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ABSTRACT
We present a large suite of simulations of the formation of low-mass star clusters. Our
simulations include an extensive set of physical processes – magnetohydrodynamics, radiative
transfer, and protostellar outflows – and span a wide range of virial parameters and magnetic
field strengths. Comparing the outcomes of our simulations to observations, we find that
simulations remaining close to virial balance throughout their history produce star formation
efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable
agreement with observations. Our results indicate that small-scale dissipation effects near
the protostellar surface provide a feedback loop for stabilizing the star formation efficiency.
This is true regardless of whether the balance is maintained by input of energy from large-
scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that
leave virial balance and undergo runaway collapse form stars too efficiently and produce an
IMF that becomes increasingly top heavy with time. In all cases, we find that the competition
between magnetic flux advection towards the protostar and outward advection due to magnetic
interchange instabilities, and the competition between turbulent amplification and reconnection
close to newly formed protostars renders the local magnetic field structure insensitive to the
strength of the large-scale field, ensuring that radiation is always more important than magnetic
support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple
stellar systems are similarly insensitive to variations in the initial conditions and generally agree
with observations within the range of statistical uncertainty.

Key words: stars: low-mass – stars: protostars – ISM: jets and outflows – ISM: magnetic
fields.

1 IN T RO D U C T I O N

The formation of stars through the collapse of pre-stellar molec-
ular clouds is a rich process, mediated by the coupled effects of
gravity, magnetic fields, turbulence, and feedback from protostellar
evolution in the form of outflows and radiation. To date, numerical
models of star cluster formation have mostly probed the coupling of
at most two of these effects. While most contemporary protostellar
cluster models include turbulence and self-gravity, the remaining ef-
fects have received a more piecemeal treatment. Models that include
magnetic effects and protostellar outflow feedback have typically
ignored radiative transfer (Li & Nakamura 2006; Wang et al. 2010;
Federrath 2015), while simulations that include radiative transfer
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with protostellar outflows have neglected magnetic fields (Hansen
et al. 2012; Krumholz, Klein & McKee 2012). Yet other works have
included magnetic fields and radiative transfer but not protostellar
outflows (Price & Bate 2008, 2009; Peters et al. 2011). Two ex-
ceptions that includes all three effects are the work of Myers et al.
(2014) and Li, Klein & McKee (2018), who consider the formation
of star clusters consistent with observations of regions of high-mass
star formation with mean column densities � = 1 g cm−3. In this
work, we perform an analogous study of regions of low-mass star
formation, characterized by a mean column density � = 0.1 g cm−3.
Under these conditions the coupling of radiation from young stars
to the infalling gas is weaker (Krumholz & McKee 2008; Krumholz
et al. 2010; Cunningham et al. 2011), and it is possible that magnetic
and protostellar outflow effects are more prominent.

A consistent and comprehensive theory of star formation must
simultaneously confront a number of observational constraints,
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as summarized in the review by Krumholz (2014). The relative
strengths of the magnetic field and gravity in a clump of molecular
gas are measured by the mass-to-flux ratio. Statistical surveys of
Zeeman splitting measurements indicate that this ratio is 2–3 times
larger than the critical value at which the magnetic field is strong
enough to prevent gravitational collapse (Falgarone et al. 2008;
Crutcher et al. 2010). Recent modelling that allows for the dif-
ference between the theoretical mass-to-flux ratio, which is area
weighted, and the observed one, which is density weighted, show
that the data summarized by Crutcher et al. (2010) are consistent
with a value for this ratio that is three times the critical value (Li,
McKee & Klein 2015).

Next, the collapse of a molecular cloud must give rise to a distri-
bution of stellar masses consistent with the observed stellar initial
mass function (IMF). The observed IMF is well represented by a
power law for stars more massive than 1 M� (Salpeter 1955) and
a lognormal distribution peaked at 0.2 M� for lower mass sources
(Chabrier 2005). Simulations suggest that magnetic fields influence
the process by which the IMF is established by adding support to
otherwise super-Jeans scale masses, thereby suppressing fragmen-
tation and influencing the distribution of stellar masses (Padoan
et al. 2007; Commerçon, Hennebelle & Henning 2011; Hen-
nebelle et al. 2011; Federrath & Klessen 2012; Myers et al. 2013).
Radiative heating from protostellar sources similarly acts to increase
the local Jeans mass that characterizes the gas in the protostars’
vicinity, further reducing fragmentation and inhibiting the forma-
tion of lower mass protostars (Bate 2009; Offner et al. 2009; Myers
et al. 2011; Krumholz, Klein & McKee 2011, 2012; Krumholz et al.
2016). Outflows also indirectly play a role in mediating the IMF by
reducing the rate of accretion on to stars, which in turn reduces the
rate of radiative heating. In spite of the complexity of the coupling
among magnetic, radiative and outflow feedback, the shape of the
IMF is remarkably insensitive to the star-forming environment, par-
ticularly for the majority of stars that are heavier than brown dwarfs
but not so massive as to be exceptionally rare, where observational
statistics are best constrained (Offner et al. 2014).

Not only must the complex physical processes associated with
star formation collude to fragment molecular clouds into a distri-
bution of masses that is consistent with the observed IMF, but the
star formation rate must also agree with observation. Star formation
is remarkably inefficient. Absent turbulent or magnetic support,
a molecular cloud should collapse entirely into stars on a free-
fall time-scale. In fact, the star formation efficiency per free-fall
time εff, defined as the fraction of gas mass that is converted to
stars per free-fall time, was found to lie between 0.001 and 0.09 by
Krumholz & Tan (2007); a much larger and more recent compilation
of data gives εff = 0.015 with a scatter of ∼0.5 dex for both Galac-
tic and extragalactic regions (Krumholz, Dekel & McKee 2012),
and subsequent authors have obtained similarly low values (e.g.
Garcı́a-Burillo et al. 2012; Evans, Heiderman & Vutisalchavakul
2014; Salim, Federrath & Kewley 2015; Usero et al. 2015; Heyer
et al. 2016).1

1 In contrast to these results, Murray (2011) and Lee, Miville-Deschênes &
Murray (2016) argue εff ∼ 1 in the most luminous star clusters, based on their
high ratios of ionizing luminosity to molecular gas mass. This interpretation
has been disputed by Feldmann & Gnedin (2011) and Krumholz (2014), who
suggest that these ratios are high not because εff is large, but rather because
very massive clusters have strong feedback that destroys their parent clouds
efficiently, thereby rendering invalid Murray’s and Lee et al.’s assumption
that one can identify and measure the gas mass of these clusters’ progenitors.
However, this dispute is immaterial for the low-mass, low-density clusters

Turbulence provides a significant source of support against rapid
collapse. Gas velocity dispersions inferred from observed molecular
cloud line width–size relations (Larson 1981) are consistent with the
inertial range scaling of both supersonic hydrodynamic and magne-
tohydrodynamical turbulence (Gammie & Ostriker 1996; Ostriker,
Gammie & Stone 1999) and the magnitude of the velocity disper-
sions is consistent with a near virial equipartition between turbulent
support and gravitational contraction (McKee, Li & Klein 2010).
Numerical studies of magnetized turbulence show that turbulence at
virial levels, in conjunction with protostellar outflows, can produce
values of εff close to the observed, low values (Li & Nakamura 2006;
Wang et al. 2010; Padoan, Haugbølle & Nordlund 2012; Krumholz,
Klein & McKee 2012; Myers et al. 2014; Federrath 2015).

Magnetohydrodynamical turbulence, however, undergoes expo-
nential decay via dissipation in shocks on a turbulent crossing time
(Stone, Ostriker & Gammie 1998; Mac Low 1999), which is compa-
rable to the free-fall time in a virialized cloud. Gravitational collapse
can drive turbulence, but only at the cost of increasing the density
and thus lowering the free-fall time (Robertson & Goldreich 2012;
Murray et al. 2015). As a result, in the absence of an external or inter-
nal energy source to drive the turbulence, hydrodynamical models
fall into a state of rapid, near free-fall collapse (Hansen et al. 2012;
Krumholz et al. 2012). A number of forcing mechanisms applicable
to low-mass star clusters have been proposed, including accretion
from larger scales (e.g. Klessen & Hennebelle 2010; Goldbaum et al.
2011; Lee & Hennebelle 2016a,b), internal forcing by protostellar
outflows (e.g. Li & Nakamura 2006; Matzner 2007; Wang et al.
2010; Cunningham et al. 2011; Peters et al. 2014; Federrath 2015),
and forcing by external H II regions (e.g. Matzner 2002; Krumholz,
Matzner & McKee 2006; Goldbaum et al. 2011) and supernova
explosions (e.g. Padoan et al. 2016, 2017; Pan et al. 2016).

In this paper, we present a series of simulations of the forma-
tion of low-mass stellar systems, which we compare to the various
observational constraints on the star formation process we have out-
lined above. Our goal is to search for models that are capable of
simultaneously reproducing the observed IMF and star formation
efficiency, determine the relationship between these two constraints,
and identify the physical mechanisms that are responsible for sat-
isfying them. In order to accomplish this, we carry out a suite of
simulations All our simulations use radiative transfer and protostel-
lar radiation feedback, since these are likely key to setting the IMF.
In order to explore the influence of outflows, we toggle these on
and off. We also vary the initial magnetization of our regions, and
consider both models with turbulence that is continuously driven to
maintain virial equilibrium and those where no artificial driving is
included. We describe our numerical method and simulation setup
in Section 2, we describe the results in Section 3, we explore the
question of magnetic fields in more detail in Section 4, and we
summarize our findings in Section 5.

2 SI M U L AT I O N SE T U P

2.1 Initial conditions

We perform all our simulations using the ORION2 code . Our setup
shares several initial parameters with Offner et al. (2009) and
Hansen et al. (2012). The initial state consists of a solar metal-
licity molecular gas with a mean molecular weight 2.33mp and a

with which we are concerned here, for which there is a strong observational
consensus that εff is low.
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temperature Tg = 10 K, corresponding to an initial sound speed
cs = 0.19 km s−1. The length of the cubical domain is L = 0.65 pc
and the average density is ρ̄ = 4.46 × 10−20 g cm−3 (nH2 = 1.15 ×
104 cm−3) corresponding to a total mass of M = 185 M�. The
initial mean state corresponds to a minimum stable Jeans length
λJ = 0.20 pc, and a Jeans mass MJ = 2.7 M�. Our models are
carried forward with periodic boundary conditions for the gravity
and magnetohydrodynamics (MHD). We use Marshak boundary
conditions with an external radiation field corresponding to a 10 K
isotropic blackbody for the radiation field.

The ability of a magnetized cloud to resist gravitational collapse
is measured by the magnetic critical mass (Mouschovias & Spitzer
1976),

M� = c�

�√
G

, (1)

where � is the total magnetic flux threading the cloud and c� is
a dimensionless constant that depends weakly on the equilibrium
shape of the cloud in the absence of gravity. A cloud of mass less than
M� cannot collapse, whereas a cloud with a greater mass cannot
be supported against collapse by magnetic fields alone. Because
the value of c� is only weakly sensitive to the cloud geometry
(McKee et al. 2010), we adopt the value appropriate for a slab
threaded by a uniform, perpendicular field, c� = 1/2π, consistent
with the convention chosen in several contemporary theoretical (Li
et al. 2015) and observational works (Crutcher et al. 2010). We then
define the normalized mass-to-flux ratio

μ� = M

M�

= 2π
√

G

(
M

�

)
= 2π

√
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(
�
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)
, (2)

where B̄ ≡ �/S is the magnitude of the mean magnetic field, � is
the mass surface density, and S the cloud’s cross-sectional area in
the plane orthogonal to the magnetic field direction. Since mass and
magnetic flux are conserved for the entire simulation box, the value
of μ� for the box is constant and can be used to specify the initial
mean magnetic field. We define initial fields large enough to render
the system close to magnetically critical, μ� ≈ 1, ‘strong,’ initial
fields that make the system moderately supercritical, μ� ≈ 2–3
‘moderate,’ and initial fields corresponding to μ� � 1 ‘weak.’

It is convenient to express the strength of the magnetic field
relative to the kinetic energy in terms of the Alfvèn Mach number,

MA = vrms

vA
, (3)

where v2
A ≡ B2

rms/(4πρ̄) is the Alfvèn velocity, Brms is the root-
mean-square (rms) volume-weighted field strength, and vrms is the
rms mass-weighted, 3D velocity dispersion. Relative to thermal
pressure, the strength of the magnetic field can be expressed in
terms of the plasma-β parameter

β = 8πρ̄c2
s

B2
rms

= 2

(MA

M
)2

. (4)

In this work, we carry out simulations with several different
mean magnetic field strengths. Our models begin with an initially
uniform magnetic field B0 in the ẑ-direction. We consider cases with
mass-to-flux ratios μ� = 1.56,2.17,23.1,and∞. The corresponding
initial Alfvèn Mach numbers areMA,0 = 1.0,1.4,15,and∞, and the
initial plasma β’s are β0 = 0.046, 0.089, 10, and ∞. We note that
the recent models by Federrath (2015) consider a somewhat more
weakly magnetized model (μ� = 3.8) than our two most strongly
magnetized cases, and the model by Wang et al. (2010) has an initial
cloud with μ� = 1.4, comparable to our strongest field model.

Turbulent conditions for starting the cluster simulation are ob-
tained by applying the driving recipe of Mac Low (1999). The proce-
dure consists of applying a force consisting of a purely solenoidal,
uniform spectrum of modes spanning wave numbers k such that
1 ≤ |k|L/2π ≤ 2 to a uniform initial gas. This turbulent driving
force is intended to mock up the effect of sources of mechanical
energy on scales larger than the simulation box, via one of the
numerous possible mechanisms discusses in Introduction.

The observed velocity dispersion to size relation can be met
by models of compressive turbulence that span a range of relative
contributions from solenoidal and compressive forcing (Federrath,
Klessen & Schmidt 2009). Recent simulations of supernova-driven
turbulence (Padoan et al. 2016; Pan et al. 2016) show that even when
the initial driving is purely compressive, the turbulence becomes pri-
marily solenoidal in the inhomogeneous interstellar medium (ISM);
indeed, these authors conclude that external supernova-driven tur-
bulence is best characterized as 84 per cent solenoidal after medi-
ation through the ISM to adjacent star-forming regions. The work
of Federrath et al. (2010) indicates that the statistical properties of
turbulent flow are not sensitive to �20 per cent compressive con-
tributions to compressive driving. This suggests that our purely
solenoidal forcing is a plausible approximation for the driving of
turbulence in a molecular cloud.

The turbulent driving force is scaled to maintain a roughly con-
stant mass-weighted rms thermal Mach number of M = vrms/cs ≡√

3σv/cs = 6.6, where σ v is the 1D velocity dispersion. The virial
parameter,

αvir ≡ 5σ 2
v R

GM
, (5)

measures the balance between kinetic and gravitational energies; a
spherical cloud of uniform density has αvir = 1 in virial equilibrium.
With R = L/2 and our chosen value of M, the computational box
has αvir = 1.05.

The gas is initially evolved under the action of the driving force
without gravity according to the equations of ideal, isothermal MHD
for two crossing times,

tcross = L

vrms
= 0.51 Myr, (6)

on a uniform mesh with 5123 zones with periodic boundary con-
ditions. This resolution has been shown by Li et al. (2012) to be
sufficient to capture a well-resolved inertial cascade down to scales
of L/30 = 0.02 pc, an order of magnitude smaller than the initial
Jeans scale of the turbulent cloud. Consequently, the turbulent flows
on the scales that give rise to the initial fragmentation of the simu-
lated cluster are well resolved. Henceforth, we denote the state of the
turbulent gas after evolving for two crossing times as the time t = 0.2

We take these conditions as the initial state of the turbulent cluster
simulation, which includes a more comprehensive set of physics
that we describe in Section 2.3.

2 We note that the time required to saturate the magnetic energy depends
on the initial field strength. For models initialized with magnetic fields
much weaker than those considered in this paper, significantly more than
two dynamical times are required to fully saturate the magnetic energy
of the system due to small-scale dynamos (Federrath et al. 2011; Tricco,
Price & Federrath 2016). However, the models considered in this work are
too strongly magnetized for small-scale eddies to generate significant field
amplification, and the magnetic power spectra have been shown to saturate
within a few crossing times in these regimes (Li et al. 2012).
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Table 1. Model parameters and initial conditions. The outflows and driving columns indicate whether we included protostellar outflows, and whether we
continued driving the turbulence after gravity was turned on. For the remaining parameters, the subscript ‘IC’ denotes the state in the uniform initial condition,
the subscript ‘>med’ denotes quantities averaged over gas denser than the median density at the instant when self-gravity is switched on, and the subscript
‘>0.8’ denotes averages over gas with a K-band extinction AK > 0.8 mag at the termination of the model. See the text for the details of how the averaging
regions are defined. The mean density in all cases is 4.46 × 10−20 g cm−3.

Physics included IC >med >0.8
μ� Outflows Driving βIC MA,IC ρ>med (g cm−3) β>med M>med ρ>0.8 (g cm−3) β>0.8 MA,>0.8

1.56 Y N 0.046 1.0 2.36 × 10−19 0.041 0.95 3.21 × 10−19 0.039 1.09
1.56 N N 0.046 1.0 2.36 × 10−19 0.041 0.95 1.45 × 10−19 0.038 1.14
1.56 Y Y 0.046 1.0 2.36 × 10−19 0.041 0.95 9.76 × 10−20 0.037 1.05

2.17 Y N 0.089 1.39 2.18 × 10−19 0.057 1.14 1.53 × 10−19 0.074 1.92
2.17 Y Y 0.089 1.39 2.18 × 10−19 0.057 1.14 2.35 × 10−19 0.067 1.70

23.1 Y N 10.0 14.8 1.90 × 10−19 0.46 3.14 1.62 × 10−19 0.41 6.67
23.1 Y Y 10.0 14.8 1.90 × 10−19 0.46 3.14 1.07 × 10−19 0.75 4.45

∞ Y N ∞ ∞ 2.66 × 10−19 ∞ ∞ 1.33 × 10−19 ∞ ∞
∞ Y Y ∞ ∞ 2.66 × 10−19 ∞ ∞ 9.24 × 10−20 ∞ ∞

2.2 Defining the free-fall time and star formation rate

Because our simulations take place in a periodic box that represents
only a portion of a cloud, we must give some care to how we go
about defining the free-fall time and the efficiency of star formation.
Absent magnetic or thermal support to oppose self-gravity, the free-
fall time of gas structures of characteristic density ρ is

tff =
√

3π

32Gρ
. (7)

The coefficient
√

3π/32 applies to spherical geometries, but by
convention we retain it for all geometries. The mean cloud density
ρ̄ corresponds to a free-fall time tff, IC = 0.315 Myr, where we use the
subscript IC to refer to quantities defined for the uniform-density
state before driving the initial turbulence to steady state. We can
measure star formation rates relative to this free-fall time via the
usual dimensionless star formation rate parameter

εff,IC = Ṁ∗tff,IC
M

. (8)

While εff, IC provides one measure of the star formation rate, it can
be somewhat misleading. As we drive the turbulence to statistical
steady state, the gas density distribution becomes non-uniform, and
a majority of the mass ends up residing at densities much higher
than ρ̄. This leads to two biases. First, because most of the mass is
at higher density, we might expect εff, IC to end up relatively large
even if star formation in the dense gas is inefficient, simply because
the dense gas has a much shorter free-fall time. Second, because we
are using a periodic box to handle gravity, much of the low-density
gas is not self-gravitating at all, and thus would not collapse even
with efficient star formation. Including this mass in a calculation of
εff would lead to an artificially low value.

To counteract these biases, we define a new reference density
that provides a better description of the gas after the turbulence is
fully developed. Let ρmed be the mass-weighted median density –
i.e. the density at which half the mass is denser and half less dense
– at the end of the turbulent driving phase (t = 0). Then, we define
ρ>med as the average density of the regions with ρ > ρmed at that
time. In effect, ρ>med gives an estimate of the mean density of the
gas that is actually self-gravitating prior to any star formation. We
denote the associated free-fall time as tff, >med. The dimensionless
star formation rate is defined as

εff,>med = Ṁ∗tff,>med

M>med
. (9)

Since M = 2M>med, this can also be expressed as

εff,>med = 2Ṁ∗tff,>med

M
. (10)

While εff, >med is a natural physical measure of star formation
efficiency, it cannot readily be compared to observations. This is
both because our simulation at t = 0 represents a somewhat ar-
tificial state of driven turbulence but no gravitational effects, and
because observations cannot usually measure gas densities directly
in any event. Instead, volume densities must be inferred indi-
rectly from molecular line critical densities, or, more commonly
for Galactic observations, using column densities that can be mea-
sured almost directly. Following Krumholz et al. (2012), we define
the observationally inferred characteristic density by taking pro-
jected column densities and extracting those regions denser than
0.048 g cm−2 = 230 M� pc−2, corresponding to those regions with
K-band extinction AK > 0.8 mag, a threshold used by a number of
previous authors (e.g. Lada, Lombardi & Alves 2010; Lada et al.
2012, 2013). We compute the projected area of these regions S>0.8,
and from this determine the projected mass enclose M>0.8 and the ef-
fective radius R>0.8 = √

S>0.8/π. We then define the characteristic
observed density of the projection as ρobs,proj = 3M>0.8/(4πR3

>0.8),
and take the mean value from projections in the three cardinal direc-
tions to be the characteristic density ρ>0.8 for each simulation. We
compute this quantity at the final time in each simulation (in con-
trast to ρ>med, which is calculated at t = 0, when gravity is turned
on), and we denote the corresponding free-fall time as tff, >0.8. The
star formation rate per tff, >0.8 is then

εff,>0.8 = Ṁ∗tff,>0.8

M>0.8
, (11)

and this is the quantity that is most natural to compare to observed
star formation rates.

In Table 1, we summarize the two characteristic densities (ρ>med,
and ρ>0.8) that we have defined for all our simulations. The former
is typically 7–9 times greater than the mean density ρ̄ = 4.46 ×
10−20 g cm−3, due to turbulent compression. The observationally
defined ρ0.8 ranges from 2 to 7 × ρ̄ due to the influence of the
combined effects of turbulent compression, gravitational collapse,
and stellar feedback. We also report the mean values of the Alfvèn
Mach number and plasma β at the end of the driving phase and at
the final time in the simulation, to make it clear how these evolve
with time as well. This evolution is a result of field amplification
by turbulence and gravitational collapse. For consistency, we use
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the same notation for these other quantities as for the density and
free-fall time, i.e. quantities measured in the initial, uniform state
have a subscript ‘IC’ (for initial condition), quantities averaged over
gas denser than the median density at the end of the driving phase
have subscript ‘>med’, and those defined based on averages within
the 0.8 mag contour are defined by the subscript ‘>0.8’.

2.3 Physics included and numerical method

Our protostellar cluster simulations are performed using the ORION2
adaptive mesh refinement (AMR) code (Li et al. 2012) beginning
from the initial state generated following the procedure described in
the previous section. The code solves the equations of ideal MHD
using the scheme of Mignone et al. (2012), along with coupled
self-gravity (Truelove et al. 1998; Klein et al. 1999) and radiation
transfer (Krumholz et al. 2007) in the two-temperature, mixed-
frame, grey, flux-limited diffusion approximation. The exact set of
equations solved is the same as those given in Myers et al. (2014).
ORION2 contains many options for the numerical advection scheme,
but we have found the best stability with the Harten-Lax-Van Leer-
Discontinuities Riemann solver (Miyoshi & Kusano 2005) coupled
to the constrained transport magnetic flux advection of Londrillo
& del Zanna (2004), particularly for magnetically dominated flows.
Our radiative transfer calculations use the frequency-integrated grey
dust opacities from the iron-normal, composite aggregates model of
Semenov et al. (2003). For each magnetic field strength parameter
considered in this study, μ� = 1.56, 2.17, 23.1, and ∞, we present
two models – one with decaying turbulence where the large-scale
driving forces described in the previous section are turned off, and
one where the turbulent forcing continues with a constant rate of
energy injection that balances the rate of turbulent decay as esti-
mated for a given mean magnetic field strength and turbulent Mach
number by Mac Low (1999). In the case without turbulent forcing,
self-gravity is switched on and turbulent forcing is switched off
simultaneously.

Our cluster evolution models neglect non-ideal MHD effects.
These effects have been shown to impact turbulent density profiles
on small scales Li, Myers & McKee (2012) and therefore could in-
fluence the fragmentation dynamics of strongly magnetized cores.
Recent studies on the impact of non-ideal MHD effects on the evo-
lution and fragmentation of self-gravitating cores indicate that the
evolution of supercritical cores is most strongly influenced by their
initial conditions and that the impact of non-ideal effects on their
subsequent evolution and fragmentation are small by comparison
Wurster, Price & Bate (2017). Consequently, our models should reli-
ably capture the gross impacts of varying large-scale magnetic field
strength on the cloud fragmentation and the statistics of its collapse.

There are two limitations of our radiative transfer method to
which we should call attention. First, we assume that the gas and
dust temperatures are the same. In the dense regions simulated by
Myers et al. (2014), this is a very good assumption, because the dust
and gas temperatures become nearly identical at densities above
∼104–105 cm−3 (e.g. Goldsmith 2001). The assumption of strong
coupling is still valid for most of the gas in our simulation domain
that is actively participating in star formation (cf. ρ>,med in Table 1),
but it is not valid for the lower density, non-self-gravitating regions.
In these parts of the flow, we are somewhat overestimating the dust
cooling rate for the gas. The second approximation we make is
to assume that the absorption opacity is the same as the emission
opacity, which is equivalent to assuming that the dust and radiation
temperatures are the same. This approximation is clearly invalid
very close to the star, where dust is exposed to direct stellar radi-

ation and reprocesses the radiation into the infrared. However, the
dust opacity to direct stellar radiation is so high that all this repro-
cessing occurs in a thin zone at the dust destruction front, which
for low-mass star formation is confined to �1 au from the star
(except perhaps over the small range in solid angle evacuated by
outflows). Such small structures are unresolved in our simulations.
Our approximation would only become problematic for stars larger
than ∼20 M�, massive enough that radiation pressure can inflate
bubbles that push the dust destruction front out to thousands of au
(e.g. Rosen et al. 2016). While ORION2 does include a hybrid radia-
tive transfer method to handle this situation (Rosen et al. 2017), we
do not use it here because our simulations do not form any stars
massive enough to require it. Once the radiation field is dominated
by reprocessed radiation, the dust and radiation temperatures will
remain close so long as the dust is opaque. Outside the dust photo-
sphere, the emission opacity declines while the absorption opacity
remains constant, but this affects only the low-frequency part of the
emission spectrum, which has only a small fraction of the energy
(Chakrabarti & McKee 2005).3

Our models include several source terms to capture the effects
of protostellar feedback that originate on smaller length scales than
those resolved in the model. We initialize a sink particle in any zone
on the finest AMR level, and only on the finest level, that becomes
dense enough to reach a local Jeans number

J =
√

Gρ�x2

πc2
s

>
1

4
. (12)

Sink particles then evolve and interact with the cluster through
gravity according to the methodology of Krumholz, McKee & Klein
(2004), updated to include the effects of magnetic fields on the
rate of gas accretion on to sink particles (see the appendix of Lee
et al. 2014). The key assumption in our treatment is that the point
mass accretes mass, but not flux. This assumption is motivated by
observations that show that the magnetic flux in young stellar objects
is orders of magnitude less than that in the gas that formed these
objects, implying that flux accretion is very inefficient (McKee &
Ostriker 2007).

The sink particles couple to their surrounding gas gravitation-
ally and through accretion and feedback source terms that operate
within a radius of 4�x on the finest AMR mesh level around each
sink particle. The sink particles emit radiation according to the
protostellar evolution model of Offner et al. (2009). Our models
include the atomic line-cooling sources described in Cunningham
et al. (2011) to treat strongly heated regions behind outflow shocks
that are sufficiently fast ∼30 km s−1 to dissociate molecules.

3 The choice of the temperature at which one should evaluate the mean
opacity for a grey method such as ours is in fact very subtle, even in calcu-
lations that separately track the dust, gas, and radiation temperatures. This
is because tabulated opacity tables, such as the ones from Semenov et al.
(2003) that we use, generally assume that all three temperatures are equal,
and different temperatures matter for different physical effects – for exam-
ple, condensation of ice mantles on grains depends on the gas temperature,
evaporation of grains depends on the dust temperature, and the radiation
spectrum depends on the radiation temperature. Absent tabulated opacities
that consider out-of-equilibrium dust, gas, and radiation fields, there is no
single choice of temperature at which the opacity can be computed that prop-
erly captures all these divergent effects. However, greater accuracy could
be obtained by distinguishing the absorption opacity, which is primarily
affected by the radiation temperature, and the emission opacity, which is
primarily determined by the dust temperature.
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Feedback due to protostellar outflows is also included via mo-
mentum sources around each sink particle following the procedure
described in Cunningham et al. (2011): the outflow mass ejection
rate is set by the fraction of accreted gas that is ejected into the
outflow fw and the outflow ejection speed vw. In this work, we make
the same wind model parameter choices as Hansen et al. (2012)
by setting fw = 0.3 and vKep = min (vKep, 60 km s−1), where vKep

is the Kepler speed at the surface of the protostar. We note that
these parameters differ from the parameters used in Cunningham
et al. (2011) and Li et al. (2018) that set vw = vKep/3. Consequently,
the models presented here impart relatively more outflow feedback
during the earlier phases of pre-stellar evolution relative to Cunning-
ham et al. (2011) and Li et al. (2018). Computational expediency
motivates the cap on the wind velocity so that isolated massive
protostars do not dominate the time-step of the cluster model.

The AMR hierarchy is initialized on a 2563 base grid that we
denote as level L = 0. Our initial state is taken from turbulent initial
conditions that were established on a 5123 grid with no adaptivity.
After t = 0, regions of the flow within 2 base-grid zones of an
interface with a density jump �ρ/ρ > 0.5 on the base level are
refined to L = 1, so that the 5123 resolution of the initial state is
retained in these regions. On all AMR levels, refinement is triggered
in regions in which the local Jeans scale is resolved by fewer than
eight zones, J > 1/8 (Truelove et al. 1997). Note that this refinement
criterion triggers refinement to the finest level, LMAX, at a density
one-fourth that required to trigger insertion of a sink particle. This
ensures that strongly collapsing regions are refined to the finest
level. Refinement is also triggered when there is a large jump in
radiation energy density, |∇Er|�x/Er > 0.125.

A resolution sensitivity test was conducted for the case with
μ� = 2.17 by first performing this run with LMAX = 4 and then
repeating it without the density gradient refinement triggering on
level L0 and with LMAX = 3. We found that the total mass accreted
on to protostars out to t = 1.35tff in the two models agreed to within
3 per cent and that the mass distribution of protostars had a similar
level of agreement.

Our cluster models with decaying turbulence begin with LMAX =
4. The effective resolution of all collapsing and/or heated regions is
therefore L/(256 × 2LMAX ) = 32 au. Given the good agreement be-
tween the runs withLmax = 3 and 4, the μ� = 1.56 and 2.17 models
with decaying turbulence were switched to LMAX = 3 with 65 au
effective resolution at t = 1.7tff in order to reduce the run time. The
models with turbulent forcing were also performed with LMAX = 3
and 65 au effective resolution, except for the μ� = 23.1 case which
retained LMAX = 4 throughout the evolution of the model.

We note that the limited resolution of these models results in a
gain in computational expediency but comes at some cost to the
fidelity of the model in treating the fragmentation of low-mass
cores. The density threshold triggering sink formation at our back-
ground 10 K temperature is given by inverting equation (12) as
1.1 × 10−15–4.5 × 10−15 g cm−3 for 65 and 32 au effective reso-
lution. The isothermal-to-adiabatic transition where compressional
heating balances cooling occurs at a substantially higher density of
∼10−14(T /10 K)6 g cm−3 (see chapter 16 of Krumholz 2015), and
thus our resolution would not be sufficient to capture fragmentation
in a simulation without radiative transfer. However, once stars form,
radiative heating powered by accretion luminosity heats material at
much lower densities than one would infer simply by balancing
adiabatic compression against cooling. This substantially eases the
resolution required to capture fragmentation, and we show below
that our resolution is sufficient that in practice we essentially al-
ways resolve the region where gas transitions from the background

temperature to elevated temperatures around most protostars in the
simulations. None the less, we caution that our limited resolution
may still cause us to miss fragmentation in rare regions with little
radiative heating.

3 R ESULTS

In this section, we examine the results of the simulations summa-
rized in Table 1. In the discussion and figure legends that follow
we denote the various models by their initial mass-to-flux ratio;
cases that include turbulent driving are labelled with the designa-
tion ‘Driven’. We have one model with outflows turned off, to which
we refer as ‘no wind’; this model also is not driven.

3.1 Protostellar mass accretion

Fig. 1 shows the temporal evolution of the total mass M∗ assembled
into protostars for each model as a function of time. The left-hand
panel shows the simulations with decaying turbulence and the right-
hand panel shows the simulations with large-scale turbulent driving,
a convention we shall follow throughout this paper. Fig. 2 shows
the star formation efficiency per initial free-fall time εff, >med (see
Section 2.2 for the precise definition) as a function of time. Fig. 3
shows the number of protostars formed in each model as a function
of time.

We also report, in Table 2, both εff, >med and the observed value
of the star formation efficiency per free-fall time, εff, >0.8 (again see
Section 2.1). The quantities reported in the table are time-weighted
averages over the last 0.5tff, >med of the simulation. For most models,
we run the simulation until the value of εff, >med stabilizes, and thus
the values reported in Table 2 are the steady-state ones. There are
two exceptions to this statement. First, the two weakest field models
with decaying turbulence (μ� = 23.1 and ∞) do not appear to
have well-converged values of εff, and instead appear to approach
near-free-fall collapse. We run these models for less time than the
others, as such efficient collapse is generally inconsistent with the
observational constraints. For them, the values of εff reported in
Table 2 are only lower limits, and we flag them as such in the table.
The second exception are the models with μ� = 2.17. We are forced
to halt these runs due to computational constraints, as the number of
sink particles and highly refined zones eventually becomes such that
exploring these models further is prohibitively expensive. While we
would, absent consideration of computation constraints, prefer to
continue the μ� = 2.17 runs further, we note that these models have
begun to exhibit stabilized εff.0 by the termination time. Thus, we
do not report these as upper limits in Table 2, but warn readers here
that they are less secure than the values reported for the other runs.

For comparison, Krumholz et al. (2012) combine data from
galactic clouds, nearby galaxies, and galaxies at high redshift,
and find that all are consistent with a star formation efficiency
εff, >0.8 = 0.015, with a scatter of ∼0.5 dex. As noted in Intro-
duction, numerous other studies have confirmed this basic result.
Comparing to the values shown in Fig. 2 and reported in Table 2,
we see that the models with μ� = 1.56 fall within the observational
envelope if we include either driving or outflows, as do all the more
weakly magnetized models with driven turbulence, although these
tend to lie towards the top end of the observationally permitted
range. We therefore find that the star formation rate can be kept
low enough to be compatible with observations either if there are
external mechanical energy inputs to maintain the turbulence or if
there are no such influences, but the magnetic field lies close to the
critical value.
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Figure 1. Total mass accreted for the models without (left) and with (right) turbulent forcing.

Figure 2. Instantaneous value of the dimensionless star formation rate εff, >med for the models without (left) and with (right) turbulent forcing (right). The
data have been boxcar-smoothed over a time-scale of 0.05 tff, >med to remove short-time-scale variability.

Figure 3. Total number of protostars formed for the models without (left) and with (right) turbulent forcing.
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Table 2. Star formation efficiency per free-fall time in each run. The various values of εff are computed for
different definitions of the free-fall time, as discussed in Section 2.2. The quantities reported are averaged
over the last 0.5tff, >med of each simulation. A value preceded by � indicates that εff was still rising
strongly and the end of the simulation, and the values listed are therefore lower limits.

μ� Outflows Driving εff,IC(per cent) εff,>med(per cent) εff,>0.8(per cent)

μ� = 1.56 Y N 12 8.2 6.0
μ� = 1.56 N N 23 15.8 19
μ� = 1.56 Y Y 4.8 3.2 4.2

μ� = 2.17 Y N 26 18.8 19
μ� = 2.17 Y Y 15 11.0 8.7

μ� = 23.1 Y N � 30 � 24 � 22
μ� = 23.1 Y Y 8.2 6.4 6.6

μ� = ∞ Y N � 50 � 34 � 37
μ� = ∞ Y Y 6.0 4.0 5.2

3.2 Cluster morphology

Fig. 4 shows the mean density along lines of sight in the x̂-
direction at the termination time of each model, overlaid with a
semi-transparent rendering of regions with |v| > 2 vrms. Recall that
the initial magnetic field is in the ẑ-direction, and is therefore up-
wardly oriented on the page in Fig. 4. We note that the mean density
along the line of sight, which is proportional to the surface density,
becomes increasingly filamentary as the strength of the magnetic
field increases. In the cases where the magnetic field is the most
dynamically significant, the outflows are oriented predominately
perpendicularly to the orientation of the densest structures. The
μ� = 1.56 case with decaying turbulence indicates a final cluster
geometry that is most dominated by the magnetic field. In this case,
the cluster is arranged mostly in a planar geometry normal to the
ẑ-direction. The magnetic fields in this case are strong enough to
constrain large-scale collapse to be predominantly in the direction
of the initial magnetic field, with less harassment from large-scale
turbulent forcing than the equivalent model with turbulent forcing.

3.3 Protostellar mass functions

We next examine the mass functions for the stars formed in our
simulations. As a first step to this, we verify that these distributions
have come close to being stable in time. To demonstrate this, in
Fig. 5 we plot the temporal evolution of the 25th percentile, median
and 75th percentile of the distribution of protostellar masses in each
model as a function of time. Similar to the temporal evolution of εff,
we see that the protostellar mass percentiles have mostly stabilized
by the end of the runs, except for the cases of a weak initial field
(μ� = 23.1 and ∞) with decaying turbulence. Consequently, we
can interpret the protostellar mass distributions of the moderate
and strong initial field models with decaying turbulence, and all
of the models with driven turbulence, as being only weakly time-
dependent. We do warn, however, that this stabilization is a result of
an equilibrium between new stars forming at low mass, and existing
stars growing. As noted in Krumholz et al. (2016), if some process
were to halt the formation of new stars but the existing stars were
to continue accreting their envelopes, the mass distribution would
shift upward.

Fig. 6 shows the protostellar mass distributions at the termination
of each model. The black curve in the figure shows the observed
IMF of Chabrier (2005). The mass distributions in our models have
stabilized over dynamical time-scales (tff, >med), as shown in Fig. 5.
However, because the sources in our models are still accreting, our

models are not exactly comparable to the IMF that is representative
of the distribution of final stellar masses. For this reason, we also
compare our models to the protostellar mass functions (PMFs) from
the analytic theory of McKee & Offner (2010); these PMFs are the
mass distributions that one expects a series of protostars to possess if
their final mass distribution matches the Chabrier (2005) IMF, and if
the numbers of stars formed versus time N∗(t) and the accretion his-
tories of individual stars follow some specified functional form. We
observe that N∗(t) is a roughly linear function in all simulations ex-
cept those that display runaway collapse, and thus we adopt a linear
function for N∗(t). For the accretion rate versus time of individual
protostars, McKee & Offner (2010) consider a range of cases, all of
which we plot together with the simulation results in Fig. 6: compet-
itive accretion (CA), turbulent core (TC), 2-component competitive
accretion (2CCA), and 2-component turbulent core (2CTC); the lat-
ter two both approach the constant accretion rate expected for an
isothermal sphere for low-mass sources (IS), and we also plot the
pure IS case.4 The only other parameter required by the McKee &
Offner (2010) PMF analytic model is the upper limit to the most
massive star that will form in the cluster mu. We have generated the
theoretical PMFs in Fig. 6 by setting mu to the larger of 3 M� or
the value of mu necessary so that the theoretical PMF has exactly
one source heavier than the second most massive particle present in
the termination of the simulation. The choice of mu largely affects
the shape of the high-mass tail of the PMF and the conclusions that
follow from comparing our simulation to the theoretical PMFs are
insensitive to this choice. The p-value of the Kolmogorov–Smirnov
(K-S) statistic comparing each simulation to each mass function is
reported in Table 3. The relative disagreement between simulations
and mass functions pairs with p-values less than 0.05 is unlikely
due to random chance. These distribution pairs are different with
high statistical confidence. We denote the p-value of these pairs in
bold text in the table.

We find that our runs with weak initial fields (μ� = 23.1 and ∞)
and no driving have peak masses that exceed the observed mode
of the IMF (m∗ = 0.2 M� – Chabrier 2005), and that are continu-
ing to rise (Fig. 5), at the termination of the models. As discussed
in Section 3.1, these models also approach a state of rapid, near
global free-fall collapse, contrary to observational constraints. Fur-
thermore, the shape of the mass distributions is closest to that of

4 We do not consider any of McKee & Offner’s (2010) ‘tapered accretion’
analytic models, since the median accretion rate in our simulations shows
no signs of tapering (Fig. 5).
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Figure 4. Volume-weighted mean densities projected along the x̂-direction for the models with turbulent forcing (right) and with decaying turbulence (left).
The column density can be recovered by multiplying the mean density shown by the computational domain length 0.65 pc; for reference, this means that a
density of 10−18 g cm−3 corresponds to a column density of 2.0 g cm−2. The four rows show the μ� = 1.56, 2.17, 23.1, and ∞ runs, from top to bottom.
Regions with gas velocity greater than 2vrms are shaded in red with the opacity of the red regions increasing to a maximum for velocities exceeding 5vrms.
White circles indicate the projected position of the protostellar sink particles.
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Figure 5. The evolution of the stellar mass distribution for models with turbulent forcing (right) and with decaying turbulence (left). In these figures, the
central lines show the 50th percentile mass, while the shaded regions indicate the 25th–75th percentile range. Colours correspond to different values of μ�, as
indicated in the legend.

the IS case. The ever-increasing peak of the PMFs in these sim-
ulations appears to be a manifestation of the overheating problem
identified by Krumholz et al. (2011), whereby values of εff close
to unity produce such high accretion luminosities that fragmenta-
tion is strongly suppressed, leading to a mass function that shifts
to ever-higher masses as collapse continues but no new stars can
be created. Furthermore, these simulations have low K-S statistic
p-values when compared against all analytic models except for the
IS one.

In contrast, the moderate and strong initial field cases all
achieve stable or slowly increasing median masses in the range
0.05 M� < m∗ < 0.15 M�, independent of the presence of exter-
nal turbulent forcing. All of the models with continuously driven
turbulence also show stable peak masses independent of the strength
of the initial magnetic field. At the termination of these models, the
median masses lie between the analytically predicted peak masses
for the single CCA and single CTC models of 0.05 and 0.095 M�,
respectively. Because of the median masses for the CA and TC
models are close to those of the numerical simulations, these sim-
ulations also have high K-S p-values when compared to the CA
and TC theoretical models. The shape of the mass functions are not
amenable to reliably differentiating among the moderately mag-
netized models or the weakly magnetized models with continuous
turbulent forcing to within the statistical limitations of the number
of sources in these simulations.

Fig. 7 shows the protostellar mass distribution at the termination
of the strongly magnetized μ� = 1.56 without turbulent driving or
protostellar outflow ejection. The effect of outflows on the proto-
stellar mass distribution can be seen clearly by comparing this figure
to the top left panel of Fig. 6, which shows the undriven μ� = 1.56
model with outflows. Clearly omission of outflows leads to a sig-
nificant increase in the typical stellar mass and very low K-S test
p-values. This difference is partly due to direct removal of mass by
the outflows, but this effect alone cannot explain the difference in
mass distribution, partly because it is too large (a factor of �10 in
mass), and partly because there is also a dramatic drop in the total
number of stars when we turn-off outflows, something that cannot
easily be explained by mass ejection. Instead, the shift in the mass
function here appears to result from the interaction between outflows
and radiative heating. Outflows indirectly reduce the luminosity of

individual stars by lowering their accretion rates (Krumholz et al.
2012; Hansen et al. 2012; Myers et al. 2014), and create paths
of reduced optical depth, allowing more efficient escape of radi-
ation from the gas immediately around the protostars (Krumholz,
McKee & Klein 2005; Cunningham et al. 2011). Due to the omis-
sion of these two effects in the no-outflow model, radiative heating
is much more effective at suppressing fragmentation, leading to the
production of fewer, much more massive stars. We showed in Sec-
tion 3.1 that the strong initial magnetic support in the no-outflow
model was sufficient to limit the star formation efficiency to val-
ues consistent with observation, but clearly the shape of the mass
distribution of this model is not consistent with observation.

It is also interesting to compare our results to previous simulations
making use of a similar set of physical processes. Our μ� = 1.56
model with continuous driving is comparable to the recent models
by Li et al. (2018); the simulations have similar initial (β IC and
MA,IC) and post-driving (β>med, MA,>med and ρ>med) conditions.
However, while in our case this model produces an IMF peak at
slightly less than 0.1 M�, the Li et al. (2018) simulations yield
at peak at 0.2 M�, comparable to the observed IMF peak. Given
the similarities of the dimensionless conditions of the two cluster
models, we attribute this difference to the outflow ejection parame-
ters discussed in Section 2.3. The models presented here eject three
times the momentum flux in the early phases of pre-stellar collapse
and therefore have more disruptive effects on their parent cores.
While Cunningham et al. (2011) point out that observations do not
precisely constrain the outflow model ejection parameters, the fact
that the model in Li et al. (2018) achieves better agreement with
the well-constrained median IMF suggests that the outflow ejection
parameters used in that model are probably more realistic. This con-
clusion, however, does not affect the relative differences between
the various runs that we have identified; indeed, a shift to higher
masses as a result of somewhat weaker outflows would worsen the
agreement between the observed IMF and those produced in the
weakly magnetized, non-driven models.

The other obvious prior work to which we can compare are the
simulations of Hansen et al. (2012). Indeed, our non-magnetized,
decaying turbulence model is identical to theirs apart from the
random phases used during the initial turbulent driving phase. Both
models ran for comparable times as well. However, the model
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Figure 6. Histograms of protostellar masses at the end of each of the models with turbulent forcing (right) and with decaying turbulence (left). The four
rows show the μ� = 1.56, 2.17, 23.1, and ∞ from top to bottom. The black line shows the observed IMF (Chabrier 2005). The other curves denoted in the
figure legend show the analytic PMFs of McKee & Offner (2010) for the single- and two-component turbulent core models, the single- and two-component
competitive accretion models and the isothermal sphere model.

presented in this work exhibits rapidly increasing accretion rates
and commensurately increasing source masses at late time, while
the simulations of Hansen et al. do not. While this might at first
seem quite surprising, the result can be understood by examining
Fig. 1. This figure shows that the stellar mass at first increases rel-

atively slowly, but then rapidly increases as the turbulence decays
and free-fall collapse begins. The behaviour in the Hansen et al.
simulation is consistent with what we see just before the onset of
rapid collapse in our simulation. Since the exact time at which run-
away collapse begins is almost certainly sensitive to the random
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Table 3. K-Sstatistic p-values for the distribution of protostars in each simulation as compared to the observed IMF (Chabrier 2005) and several
analytical PMFs including the TC, 2CTC, CA, 2CCA, and the isothermal sphere models (McKee & Offner 2010). Simulations that include
turbulent forcing are denoted as ‘Driven’ in the left-hand column. The other models are the cases of decaying turbulence. Simulation to mass
function pairs with p-values less than 0.05 can be confidently interpreted as a sample drawn from a different distribution than the given mass
function. The p-value for these ‘rejected’ models is denoted in boldface in the table.

Comparison analytic model IMF TC 2CTC CA 2CCA IS

μ� = 1.56 3.2 × 10−4 0.094 1.7 × 10−3 0.69 1.0 × 10−3 1.1 × 10−7

μ� = 1.56 No wind 1.1 × 10−3 7.7 × 10−5 1.0 × 10−3 6.0 × 10−6 4.4 × 10−4 0.054
μ� = 2.17 0.19 0.92 0.27 0.56 0.25 0.013
μ� = 23.1 0.058 4.2 × 10−3 0.014 1.1 × 10−3 9.9 × 10−3 0.35
μ� = ∞ 0.50 1.3 × 10−3 0.011 1.4 × 10−4 9.2 × 10−3 0.35
μ� = 1.56 Driven 3.0 × 10−3 0.52 0.13 0.91 0.080 2.1 × 10−3

μ� = 2.17 Driven 3.5 × 10−3 0.72 0.086 0.94 0.050 1.6 × 10−4

μ� = 23.1 Driven 0.033 0.19 0.032 0.63 0.033 2.9 × 10−5

μ� = ∞ Driven 4.4 × 10−3 0.43 0.036 0.60 4.4 × 10−3 1.9 × 10−5

Figure 7. Histogram of the protostellar masses at the end of the μ� = 1.56
model without protostellar feedback.

driving, the most likely explanation for the difference is that the
Hansen et al. simulation was simply not run quite long enough to
reach the runaway collapse phase where the collapse begins to alter
the IMF.

3.4 Stellar multiplicity

The statistics of multiple systems provides another observational
constraint against which our models can be tested. To compute the
stellar system multiplicity, we use the algorithm of Bate (2009).
The algorithm works recursively: one identifies the most strongly
bound pair of stars in the simulation, and replaces it with a single
object at the centre of mass position of the pair with the total mass
and momentum of its constituent protostars, then repeats until there
are no more bound pairs that can be combined. In cases where
combining the most bound pair of objects would create a system
with a multiplicity greater than four, one skips it and combines
the next most bound combination instead. This is motivated by the
fact that high-multiple bound systems are dynamically unstable and
such systems are likely to break apart if the model were continued
further in time. At the end of this procedure, we obtain S single
star systems, B binary systems, T triple systems, and Q quadruple
systems. For the set of bound systems, the multiplicity fraction is
defined as (Bate 2009; Krumholz et al. 2012; Myers et al. 2014)

MF = B + T + Q

S + B + T + Q
(13)

Fig. 8 shows the multiplicity fraction as a function of the primary
star mass in each of our simulations. Given the limited number of
systems in at least some of our simulations, computing the multi-
plicity fraction requires some care. We do so in two ways. First,
we form running averages, meaning that, for each primary star (i.e.
single star or the most massive member of a multiple), we evalu-
ate equation (13) for the set of systems consisting of that primary
and the next most massive and next least massive primaries. This
quantity is shown as the blue curve in Fig. 8. Second, we can com-
pute multiplicity in bins. To do so, we start with the least massive
primary, and then place the primaries in bins of mass, with the bin
width taken to be either sufficient to contain four primaries, or 0.2
dex, whichever is greater. For each bin, we regard the systems in
it as samples drawn from a binomial distribution of multiples or
singles, and from those samples, we compute a central estimate
and a 68 per cent confidence interval on the true multiple system
fraction in that bin (see Krumholz et al. 2012 for full details on
how this computation is carried out). We plot the binned 68 per cent
confidence intervals as the shaded regions in Fig. 8.

Comparing either the running averages or the binned results to
the observed multiplicity fractions that we also plot in Fig. 8, we
find that all of the models generally agree with observations within
the range of statistical uncertainties. It is noteworthy that the weakly
magnetized models without turbulent forcing are consistent with ob-
served multiplicity statistics even though their PMFs (Section 3.3)
are strongly inconsistent with observations. The driven turbulence
μ� = 2.17 and 23.1 models somewhat overpredict the multiplicity
fraction for systems with primary mass Mp ∼ 1 M�, but this may
be the result of poor statistics in this mass range in those models,
and we note that the observational surveys are based on field stars,
while there are strong hints that multiplicity fraction is higher for
still-embedded systems (Tobin et al. 2016), which is the more rel-
evant comparison for our simulations.5 We also note that, while
the bins at low mass are generally consistent with the observations
individually, taken together it is clear that we systematically under-
produce multiple systems at low mass relative to the observational
data. This is a likely a resolution effect. Our models do not resolve
gas-particle gravity forces below the scale where sink source terms
couple to the gas –4�x. Low-mass multiple systems must neces-
sarily be close and consequently more difficult to resolve to remain
bound. This limitation is also noted in the multiplicity fractions

5 We unfortunately cannot place the data from Tobin et al. (2016) on Fig. 8,
because the masses of the individual stars are largely unconstrained.
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Figure 8. Multiple stellar system fraction at the end of each of the models with turbulent driving (right) and with decaying turbulence (left), computed as
a function of primary star mass. The four rows show the μ� = 1.56, 2.17, 23.1, and ∞, from top to bottom. For the simulations, the blue curve indicates
evolution of a running average over three systems as a function of mass, while shaded regions indicate the mean multiplicity and central 68 per cent probability
range on the multiplicity in bins – see the main text for details on how the running average and binned values are computed. Black crosses denote the mass range
and mean multiplicity found in observational surveys. The two highest mass surveys are statistical lower bounds. The horizontal marker on these observations
indicate the lower bound. The observational data, from low to high mass, are compiled from Basri & Reiners (2006) and Allen (2007) (combined into the left
most point), Fischer & Marcy (1992), Raghavan et al. (2010), Preibisch et al. (1999), Mason et al. (2009), and these are the same data used in Bate (2012) and
Krumholz et al. (2012).
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Figure 9. Volume-weighted root-mean-squared gas velocity, normalized by the gas sound speed, as a function of time for the models with turbulent forcing
(right) and with decaying turbulence (left). Note the difference in scales between the left- and right-hand panels.

Figure 10. Same as Fig. 9, but now showing mass-weighted rather than volume-weighted velocities. As with Fig. 9, note the difference in scales between the
two panels.

extracted from the models of Bate (2009), Krumholz et al. (2012),
and Myers et al. (2014).

3.5 Turbulent decay and protostellar feedback rates

Fig. 9 shows the temporal evolution of the volume-weighted rms
gas velocity for each model. As intended, the models that include
steady turbulent forcing remain within 10 per cent of a constant rms
velocity with αvir ∼ 1. For the runs without driving, at early time, t �
tff, turbulent decay causes the rms velocity to drop. However, after
1–2 free-fall times (depending on the level of magnetic support),
the system begins to undergo a global collapse, and this causes the
velocity dispersion to rise again.

Fig. 10 shows the temporal evolution of the mass-weighted rms
velocity dispersion. This averaging is more analogous to mass-
biased observational line width–size measurements. However, it is
also heavily biased towards dense, locally collapsing regions, which
somewhat mutes the effect of turbulent decay relative to infall.
Consequently, the clear drop in velocity dispersion seen in Fig. 9
for the non-driven runs is absent here. We infer that mass-weighted

line-width diagnostics are surprisingly insensitive to interruptions
in large-scale driving source of durations up to �1tcross.

It is also interesting to compare the μ� = 1.56 cases with and
without outflows. In principle, the outflows have more than enough
mechanical power to alter the turbulence. We illustrate this in
Fig. 11, which shows the outflow mechanical luminosity versus
time, Loutflow = (1/2)Ṁwindv

2
wind. This is typically ∼1–10 L� at late

times in our simulations, For comparison, the turbulent decay rate
is ∼ρ̄v2

rmsL
3/tcross ∼ 10−3 L�, roughly three orders of magnitude

smaller. However, when we examine the volume-weighted rms ve-
locity, the μ� = 1.56 runs with and without outflows are nearly
identical, and in the mass-weighted plot they are only slightly dif-
ferent. These results indicate that outflow mechanical power is ef-
ficiently dissipated by radiative shocks and does not quickly cou-
ple to the volume-filling turbulence of the surrounding molecular
cloud, consistent with earlier works exploring the coupling of con-
tinuously driven jets through a stratified environments (Banerjee,
Klessen & Fendt 2007). What effects the outflows do have are lim-
ited to the dense gas surrounding protostellar cores, which is why
the mass-weighted average shows an effect from outflows but the
volume-weighted one does not. However, we emphasize that even
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Figure 11. Total mechanical luminosity of the protostellar outflows as a function of time for the models with turbulent forcing (right) and with decaying
turbulence (left). The data have been boxcar-smoothed with an interval of 0.05 tff.

in a mass-weighted sense the effect is modest. In our simulations,
outflows do not appear to be efficient drivers of turbulence.

3.6 Local magnetic support

The turbulent driving phase introduces stretching and amplification
of the magnetic field, relative to the initial magnetic field strength.
The Alfvèn Mach number captures the strength of the turbulence
relative to the initial magnetic field. As discussed in Section 2,
the magnetized models in this work span the range 1 < MA < 15.
However, the weakly magnetized models endure more significant
stretching of the magnetic field and more small-scale magnetic field
amplification in the turbulent driving phase than the more strongly
magnetized models. The tangled magnetic field is further amplified
due to collapse after self-gravity is switched on. Therefore, it is
only the mean, large-scale field that is weak in our ‘weak-field’
model. On the scale of the pre-stellar dense cores, the magnetic
field is significantly more tangled and stretched than in stronger
field models. Similar field amplification due to turbulence and the
early gravitational collapse phase into starless dark clumps was
noted in Li et al. (2015, section 8 in particular). In this section,
we examine the magnetic field structure in the vicinity of proto-
stars, with the goal of understanding how the combination of tur-
bulent and gravitational amplification maps from the initial, large-
scale magnetic field to the final, small-scale one in the dense gas
that is bound to and actively feeding accretion on to protostellar
sources.

We seek to characterize the mean mass-to-flux ratio, averaged
over the bound gas around each protostar that is poised for imminent
accretion. We take this gas to be that which satisfies the condition

(v − v∗) · (x − x∗)

|x − x∗| + cs <

√
Gm∗

|x − x∗| , (14)

where x, v, and cs are the position, velocity, and sound speed of
the gas in the computational domain and x∗, v∗, and m∗ are the
position, velocity, and mass of each protostar. This criterion selects
gas with insufficient thermal or kinetic energy to escape eventual
accretion to the protostar, but distinguishes between infalling gas
(for which v − v∗ is anti-aligned with x − x∗, and thus the dot

product is negative), which is more bound, and outflowing gas
(vectors aligned), which is less so. We assign gas that is bound to
more than one star under this criterion only to the star to which it is
most strongly bound.

For each star i, we have now defined a mass mgas, i of ‘bound gas.’
We next compute the volume-weighted mean magnetic field direc-
tion in this gas, B̂i, and we define the associated magnetic flux �i

as the net flux through the intersection of the plane defined by B̂i and
the volume of assigned gas. Finally, we characterize the local mass-
to-flux ratio of the gas assigned to each star as μ�, i = mgas, i/M�, i

where M�, i is the magnetic critical mass computed from equation
(1). It should be noted that the significance of μ� changes if a
protostar is present in the cloud: The protostellar gravity also acts
on the gas, so that accretion can occur normal to the field even for
μ� < 1.

Fig. 12 shows the temporal evolution of the mean mass-to-flux ra-
tio averaged over the bound gas around each protostar. The average
is weighted by the mass of each protostar. Due to the computational
burden associated with post-processing this result from our mod-
els, the plots in Fig. 12 are sampled only every 0.2tff, >med in time.
In the figure, the curve for each model begins after the formation of
the first sink particle.

In interpreting Fig. 12, it is important to bear in mind that this
diagnostic characterizes the net impact of multiple competing pro-
cesses. Under our sink particle prescription (Lee et al. 2014), in-
falling gas is released from its associated magnetic flux the instant
that it deposited on to the sink particle. This prescription is in-
tended to mimic resistive effects near the surface of the protostar at
length scales below that which can be resolved by our models. Con-
sequently, accretion causes the mass-to-flux ratio associated with
locally bound dense gas clumps to decrease. The accreted mass is
removed from the gas but the flux remains. However, the magnetic
flux may subsequently escape, because it is no longer anchored to
the gravitationally bound material – this is a form of magnetic in-
terchange instability (Zhao et al. 2011; Krasnopolsky et al. 2012;
Cunningham et al. 2012; Li et al. 2014). If the magnetic flux tubes
escape the gravitationally bound region, this drives the mass-to-
flux ratio back up. Similarly, turbulent magnetic reconnection acts
to diffuse magnetic flux and increases the local mass-to-flux ratio
in regions that undergo reconnection. In this case, the gas mass
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Figure 12. Temporal evolution of the mean mass-to-flux ratio averaged over the bound gas around each protostar. The averaging is weighted by protostellar
mass. The plot is presented in units of the magnetically critical mass, for the models with turbulent forcing (right) and with decaying turbulence (left).

remains but the magnetic flux is displaced outward (Santos-Lima,
de Gouveia Dal Pino & Lazarian 2012). Outflow ejection and tur-
bulent forcing also impart mechanical energy to the system, and the
resulting flows can further amplify, entangle, and ultimately recon-
nect magnetic flux tubes (Sur et al. 2012; Li et al. 2015). In this way,
accretion, outflow, field tangling, and reconnection all influence the
mass-to-flux ratio. Since accretion itself is episodic, so too is the
evolution of the mean mass-to-flux ratio of the bound gas in Fig. 12.
We anticipate the degree of tangling and episodic reconnection to
be most pronounced in the weak-field models as weaker fields are
more readily tangled and amplified by the turbulent flow. This too
is borne out in Fig. 12.

In the undriven models shown in the left-hand panel of Fig. 12,
the mass-to-flux ratios in the bound gas systematically decreases
with time for each of the models. This indicates that buoyant flux
tubes rising away from the protostars as a consequence of accretion
act enhance the degree of magnetic support to the bound gas, and
this enhancement overwhelms the effect of turbulent reconnection.
The μ� = 1.56 model without outflows indicates systematically
stronger magnetic support in bound gas than the case with outflows.
This indicates that outflows contribute to magnetic reconnection
and consequent outward transport of magnetic flux, and explains
why these models achieve comparable star formation efficiency
(εff,IC = 12 per cent in case without outflows and εff,IC = 23 per cent
in case with outflows). The enhanced magnetic support in case with-
out outflows offsets, the loss of mechanical feedback support when
the outflows are turned off. The μ� = 2.17 model is also strongly
magnetically supported, with the mass-to-flux ratio in the bound gas
approaching μ� ∼ 1 at late time, consistent with its accretion rate
εff,IC = 14 per cent, slightly higher than the more strongly magne-
tized μ� = 1.56. The model that began with a field characterized
globally as μ� = 23.1 attains a characteristic mass-to-flux ratio
μ� ≈ 5 via field amplification and gravitational compression by
the time the first protostellar particle forms. While the level of mag-
netic support in the bound gas increases with time, the degree of
magnetic support achieved by the end of the model is insufficient
to significantly reduce the net accretion rate from that of the purely
hydrodynamical case.

The evolution of the mass-to-flux ratio of the bound gas in the
models with driven turbulence models is shown in the right-hand

panel of Fig. 12. In this case, the model that began with a global
μ� = 2.17 retains a roughly constant mass-to-flux ratio in the bound
gas of μ� ∼ 2 throughout its evolution. The model that began with
a global μ� = 1.56 attains stronger magnetic stabilization in the
dense gas with μ� < 1 by the time the first protostars have formed.
Subsequent evolution indicates a slowly decreasing level of mag-
netic support in the bound gas, stabilizing to μ� � 1. The model
that began with a global μ� = 23.1 enhances the degree of mag-
netic support in the bound gas with time, reaching to μ� ∼ 4 by the
end of the model.

Taken in aggregate, our results indicate that small-scale dissi-
pation effects near the surface of a protostar provide a feedback
loop for stabilizing the star formation efficiency. Bound gas cores
that are undersupported initially undergo more rapid collapse than
cores that are better supported, independent of whether the initial
support is predominately turbulent or magnetic. The more rapidly
collapsing regions reconnect and expel magnetic flux to the core
from the newly formed protostar at a faster rate. The end result of
this process over a time-scale >1tff is that cores with continuous
mechanical support that remain in near virial equilibrium approach
mass-to-flux ratios of μ� < 5 independent of the large-scale mean
field strength. Models with decaying or otherwise sub-virial levels
of turbulent support will lead to greater local enhancement of the
level of magnetic support in the bound gas, approaching μ� < 2 at
late time.

4 MAG N E T I C A N D R A D I AT I V E E F F E C T S IN
S H A P I N G T H E I M F

In Section 3.3, we demonstrated that our models have protostel-
lar mass distributions that are stable or evolving slowly towards
higher mass only slowly compared to cloud-collapse time-scales.
The models with weak initial fields or a lack of driving all have me-
dian masses that are too large in comparison to the observed IMF,
while the strong field and driven cases have smaller median masses
that are at least roughly compatible with these models reproducing
the observed IMF. It is therefore interesting to investigate in more
depth what mechanisms shape this mass distributions. To explore
this question, we turn to the techniques described in Krumholz et al.
(2016), who analysed the simulations of Myers et al. (2014); these
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simulations use the same physics we include here, but focus on
a much denser region appropriate to sites of high-mass star for-
mation. Comparing the two sets of simulations therefore enables
us to understand how this question depends on the star-forming
environment.

4.1 Analysis methodology

We begin with a brief summary of the Krumholz et al. (2016) anal-
ysis, and refer readers interested in the details to that paper for a
full description. The central idea of this analysis is to determine
what physical process is responsible for halting fragmentation in
the vicinity of each protostar, thereby leaving the mass available for
accretion and the build-up of more massive stars, rather than the
production of additional low-mass stars. To this end, we examine
spherical regions of gas within a 4000 au radius around each proto-
stellar sink particle at time intervals of 0.05tff, >med. We divide the
volume of interest into 128 spherical shells of radius r concentric
with the position of the sink particle. For each shell, we compute
the total gas enclosed mgas, excluding the sink particle mass, the
mean density ρ of the enclosed material, and its mass-weighted
mean sound speed cs.6 From the resulting profiles in ρ and cs, we
compute an effective temperature

Teff = μmH

kB
c2

s , (15)

and, more importantly from the standpoint of determining whether
gas will fragment, the Bonnor–Ebert mass (Ebert 1955; Bonnor
1956),

mBE = 1.86

√
c3

s

G3ρ
. (16)

The Bonnor–Ebert mass characterizes the degree of thermal sup-
port. Absent other forces, objects less massive than mBE are stable
against collapse and objects more massive than mBE are unstable
against collapse. To elucidate the importance of heating by proto-
stars in stabilizing the core, we repeat the computation with the
sound speed cs = 0.19 cm s−1, the sound speed of molecular gas at
10 K used as the background isothermal temperature in the simula-
tions. We shall denote this quantity as mBE, 10. Comparison of mBE

with mBE, 10 enables us to determine the importance of radiative
heating in limiting fragmentation.

To characterize the importance of magnetic forces, we compute
the magnetic flux � threading each spherical shell, defined so that
� = ∫ |B · n̂| d2x is computed along a circular cross-section that is
concentric with the spherical shell and has normal n̂. The absolute
value is taken in the integration on the assumption that oppositely
directed fluxes do not reconnect and cancel. We consider 12 possible
orientations for n̂, uniformly distributed on the unit sphere, with one
value aligned with the star’s angular momentum vector, and use the
largest value of �, we find for all the n̂ values considered. From this,
we can compute an effective mean magnetic field strength inside a
radius r,

Beff (<r) = �

πr2
, (17)

6 As in Krumholz et al. (2016), we focus on cumulative rather than differ-
ential quantities because they are less subject to noise; see appendix A of
Krumholz et al. (2016) for a demonstration that this choice does not alter
the qualitative results.

a magnetic critical mass m� (equation 1), and the magnetically
supported mass (Mouschovias & Spitzer 1976; McKee & Ostriker
2007)

mB = m3
�

m2
gas

. (18)

We prefer mB to m� for this analysis as the former is an intensive
quantity that does not depend on the size of the volume considered.

It has been well established that magnetic fields influence the
spectrum of stars formed and reduce the star formation efficiency
(Price & Bate 2008). Here, we elucidate the relative contribution or
radiative feedback to magnetic support by comparing the enclosed
mass mgas with the thermally and magnetically supported masses
mBE and mB. This provides direct insight into the role of thermal
support (augmented by radiative heating) and magnetic fields in
shaping the IMF. For sufficiently small shells around each protostar,
we always find mgas 
 mBE and mgas 
 mB, i.e. the enclosed mass
is too small to fragment and form another star given the level of
thermal and magnetic supports. This gas will almost certainly be
accreted on to the star that it surrounds, augmenting this star’s
mass. At sufficiently large radii, mgas � mBE and mgas � mB, i.e.
the mass enclosed is large enough that is able to fragment and
produce additional stars, rather than being accreted on to the star it
surrounds. Thus, the shell at which mgas ≈ max (mBE, mB) marks
a rough dividing line between gas that will end up in the existing
star and gas that will end up elsewhere, and m∗ + mgas provides a
rough estimate of the mass to which the star is likely to grow. We
define the thermal critical mass mBE, crit as the smallest (and almost
always sole) mass where mgas = mBE, and analogously for mB, crit

and mBE, 10, crit. Thus these critical masses provide a rough estimate
of the future mass supply available for each star.

Krumholz et al. (2016) show that, in the simulations of Myers
et al. (2014), stars with mass m∗ 
 0.2 M� almost invariably have
stabilized gaseous envelopes such that mBE, crit � m∗, explaining the
relative rarity of brown dwarfs as compared to stars: brown dwarf
mass fragments can form, but when they do, they stabilize enough
gas around themselves that they usually continuing accreting well
out of the brown dwarf mass regime. Moreover, Krumholz et al.
(2016) find that their stabilized regions have mBE, crit � mB, crit �
mBE, 10, crit, indicating that, while magnetic support is more important
than thermal support in the absence of radiative heating, once one
considers the effects of stellar radiation, it is the dominant factor
in limiting fragmentation and thus establishing the location of the
IMF peak.

4.2 Profiles of mean density, temperature, and magnetic field

Fig. 13 shows the average density profile around central stars with
three different masses; the averages plotted are taken over all pro-
tostars at all times. The density profiles always show a central dip
at 130 au < r < 260 au, which is a result of our sink particle ac-
cretion zones; we therefore ignore this region in our analysis. At
larger radii, we find that the moderately and weakly magnetized
models (μ� ≥ 2) without driving have density profiles ρ ∝ r−3/2.
This profile is consistent with that expected for free-fall collapse on
to a point mass. However, for Bondi-type flow, the density at a fixed
distance from the central object should increase with mass. The fact
that it is not inconsistent with pure Bondi flow, but is consistent
with the TC model of McKee & Tan (2003) and with the model of
Murray et al. (2015) for the for collapsing, self-gravitating, TCs.
In contrast, the strongly magnetized (μ� = 1.56) undriven cases,
and all driven cases for a central star mass of m∗ = 0.15 M�, show
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Figure 13. Mean density profiles ρ(r) averaged in spherical shells around protostars. The panels show the results for the strong (left), moderate (centre), and
weak (right) magnetic field models. The top row depicts results for the models without turbulence driving after the onset of self-gravity at t = 0. The bottom
row depicts results for the model with continued turbulence driving after the onset of self-gravity. Different colours show means for protostars of mass 0.025,
0.05, and 0.15 M�. For each mass bin, the central line shows the mean, while the shaded band shows the 1σ dispersion for protostars in that mass bin. The
dashed black line shows the density scaling ρ ∝ r−3/2, expected for free-fall collapse.

slightly shallower density profiles. This is consistent with a build-up
of magnetic flux resulting in a slower than free-fall collapse.

Fig. 14 shows averaged profiles of Teff. Except for the μ� = 1.56
undriven model, these profiles indicate increasing Teff with cen-
tral star mass. As Krumholz et al. (2016) point out, to maintain a
constant density profile, infall velocities and accretion rate must in-
crease as the progenitor mass increases. Since accretion luminosity
is the dominant source of radiative heating in low-mass sources, the
temperature around them rises with their mass. The weakly mag-
netized models show the most rapid increase in heating with mass.
Krumholz et al. (2016) noted a similar trend in models of denser
high-mass star-forming regions, and also found that the temperature
profiles were always close to Teff ∝ r−0.3. Here we find substantially
shallower profiles, likely because the lower optical depth environ-
ment we are simulating is less effective at trapping the radiation
(Krumholz & McKee 2008).

In Fig. 15, we show the corresponding average profiles of Beff.
Consistent with our findings in Section 3.6, despite the large dif-
ferences in large-scale magnetic flux, there is very little difference
between the small-scale magnetic field strengths around protostars
in the different simulations. Nor does the effective field strength
increase with star mass, as one might expect from a naive picture in
which accretion drags magnetic flux towards a star.

The non-dependence of the small-scale magnetic fields on either
the large-scale flux or the amount of gas that has already been
accreted strongly suggests that the magnetic field profiles we find

are the result of a self-regulation mechanism operating on small
scales. We can think of this self-regulation as due to two pairs of
competing processes, although given our limited resolution and the
complex nature of the flows in our simulations, we cannot easily
identify which mechanisms dominate. First, there is a competition
between dynamo amplification and reconnection. In a turbulent
dynamo, magnetic fields amplify until these two effects balance
(Sur et al. 2012; Li et al. 2015). Second, there is a competition
between advection and magnetic interchange instabilities. As gas
accretes, magnetic flux tubes are advected into the cores around
the protostars, which tends to drive up Beff. The countervailing
process is escape of flux through magnetic interchange instabilities.
In reality, the interchange instabilities are triggered by resistive
effects close to the surface of the protostar, which decouple flux
tubes from the mass that anchors them and allows them to drift
outward (Zhao et al. 2011; Krasnopolsky et al. 2012; Cunningham
et al. 2012; Li et al. 2014); we model this by not accreting any
magnetic flux into the star particles. If the flux liberated from the
protostar diffused out to a radius R, then it would contribute a mean
field

Beff,∗ = 2G1/2

(
L

Z

)
m∗

μ�R2
, (19)

where we have assumed that the protostar has formed from a
cylinder of gas with a height Z less than the box height L. For
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Figure 14. Same as Fig. 13, but showing the mean effective temperature Teff(r) (equation 15). The black dashed line shows a Teff ∝ r−0.3. The initial
temperature of the models is T = 10 K.

Figure 15. Same as Fig. 13, but showing the mean effective magnetic field Beff(<r) (equation 17). The black dashed horizontal line indicates the initial
magnetic field strength before driving to the initial turbulent state.
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Figure 16. Critical mass of gas supported by thermal pressure mBE, thermal pressure fixed to the initial temperature 10 K mBE, 10 and magnetic fields mB as a
function of central stellar mass m∗. Shaded bands indicate 1σ dispersion over the protostars. The dashed black line indicates where the mass supported against
collapse by pressure or magnetic forces is sufficient to double the present stellar mass, m∗ = mcrit. The panels shows the results for the strong (left), moderate
(centre), and weak (right) magnetic field models. The top row depicts results for the models without turbulence driving after the onset of self-gravity at t = 0.

m∗ = 0.15 M� and μ� = 1.56, the results in Fig. 15 place a lower
limit R > 1000 au on the distance that the field has diffused outward.

4.3 Critical mass

In Fig. 16, we show the critical mass of gas supported by thermal
pressure, mBE, thermal pressure fixed to the initial temperature, 10 K
mBE, 10, and magnetic fields, mB, as a function of central stellar mass
m∗ as described in Section 4.2. When mcrit > m∗, the mass of the
stabilized envelope around a protostar is much greater than the mass
of the star itself, and thus is likely to greatly increase its mass.

First consider thermal support. Krumholz et al. (2016) found that
mBE was typically a factor of ∼10 larger than mBE, 10, indicating
that radiative heating increased the amount of mass that could be
thermally supported by a factor of ∼10. In our lower mass cluster
models, the difference between mBE and mBE, 10, is less pronounced,
closer to 0.5 dex than 1 dex. However, the difference is smaller not
because mBE is smaller, but rather because mBE, 10 is larger. That is
to say, in our lower density simulation, the characteristic density is
lower, and thus the Bonnor–Ebert mass in unheated gas is larger. In
comparison, the mass that can be supported after heating, mBE, is
almost unchanged and independent of environment – the increase
in the temperature of the gas has been compensated by an increase
in its density.

Next consider magnetic support. The results in Fig. 16 are con-
sistent with the findings of Krumholz et al. (2016) that the magnetic
fields are relatively unimportant in supporting the cores compared
to thermal pressure. Again, this points to the importance of local
processes in regulating the magnetic field structure in the vicinity
of protostars. The magnetic flux in the μ� = 1.56 case is sufficient

to support a mass m� = 119 M� against collapse, but the field
threading the local region around the protostars is strong enough to
support only 0.01–0.1 M�. This result explains why the mode of
the IMFs (Section 3.3) in our models are relatively insensitive to
the large-scale magnetic field. The critical mass supported against
fragmentation is determined primarily by thermal effects enhanced
by radiation. Magnetic fields thus have a significant effect on the
rate of star formation, but not on the IMF.

5 C O N C L U S I O N S

We present a numerical study of low-mass star cluster formation,
and how this process is affected by the strength of the large-scale
magnetic field, the presence or absence of turbulent energy input,
and the effects of protostellar outflows. Our simulations include
MHD, radiative transfer and protostellar radiation feedback, and
protostellar outflows, a combination of physical processes that has
received little attention in the literature to date.

Our primary finding is that our models are able to reproduce the
observed (low) efficiency of star formation and the observed lo-
cation of the IMF peak (to within a factor 2) only in models that
include outflows and that do not undergo global collapse, either
because they are supported by external energy input that drives the
turbulence, or because they are close enough to the line of mag-
netic criticality for magnetic fields to inhibit collapse. In contrast,
multiplicity statistics are insensitive to all variations in the initial
conditions.

Krumholz et al. (2011, 2012) had previously conjectured that
there might be a link between the low efficiency of star formation
and the location of the IMF peak, but this was based on a single set
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of non-magnetized simulations. Our much more extensive suite of
radiation-MHD simulations puts this conclusion on a much firmer
footing, and suggests a general principle: the IMF peak location is
directly linked to the inefficiency of star formation.

The primary mechanism controlling the IMF peak appears to be
accretion-powered radiation from forming protostars, which pro-
duces enhanced thermal pressure on small scales in the vicinity of
forming stars, as noted earlier by Bate (2009) as well. In comparison,
the small-scale magnetic field structure around forming protostars
is both insensitive to the large-scale magnetic field strength, and
dynamically sub-dominant compared to radiation when it comes to
regulating gas fragmentation. These results strongly favour a picture
in which the small-scale magnetic field structure around protostars
is regulated by local competitions between accretion of magnetized
material and dynamo amplification, which tend to enhanced the field
strength, and magnetic interchange instability and turbulent recon-
nection, which tend to suppress it. The competition between these
processes tends to force the local mass-to-flux ratio in gas bound to
protostars to ∼2 (normalized to the critical value), regardless of the
large-scale field.

Our models lack resolution to capture the effects of thermal sup-
port against gravitational contraction deep within very low-mass
cores and we lack non-ideal MHD effects that are most strongly cou-
pled to turbulent density profiles on small scales. However, these
effects should influence our modelled protostellar mass distribu-
tions only on the low-mass tail m∗ � 0.05 M� and our conclusions
are not sensitive to these effects. We acknowledge that higher res-
olution models with non-ideal effects and multiple realizations to
capture better statistics at protostellar mass extrema could improve
the comparisons with observation made here by capturing a wider
range of source masses with higher fidelity.
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