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ABSTRACT
The evolution of self-gravitating clouds of isothermal gas forms the basis of many star for-
mation theories. Therefore it is important to know under what conditions such a cloud will
undergo monolithic collapse into a single, massive object, or will fragment into a spectrum of
smaller ones. And if it fragments, do initial conditions (e.g. Jeans mass, sonic mass) influence
the mass function of the fragments, as predicted by many theories of star formation? In this
paper we show that the relevant parameter separating monolithic collapse from fragmentation
is not the Mach number of the initial turbulence (as suspected by many), but the infall Mach
number Minfall ∼ √

GM/(Rc2
s ), equivalent to the number of Jeans masses in the initial cloud

NJ. We also show that fragmenting clouds produce a power-law mass function with slopes
close to the expected -2 (i.e. equal mass in all logarithmic mass intervals). However, the low-
mass cut-off of this mass function is entirely numerical; the initial properties of the cloud have
no effect on it. In other words, if Minfall � 1, fragmentation proceeds without limit to masses
much smaller than the initial Jeans mass.
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1 IN T RO D U C T I O N

The evolution of a gravitationally bound isothermal fluid is the ‘base
model’ for a large number of astrophysical phenomena, including
the formation of stars. In the case of star formation, the highly effi-
cient cooling of molecular gas produces an approximately isother-
mal behaviour on a wide range of scales. Of course this neglects a
huge range of physics (e.g. radiation, magnetic fields, optically thick
cooling), but clearly one would like to understand this nominally
simple case before considering additional physics.

The first modern theories of star formation showed that dense gas
clouds are unstable to gravitational collapse (Jeans 1902), which still
forms the basis of our understanding of the process. Later analytical
work showed that (in highly idealized scenarios) the characteristic
length scale of the instability (Jeans-length) decreases faster than
the original cloud, leading to fragmentation (see e.g. Hoyle 1953;
Hunter 1962, 1964), which would repeat in the (idealized) evolu-
tion of these substructures. Later Tohline (1980) showed that it is
actually possible for an isothermal cloud to collapse to a single ob-
ject without fragmenting. This is a key assumption of the modern
‘gravito-turbulent’ star formation models (e.g. Padoan & Nordlund
2002; Hennebelle & Chabrier 2008, 2009, 2013; Hopkins 2012a).
These models predict the mass distribution of self-gravitating clouds
from various random-field approximations for the turbulent gas and
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then use it to infer the mass distribution of collapsed objects (stars).
This means that these theories essentially predict the initial mass
function of stars (IMF) from isothermal turbulence and gravity.

Isothermal turbulence with gravity is inherently scale-free1 (Mc-
Kee & Ostriker 2007; Krumholz 2014), so explaining the turnover in
the IMF requires a mass scale from either additional, non-scale-free
physics (e.g. protostellar heating, see Krumholz 2011) or from ini-
tial conditions. The specific set of ‘turbulent fragmentation’ models
mentioned here all fall into the latter category: they predict that the
initial turbulent properties imprint a mass scale (Msonic, the mass of
a self-gravitating sphere of gas with transonic turbulence, see equa-
tion (8) later), where the mass distribution starts deviating from the
scale-free result (a power law). However, other works (including
some of the same authors) have argued that in a scale-free fragmen-
tation cascade the initial conditions are quickly ‘forgotten’ by the
system (Guszejnov, Krumholz & Hopkins 2016; Guszejnov, Hop-
kins & Grudić 2018) so the turnover in the IMF can only come from
additional physics (e.g. Larson 2005; Jappsen et al. 2005; Bonnell,
Clarke & Bate 2006).

There has been significant effort to numerically verify these
claims. Most simulations find that ‘supersonic clouds’ (we will de-

1Scale-free in this context means the equations governing the system’s
evolution have no inherent scales, but initial conditions can still imprint a
mass scale (e.g. Jeans mass). Note that the scale-free statement only applies
above the dissipation scale, which is negligible in astrophysical applications.
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fine this rigorously below) fragment into a spectrum of smaller ob-
jects (e.g. Goodwin, Whitworth & Ward-Thompson 2004; Dobbs,
Bonnell & Pringle 2006; Walch, Whitworth & Girichidis 2012;
Murray et al. 2017) while ‘subsonic clouds’ undergo monolithic
collapse (e.g. Vázquez-Semadeni, Ballesteros-Paredes & Klessen
2003; Gong & Ostriker 2009, 2011) similar to the analytical
Larson–Penston solution (Larson 1969; Penston 1969). Of the few
convergence studies for the fragmenting case, some report non-
convergence up to the highest probed numerical resolution (see e.g.
Martel, Evans & Shapiro 2006; Kratter et al. 2010; Lee & Hen-
nebelle 2018; Federrath, Krumholz & Hopkins 2017b), but a cou-
ple have claimed convergence (Gong & Ostriker 2015; Haugbølle,
Padoan & Nordlund 2018) in the mass function (despite the fact
that their absolute resolution is comparable or lower than the stud-
ies claiming non-convergence).

In at least one special case it is clear that non-convergence is the
physically correct answer: Inutsuka & Miyama (1992) show ana-
lytically that isothermal filaments collapse to infinite line density
faster than they can fragment along their length, an outcome that
cannot be described as collapse to one or more point masses. Thus
a simulation of this particular configuration, or of one that evolves
into it (e.g. the slowly rotating Gaussian cloud test of Boss 1991),
should not produce a converged outcome for the mass distribution of
point-like fragments. Careful resolution studies confirm this (Boss
et al. 2000): as long as the gas remains isothermal and the simulation
resolves the local Jeans length, no fragmentation occurs. Fragmen-
tation only occurs when the rising density of the filament drives
the local Jeans length below the maximum allowed resolution, and
the resulting fragment masses are determined entirely by the choice
of maximum resolution. There is no converged answer. However,
it is not clear if this result applies only to the special case of an
isothermal filament, or if non-convergence is the typical outcome
for isothermal collapse.

Therefore, in this paper we use extremely high-resolution simula-
tions, reaching a maximum density resolution orders of magnitudes
higher than the previous studies, to follow the evolution of a self-
gravitating isothermal ball of gas, in order to explore the following
questions:

(i) What are the conditions that determine when a cloud will
fragment versus collapse monolithically?

(ii) Do the initial conditions (e.g. sonic mass, Jeans mass) imprint
a mass scale into the mass function of the final fragments?

(iii) Is there a converged low-mass cut-off for an isothermal frag-
mentation cascade, or does it proceed ‘indefinitely’?

Our paper is organized as follows. Sections 2 and 3 detail the
equations solved and the numerical methods. Section 4 shows our
results. We also detail a number of additional numerical tests in
Appendix.

2 ISOTHERMAL C OLLAPSE

An isothermal, self-gravitating fluid (well above the dissipation
scale) is completely described by the following closed set of equa-
tions:

∂

∂t
(ρ) + ∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · (ρv ⊗ v) = −∇P − ρ∇�, (1)

where ρ and v are the usual fluid density and velocity, while P =
c2
s ρ is the thermal pressure (cs = const. is the isothermal sound

speed) and � is the gravitational potential (∇2� = 4πGρ, where
G is the gravitational constant). By dividing out the characteristic
scales of the system (size: L0, density: ρ0, and sound speed: cs) we
can make these equations dimensionless

∂

∂t̃
(ρ̃) + ∇̃ · (ρ̃ṽ) = 0,

∂

∂t̃
(ρ̃ṽ) + ∇̃ · (ρ̃ṽ ⊗ ṽ) = −∇̃ρ̃ − αρ̃∇̃�̃, (2)

where t̃ ≡ tcs/L0, ∇̃ ≡ L0∇, and �̃ ≡ �

Gρ0L2
0
, while α ≡

c2
s /(Gρ0L

2
0) is the (thermal) virial parameter. It is useful to intro-

duce the Mach number M2 ≡ 1
3 〈||v||2/c2

s 〉 = 〈||ṽ||2〉. By introduc-
ing the virial parameter α and the Mach number M we normalize
the density and velocity fields (e.g. Gaussian velocity distribution,
dispersion set by M).In other words, the dynamics are entirely de-
termined by the two dimensionless parameters α and M, which are
fixed by the initial conditions. The only way to imprint scales on
the problem is therefore through these ICs.

2.1 Usual stability measures

When discussing the stability of an isothermal ball of gas the litera-
ture uses a large number of different quantities to characterize these
systems. The most common is the virial parameter, which is the
ratio of two times the energy in random motion over the potential
energy.2 In our case

α ≡ 2Erandom,kin

Epot
∼ 2Mcloud

(
3
2 c2

s + 1
2 〈||v||2〉)

3
5

GM2
cloud

Rcloud

= 5Rcloudc
2
s (1 + M2)

GMcloud
. (3)

We can similarly define the thermal virial parameter that only takes
thermal motion into account which leads to

αthermal ≡ 2Ethermal

Epot
∼ 5Rcloudc

2
s

GMcloud
= α

1 + M2 . (4)

Since the behaviour of fluids drastically changes when they become
supersonic, another measure is the infall Mach number, the char-
acteristic velocity the infalling material would have (relative to the
sound speed), if all the potential energy was transferred to infall
motion.3 In our case this yields

Minfall ≡ vinfall

cs

∼
√

1
3

Epot

Mcloud

cs

∼
√

GMcloud

5Rcloudc2
s

= (αthermal)
−1/2 .

(5)

Since the collapse of such isothermal clouds is mainly precipitated
by the Jeans-like instabilities (whose critical masses are dimen-
sionally equivalent to the Jeans mass) another common measure of

2Note that it is common in the literature to define the virial parameter
without thermal energy (e.g. see Federrath & Klessen 2012). The mapping

between the two definitions is αno thermal = α M2

1+M2 , which is close to unity

for supersonic clouds. Note that using this alternative definition does not
change our results.
3The fact that the mode of collapse changes form monolithic collapse to
runaway fragmentation changes around Minfall ∼ 3 instead of unity (see
Section 4 and Fig. 4) indicates that only a fraction of the potential energy is
transferred to infall motion.
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Table 1. Resolution parameters: 1) Fractional mass resolution �m/Mcloud, 2) Spatial resolution �x/Rcloudαthermal where ρ = �m/δx3 becomes high enough
that the corresponding Jeans mass becomes unresolved (<�m), 3) Highest resolvable density ρmax/(ρcloud

0 α3
thermal), the corresponding Jeans mass is �m, 4)

Smallest resolved time-scale �tmin/t
cloud
dyn,0α

3/2
thermal where �t = �x

cs
and 5) the number of grid points N effective

Euler required in an Eulerian simulation (satisfying �x
= ϕ�xgrid from Truelove et al. 1997, where ϕ ∼ 1). Note that the CPU cost of these calculations (at best) scale as Nparticlelog Nparticle × Ntimesteps which means
going up one level in resolution (e.g. from 643 to 1283) increases the computational cost by roughly a factor of 100.

�m/Mcloud Nparticle �x/Rcloudαthermal ρmax/(ρcloud
0 α3

thermal)
�tmin
tcloud
dyn,0

α
3/2
thermal N effective

Euler

2 × 10−4 (16)3 9.5 × 10−4 1.2 × 106 1.8 × 10−4 (4200)3

3 × 10−5 (32)3 1.2 × 10−4 7.5 × 107 2.3 × 10−5 (3.3 × 104)3

4 × 10−6 (64)3 1.5 × 10−5 4.8 × 109 2.9 × 10−6 (2.7 × 105)3

5 × 10−7 (128)3 1.9 × 10−6 3.1 × 1011 3.6 × 10−7 (2.1 × 106)3

6 × 10−8 (256)3 2.3 × 10−7 2.0 × 1013 4.5 × 10−8 (1.7 × 107)3

7 × 10−9 (512)3 2.9 × 10−8 1.3 × 1015 5.6 × 10−9 (1.4 × 108)3

stability is the number of Jeans masses in the initial cloud

NJ ≡ MJeans

Mcloud
∼

(
3GMcloud

4πRcloudc2
s

)3/2

=
(

15

4π

)3/2

M3
infall. (6)

In the case of turbulent fragmentation the initial turbulence has a
characteristic mass scale, the sonic mass Msonic. To find it let us
suppose that the cloud virializes to α = 1 as energy is transferred
from gravity to turbulent motion. One of the characteristic size
scale of turbulence is the sonic length Rsonic. This is where turbulent
dispersion becomes supersonic, so

Rsonic ≡ Rcloud
c2
s

〈||vturb||2〉 = Rcloud

M2 ∼ R
2GMcloud
5Rcloudc2

s
− 1

, (7)

where we used the supersonic linewidth-size relation (v2
turb ∝ R).4

Msonic is the mass of a self-gravitating ball of gas with Rsonic radius
(see Hopkins 2013b), so

Msonic ≡ 2π2

3

c2
s Rsonic

G
. (8)

With equations (5), (7) and (8) we can formulate the number of
sonic masses in the initial cloud

NS ≡ Mcloud

Msonic
∼ 15

2π2
M2

infall

(
2M2

infall − 1
) ≈ 15

2π2
M4

infall. (9)

Note that αthermal, NJ and NS can be all expressed with the infall
Mach number (see equations 4–9) so we use only Minfall as a proxy
for all of them for the remainder of this paper.

3 SI M U L AT I O N S

For our simulation we use the GIZMO code (Hopkins 2015),5 with
the mesh-free Godunov ‘MFM’ method for hydrodynamics (Hop-
kins 2015). Note that we get similar results with other numerical
schemes (e.g. SPH), see Appendix A3. Self-gravity is included with
fully adaptive force and hydrodynamic resolution – no minimum
force length is enforced. Since we are simulating an isothermal sys-
tem with only self-gravity, the problem is scale-free and we can
work in code units of L = 2, cs = 1, G = 1, where L is the ini-
tial size of the box, cs is the sound speed of the gas, and G is the
gravitational constant. We start by performing an isothermal driven

4Note that in this expression we have already neglected magnetic fields, for
the full expression see Federrath & Klessen (2012).
5http://www.tapir.caltech.edu/∼phopkins/Site/GIZMO.html

turbulent box simulation without self-gravity (e.g. Schmidt et al.
2009; Federrath et al. 2010a; Price & Federrath 2010) in which
the driving force is realized as an Orstein–Uhlenbeck process fol-
lowing Bauer & Springel (2012), and consists of a natural mix of
compressive and solenoidal modes (Esolenoidal = 2Ecompressive). After
several crossing times the root-mean-square Mach number satu-
rates to M ∼ 1, and ρ̃ and ṽ are extracted from the simulation to
construct the initial conditions of the simulation with self-gravity.
These are then rescaled in the following way (using α and M, the
two parameters of isothermal turbulence):

(i) Velocities are rescaled so that 〈||ṽ||2〉 = 3M2.
(ii) The average density 〈ρ〉 is rescaled to satisfy equation (3) for

the specified α virial parameter.
(iii) The relative density fluctuations are rescaled to satisfy

〈| ln ρ̃|2〉 = ln
(
1 + b2M2

)
(see Federrath, Klessen & Schmidt

2008), where b = 1/2 is the ratio of compressive and
solenoidal driving in our initial condition. Effectively this means

ρ = f
(

1 − 〈ρold〉
ρold

)
〈ρ〉 + 〈ρ〉, where 〈ρ〉 is set in the previous step

and f is the appropriate scaling factor.

Note that in these initial conditions the density and velocity fields
are not fully self-consistent. In Appendix A2 we show that us-
ing proper turbulent initialization6 does not affect our results. We
also show that our results are insensitive to our choice of decay-
ing or driven turbulence during collapse as well as the compres-
sive/solenoidal fraction of the driving.7

The simulation starts out with Mcloud/�m gas particles, where
�m is our mass resolution (see Table 1 for details). These particles
evolve (now with fully adaptive self-gravity) following a discretized
version of equation (2) (see Hopkins 2015). They are turned into
collapsed objects (sink particles) if they satisfy the following crite-
ria, motivated by Federrath et al. 2010c:

(i) They are locally self-gravitating at the resolution scale using
the criteria from Hopkins, Narayanan & Murray 2013.

(ii) The mean density of this structure exceeds some ρmax, at this
point the thermal Jeans mass becomes unresolved following the
Truelove criterion (Truelove et al. 1997).

6By proper turbulent initialization we mean applying turbulent driving to the
system without gravity until statistical equilibrium is reached, then ‘turning
on’ gravity.
7Note that the insensitivity of the mass function to the initial turbulent
fluctuations (in isothermal systems) has already been shown by Girichidis
et al. (2011)
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Figure 1. Typical density maps for isothermal fragmentation (left) and monolithic collapse (right). On each figure the colourmap is stretched over a 2 dex
interval. In the fragmenting case (left) supersonic infall creates dense, filamentary structures with high-density ‘beads’ embedded in them. Many of these
structures are self-gravitating and undergo gravitational collapse, either forming sink particles or further fragmenting into even smaller objects. In case of
monolithic collapse there is only a single high-density region at the centre of the cloud, which accretes most of the gas.

(iii) They are part of a converging flow (∇ · v < 0).
(iv) They are the densest of all particles within the stencil of

interacting hydrodynamic cells, and there is no other sink particle
within the kernel radius enclosing these interacting cells.

These sink particles can grow by accreting gas from their sur-
roundings if the gas is gravitationally bound to the sink, within a
hydrodynamic stencil, and not tightly bound to any other sink par-
ticle. In Appendix A4 we explore the effects of our choice of sink
particle parameters.

Due to finite resolution our simulation cannot resolve the evolu-
tion and fragmentation of arbitrarily small structures. This means
that we set our mass resolution to the Jeans mass corresponding to
ρmax (based on Truelove et al. 1997), so

MJeans(ρmax) ∼ �m → ρmax ∼ c6
s

G3�m2
,

ρmax ∝ Mcloud(α)−2

(
�m

Mcloud

)−2

∝
(

�m

Mcloud

)−2

α2. (10)

In this paper we examine the effects of varying the two physical
parameters (the virial parameter α and the initial turbulent Mach
number M) on the evolution of an isothermal cloud. To ensure
that our results are physical we carry out a resolution study by
varying �m

Mcloud
. A number of further tests for numerical effects are

also carried out. They are detailed in Appendix. All simulations
(with one exception noted) are run until the gas is largely exhausted
and the sink particle IMF has remained stable for at least two cloud
dynamical times.

4 R ESULTS

We carried out a suite of simulations in the α-M parameter space
(our fiducial resolution is �m/Mcloud = 4 × 10−6) and found two
distinct modes of evolution (see Fig. 1 for surface density snapshots

and Fig. 2 for statistics). In the first case the collapse is close to
monolithic (most of the mass ends up in several massive objects)
while in the second case the cloud fragments during collapse, form-
ing a spectrum of low-mass objects (most of the mass in low-mass
objects).

The mass spectrum resulting from fragmentation is the well
known dN/dM ∝ M−2 distribution (see Fig. 2), which means equal
mass at each mass scale (see Guszejnov et al. 2018 and references
therein). Note that this mass spectrum is present even in the case
of monolithic collapse but only a small fraction of the total mass is
bound in these low-mass objects.

As Fig. 3 shows, there is no clear boundary in either the virial
parameter α or the Mach number M between the two regimes. In-
stead it is the infall Mach number Minfall that determines the mode
of collapse.8 The transition between monolithic collapse and frag-
mentation occurs around Minfall ≈ 3 (see Fig. 4). This boundary
roughly corresponds to the point where the characteristic velocity
of the infalling material becomes supersonic (this value is >1 be-
cause only a fraction of the potential energy is transferred to infall
motion, contrary to equation 5). Considering the filamentary nature
of density structures (see Fig. 1), we conjecture that fragmentation
is precipitated by localized supersonic infall.9 This infall leads to

8Note that the number of initial Jeans and sonic masses as well as the
thermal virial parameter are equally good predictors, because they are all
simple functions of Minfall, see Section 2.1 for how they relate.
9Isothermal supersonic turbulence has been shown to create filamentary
density structures, see e.g. Federrath et al. (2010b). Recent work by Federrath
(2016) has also shown that turbulence is required to reproduce the observed
properties of filaments. However, it should be noted that there are claims in
the literature that gravity can create realistic filamentary structures without
supersonic turbulence (see Heitsch et al. 2008; Smith, Glover & Klessen
2014; Gómez & Vázquez-Semadeni 2014)
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Figure 2. The final mass distribution of sink particles in isothermal gravitational collapse for different virial parameters α and fixed initial turbulent Mach
number of M = 1, demonstrating the two modes of isothermal collapse. The top row shows the number of particles per mass bin (IMF) while the bottom row
shows the total mass of sink particles in each (logarithmic) mass bin. The horizontal axis is normalized by the mass of the initial cloud. In the α = 1.2 case
(left, blue) most of the mass ends up in a single object comparable in mass to the initial cloud (monolithic collapse). Meanwhile, in the α = 0.12 case (right,
red) most of the mass ends up in objects with much lower masses than the initial cloud (fragmentation). In both cases the low-mass end roughly has equal mass
in each logarithmic bin (this means a -2 power-law slope for the IMF), in agreement with theoretical predictions (e.g. Guszejnov et al. 2018).

the formation of high-density subregions that are self-gravitating
and collapse on their own, causing the fragmentation of the cloud.
Observation have found a similar trend that a higher Minfall (or the
equivalent NJ) leads to higher level of fragmentation within a cloud
(e.g. Palau et al. 2015).

Effect of Resolution on the Mass Distribution

In the numerical study of isothermal turbulence the dynamic range
(resolution) of the simulation plays an important role. If the dynamic
range is too small, a multitude of phenomena might not manifest
and the results are obscured by artificial edge effects. Since we
are primarily interested in the spectrum of self-gravitating objects,
let us consider the mass of the smallest resolvable self-gravitating
object (�m) in a generic simulation of isothermal fragmentation
with N particles/grid points. We find that

(i) for schemes that follow approximately uniform mass resolu-
tion (Lagrangian schemes like MFM, SPH, moving mesh methods,

and AMR set to ensure equal mass per cell): �m/Mcloud ∼ N −1,
trivially.

(ii) for schemes that follow approximately uniform spatial res-
olution (e.g. uniform Eulerian grids or Lagrangian schemes where
the minimum force softening is too large): since there is a spa-
tial resolution �x the smallest resolvable structure has a mass
of �m ∼ MJeans(�x) ∼ c3

s

Gρmax
. Using �m ∼ ρmax�x3 we get

�m/Mcloud ∼ c2
s

GMcloud
�x ∝ N−1/3.

This shows that schemes with uniform mass elements (like the
Meshless-Finite-Mass scheme we are using) are (as expected by
design) inherently superior at resolving mass distributions in Jeans-
like collapse for a given number of resolution elements because their
low-mass cut-off scales as N −1 compared to the N −1/3 for uniform
spatial resolution schemes (see Table 1 for specifics), provided they
use no minimum softening but allow structures to get as dense as
needed to reach the Truelove criterion.

Fig. 5 shows that the mass distribution in the fragmenting case
is close to a power law with a low-mass cut-off set by the mass
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Figure 3. Fraction of the total cloud mass that ultimately ends up in massive
fragments (Msink > 0.1Mcloud) for different initial virial parameters and
initial turbulent Mach numbers (blue: most of the mass undergoes monolithic
collapse, red: most of the mass ends up in small fragments). It is clear that
there is no specific α or initial turbulent M value separating the two modes
of collapse. However, the boundary is well fitted by Minfall = 3 (defined in
equation 5), plotted as a solid black line.

Figure 4. Fraction of the total cloud mass that ultimately ends up in massive
fragments (Msink > 0.1Mcloud) as a function of the infall Mach-number
(see equation 5) or equivalently the number of initial Jeans masses (see
equation 6). We define massive fragments as having at least 10 per cent of
initial cloud mass. Below this value (dashed line) we plot the mass of the
most massive sink particle relative to the cloud. There is a clear transition
around Minfall ∼ 2–4 between monolithic collapse and fragmentation, we

fitted generalized logistic functions
(
f (x) = (

1 + e(x−x0)/dx
)−ν

)
to the

data (solid lines) to make the transition more apparent (no line was fitted
at the highest resolution due to the low number of data points, but they
lie on the trend line predicted from lower resolution runs). As we go to
higher resolutions the transition becomes sharper. Note that the scatter arises
from the stochastic nature of the initial conditions (e.g. random velocity
field).

resolution of the simulation.10 In the monolithic collapse case the
distribution of low-mass fragments exhibits a similar behaviour,
although the majority of the mass is still contained in several high-
mass fragments (see Fig. 2 for reference). This appears to contradict
some claims in the literature (e.g. Gong & Ostriker 2015; Haugbølle
et al. 2018) that the mass spectrum peak converges around the sonic
mass or some other mass scale set by initial conditions. We believe
the discrepancy is related to several issues.

First, some authors are using uniform spatial resolution grids (e.g.
Gong & Ostriker 2015) for which even the highest resolution calcu-
lations can not resolve the fragmentation of substructures due to the
unfavourable �m ∝ N−1/3 scaling.11 Alternatively, it is possible that
these simulations start from initial conditions that are reminiscent of
the ‘monolithic collapse’ case (e.g. having substructures in the ini-
tial density field that undergo monolithic collapse), and only a small
fraction of mass undergoes runaway fragmentation. Although this
runaway process is unresolved, the mass function appears converged
as most of the mass is bound in objects well above the resolution
limit. In some cases authors use adaptive mesh refinement codes
and claim convergence, but the data does not support this claim
(e.g. see figs 4–6 in Haugbølle et al. 2018, where the IMF peak
roughly follows the predicted N −1/3 trend at higher resolutions12).
Finally, there is substantially greater numerical diffusivity in high
M flows, due to lack of Galilean invariance (Springel & Hernquist
2002), which is well-known to generate spurious heating and sup-
press small-scale structures in the simulation of ‘cold’ gravitational
collapse (see e.g. Hopkins 2015).

5 C O N C L U S I O N S

We investigated the evolution of self-gravitating, isothermal gas
with high-resolution Lagrangian hydrodynamic simulations. We
identified two distinct modes of collapse:

(i) Monolithic collapse (most of the mass ends up in one or a few
massive objects)

(ii) Runaway fragmentation (most of the mass ends up in a spec-
trum of low-mass fragments, which continues until the resolution
limit)

The mode of collapse is set by the infall Mach number Minfall ≡
vinfall

cs
∼

√
GM
R

cs
(equivalent to the initial number of Jeans masses in

the cloud), not the initial virial parameter or the Mach number of
the initial turbulent dispersion. We conjecture that the difference in
behaviour is due to sound waves ‘smoothing out’ density pertur-
bations when the infall is subsonic leading to a scenario similar to
the well-known solutions of isothermal collapse (e.g. Larson 1969;
Penston 1969; Shu 1977), but further tests are needed to verify this
claim.

10Note that the highest resolution run (�m/Mcloud = 7 × 10−9) was not
run until completion due to the CPU cost that arises from modelling tightly
bound binaries. At this point the system has turned only about 20 per cent of
its mass into sink particles, so we expect the IMF to evolve (e.g. accretion
should make it less bottom heavy), but the low-mass cut-off is already
established.
11To reach the resolution of our �m/Mcloud = 6 × 10−8 simulation,
≈4 × 1021 grid points would be needed, far exceeding the capabilities
of even large computer clusters.
12Although Haugbølle et al. (2018) use an AMR scheme, their mass resolu-
tion follows the unfavourable∝N−1/3 trend, due to the fact that the maximum
AMR refinement level is reached before the target mass resolution is.
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Figure 5. The mass distribution of sink particles (IMF) in a fragmenting cloud (Left: α = 0.12, M = 1, Right: α = 1.2, M = 1) for different mass resolutions.
The dashed lines mark mass scales from initial conditions (sonic mass Msonic and Jeans mass MJeans). For clarity the delta-function-like peaks around unit
relative mass were removed from the right figure (see Fig. 2 for an example). Lower resolution runs are not included in the right figure as they only produced a
single sink particle at unit relative mass. It is clear that the peak of the distribution is set by the resolution parameter �m/Mcloud, initial conditions imprint no
scales into the final result. This means that for the infinitely well-resolved case we would get an infinite fragmentation cascade.

In both modes of collapse we found that the mass distribution
of final objects develops a power-law behaviour at low masses,
close to dN/dM ∝ M −2, in agreement with theoretical expec-
tations (e.g. Elmegreen 1997; Padoan, Nordlund & Jones 1997;
Hennebelle & Chabrier 2008; Bonnell, Larson & Zinnecker 2007;
Ballesteros-Paredes et al. 2015). Note that in the case of mono-
lithic collapse most of the mass is actually in several massive frag-
ments that lie outside this power-law regime but the remaining
mass which does not end up in the ‘primary’ scale sinks forms a
power-law distribution, with no lower limit down to the resolution
scale.

We conducted a resolution study to examine whether the low-
mass cut-off of the power law in the mass distribution is determined
by the initial conditions of the cloud (e.g. its virial parameter or
initial turbulent properties) or by mass resolution. We found that
there is no convergence in the low-mass spectrum that appears in
either mode of collapse. In other words: the fragmentation goes
well below the initial Jeans mass, down to the mass resolution. This
agrees well with several studies (e.g. Martel et al. 2006; Kratter et al.
2010; Lee & Hennebelle 2018; Federrath et al. 2017b). However,
these results along with ours do appear to contradict some studies in
the literature. We believe the discrepancy is explained by different
simulation methods and the much wider dynamic range probed in
this study.

It is a common argument that subsonic structures do not fragment,
so the population of such structures (e.g. cores in star formation),
whose characteristic mass is set by the large-scale turbulent prop-
erties (e.g. sonic mass, see Hennebelle & Chabrier 2008; Hopkins
2012b), influence the final mass distribution. This is not the case
as these structures form in a larger, supersonic cloud that forms su-
personic substructures as well. These substructures have different
turbulent properties so they spawn a population of subsonic frag-
ments different from their parent. In the end this cascade washes
out any effects the initial conditions might have over the low-mass
end of the mass spectrum.

We find that once the fragmentation cascade starts, it proceeds to
infinitely small scales, similar to the idealized case of Hoyle (1953).
Initial properties (e.g. virial parameter, turbulent Mach number,

Jeans mass, turbulent driving) have no effect on this result, but they
may influence the details of the resulting mass distribution (e.g.
how close the peak is to the mass resolution). Note that our results
only apply to collapsing isothermal gas, additional physics would
imprint additional scales, allowing these parameters to exert greater
influence on structure formation.

Our results show that an isothermal fragmentation cascade has
to be terminated by additional physics (e.g. breakdown of scale-
free assumption at high densities); the initial conditions (e.g. sonic
mass) imprint no mass scale in the final mass distribution. This
means that star formation models that tie the IMF peak to initial
turbulent properties (e.g. Padoan & Nordlund 2002; Hennebelle &
Chabrier 2008; Hopkins 2012a) need to be modified.

More broadly, these results provide insight into the physical char-
acter of isothermal gravito-turbulent fragmentation: it is a self-
sustaining process, able to continuously generate enough power in
the density field on the smallest scales to drive further fragmentation.
The requisite energy to drive these small-scale density perturbations
must be produced by local gravitational collapse, in a manner that
is decoupled from energy injection at larger scales (see e.g. Ferrini,
Marchesoni & Vulpiani 1983; Robertson & Goldreich 2012; Mur-
ray et al. 2017). This is a very different picture from the classical
Kolmogorov energy cascade, in which all kinetic energy originates
at large scales and cascades to small scales, with none generated at
intermediate scales. Instead we can think of the structure formation
process as a mass cascade, where (through fragmentation) mass is
transferred to smaller scales (see e.g. Newman & Wasserman 1990;
Field, Blackman & Keto 2008; Guszejnov et al. 2018). Hence self-
gravity alters isothermal turbulence in a fundamental way. It follows
that any model of the ISM based upon the properties of non-self-
gravitating isothermal turbulence will fail to describe the internal
dynamics of the self-gravitating objects that form.
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A P P E N D I X : A D D I T I O NA L N U M E R I C A L T E S T S

A1 Effects of perturbed initial conditions

Due to the resource intense nature of the simulation, only one initial
realization of the initial conditions (e.g. the specific density field)
was simulated for a given resolution, virial parameter α and Mach
number M in Fig. 3. To test for the magnitude of stochastic effects
in different realizations (since the system is chaotic) we consider an
experiment where we follow the evolution of five different random
realizations with the same global Mach number and virial param-
eter. We also included a set where we added Gaussian noise to
the position and velocity of the initial gas particles. Fig. A1 shows
that the mass distribution of sink particles (IMF) is qualitatively
unchanged by these experiments.

A2 Effects of turbulent driving

The simulations mentioned in the main text include no external
driving for turbulence as this simplifies the problem and decreases
the number of degrees of freedom. Nevertheless, turbulent driving
could play an important role in star formation (see e.g. Federrath
et al. 2017a), although some authors have argued that turbulence in
clouds is driven primarily by their own self-gravity, not an external
cascade in the isothermal regime we are focusing on (Ballesteros-
Paredes et al. 2011; Robertson & Goldreich 2012; Ibáñez-Mejı́a
et al. 2016; Murray et al. 2017).

To investigate the effects of turbulent driving we carried out
several simulations where the initial conditions are generated by
driving the turbulence for several dynamical times without self-
gravity, then turning on gravity (as in e.g. Schmidt et al. 2009). Note
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Figure A1. The mass distribution of sink particles (IMF) for five different
simulations of clouds, each with the same initial α = 0.06 and turbulent Mach
number of M = 1, but the ICs are drawn randomly from different times in
a turbulent boy simulation (in other words, these are different ‘realizations’
of the ICs). Points show the median and error bars the 80 per cent inclusion
interval of the sink particle IMF for different realizations. In a second set of
simulations we added a random Gaussian perturbation to the initial position
and velocity of the gas particles. The IMF shape is qualitatively consistent
for different realizations even if we add significant perturbations on to it.

Figure A2. The mass distribution of sink particles (IMF) for a cloud with
initial α = 0.5 and M = 4. We compare our fiducial case of non-driven
(but still self-gravitating) turbulence with scenarios with different types of
turbulent driving. It is clear that the external driving has little to no effect on
the final distribution, regardless of the driving method.

that unlike the simulations in the main text in these cases the density
and velocity fields in the initial conditions are self-consistent with
the driving and initial Mach number. Fig. A2 shows that turbulent
driving has no qualitative effects on the resulting IMF.

A3 Effects of the hydrodynamic solver

As GIZMO is an inherently multimethod code, we can re-run several
simulations with different hydrodynamics schemes, but otherwise
identical physics. We compare:

Figure A3. The mass distribution of sink particles (IMF) using MFM and
SPH schemes. The predicted IMF is independent of the details of the hy-
drodynamics method.

Figure A4. The mass distribution of sink particles (IMF), comparing the
case where the sink particles are allowed merge (dashed, red) and the case
they are not (black, solid). As expected, the overall distribution shifts to
larger masses, but the initial conditions (e.g. MJeans Jeans and Msonic sonic
masses) play no role.

(i) The Meshless Finite-Mass (MFM) method (Hopkins 2015),
a Lagrangian, finite volume, second order, Godunov method (our
default in the text).

(ii) The ‘Pressure-Energy’ formulation of smoothed particle hy-
drodynamics (SPH; Hopkins 2013a), which has various improve-
ments over the original GADGET ‘Density-Entropy’ formulation it
is derived from (Springel & Hernquist 2002).

Although both are Lagrangian methods, the two work quite dif-
ferently. In MFM, inter-cell fluxes are the obtained by solving a
Riemann problem across each effective face between neighbouring
cells in such a way that mass fluxes cancel and the cells are moved
with the local fluid velocity. In SPH, effective forces between in-
teracting neighbour particles are derived from a discrete particle
Lagrangian involving the local fluid properties reconstructed from
a kernel density estimator. Despite these differences, we found that
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our choice of hydro solver these has no qualitative effect on our
results (see Fig. A3).

A4 Effects of the sink particle scheme

In our simulations sink particles are allowed to merge in order to
avoid the spawning of spurious sinks, which can significantly affect
their mass distribution. Two sink particles are allowed to merge if
the following criteria are met (based on Federrath et al. 2010c):

(i) Both are in the same interacting hydrodynamic element.
(ii) They are gravitationally bound.
(iii) Their epicentric radius is smaller than three times the gravi-

tational force softening and 10−4Rcloud.

To test whether this prescription has any effect on our results
we run several simulations where we forbid sink particle mergers.
Fig. A4 shows that allowing sink particles to merge affects their
final mass distribution by decreasing the number of sinks at the
resolution limit and thus shifting the peak to a slight higher mass.
Overall, it has no qualitative effect on our results as the low-mass
cut-off is still determined by the mass resolution.
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