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ABSTRACT
The distributions of a galaxy’s gas and stars in chemical space encode a tremendous amount
of information about that galaxy’s physical properties and assembly history. However, present
methods for extracting information from chemical distributions are based either on coarse
averages measured over galactic scales (e.g. metallicity gradients) or on searching for clusters
in chemical space that can be identified with individual star clusters or gas clouds on ∼1 pc
scales. These approaches discard most of the information, because in galaxies gas and young
stars are observed to be distributed fractally, with correlations on all scales, and the same
is likely to be true of metals. In this paper we introduce a first theoretical model, based on
stochastically forced diffusion, capable of predicting the multiscale statistics of metal fields.
We derive the variance, correlation function, and power spectrum of the metal distribution
from first principles, and determine how these quantities depend on elements’ astrophysical
origin sites and on the large-scale properties of galaxies. Among other results, we explain for
the first time why the typical abundance scatter observed in the interstellar media of nearby
galaxies is ≈0.1 dex, and we predict that this scatter will be correlated on spatial scales of
∼0.5–1 kpc, and over time-scales of ∼100–300 Myr. We discuss the implications of our results
for future chemical tagging studies.

Key words: diffusion – stars: abundances – ISM: abundances – Galaxy: abundances –
galaxies: abundances – galaxies: ISM.

1 IN T RO D U C T I O N

The chemical content of galaxies, in both the stellar and gaseous
phases, provides a unique window into the history of their forma-
tion and evolution. Almost all elements heavier than hydrogen and
helium are manufactured in stars and then ejected into the interstel-
lar medium (ISM) during the final stages of stellar evolution. Once
ejected they can be measured in situ in the interstellar gas wherever
it is illuminated by ionizing radiation. Some of these metals will
also be incorporated into a next generation of stars, where they can
be observed in stellar atmospheres. Since individual atoms are not
altered during their time in the ISM or by incorporation into a stellar
atmosphere, measurements of their abundances provide a complete
record of prior star formation and nucleosynthesis.

These data have begun to accumulate in quantity. On the gaseous
side, the advent of massively multiplexed spectrographs and integral
field units, supplemented by large radio surveys within the Milky
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Way, has made it possible to measure gas phase abundances as a
function of position in the ISM of large samples of nearby galaxies
(e.g. Croxall et al. 2009; Sanders et al. 2012; Sánchez et al. 2014;
Balser et al. 2015; Berg et al. 2015; Bresolin & Kennicutt 2015;
Ho et al. 2015; James et al. 2016; Vogt et al. 2017). With the aid
of lensing, these data are even beginning to become available for
the high-redshift universe (e.g. Jones et al. 2013; Yuan, Kobayashi
& Kewley 2015; Leethochawalit et al. 2016). Traditionally these
data have been binned by azimuth in order to constrain the mean
radial gradient of metal abundance within a galaxy disc. While this
is indeed an important constraint for models of galaxy formation,
these new instruments deliver such a large number of pixels or
individual ionized regions in a single galaxy that it has become
possible to study higher order statistics, such as the dispersion and
correlation of elements with azimuth.

On the stellar side, large spectroscopic surveys of Milky Way stars
such as APOGEE (Holtzman et al. 2015; Majewski et al. 2015;
SDSS Collaboration 2017), the Gaia-ESO Public Spectroscopic
Survey (Gilmore et al. 2012), and GALAH (De Silva et al. 2015)
are in the process of delivering samples of high-quality abundance
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measurements for ∼105–106 stars. Individual open clusters show
extremely small abundance variations at the level of ∼0.02–0.03 dex
(e.g. Bovy 2016; Liu et al. 2016; Ness et al. 2017). This homogeneity
has led to the idea of chemical tagging: reconstructing the formation
history of the Milky Way by identifying stars that formed in the
same cluster via their near-identical chemical abundances, but that
have since escaped their natal sites and become phase-mixed in the
Galactic field (Freeman & Bland-Hawthorn 2002; Bland-Hawthorn,
Krumholz & Freeman 2010a; Bland-Hawthorn et al. 2010b; Ting,
Conroy & Goodman 2015).

In principle the statistics of metallicity distributions in the gas
phase, and the clustering of stars in chemical space, provide very
strong constraints on the formation history and star formation struc-
ture of the galaxy in which they are measured, and on the astro-
physical origin sites of the elements. There are a few examples
in the literature of attempts to exploit these constraints to identify
otherwise-uncertain origin sites, particularly for r-process elements
(e.g. Matteucci et al. 2014; Shen et al. 2015; van de Voort et al. 2015;
Hirai et al. 2017), and to measure the Milky Way cluster mass func-
tion in the past through the clustering/abundance-correlation of stars
(Ting, Conroy & Rix 2016; Ness et al. 2017). For the most part,
however, we have limited ability to make use of data on the abun-
dance statistics of gas or young stars, because we lack a theoretical
model capable of predicting and interpreting the mapping between
chemical and physical space.

For example, suppose that we were to identify two stars on op-
posite sides of the Milky Way whose abundances differ by ∼0.01–
0.05 dex across a wide range of elements. What should we then
infer about how closely together in space and time those two stars
formed? Did they form within 1 pc of one another? 100 pc? 1 kpc?
Within 1 Myr, or 100 Myr? The current approach of attempting to
identify discrete star clusters (e.g. Bland-Hawthorn et al. 2010a,b;
Karlsson, Bromm & Bland-Hawthorn 2013; Ting et al. 2015, 2016)
is clearly inadequate, since modern observations of star formation
reveal that star clusters are not distinct, discrete objects; instead,
they simply represent the peaks of a continuous distribution of
young stars that is correlated on many scales (e.g. Gouliermis et al.
2010, 2012, 2017; Grasha et al. 2017a,b; for a review, see Krumholz
2014). Presumably the metallicity distribution is similarly continu-
ous and correlated across many scales. Similarly, suppose that we
measure the metallicity distributions in the ISM of a pair of nearby
galaxies, and discover that in one the metallicity scatter is twice
as large as the other, and has double the correlation length. What
does that tell us about the differences in these galaxies’ formation
histories?

Existing theoretical models are far from being able to answer
these questions. One major approach to chemical modelling has
been to develop semi-analytic models in which a galaxy is broken
into radial zones, tracking production of elements within zones
and (sometimes) transport between them (e.g. Spitoni et al. 2010;
Spitoni & Matteucci 2011; Forbes et al. 2014; Matteucci et al.
2014; Pezzulli & Fraternali 2016). While this approach allows the
efficient study of radial gradients, it is obviously unable to make
any predictions about higher order statistics.

Cosmological simulations including chemical enrichment and
tracking (e.g. Brook et al. 2012; Few et al. 2012; Pilkington et al.
2012; Minchev, Chiappini & Martig 2013; Grand, Kawata & Crop-
per 2015; Shen et al. 2015; van de Voort et al. 2015; Escala et al.
2017; Hopkins et al. 2018) can in principle make such predictions.
In practice, however, they are unable to do so due to numerical
limitations. For large galaxies like the Milky Way, these simula-
tions achieve resolutions of ∼100 pc at best, and even in dwarfs

the best possible resolution is �10 pc.1 This makes their predic-
tions for metallicity distributions on small scales within a galaxy
(as opposed to between galaxies or in galaxy haloes) very sensitive
to poorly constrained subgrid prescriptions for unresolved trans-
port processes (Revaz et al. 2016). Moreover, they are an order
of magnitude too coarse to resolve the natural correlation length
of metallicity variations that we derive below. While some authors
have published simulations of isolated discs or portions thereof with
enough resolution to address metallicity variation within a galaxy,
thus far these have been used to quantify mixing rates, rather than to
provide a full exploration of metallicity statistics (e.g. de Avillez &
Mac Low 2002; Yang & Krumholz 2012; Feng & Krumholz 2014;
Petit et al. 2015); indeed, due to their high resolution, it is not at
present feasible to run such simulations over cosmological times,
as would be required for this purpose.

The goal of this series of papers is to develop a new approach to
the problem of metallicity statistics within the ISM of galaxies and
the young stars it forms. Given that numerical simulations are still
far from being able to solve this problem, let alone do so enough
times to provide large statistical samples, our approach will be
primarily analytic and semi-analytic. In this first paper we model the
metal distribution in galaxies as the result of a stochastically forced
diffusion process: metals are injected randomly by star formation
events, and then transported away from their formation sites and
mixed by interstellar turbulence. While this model is obviously an
oversimplification of the true ISM, it has the virtue that it is simple
enough to admit exact analytic calculation of some of the statistics
of greatest interest – the variance of metallicities and the correlation
of metallicity in space and time – thereby allowing us to determine
the relationship between these statistics and the physical properties
of galaxies and the nucleosynthetic sites of elements. In the next
paper (Ting & Krumholz, in preparation), we use this framework
to conduct semi-analytic numerical calculations that enable us to
address element-to-element correlations and their statistics.

The plan for the remainder of this paper is as follows. In Section 2
we introduce our simple formal model for the metal distribution in
a galaxy, and derive its statistical properties. In Section 3 we use
the model to deduce the relationship between metallicity statistics
and galaxy properties. Finally, we discuss and summarize our con-
clusions in Section 4.

2 STATI STI CS O F METAL FI ELDS

2.1 Model system

We consider a simple model for the metallicity distribution in some
region of a galaxy. We assume that the distribution is a balance

1 When discussing the effective resolutions of cosmological simulations
that use adaptive mesh or Lagrangian methods, it is important to distinguish
between the peak resolution and the average resolution in galaxy discs.
Metallicity statistics are always measured as spatial averages in Eulerian
coordinates, so the ability of a simulation to capture metallicity variations
depends on the latter, not the former. As an illustration of the importance
of this distinction, note that the Milky Way analogue simulations reported
by Hopkins et al. (2017) have a maximum spatial resolution of ∼1 pc, but
a mass resolution of 7000 M�. At the mean number density of the Milky
Way’s ISM, ∼1 H nucleus cm−3, a resolution element of this mass occupies
a volume of (60 pc)3. Since meaningful statistics can only be measured over
a minimum of a few resolution elements, the effective spatial resolution
of these simulations for the purposes of measuring metallicity statistics is
�100 pc, two orders of magnitude larger than the peak resolution.
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between injection events, which we model as δ function-like addi-
tions of metal, and spreading of metals, which we model as a linear
diffusion process. In reality linear diffusion, meaning a diffusion
coefficient that is independent of scale, is a significant oversimpli-
fication of turbulent transport (e.g. Pan & Scannapieco 2010, 2011;
Yang & Krumholz 2012; Colbrook et al. 2017). However, since
our goal is not precise statistics but instead a first calculation that
is accurate enough to yield scalings and approximate values but
simple enough to solve analytically, we will ignore this complica-
tion. Numerical simulations show that the main difference between
true turbulent mixing and linear diffusion is that, in a turbulently
mixed field, rare patches of poorly mixed gas can persist for much
longer than would be expected for diffusive mixing. As a result, the
abundance distribution develops significantly non-Gaussian tails.
To minimize the error we make by ignoring this effect, we will
in this paper focus on statistics such as the metallicity dispersion
and two-point correlation function that are mostly sensitive to the
central parts of the metallicity distribution, rather than to the ex-
treme tails.

For injection, we consider a portion of a galactic disc, and let � be
the constant rate per unit area of injection events, each of which adds
a mass mX of some metal X. The assumption of a spatially uniform
injection rate is reasonable for nucleosynthetic sites associated with
older stellar populations, but is probably not reasonable for Type II
supernovae, which are highly clustered; we attempt to account for
this effect approximately below, in Section 3.1.2, and for now we
defer further discussion of this point The value of mX is drawn from
a specified, position- and time-independent distribution pm(mX),
which we require to have finite expectation value and variance.
Injected metals are distributed over an injection kernel finj(x, t)
which has units of inverse area times time, and unit integral. The
injection events are uniformly distributed in both space and time.
Once injected, the metallicity distribution diffuses with a constant
diffusion rate coefficient κ . The metal surface density �X(x, t) as
a function of two-dimensional position x and time t then is fully
described by the stochastic partial differential equation

∂

∂t
�X = κ∇2�X +

∑
i

mX,ifinj(x − xi , t − ti), (1)

where the sum is over the masses mX,i, positions xi , and times ti

of the injection events. The values mX,i, xi , and ti, as well as the
number of injection events, are random variables. Within any region
of area A, the number of injection events over some time interval T
is drawn from a Poisson distribution Pλ(N) with expectation value
λ = �AT, while xi and ti are drawn from uniform distributions over
the area A and time interval T, respectively, and mX,i is drawn from
pm(mX). We are interested in characterizing the statistical properties
of the resulting metal field �X.

As a first step, let us make a change of variables to non-
dimensionlize the problem. We define

r = x/xs (2)

τ = t/ts (3)

SX = �X/
(〈mX〉/x2

s

)
, (4)

where 〈mX〉 is the expectation value of the distribution pm(mX). We
choose our scaling factors xs and ts to be

xs =
( κ

�

)1/4
(5)

ts =
√

1

�κ
. (6)

With these choices, the evolution equation is

∂

∂τ
SX = ∇2

r SX +
∑

i

wisinj(r − r i , τ − τi), (7)

where wi is a random variable drawn from the distribution
pw(w) ∼ pm(〈mX〉w) (i.e. pw(w) is simply pm(mX) scaled to have
unit expectation value), the non-dimensional injection kernel is

sinj = finjx
2
s ts , (8)

and ∇r implies differentiation with respect to r rather than x. With
this change of variables, the expectation value λ for the number of
events in is λ = 1 per unit area per unit time, when area is measured
in units of x2

s and time in units of ts. We discuss the likely physical
values of xs and ts in more detail in Section 3.1, where we show
that, for Milky Way conditions and for species primarily produced
by Type II supernovae, xs ∼ 100 pc and ts ∼ 30 Myr.

2.2 Formal solution

Consider an injection shape function sinj that is a δ function in time
and a Gaussian in space, i.e.

sinj(r i , τi) = 1

2πσ 2
inj

exp

[
−|r − r i |2

2σ 2
inj

]
δ(τ − τi). (9)

While there is no particular reason to assume that the injection
distribution is Gaussian, this choice is reasonable because the action
of diffusion is such that even a highly non-Gaussian injection profile
will result in a nearly Gaussian distribution at spatial scales much
larger than the initial injection region. The advantage of choosing
a Gaussian is that it makes the solution particularly simple because
the action of the diffusion operator on a Gaussian profile is simply
to increase its dispersion, and the operator is linear. In this case one
may verify by direct substitution that the solution is

SX(r, τ ) =
∑

i,τi<τ

wiφ(|r − r i |, τ − τi), (10)

where

φ(r, τ ) ≡ 1

4π (τ + τ0)
exp

[
− r2

4(τ + τ0)

]
, (11)

and τ0 = σ 2
inj/2. In the limit τ 0 → 0, this reduces to the case where

the injection events are δ functions in space as well as time. How-
ever, this case has somewhat undesirable statistical properties (in
particular, we show below that in this case the variance of the dis-
tribution diverges), and thus we will restrict our attention to small
but finite τ 0.

We are interested in the statistical properties of the solutions
given by equation (10) when r i and τ i are randomly distributed in
space and time. To make progress in this computation, we must
specify a finite domain in space and time over which injection
events can occur. This is necessary because a uniform distribution
over infinite space or time is not well defined. For time we use a
top hat distribution: we consider injection to have begun at time 0
and continued up to the present time τ f, and we let τ ′

i = τf − τi be
the time before present for any particular injection event. Thus, our
time distribution is

pτ (τ ′) =
{

1/τf , 0 < τ ′ < τf

0, otherwise
. (12)
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In space, rather than use a similarly flat distribution, for the purposes
of analytic solution it is more convenient to adopt a distribution that
is not flat but that becomes so asymptotically as we consider larger
domains. Specifically, we adopt a polar coordinate system and take
the probability distribution of radial and angular positions to be

pr (r) = 2r

R2
e−(r/R)2

, (13)

pθ (θ ) = 1

2π
, (14)

where R is a free parameter and θ is in the range [0, 2π ). For r �
R, this is pr(r) = 2r/R2, which is the radial probability distribution
function (PDF) for a distribution that is flat in space. Thus in the limit
R → ∞, this distribution approaches one that is flat everywhere,
which is the case in which we are interested. The corresponding
number of injection events per unit time per unit area is

� = 2r

R2
e−(r/R)2

, (15)

so that the expected number of events over a time interval τ f and
over all space is

λ = τf

∫ ∞

0
2πr� dr = πR2τf . (16)

Again, this approaches the flat distribution in which we are inter-
ested as R → ∞. For this choice of domain, the expected value of
the dimensionless metal density at r = 0 is

〈SX〉 = λ

∫ ∞

0
pw(w)

∫ τf

0
pτ (τ ′)

×
∫ R

0
pr (r)wφ(r, τ ′) dr dτ ′ dw (17)

= R2

4
ln

(
1 + 4τf

R2 + 4τ0

)
, (18)

where in the second step we have used the fact that, by construction,
〈w〉 = ∫

wp(w) dw = 1. For large R, and r � R, we have

lim
R→∞

〈SX〉 = τf . (19)

This result is exactly as we would expect, since we have chosen to
work in units where the average injection rate is one mass unit per
unit area per unit time. In the case of an infinite, uniform medium
the average metal abundance is simply the number of units of time
for which metals have been injected.

2.3 Variance

We first calculate the variance of SX; in terms of observables, this
will set the dispersion in metallicity that we expect for stars of the
same age, or the dispersion in metallicity that we expect to measure
in the ISM at fixed galactocentric radius. Our strategy to accomplish
this is to invoke the central limit theorem. First consider a single
injection event, occurring at a radius chosen from equation (13)
and a time chosen from equation (12). The expected value of the
metal field at r = 0 produced by this event is simply given by equa-
tion (17) evaluated with the number of events λ set equal to unity,
i.e.

〈SX〉1 = 1

4πτf

ln

(
1 + 4τf

R2 + 4τ0

)
. (20)

Here, we use the notation 〈 · 〉1 to indicate the expectation value for
a single injection event. The variance for a single event is

σ 2
1 = 〈S2

X〉1 − 〈SX〉2
1, (21)

with

〈S2
X〉1 =

∫ ∞

0
pw(w)

∫ τf

0
pτ (τ ′)

×
∫ R

0
pr (r)w2φ(r, τ ′)2 dr dτ ′ dw (22)

= 1 + σ 2
w

8π2R2τf

ln

[(
1 + τf

τ0

)
R2 + 2τ0

R2 + 2(τf + τ0)

]
, (23)

where

σ 2
w = 〈w2〉 − 〈w〉2 =

∫ ∞

0
w2p(w) dw − 1 (24)

is the variance of pw(w). Note that the variance σ 2
1 is finite only

for τ 0 > 0. This justifies our earlier statement that we will only
consider injection functions with τ 0 > 0.

Now consider the metal density field that results from exactly N
injection events,

SX =
N∑

i=1

SX,i , (25)

where SX,i is the metal surface density produced by the ith injection
event. Since SX is the sum of independent, identically distributed
variables, each drawn from a distribution with finite expectation
value and variance, we can apply the central limit theorem to con-
clude that, as N → ∞, the distribution pN(SX) from the sum of N
injection events approaches a Gaussian

pN (SX) ≈ G
(〈SX〉N, σ 2

N

)
, (26)

with expectation value

〈SX〉N = νλ〈SX〉1 = ν
R2

4
ln

(
1 + 4τf

R2 + 4τ0

)
(27)

and variance

σ 2
N = νλσ 2

1

= ν
1 + σ 2

w

8π
ln

[(
1 + τf

τ0

)
R2 + 2τ0

R2 + 2(τf + τ0)

]
− νλ〈SX〉2

1,

(28)

where λ = πR2τ f is the expected number of events, and we have
defined ν ≡ N/λ, i.e. ν is the ratio of the actual number of events to
the expected number.

Next we marginalize over the number of events N, which is
drawn from a Poisson distribution with expectation value λ. The
total probability distribution for SX is

p(SX) =
∞∑

N=1

pN (SX)Pλ(N ), (29)

where Pλ(N) = e−λλN/N! is the standard Poisson probability of
exactly N events occurring when the expectation value is λ events.
Thus, p(SX) is a compound Poisson distribution. The expectation
value of 〈SX〉 for this distribution follows directly from Wald’s
equation, and is

〈SX〉 = R2

4
ln

(
1 + 4τf

R2 + 4τ0

)
. (30)
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Note that this expression is identical to the one we obtained by
direct integration in equation (18), as it should be. We can compute
the variance σ 2 for SX as follows:

σ 2 = 〈S2
X〉 − 〈SX〉2 (31)

=
∞∑

N=1

〈S2
X〉NPλ(N ) − λ2〈SX〉2

1 (32)

=
∞∑

N=1

(
N2〈SX〉2

1 + Nσ 2
1

)
Pλ(N ) − λ2〈SX〉2

1 (33)

= λσ 2
1 + 〈SX〉2

1

( ∞∑
N=1

N2Pλ(N ) − λ2

)
(34)

= λ
(
σ 2

1 + 〈SX〉2
1

)
. (35)

The last step here follows from the fact that the variance of a Poisson
distribution is equal to its expectation value. We therefore arrive at
our final result for the variance of SX,

σ 2 = 1 + σ 2
w

8π
ln

[(
1 + τf

τ0

)
R2 + 2τ0

R2 + 2(τf + τ0)

]
. (36)

In the limit R → ∞, the mean and variance approach

lim
R→∞

〈SX〉 = τf (37)

lim
R→∞

σ 2 = 1 + σ 2
w

8π
ln

(
1 + τf

τ0

)
(38)

However, we caution that we have not fully characterized the dis-
tribution p(SX) because, while pN(SX) is Gaussian in the limit N →
∞, p(SX) is not. One can see this by noting that the dispersion of
pN(SX) is a function of N, and thus p(SX) is a sum of Gaussians
with different dispersions. Such a sum is not precisely Gaussian,
and thus higher moments of p(SX) are not strictly zero.

2.4 Two point statistics: correlations and power spectra

2.4.1 Spatial correlations at fixed time

We next turn to the problem of characterizing the expected Pearson
correlation of SX, and its Fourier domain equivalent, the power
spectrum. To avoid having to consider the boundaries of the injection
region, we will limit ourselves to computing the correlation at scales
r � R, and equivalently the power spectrum at wave numbers k �
1/R. Since we will eventually take the limit as R → ∞, this is
not a limitation. Consider some realization of the metal field SX,
produced by drawing a particular set of injection events from the
appropriate number, space, time, and mass distributions. Consider
a circle of radius R′ and area A = πR′2 centred on the origin.
Formally, we define the correlation for this realization evaluated for
a displacement r on this circle as

ξ (r | SX) = SX(r + r ′)SX(r ′) − SX
2

(
SX − SX

)2
, (39)

where for any spatial field q we define

q = 1

A

∫
A

q(r ′) d2r ′ (40)

as the average of q over A. We restrict ourselves to the case 1 � R′

� R and |r| � R′. In words, we require that the averaging region
be large enough to contain many injection events per unit time, but

small enough that it is restricted to the region where the injection
rate per unit area is approximately constant, and we only consider
spatial lags that are smaller than the averaging region. We will also
take the limit R′ → ∞, but we do so in such a way that we always
have R′ � R. We are interested in the expectation value of this
correlation evaluated over all realizations of the metal field,

ξ (r) =
〈

SX(r + r ′)SX(r ′) − SX
2

(
SX − SX

)2

〉
, (41)

where we use angle brackets to indicate an average over realizations
of SX, as distinct from averages over space, as indicated by overlines.
Note that, by symmetry, ξ (r) must be a function of the magnitude
r = |r| only, rather than the full vector r .

We can evaluate ξ by noting that, in the limit of large R and
R′, we can think of the metal field SX as containing an arbitrarily
large number of independent patches, each sampled from the PDF
p(SX). In this limit the terms in the numerator and denominator of
ξ (r) are uncorrelated, so the expectation value of realization can be
applied independently to each of them. Moreover, in this case we
need not distinguish between averages over realization and averages
over position, since an integral over A necessarily fully samples all
realizations of SX, and vice versa (i.e. the metal field is ergodic).
This greatly simplifies the evaluation, since it allows us to write〈
S2

X

〉
≈ 〈SX〉2 (42)

〈(
SX − SX

)2
〉

≈ σ 2, (43)

and the correlation reduces to

ξ (r) =
〈
SX(r + r ′)SX(r ′)

〉 − 〈SX〉2

σ 2
. (44)

We can approximate the remaining term by

〈
SX(r + r ′)SX(r ′)

〉 = 1

A

∫ 〈
SX,A(r + r ′)SX,A(r ′)

〉
d2r ′, (45)

where

SX,A(r ′) ≡
∑

i,ri<R′,τi>0

wiφ(r ′ − r i , τi), (46)

and for convenience we define τ i as the present time minus the time
at which injection i occurred. This approximation is non-trivial, and
does not simply follow from ergodicity, because we have limited
the sum to include only those events inside A, and we have changed
the area of integration to be over all space rather than simply over
A. In words, our approximation is that the correlation of the entire
metal field SX averaged over the region A can be approximated
by the correlation of the field SX, A that would be produced solely
by injection events that lie within A (and that occurred before the
present), integrated over all space rather than simply over A. The
replacement of an integral over A by an integral over all space is
easily justified, since we are taking the limit R′ → ∞. It is somewhat
less immediately obvious that we can only consider events inside
A, and neglect those outside it. We demonstrate that this is in fact
the case in Appendix A.

Having justified our approximation, the problem is now much
simpler, because we can evaluate equation (45) with the aid of the
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Wiener–Khinchin Theorem. This requires that

1

A

∫ 〈
SX,A(r + r ′)SX,A(r ′)

〉
d2r ′ =

∫
�(k)e−ik·r d2k (47)

= 2π

∫ ∞

0
�(k)J0(kr)k dk, (48)

where the integrals run over all real and Fourier space, Jn(x) is the
Bessel function of the first kind of order n,

�(k) ≡ 1

A

〈∣∣S̃X,A(k)
∣∣2
〉

(49)

is the expected area-normalized power spectral density, and

S̃X,A(k) = 1

2π

∫
SX,A(r ′)eik·r ′

d2r ′ (50)

is the Fourier transform of SX,A. Note that by symmetry �(k) must
be a function of k = |k| only, and equation (48) follows from this
lack of angular dependence.

The Fourier transform is

S̃X,A(k) =
∑

i,ri<R′,τi>0

wiφ̃(k, r i , τi) (51)

where

φ̃(k, r i , τi) = 1

2π
exp

[− (τi + τ0) k2 + ik · r i

]
. (52)

Since w, r , and τ are all independent random variables, the expected,
normalized power spectral density is therefore

�(k) = e−2τ0k2

4π3R′2
∑

i

{ 〈
w2

i

〉 〈
e−2τi k

2
〉

+
∑
j �=i

〈
wiwj

〉 〈
e−(τi+τj )k2

〉 〈
cos

[
k · (r i − rj )

]〉 }
, (53)

where the first sum includes all events at times τ i > 0 and radii
ri < R′, and the second includes all events satisfying those conditions
and with index j �= i; for the sake of brevity we shall from this point
forward omit the conditions on i and j. In equation (53), the first
term inside curly brackets represents the correlation of a single event
with itself, while the second term represents the cross-correlation
between different injection events.

We next compute the expected power spectral density, marginal-
ized over the PDF of injection event numbers, masses, times, and
locations. First consider a fixed number of injection events N. The
expected power spectral density is

�(k,N ) = e−2τ0k2

4π3R′2 N
[〈

w2
i

〉 〈
e−2τi k

2
〉

+ (N − 1)
〈
wiwj

〉 〈
e−(τi+τj )k2

〉 〈
cos

[
k · (ri − r j )

]〉]
. (54)

It is straightforward to evaluate each of the individual expectation
values in the expression for �(k, N). The averages over w are simply
〈w2

i 〉 = 1 + σ 2
w and 〈wiwj〉 = 〈wi〉〈wj〉 = 1. The next term is

〈
e−2τi k

2
〉

=
∫ ∞

0
e−2τk2

pτ (τ ) dτ = 1 − e−2τf k2

2τf k2
. (55)

For the term involving τ i + τ j, note that the PDF for the sum of two
times τ 2 = τ i + τ j that are each drawn from pτ (τ ) is given by the
autoconvolution of pτ (τ ), which is

pτ2 (τ2) = 1

τ 2
f

⎧⎪⎨
⎪⎩

τ2, 0 ≤ τ2 < τf

2τf − τ2, τf ≤ τ2 < 2τf

0, otherwise

. (56)

Thus,

〈
e−(τi+τj )k2

〉
=

∫ ∞

0
e−τ2k2

pτ2 (τ2) dτ2 =
(

1 − e−τf k2

τf k2

)2

. (57)

Finally, for the expectation value 〈cos
[
k · (r i − rj )

]〉, it is helpful
to define �r = |r i − rj | and θ = arg(r i − rj − k), so that〈
cos

[
k · (r i − rj )

]〉 =∫ ∞

0

∫ 2π

0
cos (k�r sin θ) pθ (θ ) dθ p�r (�r) d�r. (58)

Clearly by symmetry the PDF of angles θ must be uniformly dis-
tributed, so that pθ (θ ) = 1/2π and performing the integration yields

〈
cos

[
k · (r i − rj )

]〉 =
∫ ∞

0
J0(k�r)p�r (�r) d�r. (59)

Finally, the distribution of separations between two randomly se-
lected points in a disc of radius R′ is (Garcı́a-Pelayo 2005)

p�r (�r)= 4�r

πR′2

{
arccos �r

2R′ − �r
2R′

√
1 − �r2

4R′2 , r < 2R′

0, otherwise
. (60)

where the arccos function is chosen to have a range [0, π ]. Using
this value of p�r in equation (59) gives

〈
cos

[
k · (r i − rj )

]〉 =
[

2
J1(kR′)

kR′

]2

. (61)

Inserting the expectation values of the various terms into equation
(53), we obtain the expected power spectral density �(k, N) for a
fixed number of events N:

�(k, N ) = N (1 + σ 2
w)

8π3R′2 e−2τ0k2

(
1 − e−τf k2

τf k2

){
1 + e−τf k2

+ 8
N − 1

1 + σ 2
w

(
1 − e−τf k2

τf k2

)[
J1(kR′)

kR′

]2
}

. (62)

The final step is to marginalize over N. Recall that N is Poisson-
distributed with expectation value 〈N〉 = πR′2τ f. The expectation
value of N2 is 〈N2〉 = 〈N〉2 + σ 2

N , where σ 2
N is the variance in N;

for a Poisson distribution the variance is equal to the expectation
value, so 〈N2〉 = 〈N〉2 + 〈N〉. Using these results, we find that the
power spectral density is

�(k) = 1 + σ 2
w

8π2
e−2τ0k2

(
1 − e−τf k2

k2

){
1 + e−τf k2

+ 8π

1 + σ 2
w

(
1 − e−τf k2

k2

)[
J1(kR′)

k

]2
}

. (63)

In the limit R′ → ∞ at fixed k, the Bessel function J1(kR′) has
an envelope whose magnitude scales as R′−1/2, and so this term
becomes negligible in comparison to the other terms inside the
curly braces. The area-normalized power spectral density therefore
approaches

�(k) = 1 + σ 2
w

8π2k2
e−2τ0k2

(
1 − e−2τf k2

)
. (64)

This expression is valid in the limit kR′ � 1, and thus is valid at any
finite k in the limit R′ → ∞.
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Substituting equation (63) into the Wiener–Khinchin Theorem
(equation 48), and taking the limit R′ → ∞, the correlation is2

ξ (r) = 2(
1 + σ 2

w

)
ln

(
1 + τf /τ0

)
×

[(
1 + σ 2

w

) ∫ ∞

0
e−2τ0k2

(
1 − e−2τf k2

) J0(kr)

k
dk

+ lim
R′→∞

8π

∫ ∞

0

e−2τ0k2

k5

(
1 − e−τf k2

)2
J0(kr)J1(kR′)2 dk

− 4πτ 2
f

]
. (65)

To evaluate the middle term in the square brackets, note that as
R′ → ∞, the factor J1(kR′) goes to zero except in an infinitesimally
small region near k = 0, where it produces a δ function-like spike.
We can therefore evaluate the integral by expanding the prefactor
preceding J1(kR′) in a series about k = 0. This gives

ξ (r) = 2(
1 + σ 2

w

)
ln

(
1 + τf /τ0

)
×

[(
1 + σ 2

w

) ∫ ∞

0
e−2τ0k2

(
1 − e−2τf k2

) J0(kr)

k
dk

+ lim
R′→∞

8πτ 2
f

∫ ∞

0

J1(kR′)2

k
dk − 4πτ 2

f

]
(66)

Finally,
∫ ∞

0 J1(kR′)2/k dk = 1/2 regardless of the value of R′, so
the final two terms in the square brackets cancel. This gives our
final expression for the correlation,

ξ (r) = 2

ln
(
1 + τf /τ0

) ∫ ∞

0
e−2τ0k2

(
1 − e−2τf k2

) J0(kr)

k
dk.

(67)

Note that ξ (r) is independent of σw . Thus, the dimensionless cor-
relation function does not depend on the distribution of injection
event masses.

The integral in equation (67) cannot be evaluated in closed form
for arbitrary r and τ 0, but it is straightforward to evaluate numeri-
cally. We plot the correlation function for an astrophysically relevant
range of τ f and τ 0 values (see Section 3.1) in Fig. 1. We can also
give a closed-form expression for correlation function at both small
and large r. Note that the factor in front of the Bessel function in
equation (67) imposes an exponential cutoff at k ∼ 1/

√
2τ0, so the

value of the integral is essentially determined by the behaviour at k
below this value. If r � √

2τ0, then the integrand is only significant
in locations where the argument of the Bessel function is near 0.
We can therefore expand the Bessel function about 0, which yields
an integrable expression. The result is

ξ (r) = 1 − r2

8τ0(1 + τ0/τf ) ln(1 + τf /τ0)
(r �

√
2τ0). (68)

Note that ξ (r) → 1 as r → 0, as expected. Conversely, the Bessel
function goes to zero for large arguments, so if r is very large then
the integrand is non-zero only for very small k. We can then expand

2 One important subtlety in evaluating the correlation is that we cannot use
equation (64) for the area-normalized power spectral density because this
expression is only valid in the limit kR′ � 1, and the integral goes all the
way to k = 0. We must therefore use the full expression given by equation
(63).

Figure 1. Pearson correlation of the metal field ξ (r) as a function of di-
mensionless length r, evaluated for a range of star formation times τ f and
injection widths τ 0.

Figure 2. Comparison of the exact, numerically calculated Pearson cor-
relation of the metal field ξ (r) (solid lines, equation 67) and the analytic
approximations appropriate to the small r (dashed lines, equation 68) and
large r (dot–dashed lines, equation 69) limits. Line colours denote the value
of τ f indicated in the legend, and all the lines shown use τ 0 = 0.1. Note
that the solid lines are identical to the corresponding ones shown in Fig. 1,
but the plot range has been reduced to zoom in on the region of maximum
difference between the exact and approximate analytic results. The vertical
dotted black line shows r = √

2τ0, the approximate value that divides the
small and large r limits.

e−τ0k2
about k = 0, again producing an integrable expression and

yielding

ξ (r) = �
(
0, r2/8τf

)
ln(1 + τf /τ0)

(r �
√

2τ0), (69)

where �(a, z) is the upper incomplete � function.3 We compare the
numerically calculated function to the two limiting cases in Fig. 2.

3 �(a, z) here should not be confused with the event rate � introduced above.
To minimize confusion, we always write out the upper incomplete � function
with its arguments, as �(a, z), while the event rate has no arguments.
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2.4.2 Correlations in space and time

The calculation presented in the previous section can be generalized
to compute the correlation of the metal in time as well as space. We
consider the same spatial setup as in the previous section, but now
consider metal fields measured at two different times separated by
�τ . We will compute the correlation between the metal field as it
is now, at time τ f, and as it was at an earlier time τ f − �τ . The
Pearson correlation, again assuming ergodicity of the metal field,
is

ξ (r,�τ )

=
〈
SX(r + r ′, τ − �τ )SX(r ′, τ )

〉 − 〈SX〉τf −�τ 〈SX〉τf

στf −�τστf

, (70)

where we have defined

〈SX〉τ = 〈
SX(r ′, τ )

〉
, (71)

σ 2
τ =

〈[
SX(r ′, τ ) − 〈

SX(r ′, τ )
〉]2

〉
(72)

as the average and variance of the metal field at time τ f, and similarly
for time τ f − �τ . Note that, as expected, this definition reduces to
equation (44) for �τ = 0. Using the same approach as in the
previous section to evaluate the correlation integral in equation
(70), we have

1

A

∫ 〈
SX,A(r + r ′, τ − �τ )SX,A(r ′, τ )

〉
d2r ′

= 2π

∫ ∞

0
�(k,�τ )J0(kr)k dk, (73)

where

�(k,�τ ) = 1

A

〈
S̃X,A(k, τ − �τ )S̃∗

X,A(k, τ )
〉

(74)

is the area-normalized power spectral density for the cross-
correlation; here, the asterisk denotes complex conjugation. The
power spectral density in turn is

�(k,�τ ) = e(�τ−2τ0)k2

4π3R′2

τi>�τ∑
i

⎧⎨
⎩〈

w2
i

〉 〈
e−2τi k

2
〉

+
τj >0,τi>�τ∑

j �=i

〈
wiwj

〉 〈
e−(τi+τj )k2

〉 〈
cos

[
k · (r i − rj )

]〉⎫⎬⎭ , (75)

where we define τ i as the time elapsed between injection i and the
present. For compactness we have omitted the condition ri < R′

on the sums, but they should be understood to include only those
injection events that are located with A.

Note that equation (75) is nearly identical to equation (53). The
only difference is the presence of an extra factor e�τk2

. The first
term in curly brackets, representing correlations of events with
themselves, only includes events that occurred at least a time �τ

in the past and thus contribute to the metal field both now and
at the time �τ in the past that we are considering; the second
term in curly brackets, representing the cross-correlation between
events, includes both events that occurred longer than �τ before
the present, and the other events that occurred at any time before
present.

Let N be the number of injection events up to the present time
τ , and let �N be the number of events that occurred between time

τ − �τ and time τ . The normalized power spectral density for these
numbers of events is

�(k, N,�N ) = e(�τ−2τ0)k2

4π3R′2 (N − �N )
[〈

w2
i

〉 〈
e−2τi k

2
〉

+(N − 1)
〈
wiwj

〉 〈
e−(τi+τj )k2

〉 〈
cos

[
k · (ri − r j )

]〉]
. (76)

Evaluation of the individual correlation terms proceeds much as
in the fixed-time case. The expectation values over w and r are
unchanged. The distribution of times i in the first angle bracket
term is

pτ (τi) =
{

1/(τf − �τ ), �τ < τi < τf

0, otherwise
, (77)

i.e. the events are uniformly distributed in time between times �τ

and τ f in the past. Thus, we have

〈
e−2τi k

2
〉

= e−2�τk2 − e−2τf k2

2(τf − �τ )k2
. (78)

Similarly, the sum of the two times τ i + τ j is the sum of one number
drawn from the distribution given by equation (77) with another
drawn from a uniform distribution between 0 and τ f (equation 12).
The PDF for the sum is the convolution of the PDFs for τ i and τ j,
which is

pτ2 (τ2)= 1

τf (τf − �τ )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ2 − �τ, �τ < τ2 ≤ τf

τf − �τ, τf < τ2 ≤ τf + �τ

2τf − τ2, τf + �τ < τ2 ≤ 2τf

0, otherwise

. (79)

Thus, the second angle bracket over time is

〈
e−(τi+τj )k2

〉
=

(
1 − e−τf k2

) (
e−�τk2 − e−τf k2

)
τf

(
τf − �τ

)
k4

. (80)

Inserting the expectation values into equation (76) gives

�(k, N,�N ) =
(

N − �N

8π3R′2

)
e−2τ0k2

[
1 − e(�τ−τf )k2

(τf − �τ )k2

]

×
{(

1 + σ 2
w

) (
e−�τk2 + e−τf k2

)

+8(N − 1)

(
1 − e−τf k2

τf k2

)[
J1(kR′)

kR′

]2
}

. (81)

Finally, we must marginalize over the numbers of events. This re-
quires that we compute the expectation values 〈N〉, 〈�N〉, 〈N2〉, and
〈N�N〉. As in the previous case, N is Poisson-distributed with expec-
tation value 〈N〉 = πR′2τ f, and thus 〈N2〉 = 〈N〉2 + 〈N〉. Similarly,
�N is Poisson-distributed with expectation value 〈�N〉 = πR′2�τ .
The expectation value 〈N�N〉 is slightly subtle because N and �N
are not independent quantities, since the number of events that oc-
curred in the most recent interval of �τ contributes to the total num-
ber that occurred over time τ f. However, we can evaluate this term
by letting N1 = N −�N represent the number of events that occurred
between τ f and τ f − �τ ago, and writing N�N = N1�N + �N2.
The advantage of this expression is that, since the time intervals
τ f to τ f − �τ and �τ to 0 are disjoint and the injection events
are uncorrelated in time, N1 and �N are independent, and thus
the expectation value of their product is just the product of their
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expectation values. We therefore have

〈N�N〉 = 〈N1〉 〈�N〉 + 〈
�N2

〉
(82)

= (〈N〉 − 〈�N〉) 〈�N〉 + 〈
�N2

〉
(83)

= 〈N〉 〈�N〉 + 〈
�N2

〉 − 〈�N〉2 (84)

= 〈�N〉 (〈N〉 + 1) , (85)

where the last step follows from the fact that �N is Poisson-
distributed, and thus has a variance 〈�N2〉 − 〈�N〉2 equal to its
expectation value. Using the various number expectation values in
equation (81) gives

�(k,�τ ) = 1 + σ 2
w

8π2
e−2τ0k2

[
1 − e(�τ−τf )k2

k2

]

×
{

e−�τk2 + e−τf k2

+ 8π

1 + σ 2
w

[
1 + 2�τ

πR′2τf (τf − �τ )

]
·

×
(

1 − e−τf k2

k2

)[
J1(kR′)

k

]2
}

. (86)

In the limit R′ → ∞, for any k > 0, this reduces to

�(k,�τ ) = 1 + σ 2
w

8π2k2
e−(�τ+2τ0)k2

[
1 − e−2(τf −�τ )k2

]
. (87)

This expression has the limiting behaviour we expect: for �τ = τ f

the power goes to zero, since in the initial time in this case has no
metals present, while for �τ = 0 equation (87) reduces to equation
(64), the power spectrum for the metal field at fixed time.

Again taking the limit R′ →∞, and evaluating the J1(kR′) integral
by series expansion about k = 0 as in the previous section, we obtain
the correlation

ξ (r,�τ ) = 2√
ln

(
1 + τf

τ0

)
ln

(
1 + τf −�τ

τ0

) ·

×
∫ ∞

0
e−(�τ+2τ0)k2

[
1 − e−2(τf −�τ )k2

] J0(kr)

k
dk. (88)

As with the correlation at a single time, the integral cannot be evalu-
ated in closed form for arbitrary arguments, but is straightforward to
evaluate numerically, and to evaluate analytically in limiting cases.
For r � √

2τ0 + �τ , expanding J0(kr) about r = 0, we have

ξ (r,�τ ) ≈
ln

[
2(τf +τ0)−�τ

2τ0+�τ

]
− r2 1−�τ/τf

2(2τ0+�τ )[2(1+τ0/τf )−�τ/τf ]√
ln

(
1 + τf

τ0

)
ln

(
1 + τf −�τ

τ0

) . (89)

Similarly, for r � √
2τ0 + �τ we can expand the first exponential

factor in the integral about k = 0 to obtain

ξ (r,�τ ) ≈ �(0, r2/8(τf − �τ ))√
ln

(
1 + τf

τ0

)
ln

(
1 + τf −�τ

τ0

) . (90)

We plot a sample numerical evaluation of ξ (r, �τ ) in Fig. 3.

Figure 3. Pearsoncorrelation of the metal field ξ (r, �τ ) as a function of
dimensionless length r and time difference �τ . The figure shown is for
dimensionless star formation time τ f = 100 and injection with τ 0 = 0.1.

3 A STRO PHYSI CAL I MPLI CATI ONS

Having derived the statistical properties of our formal system, we
are now in a position to explore the astrophysical implications of
our findings.

3.1 Parameter estimates

As a first step to working out the astrophysical implications of
our model, we must estimate characteristic astrophysical values for
various dimensional and dimensionless parameters that enter our
solution. For convenience we collect typical parameter values for
the Milky Way near the Solar Circle in Table 1.

3.1.1 Diffusion coefficient

As noted above, linear diffusion is only a very crude approximation
to the process of turbulent transport. At the order of magnitude level,
however, the diffusion coefficient associated with turbulence is of
order the outer scale of the turbulence multiplied by the turbulent
velocity; Karlsson et al. (2013) suggest κ ≈ �σ g/3, where � is
the outer scale of the turbulence (typically the ISM scale height),
and σ g is the gas turbulent velocity dispersion on this scale. In
the Milky Way near the Solar Circle, the neutral ISM has a scale
height h ≈ 150 pc and velocity dispersion σ g ≈ 7 km s−1 (Kalberla
& Kerp 2009), so a characteristic Solar neighbourhood value of κ

is ∼300 pc km s−1. More generally, if we have

κ ≈ hσg

3
, (91)

it is convenient to express the scale height as (e.g. Forbes, Krumholz
& Burkert 2012)

h ≈ fgσ
2
g

πG�
, (92)

where � is the gas surface density and fg = �/[� + (σ g/σ ∗)�∗]
is the effective gas fraction, accounting for the stellar surface den-
sity �∗ as modified by differences in the stellar and gas velocity
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Table 1. Estimated values of parameters for the Milky Way at the Solar Circle, for various nucleosynthetic sites. SNII and
SNIa indicate Type II and Type Ia supernovae, AGB indicates asymptotic giant branch stars, and NSM stands for neutron star
merger. Note that the event rate given for SNII is the rate for clusters of SNe, rather than for individual ones. The dispersion
of injection masses for NSM is essentially unconstrained, so we have adopted an arbitrary value that we can use when one is
needed for numerical evaluation, with the caveat that any results based on this choice are highly uncertain.

Origin sites
Parameter Units Description SNII SNIa AGB NSM

ISM and star formation parameters
t∗ Gyr Star formation duration 10
κ pc km s−1 Diffusion coefficient 300
� pc−2 Myr−1 Event rate 3 × 10−6 3 × 10−4 5 × 10−4 10−7

σ 2
w – Injection mass variance 20 0.1 5 10?

Length and time-scales
xs pc Length scale 100 32 28 240
ts Myr Time-scale 33 3.3 2.6 180
x0 pc Injection width 67 67 0.1 67

Dimensionless time-scales
τ f – Star formation duration 300 3000 3000 50
τ 0 – Injection width 0.22 2.2 6 × 10−6 0.039

dispersions, σ g and σ ∗. If we eliminate � by demanding that the
gas Toomre (1964) parameter

Q ≈
√

2σg�

πG�
≈ 1, (93)

where � is the angular velocity of the galaxy and the
√

2 factor
assumes a flat rotation curve, then we can express the diffusion
coefficient as

κ ≈ fgQ

6
√

2π
σ 2

g torb ≈ 190

(
fg

0.5

)
σ 2

g,1torb,2 pc km s−1 (94)

where torb = 2π/� is the galaxy orbital period, σ g, 1 =
σ g/10 km s−1, and torb, 2 = torb/100 Myr. In the numerical evalu-
ation we have taken Q = 1.

3.1.2 Injection rate and mass variance

The injection rate and injection mass distribution will depend on
the primary astrophysical origin site of the element in question,
and thus we must distinguish a number of cases. Our treatment of
nucleosynthetic origin here will be relatively crude, since our goal
is simply to develop order of magnitude estimates for � and σw .

Type II supernovae are the main origin sites for α elements. Due
to the short lifetimes of the stars that produce them, these events
are highly clustered in space and time. Their clustering statistics are
complex, as noted above, but as a crude estimate we note that the
distributions of both star cluster masses (e.g. Bastian et al. 2012;
Fall & Chandar 2012; Adamo et al. 2017) and ionizing luminosities
(Kennicutt, Edgar & Hodge 1989; McKee & Williams 1997; Murray
& Rahman 2010) can be fit by a truncated power law with index
close to −2 or slightly shallower, and a truncation that corresponds
to a star clusters mass Mcl, max ∼ 105 M�. These statements hold
across a wide range of galaxy types. For elements produced by
Type II supernovae, we therefore adopt a cluster mass distribution
dn/dMcl ∼ M−α

cl over the range M0 to M1, and take the event rate
equal to the star cluster formation rate: � = �̇∗/〈Mcl〉, where for
q = M1/M0 � 1

〈Mcl〉=
∫ M1

M0

Mcl
dn

dMcl
dMcl = M0

{
α−1
2−α

q2−α, 1 < α < 2

ln q. α = 2
. (95)

If we take the minimum cluster mass to be M0 ≈ 100 M�, compa-
rable to the mass of a single massive star, then for α = 2 and M1 ≈
105 M� we have 〈Mcl〉 ≈ 690 M�. The Solar neighbourhood star
formation rate is �̇∗ ≈ 2.5 × 10−3 M� pc−2 Myr−1 (Fuchs, Jahreiß
& Flynn 2009), so this implies � ≈ 3 × 10−6 pc−2 Myr−1 near the
Sun. More generally, it is convenient to express the star formation
rate in terms of the orbital period using the ‘dynamical’ form of the
Kennicutt (1998) relation, �̇∗ = εorb��/2π , where εorb ≈ 0.1 is
the fraction of the gas transformed into stars per Galactic rotation.
With this substitution, we can express the Type II injection rate as

� ≈ 2
√

2εorb

GQ〈Mcl〉
σg

t2
orb

≈ 9.3 × 10−5 σg,1

t2
orb,2

pc−2 Myr−1, (96)

where the numerical evaluation is for εorb = 0.1, 〈Mcl〉 = 690 M�,
and Q = 1. Finally, if the mass injected per cluster is proportional
to the cluster mass, then we can integrate over the distribution of
cluster masses to obtain

σ 2
w = −1 +

{
(2−α)2

(3−α)(α−1)
q3+α

(q2−qα )2 , 1 < α < 2

q/(ln q)2, α = 2
. (97)

For our fiducial choices, α = 2 and q = 103, we have σ 2
w ≈ 20; if

we instead adopt α = 1.7, comparable to the shallowest reported
indices (e.g. Murray & Rahman 2010) the effect is modest: we find
σ 2

w ≈ 15 instead. In either case, our computed value of σw proba-
bly somewhat underestimates the true dispersion, since it neglects
variations in yield within a star cluster of fixed mass as a result of
stochastic sampling of the IMF. We will study this effect in future
work.

Type Ia supernovae dominate production of most iron peak el-
ements. They come from older stellar populations that have fully
phase-mixed in their host galaxies. Thus, we can neglect clustering
and instead treat each Type Ia supernova as a single event. In the
present-day Milky Way, there is ∼0.01 yr−1 Type Ia supernova per
year, spread out over the ≈30 kpc2 effective area of the Galactic
stellar disc, giving � ∼ 3 × 10−4 pc−2 Myr−1. In general this rate
will be set by the convolution of the star formation history with
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the (poorly constrained) Type Ia supernova delay time distribution.
The spread in mass injected is considerably smaller than for Type
II SNe due to the lack of clustering. Scalzo, Ruiter & Sim (2014)
show that the dispersion in 56Ni mass is relatively narrow, with the
great majority of the observed SN Ia producing 0.3–0.6 M� of 56Ni.
Examining their Fig. 1 suggests σ 2

w ∼ 0.1. Theoretical models also
predict relatively modest spreads for most iron peak elements, with
some possible exceptions (e.g. Mn – Seitenzahl et al. 2013; see the
review by Seitenzahl & Townsley 2017 for more discussion). We
will adopt σ 2

w = 0.1 as a fiducial value.
AGB stars dominate production of s-process elements. While the

stars that produce the s-process are not as old as those that produce
Type Ia supernovae, for most elements the dominant production sites
are stars smaller than ∼5 M� (e.g. Karakas & Lugaro 2016), which
have lifetimes >100 Myr. This is much longer than the typical star
remains clustered together with those born nearby. It is therefore
reasonable to treat these stars as phase-mixed as well. Thus, the
event rate is simply the formation rate of stars that end their lives
in the AGB phase. For a Chabrier (2005) IMF, one star in the
mass range 1–8 M� form per ∼5 M� of stars formed, so the
event rate in a region with a star formation rate per unit area �̇∗
is � ≈ �̇∗/(5 M�). Using the Solar neighbourhood star formation
rate, this implies � ≈ 5 × 10−4 pc−2 Myr−1, and for the more general
case the AGB star injection rate will be given by equation (96)
evaluated with a ‘cluster mass’ 〈Mcl〉 = 5 M�, and will therefore
be ≈140 times the Type II supernova rate. The dispersion varies
from element to element, depending on exactly where in the AGB
mass range dominates production, but is typically a factor of a few;
for numerical purposes we will adopt σ 2

w = 5 as a typical value.
Neutron star mergers (NSM) may be the dominant site of the

r-process, though this remains highly uncertain. Estimates suggest
that the present-day Milky Way experiences ∼10 such mergers per
Myr (e.g. Shen et al. 2015; van de Voort et al. 2015); these are
likely spread over a somewhat larger area than the stars, due to
asymmetric supernova kicks. We therefore estimate an effective
rate � ∼ 10−7 pc−2 Myr−1. The distribution of mass injected (as
opposed to the mean) is at present completely unconstrained. For
lack of a better choice we will adopt σ 2

w = 10 for these events when
a value is necessary for numerical evaluation, but one should keep
in mind that this value is uncertain by at least an order of magnitude.

3.1.3 Length and time-scales

We are now in a position to calculate the characteristic length and
time-scales xs and ts (equations 5 and 6). For conditions near the
Solar Circle in the Milky Way, using our stated estimates of κ and
�, we have

(
xs

pc
,

ts

Myr

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(100, 33), SNII

(32, 3.3), SNIa

(28, 2.6), AGB

(240, 180), NSM

(98)

for the various potential astrophysical origin sites.
Using our more general expressions for SNII and AGB stars,

which are linked directly to the star formation rate, we have

xs ≈
(

fgGQ2〈Mcl〉
24πεorb

σgt
3
orb

)1/4

≈ (38, 11)

(
fg

0.5

)1/4

σ
1/4
g,1 t

3/4
orb,2 pc, (99)

ts ≈
(

3πG〈Mcl〉
εorb

torb

fgσ 3
g

)1/2

≈ (7.4, 0.63)

(
fg

0.5

)−1/2

σ
−3/2
g,1 t

1/2
orb,2 Myr, (100)

where the first coefficient in parentheses is for Type II SN and the
second is for AGB stars. The numerical evaluations use our fiducial
values for all parameters.

3.1.4 Dimensionless time-scales

The next step in applying our formalism to astrophysical systems is
to estimate the two dimensionless parameters τ f and τ 0 that enter our
results. The first of these is relatively straightforward: τ f is simply
the time over which stars formed in the system in question, measured
in units of ts. For the Milky Way disc the formation time is ≈10 Gyr,
so for Type II supernova species τ f ≈ 300; the corresponding figure
for Type Ia supernovae and AGB stars is τ f ∼ 3000, while for
neutron star mergers τ f ∼ 50. For our more general expression for
Type II supernovae and AGB stars, we have (equation 100),

τf ≈
(

εorb

3πG〈Mcl〉
fgσ

3
g t2

∗
torb

)1/2

= (
1.4 × 103, 1.6 × 104

) ( fg

0.5

)1/2

σ
3/2
g,1 t

−1/2
orb,2 t∗,1, (101)

where t∗,1 is the age of the system in units of 10 Gyr and all param-
eters have their fiducial values.

The dimensionless time-scale τ 0, which parametrizes the ‘initial’
radius over which injected metals are dispersed, is slightly more
uncertain, though this uncertainty is mitigated by the fact that the
results are only logarithmically sensitive to it in most cases. We can
think of this quantity as describing the mass of ISM swept up by
metal-rich ejecta before they halt systematic expansion and begin
to be diffused by the turbulence in the ISM. Formally, τ0 = σ 2

inj/2,
where σ inj is the characteristic dimensionless radius at which this
transition occurs.

For supernovae of any type, and for neutron star merger remnants
(which behave similarly in their interactions with the ISM – Montes
et al. 2016), Draine (2011) shows (his equation 39.31) that the
characteristic radius at which the blast wave expansion velocity
becomes equal to the ISM velocity dispersion σ g is

x0 ≈ 67E0.32
51 n−0.37

0 σ
−2/5
g,1 pc, (102)

where E51 is the supernova energy in units of 1051 erg and n0 is the
ISM number density in units of hydrogen nuclei per cm3. If we take
x0/xs as a rough estimate of σ inj, then for the Milky Way (which has
n0 ≈ 1) this gives τ 0 ≈ 0.22, 2.2, or 0.039 for Type II supernovae,
Type Ia supernovae, and neutron star mergers, respectively. For the
purposes of more general evaluation in the Type II supernova case,
it is convenient to re-express the ISM density in terms of other
parameters; Krumholz et al. (2017, their equation 23) show that the
midplane density is ρ ≈ 2�2/πGQ2φmpfg, where φmp ≈ √

2 is the
ratio of total to turbulent pressure. Using this expression to evaluate
n0, and using the value of xs for Type II supernovae, gives

τ0 ≈ 0.15

(
fg

0.5

)0.24

σ
−13/10
g,1 t−0.02

orb,2 . (103)

The ejecta produced by AGB stars have much lower velocity,
and as a result they expand much less before halting and mixing.
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Observationally, the typical radii of AGB star bubbles are typically
∼0.1 pc, though with a wide range of variation (e.g. Cox et al. 2012).
Adopting this as a fiducial estimate of x0, we have τ 0 ∼ 6 × 10−6

for AGB stars near the Solar Circle.

3.2 Metallicity dispersions

Having worked out the physical and dimensionless scales in our
problem, we now present our first application: computing the metal-
licity dispersion we might expect to find in the ISM, or in a pop-
ulation of young stars. The usual measure of variation in observed
metallicities is the variance in the logarithm (base 10) of metallicity,
i.e. for a given set of measured metallicities Zi (in gas or in stars),
the quantity of interest is

σ 2
log Z ≡ 〈

(log Zi − 〈log Zi〉)2
〉
, (104)

where the angle brackets indicate averaging over the sample. When
the range of variation in Zi about the mean measurement 〈Z〉 is
small, which is the case for all astrophysically relevant cases, we
can Taylor expand the logarithms about Zi/〈Z〉 = 1, which gives

σ 2
log Z ≈

(
1

〈Z〉 ln 10

)2 〈
(Zi − 〈Z〉)2

〉
. (105)

For a constant gas surface density, we can rewrite this in terms of
our dimensionless quantities as

σ 2
log Z ≈

(
1

〈SX〉 ln 10

)2

σ 2 = 1 + σ 2
w

8πτf (ln 10)2
ln

(
1 + τf

τ0

)
.

(106)

We provide one caveat on this expression, which is that our simple
analytic model does not include galactic winds, which will remove
metals over time. To see how to include these, we must consider two
possibilities. First suppose that the winds simply remove portions
of the ISM that are widely distributed and uncorrelated with the
metal field. These removed regions simply carry with them whatever
metals they contained at the time of removal. In this limit the effect
of metal removal on the dispersion of the metal field is small, and the
sole effect of removal is to lower the mean metal content; in terms
of our dimensionless solution, in this limit winds do not alter σ , but
they reduce 〈SX〉 by a factor fd, where fd is the fraction of the metal
retained in the disc rather than lost to the wind. This in turn will raise
σ log Z. This is the case that is likely to prevail for elements injected
by AGB stars, Type Ia supernovae, and neutron star mergers, since
none of these are capable of launching galactic winds. For Type
II supernovae, on the other hand, the situation may be different,
depending on whether the metals ejected are primarily those that
were mixed with the ISM before the supernova explosions, or are
primarily unmixed supernova ejecta. In the former case the situation
is the same as with other nucleosynthetic sites. In the latter case,
on the other hand, the effect is simply to reduce the mass of metals
mX injected by each event. Since mX does not affect σ/〈SX〉, in this
case winds do not alter σ log Z at all.

Combining these two cases, we empirically modify our expres-
sion for the metallicity dispersion to

σ 2
log Z ≈ 1 + σ 2

w

8πf 2
d τf (ln 10)2

ln

(
1 + τf

τ0

)
, (107)

where fd is a factor equal to the fraction of metals retained in the
disc for elements whose primary origin site is not Type II SNe,
and is a factor between that and unity for elements that do come
primarily from Type II SNe. In the Milky Way and similar galaxies,

the observed fraction of disc metals is fd ≈ 0.5 (e.g. Tumlinson et al.
2011; Werk et al. 2014). Inserting our fiducial Milky Way values
from Table 1, we obtain

σlog Z ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.12, (SNII)

0.009 (SNIa)

0.035, (AGB)

0.22, (NSM)

, (108)

where we have adopted fd = 0.5 for SNII, recalling that the true
value could be closer to unity, which in turn would decrease σ log Z as
f −1

d ; this introduces an uncertainty of somewhat less than a factor
of 2. Also note that our estimate for NSM is based on our rather
arbitrarily chosen value of σw for these events, and thus should be
regarded as extremely uncertain.

Using our more general expressions for τ f and τ 0 and their re-
lationship to the star formation rate in the case of SNII-borne ele-
ments, we have

σlog Z ≈ 0.065

(
fd

0.5

)−1 (
fg

0.5

)−1/4

σ
−3/4
g,1 t

1/4
orb,2t

−1/2
∗,1 ·

×
(

1 + 0.029 ln
fg

0.5
+ 0.31 ln σg,1

− 0.053 ln torb,2 + 0.11 ln t∗,1

)1/2
, (109)

where we have approximated τ f/τ 0 � 1. The equivalent expression
for AGB-produced elements, using the same value of τ 0 everywhere
for lack of an observational basis on which to vary this value, is

σlog Z ≈ 0.016

(
fd

0.5

)−1 (
fg

0.5

)−1/4

σ
−3/4
g,1 t

1/4
orb,2t

−1/2
∗,1 ·

×
(

1 + 0.023 ln
fg

0.5
+ 0.069 ln σg,1

− 0.023 ln torb,2 + 0.046 ln t∗,1

)1/2
(110)

Thus, we arrive at a robust first-principles explanation for why the
typical metallicity dispersion for α elements in nearby disc galaxies
is ∼0.1.

3.3 Spatial correlations

We next examine the correlations in space predicted by our model.
Note that, although we have computed the spatial correlation of the
metal field, because there are no gas dynamics in our simple model
we are implicitly assuming a constant gas density. Since movements
of gas will change the metal density but not the metallicity, we
should therefore think of our prediction of ξ as being a prediction
of the spatial correlation of metallicity rather than metal density.
We also note that, in the case of small variations, the correlation is
the same whether we consider absolute or logarithmic metallicities.

Before proceeding to a numerical evaluation, it is helpful to con-
sider how we expect the correlation at fixed physical (as opposed to
dimensionless) scale to behave as we alter dimensional quantities.
Consider a region with diffusion coefficient κ and injection rate
�, where star formation has been going on for a physical time t∗.
Moreover, suppose that injected metals are dispersed over an ini-
tial physical radius x0, which is related to τ 0 by τ 0 = (x0/xs)2/2.
Writing equation (67) in terms of the physical variables x = rxs and
t∗ = τ fts, and making a change of variables a = (�/κ)1/4k in the
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Figure 4. Pearson correlation of metals ξ (x) as a function of separation x,
computed for Milky Way Solar Circle parameters (solid lines, Table 1). The
two solid lines use our standard parameters; one shows results for elements
whose origin sites are supernovae or neutron star mergers (which all have
the same correlation – see main text) and one shows elements produced
by AGB stars. Various other line styles show results for supernovae and
neutron star mergers using variations on our standard parameter choices:
a star formation duration of 5 Gyr rather than 10 Gyr (dashed), half the
standard supernova blast wave merger radius (dotted), and three times the
standard diffusion coefficient (dot–dashed).

integral, the correlation becomes is

ξ (x) = 2

ln
(

1 + 2κt∗
x2

0

) ∫ ∞

0
e−x2

0 a2
(

1 − e−2κt∗a2
) J0 (ax)

a
da.

(111)

The important point to take from this expression is that the correla-
tion at a given fixed physical length x is independent of the injection
rate � or the dispersion in mass injected σw . It depends only on the
physical injection radius x0 and the product of the time over which
metal injection has taken place t∗ and the diffusion coefficient κ .
Of these quantities, only x0 could plausibly be different between
different nucleosynthetic sites, and we expect x0 to be nearly the
same for Type Ia SN, Type II SN, and neutron star mergers, since
all three launch blast waves with comparable energy budgets; only
AGB stars will differ. Thus even without performing any numerical
evaluations, we arrive at the interesting conclusion that elements
whose dominant formation sites are either type of supernova or
neutron star mergers should all show nearly the same spatial cor-
relation; only elements that originate in AGB stars should appear
different.

We show the correlation at constant time computed for our fidu-
cial Milky Way parameters (Table 1) in Fig. 4. First focus on the
solid lines, which show our standard parameter choices. One in-
teresting conclusion to draw from this figure is that, for elements
produced in supernovae or mergers, there are non-negligible corre-
lations in abundances even over kpc scales. The correlation does not
drop to 0.5 until the separation reaches 600 pc, and remains above
30 per cent out to distance of 1.3 kpc. Elements produced by AGB
stars are substantially less correlated, with significant correlations
confined to �100 pc scales.

Now consider the other line styles, which show the sensitivity of
our results to various parameter choices. We see that the correlation
is relatively insensitive to x0. It depends in the same way on κ and
t∗ (since these enter as a product), but since in real systems κ is

Figure 5. Pearson correlation for metals produced by supernova-like in-
jection events, evaluated for parameters appropriate to local spiral galaxies,
local dwarf galaxies, and z ≈ 2 star-forming discs. The exact parameters
used are as follows: fg = (0.5, 0.9, 0.7), σ g, 1 = (0.8, 0.6, 4), torb, 2 = (2, 0.5,
2), and t∗, 1 = (1, 1, 0.25). Here, the first entry is the local spiral case, the
second is the local dwarf case, and the third is the high-z case.

the more uncertain of the two parameters, we can regard it as the
one most likely to affect the results. The effect of varying κ can be
approximated well by simply rescaling the correlation function by a
factor of κ1/2, i.e. increasing the diffusion coefficient by a factor of 3
causes the physical scale that corresponds to a particular correlation
value to increase by a factor of nearly

√
3.

We can also use equation (111) to investigate how the correla-
tion scale should change with galactic properties. Examining the
expression, we see that the physical correlation length is sensitive
to only two physical length scales, x0 and

√
2κt∗. The former is an

effective radius over which a single event injects metals, and we can
think of the latter as the effective length scale over which diffusion
spreads metals in a time t∗. Using the physical scalings established
above, and considering the case of supernova-like injection events,
we expect these to vary with macroscopic galactic properties as

x0 ≈ 21

(
fg

0.5

)0.37

σ
−2/5
g,1 t0.74

orb,2 pc, (112)

√
2κt∗ ≈ 2.0

(
fg

0.5

)1/2

σg,1t
1/2
orb,2t

1/2
∗,1 kpc, (113)

where we have taken E51 = Q = 1 in the numerical evaluation.
It is interesting to use these scalings to evaluate the correlation

for parameters typical of different types of galaxies. We do so in
Fig. 5, using parameter choices appropriate for local spirals, local
dwarfs, and z ≈ 2 star-forming discs. The plot shows that, at a fixed
physical scale, we expect the metallicities in high-z discs to be the
most correlated and local dwarfs to be the least correlated, with
local spirals in between.

We summarize the dependence of the correlation on galaxy prop-
erties in Fig. 6. In this figure we show contour plots of x0.5, defined
by the implicit relation ξ (x0.5) = 0.5, i.e. x0.5 is the length scale for
which the correlation of the metal field is 50 per cent. The figure
shows two different star formation ages t∗, one appropriate to mod-
ern galaxies, and one appropriate to systems at z ∼ 2. For a fixed
system age, the correlation length clearly increases towards higher
velocity dispersion and higher orbital periods. Thus in general we
expect that smaller galaxies, which tend to have smaller orbital
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Figure 6. Correlation length x0.5, defined as the length scale for which the
Pearson correlation reaches 0.5 for Type II supernova-produced elements,
as a function of ISM velocity dispersion σ g and galaxy orbital period torb.
The top panel shows the results for galaxies with a star formation age
t∗ = 10 Gyr, appropriate for the present day, while the bottom shows galaxies
at t∗ = 2.5 Gyr, appropriate for z ∼ 2. All calculations use fg = 0.5. Labels
stars indicate the approximate locations of the ‘typical’ local spiral, local
dwarf, and high-z star-forming galaxy parameters shown in Fig. 5.

periods and velocity dispersions, will have less highly correlated
metal fields than larger galaxies. If one held all other galaxy proper-
ties fixed, the correlation would grow with cosmic time. However,
the mean velocity dispersions of galaxies decreases with redshift
(e.g. Wuyts et al. 2016), and the gas fraction increases with red-
shift (e.g. Tacconi et al. 2013). This compound effect pushes high-
redshift galaxies to higher correlation lengths; therefore, at least at
fixed stellar or halo mass, galaxies tend to have a longer correlation
length at higher redshift.

3.4 Space and time correlations

Making the same substitution from dimensionless to physical vari-
ables as in the previous section, the space–time correlation function
(equation 88) is

ξ (x,�t) = 2√
ln

(
1 + 2κt∗

x2
0

)
ln

[
1 + 2κ(t∗−�t)

x2
0

] ·

×
∫ ∞

0
e−(κ�t+x2

0 )a2
[
1 − e−2κ(t∗−�t)a2

] J0(ax)

a
da, (114)

Figure 7. Pearson correlation ξ of the metal field produced by supernova-
or supernova-like injection events as a function of separation in space x and
time �t. The three panels show three sets of example parameters, appropriate
for local spirals, local dwarfs, and high-z star-forming galaxies, as indicated.
Parameter values are the same as those used in Fig. 5.

where �t is the separation in physical time. As with the correlation
at fixed time, � and σw do not enter, and thus both the correlation in
time and the correlation in space are expected to be the same for all
astrophysical origin sites that inject their products over comparable
physical size scales in the ISM.

In Fig. 7 we show the predicted correlation as a function of
space and time separation for elements injected by supernova-like
explosions, for the same three example parameter sets (local spirals,
local dwarfs, and high-z star-forming galaxies) as in Fig. 5. We see
that local galaxies show significant correlations in their metal fields
at fixed position even over time-scales of ∼100 Myr. The correlation
does not drop below ξ = 0.5 until times of ∼300 Myr in either local
dwarfs or spirals. Note that, because we have not included rotation
in our simple model, this should be interpreted as the correlation at
a fixed Lagrangian position, i.e. at a point orbiting with the galaxy.
None the less, this result implies that ISM element abundances in
local spirals take a relatively long time to ‘forget’ their prior states
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and re-randomize. At high redshift, on the other hand, this shuffling
occurs much more quickly, with 50 per cent correlation loss on time-
scales of only 10 Myr. The primary reason for this difference is that,
at small spatial separations, the correlation is determined by t∗ − �t,
and t∗ is substantially smaller at z ∼ 2 than today.

A final implication of the time-scales we have derived is that,
while events such as mergers or accretion of blobs of low-metallicity
gas are important for setting galaxies’ overall metallicities and
metallicity gradients, they are relatively unimportant for fluctua-
tion statistics. This is simply because, for most galaxies, mergers
or significant fluctuations in the rate of accretion from the cosmic
web occur over time-scales much larger than the correlation time.
Thus, a merger or similar event that scrambles the metallicity will
be ‘forgotten’ long before the next one occurs.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this first paper in a series, we present a formalism for studying
metallicity fluctuations in galaxies’ interstellar media and young
stellar populations. Our formalism treats metallicity evolution as
a stochastically forced diffusive system. While this is obviously a
substantial simplification of the true complexity of element injec-
tion and transport through the ISM, it captures the central qual-
itative feature that metallicity statistics result from a competition
between stochastic injection events, which produce inhomogeneity,
and mixing by interstellar turbulence, which homogenizes the gas.
Moreover, this system has the virtue that it is simple enough that we
can obtain exact analytic solutions for important statistical proper-
ties of the metal field and their dependence on the host galaxy and
the astrophysical origin site of the element in question.

The major findings of our investigation are as follows:

(i) Under the conditions found in the Milky Way near the Solar
Circle, the equilibrium dispersion in ISM and young stellar abun-
dance at any given time is expected to range from a low of ≈0.01
dex for elements injected by Type Ia supernovae to a high of ≈0.2
dex for elements produced by neutron star mergers. Elements whose
origin sites are AGB stars or Type II supernovae are intermediate
between these two limits, at ≈0.04 and ≈0.1 dex, respectively. Since
Type II supernova-produced elements are the most easily measured
in the gas phase (e.g. O, N), this means that most gas phase abun-
dance measurements in nearby galaxies like the Milky Way should
return abundances spreads of ≈0.1 dex. This value is consistent
with recent measurements of the oxygen abundance scatter in the
ISM of the Milky Way and similar nearby galaxies (e.g. Balser et al.
2015; Berg et al. 2015; Vogt et al. 2017), and with the results of
high-resolution non-cosmological simulations (Kubryk, Prantzos &
Athanassoula 2013).

(ii) We predict that, for any element, the scatter should vary
systematically with galaxy properties as described in equation (109).
At fixed age, the most important factors in determining this variation
are the fraction of metals produced that are retained in the disc, fd

and the gas velocity dispersion σ g. Increases in either of these
factors reduce the abundance scatter. The age of the system, the gas
fraction and the orbital period also play a lesser role. As a result
of these dependencies, dwarf galaxies, which systematically retain
fewer metals and have (slightly) lower velocity dispersions than
spirals, should show larger abundance scatters than spirals at fixed
galactocentric radius.

(iii) This dispersion should show significant spatial correlations.
For conditions similar to those at the Milky Way Solar Circle,
metal abundances should be 50 per cent correlated on size scales of

∼0.5 kpc, with correlations at the 20–30 per cent level persisting out
to distances of ∼1–2 kpc. The correlation length will be substan-
tially smaller in dwarf galaxies, ∼0.1–0.2 kpc. These predictions
are directly testable using IFU surveys of nearby galaxies, such
as SAMI (Allen et al. 2015), CALIFA (Sánchez et al. 2012), and
MaNGA (Bundy et al. 2015).

(iv) Abundances are also correlated in time for surprisingly long
periods, implying that stars born at similar locations at two different
times will have correlated abundances. The time required for the
ISM of the Milky Way to ‘forget’ its abundances, meaning that the
correlation drops below ∼50 per cent, is ∼300 Myr, implying that
ISM abundances at a given position are randomized only about once
per orbit. This resetting time is comparable for local dwarfs, but the
ISM memory time is much smaller in the high-redshift universe as
a result of the lower overall age of galaxies.

Correlations in metal fields represent both a challenge and an
opportunity for chemical tagging studies. The challenge is that,
for much chemical tagging work, the implicit assumption has been
that stars form in discrete clusters that are internally chemically
uniform or close to it, but that are essentially uncorrelated from one
cluster to another (e.g. Bland-Hawthorn et al. 2010a; Ting et al.
2015). This would make it easy to identify and separate clusters.
However, if abundances are correlated on scales of kpc and times
of hundreds of Myr, the number of ‘unique’ chemical signatures
may be much smaller than had previously been assumed, even if
there is sufficient spread in chemical space. Rather than chemical
space resolving into discrete and well-separated clusters, stars may
populate it in a much more continuous, fractal distribution, exactly
as is observed to be the case in modern measurements of the spatial
positions and age distributions of young stars. This may thwart some
approaches to analysis that rely on cluster-finding in chemical space
(e.g. Ting et al. 2016; Bland-Hawthorn & Sharma 2016), at least in
the most stringent context of chemical tagging, where we look for
stars that were born in the same cluster instead of an association
of star forming regions. However, it opens up new possibilities as
well, since we show in this paper that complex structures in chemical
space can be mapped on to structures in physical space and time, not
just in instantaneous bursts over small spatial scales, but covering a
very wide range of space and time-scales.

The model we have developed here is very simple. We have
not examined the correlation between elements with similar origin
sites, which limits our ability to predict full correlations in chemical
space. For example, we would expect α element abundances to be
correlated with one another, since the same supernovae will produce
contribute across multiple elements. Exploring statistics of this sort,
and their ability to break degeneracies induced by chemical space
correlation, is the subject of the next paper in this series.

We also have not accounted for the radial structure of galaxies,
nor for large-scale inhomogeneities such as spiral arms. Radial
metallicity gradients, and conservation of angular momentum more
generally, will likely make metallicity spatial statistics anisotropic,
with different diffusion rates and correlation lengths in the radial
and azimuthal directions. Because we have not treated this effect
explicitly, in galaxies with strong gradients our model is likely
to provide more reliable results for the azimuthal than the radial
correlation. In galaxies with strong spiral patterns, arms will also
likely imprint features on metallicity statistics at the Toomre scale,
the interarm-spacing, or both. Measuring these effects quantitatively
likely requires a campaign of numerical simulations. The correlation
length scales we derive in this analysis suggest that these simulations
will need to have ∼10 pc or better resolution, so that mixing is
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not dominated by numerical diffusion on the ∼100 pc natural size
scales of the metal field. This requirement suggests these will likely
have to be non-cosmological simulations for the time being. Such
a program will be required to make sense of the chemical-space
data that are already in hand, and the much larger data set that will
become available in the next few years.

AC K N OW L E D G E M E N T S

MRK is supported by the Australian Research Council Discov-
ery Projects funding scheme, project DP160100695. YST is sup-
ported by the Australian Research Council Discovery Project fund-
ing scheme, project DP160103747, the Carnegie-Princeton Fellow-
ship, and the Martin A. and Helen Chooljian Membership from the
Institute for Advanced Study in Princeton.

R E F E R E N C E S

Adamo A. et al., 2017, ApJ, 841, 131
Allen J. T. et al., 2015, MNRAS, 446, 1567
Balser D. S., Wenger T. V., Anderson L. D., Bania T. M., 2015, ApJ, 806,

199
Bastian N. et al., 2012, MNRAS, 419, 2606
Berg D. A., Skillman E. D., Croxall K. V., Pogge R. W., Moustakas J.,

Johnson-Groh M., 2015, ApJ, 806, 16
Bland-Hawthorn J., Sharma S., 2016, Astron. Nachr., 337, 894
Bland-Hawthorn J., Krumholz M. R., Freeman K., 2010a, ApJ, 713, 166
Bland-Hawthorn J., Karlsson T., Sharma S., Krumholz M., Silk J., 2010b,

ApJ, 721, 582
Bovy J., 2016, ApJ, 817, 49
Bresolin F., Kennicutt R. C., 2015, MNRAS, 454, 3664
Brook C. B. et al., 2012, MNRAS, 426, 690
Bundy K. et al., 2015, ApJ, 798, 7
Chabrier G., 2005, in Corbelli E., Palla F., Zinnecker H., eds, Astrophysics

and Space Science Library, Vol. 327, The Initial Mass Function 50 Years
Later, Springer, Dordrecht, p. 41

Colbrook M. J., Ma X., Hopkins P. F., Squire J., 2017, MNRAS, 467, 2421
Cox N. L. J. et al., 2012, A&A, 537, A35
Croxall K. V., van Zee L., Lee H., Skillman E. D., Lee J. C., Côté S.,
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A P P E N D I X : P RO O F O F VA L I D I T Y O F
A P P ROX I M ATI O N FO R SX

In this appendix we demonstrate that

lim
R′→∞

1

A

∫
A

〈
SX(r + r ′)SX(r ′)

〉
d2r ′

= lim
R′→∞

1

A

∫
A

〈
SX,A(r + r ′)SX,A(r ′)

〉
d2r ′, (A1)

where SX, A is as defined in equation (46), i.e. it includes only those
events from SX that are injected radii r′ < R′, so that they lie inside
A. To demonstrate this, let us divide the sum on the left-hand side
of equation (A1) into event pairs that are both inside R′ and pairs
where one or both are outside R′:〈

1

A

∫
A

SX(r + r ′)SX(r ′) d2r ′
〉

=
〈

1

A

∫
A

[
SX,A(r + r ′)SX,A(r ′)

+
∑

i

H (ri − R′)
∑

j

H (rj − R′) ·

× wiwjφ(r + r ′ − r i , τi)φ(r ′ − rj , τj )

]
d2r ′

〉
. (A2)

Here, we have defined H(x) as the Heaviside step function, which
is unity for x > 0 and zero for x < 0. We have also omitted the limit
as R′ → ∞ for brevity; from this point forward we shall understand
that all terms are to be evaluated in the limits R → ∞ and R′ → ∞,
with R � R′. The problem therefore reduces to demonstrating that,
in this limit, we have〈

1

A

∑
i

H (ri − R′)
∑

j

H (rj − R′) ·

×
∫

A

wiwjφ(r + r ′ − r i , τi)φ(r ′ − rj , τj ) d2r ′
〉

= 0. (A3)

Let us first consider the case where event j is outside A. Since
in this case |r ′ − rj | ≥ rj − R′ for r ′ inside A, and τ j is bounded
between 0 and τ f, we can set an upper limit on the value of φ inside
A,

φ(r ′ − rj , τj ) ≤ 1

4πτ0
e−(rj −R′)2/4(τ0+τf ) ∀ r ′ ∈ A. (A4)

Inserting this upper limit into equation (A3), and noting that
the integral of the remaining φ term over A is bounded above by

unity regardless of its arguments (since the integral over all space
is always unity), we have∫

A

wiwjφ(r + r ′ − r i , τi)φ(r ′ − rj , τj ) d2r ′

≤ wiwj

4πτ0
e−(rj −R′)2/4(τ0+τf ). (A5)

If event i is instead the one outside A, we can use the same argument
to derive a nearly identical upper limit with R′ replaced by R′ − r.
Since we are interested in the limit where R′ � r, this is essentially
the same. Thus, we have shown〈

1

A

∑
i

H (ri − R′)
∑

j

H (rj − R′) ·

×
∫

A

wiwjφ(r + r ′ − r i , τi)φ(r ′ − rj , τj ) d2r ′
〉

≤
〈

1

A

∑
i

H (ri − R′)
∑

j

H (rj − R′) ·

× wiwj

4πτ0
e−(max(ri ,rj )−R′)2/4(τ0+τf )

〉
. (A6)

Since the expected number of events outside R′ approaches πR2

for R � R′ � 1, and max (ri, rj) > r, the expectation value on the
right-hand side of equation (A6) is limited above by〈

1

A

∑
i

H (ri − R′)
∑

j

H (rj − R′) ·

× wiwj

4πτ0
e−(max(ri ,rj )−R′)2/4(τ0+τf )

〉

≤
〈
wiwj

〉
4τ0

(
R2

A

)∫ ∞

R′
pr (r)e−(r−R′)2/4(τ0+τf ) dr. (A7)

The integral can be evaluated analytically, and in the limit R � R′

� 1, the result is

R2

A

∫ ∞

R′
pr (r) e−(r−R′)2/4(τ0+τf ) dr = 2

R′

√
τ0 + τf

π
. (A8)

This clearly approaches 0 as R′ → ∞, which demonstrates the
required result.
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