of
the hydrogen mass mH; for standard cosmic abundance, μH = 1.4.
Inserting our lower limit on ρ yields an upper limit on ri:

ri < r0 exp

(
8πμ2

Hm2
HGM∗S

αBxeṀ

)
(34)

= r0 exp

[
2π3/2 (4μHmHcGTs)

2 √
QLσSB

f 2
p xeαBγ�2

]
(35)

= r0 exp
(

1.8L
1/2
6 Q

1/2
−2 T 2

s,3�
−2
3 f −2

p

)
. (36)

Here, γ = L/S is the mean energy radiated by the source per ionizing
photon emitted (γ ≈ 3.2 Ryd for a standard IMF – Fall et al. 2010),
and the numerical evaluation in the final line uses T = 104 K and xe

= 1.1 for the photoionized gas.
The fact that the quantity in parentheses in equation (36) is of

order unity implies that, if fp is large enough to permit accretion
(fp � 1), the photoionized region will be confined to a relatively
small radial extent. For our fiducial parameters, its ratio of inner-
to-outer radius, ri/r0, will not exceed a factor of a few. Thus, unless
some other mechanism (e.g. a stellar wind bubble) pushes the inner
edge of a photoionized region out to within a factor of a few of rs,
the photoionized region will be confined entirely to well within rs,
simply because the density in the accretion flow is high.

In turn, however, this implies stringent limits on the dynamical
importance of the photoionized gas. The physical inflow velocity is

v =
√

GM∗
rs

u = 29uTs,3Q
1/4
−2 L

1/4
6 �

−1/3
3 km s−1. (37)

Thus for the inflow velocity to be subsonic with respect to the
sound speed in photoionized gas, we must have |u| � 0.3 in a
region where the gas is photoionized. However, inside rs our inflow
solution (equation 24) implies |u| ≥

√
2(x−1 − 1), with equality

holding if u1− = 0, i.e. if the radiation force is able to stop the
flow completely at the dust sublimation front. This in turn means
that |u| > 0.3 at all radii x � 0.95. In words, even if we consider
a flow that only barely carries enough momentum to accrete, and
thus comes to nearly a dead stop at the dust sublimation front, the
flow will accelerate to be faster than the ionized gas sound speed
after moving inwards in radius only 5 per cent further. However,
we have just seen that the ionization front will generally be located
much farther inwards than this, unless there is some mechanism
other that photoionization alone to push it outwards. Thus by the
time the accretion flow falls to radii small enough to be ionized,
it will also be moving much too fast for the resulting increase in
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pressure to alter its trajectory much. For this reason, ionization will
not significantly change the condition for inflow to occur.1

2.5 Summary of analytic results and their limitations

We can now summarize the key findings of our analytic investi-
gation, which we will test the ability of numerical simulations to
recover. These are:

(i) For fixed dust properties, whether radiation pressure is suf-
ficient to halt an accretion flow is determined primarily by two
dimensionless parameters: fE is the Eddington ratio computed for
the maximum dust opacity and fp is the ratio of inflow momentum
to radiation momentum. The former is primarily sensitive to the
light-to-mass ratio of the driving source, and is ∼0.5 for fully sam-
pled stellar population. The latter is primarily sensitive to accretion
rate and stellar luminosity.

(ii) If fp � 1 (for fE � 0.6), the accretion flow carries enough
momentum to crush the radiation field, so that almost all the radia-
tion momentum is deposited in a small region close to the source,
but is then advected back into the source with the accretion flow.
In this case, no radiation feedback is felt far from the source. For
Milky Way-like dust, this condition prevails if the accretion rate
Ṁ � 5 × 10−4L

3/4
6 M� yr−1, where L6 is the source luminosity in

units of 106 L�.

Finally, it is important to emphasise a major caveat of these
results, which is that they are for spherically symmetric flows. While
this simplification is necessary in order to obtain analytic results
that can serve as a testbed for simulations, it is worth considering
the limitations of this approach. First, the case where accretion
is still on to a single point source, so the output radiation field is
spherically symmetric or nearly so, but the in reality the flow pattern
need not be. In such a case, the assumption of spherical symmetry
probably matters relatively little in the regime fE < 1. In this case,
the balance between inflow and outflow is determined mainly by
the direct stellar radiation field, which is spherical. One can then
simply apply these results on a sector-by-sector basis. On the other
hand, for fE > 1, as can happen for very massive stars, numerous
simulations over many years have shown that spherical symmetry
is a poor assumption, and that breaking of that symmetry allows
inflow to continue even when a spherically symmetric calculation
suggests it should halt (e.g. Krumholz et al. 2009; Kuiper et al.
2011; Rosen et al. 2016). The focus of this paper is on the fE < 1
regime.

Now consider the case where there are multiple point sources of
radiation rather than a single one. If the point sources were separated
by a distance �rs, then one could reasonably approximate them as a
single source within a single dust sublimation front. However, even
the most compact and massive known star clusters, e.g. R136, tend
to have separations of �1000 au between O stars (e.g. Massey &
Hunter 1998). Thus, we are likely to be in the opposite limit where
the interstellar separations are �rs. In this case, the analysis above
should be applied to each point source separately. In particular,

1This does not mean that ionized gas pressure is not important. If the accre-
tion rate drops low enough for the accretion flow to be reversed, then the
pressure of the expanding photoionized bubble may be very important for
the subsequent dynamics. This will depend on the ratio of ionized gas to pho-
ton pressure, as discussed for example by Krumholz & Matzner (2009) and
Draine (2011a). The point here is simply that consideration of ionized gas
pressure does not alter the conditions that determine inflow versus ejection.

if the accretion flow on to each individual point sources is high
enough to produce fp � 1 for its luminosity, then the momentum
of each source will be advected back on to it, and there will be no
interaction between the radiative momentum deposition from the
different sources.

3 D I SCRETI ZATI ON AND NUMERI CAL TES TS

The full source code for the numerical scheme I describe below, and
for all the calculations I perform with it in subsequent sections, is
available at https://bitbucket.org/krumholz/dusty resolution tests/.

3.1 Numerical scheme

Having established analytically under what conditions an inflow
should and should not be possible, I next investigate the ability of
simulations with finite resolution to reproduce these results. For the
purposes of this test, I consider a spherically symmetric gas whose
Lagrangian equation of motion is equation (10) with two extra terms
representing pressure and viscous forces:

du

ds
= −1 + mx

x2
+ fE

x2

[
k∗e−τ∗ + kIR

(
1 − e−τ∗

)]
+a2 db

dx
+ ν∇2u. (38)

Here, a is the dimensionless sound speed, b is the dimensionless
density, and ν is the dimensionless viscosity. These extra terms are
negligibly small most places in the flow, because I will choose the
coefficients a and ν to be small, but they become non-negligible in
shocks, and they are required to ensure that shocks develop properly
in the simulations.2

I solve this equation using a simple one-dimensional, spherical,
Lagrangian scheme, which combines aspects of the methods of
Cioffi, McKee & Bertschinger (1988) and Mezzacappa & Bruenn
(1993). I consider a series of cell edges with mass coordinate mi,
denoting the mass enclosed. The cells are uniformly spaced in mass,
with mi + 1 − mi = �m. Each cell edge has a radial coordinate xi

that moves with velocity ui. The time-derivative of the velocities is

dui

ds
= fgrav,i + f∗,i + fIR,i + fpres,i + fvisc,i , (39)

where the five terms on the right-hand side represent the force per
unit mass from gravity, direct stellar radiation, IR radiation, gas
pressure, and viscosity, respectively. The discretized gravitational,
pressure, and viscous force terms are standard for Lagrangian meth-
ods:

fgrav,i = −1 + i �m

x2
i

, (40)

fpres,i = 4πx2
i a

2 bi+1/2 − bi−1/2

�m
, (41)

fvisc,i = 4πx2
i

qi+1/2 − qi−1/2

�m
. (42)

2Note that in taking a to be constant, I am implicitly treating the gas as
isothermal, which is not consistent with the assumed temperature profile.
However, since I will be taking a to be so small that the pressure term is
negligible except within shocks, there is no reason to treat it more accurately.
In the simulations I carry out in this paper, it is best to think of the pressure
term as an artificial pressure that, in conjunction with an artificial viscosity,
makes it possible to resolve shocks.

MNRAS 480, 3468–3482 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/3/3468/5064253 by M
usic Library, School of M

usic, N
ational Institute of the Arts, Australian N

ational U
niversity user on 06 D

ecem
ber 2018

https://bitbucket.org/krumholz/dusty_resolution_tests/.


3474 M. R. Krumholz

Here, bi+1/2 = 3 �m/4π(x3
i+1 − x3

i ) denotes the mean density of
the cell that lies between edges mi and mi + 1, and

qi+1/2 =
{

νbi+1/2 (ui+1 − ui)
2 , ui+1 < ui

0, ui+1 ≥ ui

(43)

is the viscous momentum flux per unit mass, calculated as a standard
Von Neumann & Richtmyer (1950) quadratic artificial viscosity. I
use a2 = 10−3 and ν = 2 for all simulations.

I discretize the IR radiation force as

fIR,i = fE

x2
i

(
1 − e−τ∗,i

)
min

[
1,

(
xi

xT

)−2kT

]
, (44)

where

τ∗(xi) = fτ

i−1∑
j=0

bj+1/2

[
max

(
xj+1, 1

) − max
(
xj , 1

)]
(45)

is the optical depth to stellar photons to position xi. The direct stellar
radiation field term requires a bit more care. At any given radius x,
the force per unit mass is f∗ = ηfEe−τ∗/x2, but fτ is so large that
even in a high-resolution calculation, it is generally not practical
to choose �m small enough so that the length scale over which τ ∗
goes from 0 to �1 is resolved by more than a few cells. Thus, one
must explicitly average over cells in order to ensure that the force is
calculated correctly and the amount of radial momentum delivered
to the flow adds up to exactly L/c. The average force per unit mass
exerted on the material between cell edges i and i + 1

〈f∗〉i+1/2 = 3

4π
(
x3

i+1 − x3
i

) ∫ xi+1

xi

4πx2f∗ dx (46)

= 4πηfE

fτ �m

(
e−τ∗,i − e−τ∗,i+1

)
. (47)

Hopkins & Grudic (2018) point out that, for an Eulerian coordinate
system where the momenta carried by stellar photons emitted in
different directions can cancel, the choice of where to deposit this
momentum can have significant consequences for the outcome. For
the spherical grid I use here this problem does not occur, and in any
event the fix proposed by Hopkins & Grudic (2018) is not relevant
for the resolution problem I discuss below. For the purposes of the
simulations I carry out, I deposit the momentum on the inner cell
face, which amounts to taking

f∗,i = 〈f∗〉i+1/2 = 4πηfE

fτ �m

(
e−τ∗,i − e−τ∗,i+1

)
. (48)

I advance the simulation in time using a second-order accurate
time-stepping scheme, taken from Cioffi et al. (1988). Formally, let

Z =
(

xi

ui

)
(49)

be the state vector for the system, which evolves following

Ż =
(

ui

(du/ds)i

)
, (50)

where the dot indicates differentiation with respect to the dimen-
sionless time s, and (du/ds)i is evaluated from equation (39). To
advance the dimensionless time through a step �s, I carry out the
following update cycle, where Zn denotes the state at dimensionless
time sn and Zn+1 the state at dimensionless time sn + 1 = sn + �s:

Zn+1/2 = Zn + �s

2
Żn (51)

Zn+1,∗ = Zn + �s Żn+1/2 (52)

Zn+1 = Zn + �s

2

(
Żn + Żn+1,∗) . (53)

I set the time-step to

�s =C min
− (|�ui | + a) +

√
(|�ui | + a)2 + 2 |�u̇i | �xi

|�u̇i | , (54)

where C is the Courant-Friedrichs-Lewy (CFL) number (set to 0.5
for all calculations here), �xi = xi + 1 − xi, �ui = ui + 1 − ui,
and �u̇i = u̇i+1 − u̇i . Note that this is just the generalization of
the usual Lagrangian Courant condition to include the effects of an
acceleration during the time-step, and that for |�u̇| �x � |�u| this
condition reduces the usual Courant time-step. This generalization
is helpful because the acceleration at the dust destruction front
can be extremely large, causing the ordinary CFL condition to be
insufficient to maintain stability. Even with this addition, the update
on occasion allows two shells to cross, so that xi ≥ xi + 1 either at
the end of a time-step or during one of the intermediate updates.
If the code detects this condition, it simply reduces the time-step
size �s and retries the advance until the step succeeds. Finally,
note that cells that reach x < 1 will fall to the origin in finite time,
and this could cause the calculation to grind to a halt because the
acceleration diverges as x → 0. To avoid this I remove from the
calculation any cell edge that falls to below x = 0.5. I retain the
cell’s mass for the purposes of calculating the gravitational force,
but do not further update its position or velocity.

3.2 Resolution study

3.2.1 High resolution

To test whether simulations can recover the analytic solution, I
consider a case with all parameters set to their fiducial values for
a zero-age stellar population and Milky Way dust: � = 1100 L�
M−1

� , Ts = 1500 K, T0 = 150 K, 〈Q〉 = 0.01, κ IR, 0 = 7 cm2 g−1, κ∗ =
700 cm2 g−1, φ = 0.4, kT = 0.5. For these choices, the dimensionless
parameters for the problem are fE = 0.59, fτ = 4.8 × 107, xT = 16,
and η = 100, and the dimensionless momentum inflow rate required
to allow accretion is fp,crit = 1.1.

I first consider a simulation that is able to resolve the location of
the dust destruction front. For the parameters specified, and a mo-
mentum flux fp = 2, the total mass interior to the dust sublimation
front for the analytic solution is ms = 2.5 × 10−5. Thus for the
fiducial high resolution test I adopt �m = 10−6, so the dust subli-
mation region is resolved by ≈25 zones. I initialize the simulation
by placing the innermost zone at x0 = 1.0, initializing the velocities
and densities of all subsequent zones to the analytic solution for x
> 1. The procedure is as follows: starting from the first zone edge, I
integrate equation (20) numerically using the velocity u taken from
equation (29) until I reach a radius where the enclosed mass is �m.
This becomes the initial location of the next cell edge, and I use
equation (29) to initialize its velocity. I use this procedure to ini-
tialize a total of 500 cell edges, for the cases fp = 0.4, 0.8, 1.2, 1.4,
and 2.0.3 I then simulate each case to time s = 1; recall that s = 1
corresponds to roughly the free-fall time from rs to the central point
mass, so the simulations are run for a time long enough to follow

3Note that the analytic solution becomes undefined inside x = 1 for fp <

fp,crit, but since I only initialize the flow in the region x > 1, this does not
create any problems.
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Simulation of radiative feedback 3475

Figure 2. Results of simulations of radiation-inhibited accretion flows with
�m = 10−6, sufficient to resolve the flow inside the dust destruction front by
≈25 cells. Both panels show dimensionless velocity u versus dimensionless
radius x at a dimensionless time s = 1; the top and right axes show the corre-
sponding dimensional velocity and radius for a central object luminosity L
= 106 L�. Different colours indicate different values of fp (or equivalently
mass accretion rate), as indicated in the legend. The top panel shows a large
part of the simulation domain, while the bottom panel zooms in around the
shock as the dust destruction front. In the bottom panel, circles represent
individual zone edges, and thick lines in the background show the analytic
solution for the indicated value of fp.

material that starts are the dust sublimation front all or most of the
way on to the central object. For reference, if the central object
luminosity is L = 106 L�, the mass resolution of these simulations
is 9.1 × 10−4 M�, the run time is 34 yr, the dust sublimation radius
is rs = 340 au, and the accretion rates range from 1.7 × 10−4 M�
yr−1 (for fp = 0.4) to 8.4 × 10−4 M� yr−1 (for fp = 2.0).

The analytic expectation for these simulations is that the cases
fp = 1.2, 1.6, and 2.0 should result in steady inflow, since all of
these are above fp,crit, while in the cases fp = 0.4 and 0.8 the inflow
should be reversed by radiation pressure. Fig. 2 shows the results
of the simulations and demonstrates that they successfully recover
this analytic result. For the cases that should produce continuous
accretion flows, the velocity as a function of position shows near-
perfect agreement with the analytic solution, with the sole exception

that the shock at x = 1 has been broadened to ≈4 zones in width by
the artificial viscosity. In the two cases where accretion flow should
be reversed, the simulation has indeed produced a shock moving
outwards at high velocity, which prevents accretion and sweeps up
the accretion flow into a dense shell.

3.2.2 Varying resolution

Having verified that the code easily reproduces the analytic solution
at high resolution, I now investigate its ability to do so at lower
resolution. I repeat the fp = 1.2 run (using fp = 1.6 or 2 produces
qualitatively identical results) using mass resolutions of �m = 10−6

(identical to the case shown in Fig. 2), 10−5, 10−4, 10−3, and 10−2.
The mass interior to the dust sublimation front for fp = 1.2 is ms

= 1.9 × 10−5, so at the highest resolution the simulation resolves
this region by ≈19 zones, and at the lowest resolution the mass of
a single zone is ≈500 times the mass inside the dust sublimation
radius. I initialize the simulations exactly as in Section 3.2.1, using
20 000 cell edges for the run with �m = 10−6, 2000 for the run with
�m = 10−5, and 1000 cell edges for all other cases; the different
numbers of resolution elements are to ensure that all mass does
not accrete on to the central sink before the end of the simulation,
even when the mass resolution is very high. I run all simulations
to s = 1000. For a central source luminosity L = 106 L� and the
light to mass ratio of a zero-age stellar population (� = 1.1 × 103

L�/M�), the run time is 33.7 kyr, and the mass resolution range is
9.1 × 10−4 M� to 9.1 M�

Fig. 3 shows the results of the resolution study. In the figure,
resolution decreases to the right, from �m = 10−6 in the left column
to �m = 10−2 in the right column. Time increases downwards,
with s = 0 in the top row and s = 800 in the bottom row. For
resolutions of �m = 10−6, 10−5, and 10−4, the qualitative result is
correct: a steady-state inflow.4 The effects of decreasing resolution
are essentially as one might naively expect: the shock at the dust
destruction front is well resolved at �m = 10−6, but for �m =
10−5 and 10−4, its effects are only marginally visible as a slight
upturn in the velocity of the innermost zones that comes and goes
in time. However, in the region that is resolved the inflow matches
the analytic solution extremely well.

For �m = 10−3 and 10−2, on the other hand, the results are com-
pletely, qualitatively different. In those cases, the radiation pressure
is able to drive a shock outwards that produces a thin shell, much
as occurred in the high resolution simulations with fp < fp,crit. By
s = 800, the shock has swept up all the material interior to x ≈
1000, shutting off accretion and creating an evacuated zone that is
≈109 times the volume of the true dust destruction front. The de-
pendence on resolution is obvious: the simulations that resolve the
dust destruction front, at least marginally (recall �m = 10−4 corre-
sponds to the mass resolution being ≈5 times the mass inside the
sublimation front), produce qualitatively correct solutions, while
simulations that do not resolve the dust destruction front produce
qualitatively incorrect results.

Moreover, there is no evidence for convergence in the simula-
tions that fail to resolve the dust destruction front. The swept-up
shell has advanced to a larger radius and at a higher speed in the

4However, note that the �m = 10−4 case is marginal. For the test runs
shown in Fig. 3, it is qualitatively similar to the �m = 10−5 case, but small
changes in numerical procedure (e.g. a different CFL number or a different
artificial viscosity coefficient) can cause it to behave like the �m = 10−3

case instead.
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3476 M. R. Krumholz

Figure 3. Results of simulations of radiation-inhibited accretion flows with varying resolution. Each panel shows a plot of dimensionless cell edge position
x versus dimensionless velocity u. Grey lines show the analytic solution, while blue lines with circles show the simulation result. Circles indicate individual
zone edges, with 200 edges plotted rather than all edges in order to minimize clutter, but the corresponding lines show all zones. The different columns show
simulations with mass resolutions from �m = 10−6 to �m = 10−2, as indicated at the top of the column. Background colours qualitatively indicate how
well a given simulation resolves the dust sublimation zone mass ms = 1.9 × 10−5: the green colour indicates good resolution, ms/�m > 10, yellow indicates
marginal resolution, 0.1 < ms/�m < 10, and red indicates poor resolution, ms/�m < 0.1. Different rows show the results at different times, from s = 0 (top,
initial condition) to s = 800, as indicated by the labels on the right of each row.

higher resolution run than in the lower resolution one. The impor-
tant conclusion to draw from this is that, when the dust destruction
front is unresolved, the results need not converge smoothly towards
the true solution. Instead, they may actually move away from the
true solution as resolution improves, until the dust destruction front
is finally resolved and the true solution is recovered.

3.3 Analysis: why do low-resolution simulations produce
incorrect results?

To understand why the low-resolution simulations fail, it is helpful
to examine the process of momentum deposition in the accretion
flow. For any given (dimensionless) force per unit mass f, producing
an acceleration du/ds = f, the total amount of momentum per unit
mass that the force delivers to a Lagrangian fluid element as it falls

from infinity to x is

�p = −
∫ ∞

x

du

ds

ds

dx
dx =

∫ ∞

x

f

|u| dx. (55)

We can use this expression, together with the analytic inflow so-
lution derived in Section 2.3, to evaluate the total momentum de-
posited by gravity, IR radiation, and direct stellar radiation. We can
then compare this to the momentum deposition for fluid elements
calculated directly from the simulations.

I plot the analytically computed momentum deposition versus
radial position x in the upper panel of Fig. 4. The figure shows that
the inward gravitational force, reduced by the outward IR radiation
force, delivers momentum to a fluid parcel steadily as it moves in-
wards. The majority of the momentum is delivered at radii close
to the central source. This is opposed by the stellar radiation field,
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Simulation of radiative feedback 3477

Figure 4. Cumulative momentum �p deposited by various forces during
the time it takes a fluid element falling from infinity to reach position x.
The top panel shows the analytic result, with lines indicating momentum
deposition by gravity (blue), stellar UV radiation (orange), and the sum
of the two (black). The faint dashed line shows �p = 0 for reference.
I reproduce this analytic solution in the background of the bottom three
panels for comparison. The middle two panels show numerical results for
a sample cell edge drawn from the simulations at resolutions of �m =
10−6 and 10−4, as indicated, both of which produce the qualitatively correct
result. For the simulations, the plotted stellar UV momentum deposited also
includes the contribution from pressure and viscous forces, which mediate
the shock. The bottom panel shows the numerical result for a simulation
with a resolution �m = 10−3, which yields the qualitatively incorrect result
that inflow reverses; note the difference in x-axis range, since the flow in this
case never reaches x = 1. In this plot, filled symbols indicate times when
the gas is inflowing, while open symbols indicate times when the flow has
reversed and the gas is outflowing.

which delivers no momentum at all until the fluid element reaches x
≈ 1, where it provides a sharp impulse 1/fp. For the chosen simula-
tion parameters, which have fp slightly above the critical value, the
impulse is slightly smaller than the total momentum deposited by
gravity up to x ≈ 1. Thus, the total momentum deposition remains
negative at all radii, and inflow occurs.

The middle panels of Fig. 4 show the momentum deposition
computed numerically for a single Lagrangian point drawn from
the �m = 10−6 and �m = 10−4 simulations, both of which recover
the qualitatively correct result that inflow occurs. In the highest
resolution case, the momentum deposition as a function of position
agrees extremely well with the analytic solution. For �m = 10−4,
where the dust sublimation front is not quite resolved, we see that
the location where the UV force delivers its momentum is x ≈ 2
rather than x = 1. This is simply a reflection of the fact that, since
the dust sublimation zone is not quite resolved, the first cell edge
that has non-zero opacity is located somewhat beyond x = 1 rather
than almost at x = 1. The physical consequence of this displacement
is that, at the point where the gas first encounters the direct stellar
radiation force, its inward momentum is slightly less than in the �m
= 10−6 case. This difference is not enough to allow the radiation
pressure to reverse the inflow, but it clearly moves the system in
that direction.

The bottom panel of Fig. 4 shows the numerical result for a sample
point from the simulation with a resolution �m = 10−3. In the initial
setup for this simulation the first cell edge is at x = 1, and this point
flows into the central object as it should. However, the outer edge of
this first cell is at x ≈ 20, where the momentum it carries is smaller by
a factor of u(1)/u(20) ≈ 3.4 than what it would have upon reaching
the dust sublimation front at x = 1. However, since this is the first
zone outside the dust sublimation front (once the innermost zone
moves inside x = 1 and thus becomes transparent), this is where
the stellar radiation field deposits its momentum. While the stellar
radiation field does not carry enough momentum to overcome the
momentum of inflow at the dust sublimation front, it is sufficient to
overcome the factor of ∼3 lower momentum that the flow carries at
this larger radius. Consequently, the flow reverses. From that point
on, the problem only gets worse. The reversed flow begins to move
away from the central radiation source, which does not change the
amount of momentum the direct stellar radiation deposits, but does
further reduce the amount of momentum that gravity is able to
deliver to fluid elements before they confront the stellar radiation
field. This leads to a runaway outward-moving shell.

We can therefore summarize the nature of the problem in low-
resolution simulations as follows: gravity and radiation forces de-
posit momentum with very different spatial distributions. Gravity
delivers momentum smoothly, with most of the impulse occurring
on the smallest scales, while radiation (at least direct stellar radia-
tion) delivers a fixed amount of momentum per unit time as a sharp
impulse wherever it is absorbed. This asymmetry means that these
two forces behave very differently when they are effectively soft-
ened by low resolution. Stellar radiation delivers the same amount
of momentum; it simply deposits that momentum in a location that
is further from the source. On the other hand, gravity delivers less
momentum overall, because the small scales on which it should de-
posit momentum are unresolved. In a radiation-inhibited accretion
flow, where the qualitative outcome is determined by the balance
between gravitational and radiation forces, the result of making an
error in the location of radiative force but in the quantity of gravi-
tational force is that low-resolution simulations can be disastrously
incorrect, and greatly overestimate the effectiveness of radiation.
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This analysis also suggests a final point. In the 1D spherical nu-
merical scheme I have used, I have been careful to implement the
discretized radiation force so as to guarantee that the rate of radi-
ally outward momentum deposition is correct to machine precision,
regardless of the resolution. However, this is only possible in a
spherically symmetric geometry. In a more general geometry, in a
calculation that does not resolve the dust destruction front where the
momentum should be deposited, there is no way to design a discrete
scheme that guarantees that exactly the right amount of radial mo-
mentum will be deposited. Hopkins & Grudic (2018) point out the
existence of a pathological case where the total radial momentum
deposited cancels to zero exactly because all the momentum deposi-
tion happens inside a single cell, but this is only an extreme version
of a more generic problem, and neither their proposed fix nor any
possible alternatives to it can guarantee that the radial momentum
deposited per unit time will be exactly L/c. Depending on the sign
and magnitude of the error in the radial momentum, it is possible
that any particular numerical scheme might make an error in the
amount of radial radiation momentum deposited that is even larger
than the error it makes due to softening of gravity. If this happens,
then the scheme will tend to underestimate rather than overestimate
the effectiveness of radiation. Thus in a general 3D geometry, errors
in both directions are possible.

4 A S U B G R I D MO D E L F O R R A D I AT I O N
FE EDBACK

How can one fix this problem? The best solution is simply to re-
solve the dust sublimation front, as is routinely done in simulations
of the formation of individual stars or star clusters. Simulations
that are able to reach spatial resolutions of ∼100 au or better (for
Eulerian methods), or mass resolutions of ∼0.01 M� or better (for
Lagrangian ones), need no modification.

However, resolving the dust sublimation front is impractical in
simulations on the scales of entire giant molecular clouds, galaxies,
or cosmology. Recall that, for the dimensional scalings that cor-
respond to a luminosity of 106 L� and the mass-to-light ratio of
a zero-age stellar population, the lowest resolution test presented
in Section 3 that yielded a qualitatively correct result had a mass
resolution of ≈0.09 M� and that case was marginal; to have confi-
dence in the result, one would likely want a mass resolution closer
to 0.01 M�. This is significantly better than the highest resolution
simulations of individual molecular clouds presented by Grudić
et al. (2018) or Kim et al. (2018), and orders of magnitude beyond
state of the art galactic or cosmological simulations (e.g. Hopkins
et al. 2011; Agertz et al. 2013; Hopkins et al. 2018; Kannan et al.
2018).

If one cannot resolve the dust destruction front, then a next-best
approach is to implement a subgrid model that accounts for the bal-
ance of radiation and gravity on unresolved scales, using the analytic
results summarized in Section 2.5. Recall that the key parameter that
determines whether radiation pressure is able to reverse inflow, or
whether all the radiation momentum will be advected back into the
radiation source, is the momentum flux of the accretion flow. In a
simulation that does not resolve the dust sublimation front one can-
not calculate this directly, because the momentum is mostly added
to the flow on unresolved scales. However, the mass flux of the ac-
cretion flow does not change from large to small scales. Thus, one
can measure the resolved mass flux and then use this to estimate
the unresolved momentum flux simply by assuming that the gas ac-
celerates under gravity (reduced by IR radiation pressure) towards
the dust sublimation front. If the estimated momentum flux at the

dust sublimation front is above the critical value (i.e. fp > fp,crit),
then the direct radiation pressure force should be turned off, on the
grounds that any momentum carried by it will be advected back
into the star and will not escape to scales that are resolved in the
simulation. If the momentum flux is below the critical value, the
radiation force can be applied on resolved scales normally, under
the assumption that radiation will be able to reverse the accretion
flow and escape. To be precise, in dimensional terms the model is
that the direct radiation momentum per unit time deposited in the
simulation by a source of luminosity L should be

dp

dt
=

{
0, Ṁ > 6.5 × 10−4L

3/4
6 M� yr−1

L/c, Ṁ ≤ 6.5 × 10−4L
3/4
6 M� yr−1

, (56)

where L is the luminosity of the source, L6 = L/106 L�, Ṁ is the
mass accretion rate on to the source, and the numerical coefficients
are based on Milky Way-like dust. Dependence on metallicity or
other dust properties can be added by plugging the relevant dust
parameters into equation (30). If the sharp transition from zero to
non-zero force is numerically problematic, it can be replaced with
a suitably smoothed function of Ṁ instead.

The method by which the mass flux Ṁ is estimated will depend
on the nature of the simulation. In simulations using sink particles
(Bate, Bonnell & Price 1995; Krumholz, McKee & Klein 2004;
Federrath et al. 2010; Gong & Ostriker 2013), the accretion rate is
built into the sink particle method, and one can take it directly from
that. In simulations that do not use sink particles (most galaxy-scale
and cosmological simulations), a reasonable estimate is

Ṁ = max

[
−4π

(
�x

2

)2

∇ · (ρv), 4π
G2M2∗
c

3/2
s

ρ,
√

Gρ3�x3

]
, (57)

where ρ, v, and cs are the density, velocity, and sound speed in
the simulation evaluated for the resolution element in which the
radiation source is located, and �x is the simulation resolution. The
first term represents the estimated mass flux on to the resolution
element containing the radiation source (and may be computed in
a variety of ways depending on the hydrodynamic scheme), the
second represents the accretion rate produced by the gravity of the
point mass (the Bondi (1952) rate), and the third is the rate of mass
accretion that should be produced by the self-gravity of the gas
within the resolution element.

To test the utility of this subgrid model, I implement it in the
simple simulation code described in Section 3.1. Since the code is
spherical Lagrangian, there is no resolution element that includes
the point mass, and thus only the first of the three conditions in
equation (57) applies. I compute the estimated mass accretion rate
from the density, velocity, and position of the first Lagrangian cell:

ṁ = −4π

(
x0 + x1

2

)2 (
u0 + u1

2

)
bi+1/2. (58)

In the dimensionless units used in the simulations, the condition for
the accretion flow to shut off the UV radiation feedback is

fτ

4πfEη
ṁ > fp,crit. (59)

I test the model by running a series of simulations initialized as in
Section 3.2.1 using momentum fluxes fp = 0.25, 0.5, 1, 2, and 4.
The analytic solution is that accretion should be reversed for fp =
0.25, 0.5, and 1, and should continue despite radiation pressure for
fp = 2 and 4. I test whether simulations with mass resolutions �m =
10−3, 10−2, 10−1, and 100 can recover this result; for a central object
with luminosity 106 L� and the light-to-mass ratio of a zero-age
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stellar population, these dimensionless mass resolutions correspond
to physical mass resolutions 0.9, 9, 90, and 900 M�, respectively.
Thus, �m = 10−3 corresponds to a resolution that could plausibly
be achieved in a simulation of a single giant molecular cloud, while
�m = 100 corresponds to a resolution that might be achievable for
a simulation of an isolated galaxy or a cosmological zoom-in. I use
1000 Lagrangian points for each simulation, and I run for a time s
= 102.5, 103.5, 104.5, and 105.5 at the four different resolutions; for
the fiducial dimensional scaling, the run times are from 11 kyr to
0.11 Myr.

Fig. 5 shows the state of each simulation at the final time. For the
reasons discussed in Section 3.3, the simulations without subgrid
models often show that radiation pressure is able to reverse inflow
even when it should not be able to, with the problem getting worse as
the resolution decreases. At the resolutions typical of galaxy-scale
simulations, as shown in the right two columns, radiation pressure
is able to choke off accretion even though it carries a factor of ≈4
too little momentum to do so in reality. As noted above, standard
convergence tests, where one runs the same initial conditions at a
range of resolutions, are unlikely to detect this problem. Consider
the non-subgrid case for the row fp = 2: the results are nearly
identical at mass resolutions of �m = 10−2, 10−1, and 100.5 It is
only once the dust sublimation front begins to be resolved that the
solution switches over to the correct one. The system does in fact
converge, but the nature of the convergence is that the value of fp

at which the solution switches from inward accretion to outgoing
shock converges to the correct value as the resolution increases.
A test of a single set of initial conditions, with a single fp value,
will not detect this effect unless the resolutions chosen happen to
straddle the resolution at which, for that fp, the resolution at which
the character of the solution changes.

The runs using the subgrid model show no such problems. When
the momentum flux is below the critical value, fp < fp,crit, the runs
with the subgrid model are completely identical to those without it,
as they should be. For momentum fluxes above the critical value, the
simulations using the subgrid model recover the correct solution at
all resolutions. In summary, the subgrid model appears to resolve the
problem of overestimation of the effectiveness of radiation feedback
in low-resolution simulations.

That said, it is important to notice that there is an additional a
practical difficulty in using this model for cosmological simulations,
as opposed to higher-resolution simulations of isolated galaxies or
individual molecular clouds. As noted in Section 2.5, in situations
where there are multiple radiation sources separated by �rs, the
condition for accretion to quench radiative feedback (equation 56)
should be calculated individually for each point source. In simula-
tions where the typical ‘star particle’ has a mass of ∼100 M� or
less, typical of isolated galaxy or molecular cloud simulations, this
is not a problem, because a stellar population of this size is likely
to have its light output dominated by the single most massive star
(e.g. da Silva, Fumagalli & Krumholz 2012). Thus, it is reasonable
to treat each ‘star particle’ in the simulation as a single point source
and apply equation (56) to it. However, if the resolution is such that
individual ‘star particles have masses �103 M� and thus represent
clusters of stars with many individual luminous sources that con-

5Astute readers may notice that the shock position is not the same in each
panel, but recall that, due to the differing resolutions, the simulations in the
three panels have run for different amounts of time. If one examines the
shock position as a function of time, it is qualitatively similar in all three
runs.

tribute non-negligibly to the total luminosity, as is usually the case
for cosmological simulations, then one cannot simply plug the total
accretion rate and the total luminosity into equation (56). Instead,
one will require a further subgrid model for the luminosities of the
individual sources that comprise the star particle, and for how the
accretion rate Ṁ is likely to be partitioned between them.

5 SU M M A RY

5.1 Implications

In this paper, I show that the structure of dusty accretion flows im-
peded by radiation pressure imposes an important resolution limit
on numerical simulations. A simulation that does not resolve the
dust sublimation front, which for stellar radiation sources lies at
distances of ∼100–1000 au, will generally overestimate the ef-
fectiveness of radiation forces in halting the accretion flow. The
physical origin of this resolution criterion is easy to understand.
Whether radiation forces are able to halt an accretion flow comes
down to a contest of momenta: radiation reverses the accretion flow
if it delivers more outward momentum to the gas than gravity pro-
vides inward momentum. If gravity wins the contest, the radiation
delivers all its momentum to gas that is then advected back on to
the central star, so accretion continues and radiation feedback has
no effect on the flow at larger distances.

However, gravity and radiation deposit their momenta in very
different spatial patterns. Thanks to the very high opacity of dusty
gas to radiation at the colour temperature of a star, the radiation field
delivers a sharp impulse with a fixed momentum flux wherever it
is absorbed. Gravity, on the other hand, delivers momentum slowly
as gas falls, with most of the momentum delivered on the smallest
scales. As a result of this difference, the outcome of a contest be-
tween these two forces depends critically on where it takes place,
with gravity more likely to win when the gas is able to fall farther
towards the radiation source before encountering its direct radiation
field. In real accretion flows, the contest between gravity and radia-
tion occurs at the dust sublimation front, the location closest to a star
where the dust opacity is high enough to absorb all the stellar mo-
mentum in a thin layer. In a simulation that does not resolve the dust
sublimation front; however, the location of the contest is artificially
moved outwards to the smallest resolved scales, thereby making it
too easy for radiation to reverse the accretion flow and for radiation
momentum to escape to large distances. The problem grows worse
as the resolution does. However, conventional convergence tests will
not easily reveal this, because the solution switches sharply from
outflow to inflow when the momentum flux of (resolution-softened)
gravity goes from smaller to larger than that of radiation. Unless the
convergence test happens to catch the resolution where this switch
happens, the results may appear converged even when they are not.

This numerical problem is very likely the origin of the surprising
divergence in results between simulations of molecular clouds or
galaxies, where at least some authors report that radiation momen-
tum feedback is very effective at halting accretion and preventing
star formation, and simulations of the formation of individual mas-
sive stars systems, which invariably show that radiation does not
lead to low star formation efficiency despite the fact that single
massive stars have higher light to mass ratios than IMF-averaged
stellar populations. The single star simulations resolve the dust de-
struction front, while the molecular cloud and galaxy ones do not.
This explanation of the discrepancy suggests that least some pub-
lished work should be re-examined. While it is probably not feasible
to resolve the dust sublimation front in molecular cloud or galaxy
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3480 M. R. Krumholz

Figure 5. Tests of the subgrid model. Each panel shows velocity u versus position x for Lagrangian points at the end of two simulations of a radiatively
inhibited accretion flow: one using the subgrid model (blue squares) and one run without it (orange circles). The columns, from left to right, show simulations
with mass resolutions of �m = 10−3 to 100, as indicated at the tops of the columns. The rows, from top to bottom, show simulations where the accretion
flow carries different momentum fluxes, from fp = 0.25 to 4.0 as indicated to the right of the rows. The dashed grey horizontal line separates the simulations
with fp < fp,crit, for which the correct answer is that radiation reverses the accretion flow and drives a shell outwards, from those with fp > fp,crit for which
the correct answer is that accretion is not halted. In the rows with fp > fp,crit, the black line shows the analytic solution for the accretion flow. Note that the
simulation using the subgrid model deviates shows faster inflow than the analytic solution at the lowest mass resolution; this is because the low resolution
simulation reaches size scales large enough that gas self-gravity is no longer negligible, contrary to the assumption of the analytic solution. The gas self-gravity
leads to faster infall.

simulations, a second-best option is to use the subgrid model I de-
velop in Section 4 to account for momentum deposition by gravity
on unresolved scales, and shut off the radiation momentum deposi-
tion in the regime where advection should prevent it from reaching
scales that are resolved in the simulation.

5.2 Future prospects

While my analysis in this paper has mostly focused on feedback
from direct stellar radiation, the numerical issue I have identified
is likely relevant for other types of momentum-limited feedback as
well. All of these have in common the property that the outcome
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depends sensitively on the amount of momentum carried by the
accretion flow where it encounters the feedback, and thus they
are vulnerable to error when low resolution artificially moves the
encounter radius outwards. An obvious example is IR radiation
pressure; while this force does not deliver its momentum on quite
as small a scale as direct radiation pressure, it is none the less a force
where the momentum deposition is largest in small regions where
higher radiation temperature produces higher opacity. As pointed
out by Crocker et al. (2018), the common numerical practice of
using the high IR opacity that applies in these small regions on the
much larger scales probed by low-resolution simulations is likely
to artificially favour feedback over gravity in much the same way I
have explored here.

The flip side of this point is that any feedback mechanism that
is able to create some ‘standoff distance’ between stellar radiation
sources and accretion flows is likely to be much more effective than
one might initially suspect. For example, if a population of newly
formed stars were to launch stellar winds that created a small bubble
of hot gas ∼0.1 pc (≈2 × 104 au) in radius around themselves, that
by itself would probably not be very significant for a galaxy- or
molecular cloud-scale simulation, which would struggle to resolve
such small scales. Physically, however, this could in principle make
it much easier for stellar radiation feedback to reverse the accretion
flow, by moving the radius at which the accretion flow hits the
radiation field outwards by a factor of ≈10–100 compared to a
case without a stellar wind. It is therefore urgent that we carry
out simulations to study these effects by simultaneously resolving
the dust sublimation front and including more than one type of
feedback.
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Tsang B. T.-H., Milosavljević M., 2018, MNRAS, 478, 4142
Von Neumann J., Richtmyer R. D., 1950, J. Appl. Phys., 21, 232
Walmsley M., 1995, in Revista Mexicana de Astronomia y Astrofisica Con-

ference Series, p. 137

Wolfire M. G., Cassinelli J. P., 1986, ApJ, 310, 207
Wolfire M. G., Cassinelli J. P., 1987, ApJ, 319, 850
Yorke H. W., Sonnhalter C., 2002, ApJ, 569, 846
Zhang D., Thompson T. A., 2012, MNRAS, 424, 1170

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 480, 3468–3482 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/3/3468/5064253 by M
usic Library, School of M

usic, N
ational Institute of the Arts, Australian N

ational U
niversity user on 06 D

ecem
ber 2018

http://dx.doi.org/ 10.1093/mnras/stv2331
http://dx.doi.org/10.1086/431923
http://dx.doi.org/ 10.1093/mnras/stv1707
http://dx.doi.org/ 10.1093/mnras/sty1217
http://dx.doi.org/ 10.1063/1.1699639
http://dx.doi.org/ 10.1086/164676
http://dx.doi.org/ 10.1086/165503
http://dx.doi.org/ 10.1086/339264
http://dx.doi.org/ DOI: 10.1111/j.1365-2966.2012.21291.x Bibliographic Code: 2012MNRAS.424.1170Z

