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ABSTRACT
The importance of radiation pressure feedback in galaxy formation has been extensively
debated over the last decade. The regime of greatest uncertainty is in the most actively star-
forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared
radiation field with enough pressure to drive turbulence or eject material. Here, we derive the
conditions under which a self-gravitating mixed gas-star disc can remain hydrostatic despite
trapped radiation pressure. Consistently, taking into account the self-gravity of the medium,
the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation,
we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit
area �̇∗,crit ∼ 103M� pc−2 Myr−1, corresponding to a critical flux of F∗,crit ∼ 1013 L� kpc−2

similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation.
Conversely, we show that in galaxies below this limit, our 1D models imply simple vertical
hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or
ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum
limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely
unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation
pressure does not explain the Kennicutt–Schmidt relation, it does impose an upper truncation
on it. Our predicted truncation is in good agreement with the highest observed gas and star
formation rate surface densities found both locally and at high redshift.

Key words: hydrodynamics – instabilities – radiative transfer – jets and outflows – galaxies:
ISM – galaxies: star clusters.

1 IN T RO D U C T I O N

Young stars emit two-thirds of their total energy and momen-
tum budget at far-ultraviolet (FUV) and higher energies (�8 eV;
Krumholz 2014b). Such radiation interacts with dust grains with a
large cross-section; even a galaxy of moderate metallicity and gas
column will absorb most photons in this energy range and, in so do-
ing, reprocess them into the infrared (IR). This process might be ex-
pected to affect the dynamics of the absorbing gas: the radiation field
emitted by a zero-age stellar population carries a momentum flux
per unit mass of stars formed of V̇L � 24 km s−1 Myr−1 (Murray &
Rahman 2010; Krumholz et al. 2014; Krumholz 2014b).

While large enough to drive gas out of isolated proto-clusters
experiencing intense star formation (Krumholz & Matzner 2009;
Fall, Krumholz & Matzner 2010; Murray & Rahman 2010; Thomp-
son & Krumholz 2016), this single-scattering radiation impulse is
not large enough by itself to proffer a general explanation of the
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low star formation efficiency1 of galaxies on global scales: the mo-
mentum budget is simply too small (Andrews & Thompson 2011;
Faucher-Giguère, Quataert & Hopkins 2013; Krumholz 2014b, and
references therein). However, because dust grains can accommo-
date a chain of multiple scatterings or absorptions and re-emissions
for each photon emitted, significantly more momentum per unit
time might, it seems, be extracted from a light field by dust-bearing
molecular gas than the L/c obtained in the single-scattering limit.
Indeed, there have been suggestions (Thompson, Quataert & Mur-
ray 2005; Murray & Rahman 2010; Andrews & Thompson 2011;
Hopkins, Quataert & Murray 2011) that, in the ‘strong trapping’
limit, the rate of momentum deposition should approach ∼τL/c
which can considerably exceed the single-scattering value for large
optical depths τ � 1. Such large optical depths to reradiated IR

1Galaxies convert only ∼1 per cent of their cold gas to stars per free-fall
time (e.g. Zuckerman & Evans 1974; Krumholz & Tan 2007; Krumholz,
Dekel & McKee 2012; Vutisalchavakul, Evans & Heyer 2016; Heyer et al.
2016; Leroy et al. 2017).
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are encountered in the large gas column, dusty, starbursting galax-
ies whose enormous star-formation-driven radiative output emerges
dominantly at long wavelengths (Genzel & Cesarsky 2000; Calzetti
2001), with peaks at ∼100 μm. Such galaxies are detected locally
as ultraluminous IR galaxies (ULIRGs; LIR > 1012 L�) like Arp
220 and as sub-mm galaxies at high (z � 2) redshift. Fits to these
galaxies’ observed spectral energy distributions imply dust columns
of ∼0.01–0.5 g cm−2 (Chakrabarti & McKee 2008), corresponding
to optical depths of ∼10–100 at 20 μm and ∼1–10 at 100 μm.

In the strong trapping limit as may be applicable in such systems,
amplification of the radiative momentum deposition is, ultimately,
limited only by energy conservation to �(c/v)L where v is the
characteristic speed of the outflowing gas (e.g. Socrates, Davis &
Ramirez-Ruiz 2008). The claimed amplification has been contro-
versial however (e.g. Krumholz & Matzner 2009; Reissl et al. 2018):
in the optically thick limit, the gas distribution helps to shape the
radiation (spatial) distribution and the coupling between gas and
photons, mediated by dust, leads to various instabilities (Blaes &
Socrates 2003; Jacquet & Krumholz 2011) whose impact must be
assessed with numerical simulations.

Such considerations led Krumholz & Thompson (2012, 2013) to
perform 2Ddirect radiation hydrodynamics simulations of gaseous
discs subject to a constant external gravitational field. They showed
that the behaviour of gravitationally confined dusty columns of
gas subjected to radiative fluxes is governed by two characteristic
parameters: τ ∗, the dust optical depth, and the Eddington ratio,
fE,∗, both computed for the opacity at the dust photosphere (see
equations 6 and 7 below). Above a critical value of fE,∗ (to which
we refer as fE,crit,rt below, and which depends on τ ∗), the gas cannot
remain hydrostatic, and instead becomes subject to the radiation
Rayleigh Taylor (RRT) instability. This causes the gas to become
turbulent and drives it into a density distribution that limits its ability
to trap IR photons.

The simulations of Krumholz & Thompson (2012, 2013) used
the Flux-Limited Diffusion (FLD) approximation to the radiation
transfer problem, and later numerical studies employing more accu-
rate radiative transfer approaches including the Variable Eddington
Tensor (VET; Davis et al. 2014; Zhang & Davis 2017), the implicit
Monte Carlo radiation transfer (IMC; Tsang & Milosavljević 2015),
and the M1 closure (Rosdahl & Teyssier 2015; Bieri et al. 2017)
schemes demonstrated significant differences in the behaviour of
gas when fE,∗ > fE,crit,rt. In particular, the FLD simulations found
that, above fE,crit,rt, the gas becomes turbulent but is not ejected in a
wind, while the VET and IMC studies find a continuous net accel-
eration of the gas that does launch a wind, though clumping does
significantly reduce the acceleration of the wind compared to that
which would be expected for a laminar matter distribution. In ef-
fect, the FLD simulations show that the ratio of the mass-averaged
radiation force to gravitational force, 〈fE〉 approaches 1 from below
while the VET and IMC simulations show that instead 〈fE〉 → 1
from above.2 Thus, fE,∗ > fE,crit,rt is a sufficient condition to guar-
antee that the atmosphere remains super-Eddington resulting in an
outflow even though the gas is unstable, albeit one that accelerates
much more slowly than suggested by early analytic estimates and
subgrid models that did not consider the effects of RRT.

Conversely, for fE,∗ < fE,crit,rt, all numerical methods agree that the
radiation drives no motion and injects no momentum. In this regime,

2The M1 simulations find gas to be driven towards a velocity dispersion
intermediate between the FLD and VET cases though also finding that, as
in FLD, the gas does not become unbound (Rosdahl & Teyssier 2015)

dust-reprocessed radiation has no significant dynamical effects. The
value of fE,crit,rt at which this transition occurs can be derived semi-
analytically, without the need for any simulations at all. The exis-
tence of a critical value where trapped radiation sharply transitions
from dynamically unimportant to capable of ejecting mass in bulk
has important implications for its role in galaxy formation, which we
explore in this paper. We extend the calculation of Thompson et al.
(2005) and that of Krumholz & Thompson (2012) for the stability
curve in a constant gravitational field to the more realistic case of a
self-gravitating disc of mixed gas and stars. Based on our analysis,
we show that radiation pressure imposes an upper envelope on the
range of gas and star formation surface densities, (�gas, �̇∗), that
galaxies can explore. The vast majority of star-forming galaxies,
even luminous ones such as ULIRGs and sub-mm galaxies, lie far
away from this envelope, and thus trapped radiation pressure cannot
be responsible for regulating star formation in most galaxies or for
determining the shape of the Kennicutt–Schmidt relation (Kennicutt
1998) on global scales. However, the upper limits of the observed
galaxy distribution are intriguingly close to the calculated upper
envelope, which strongly suggests that trapped radiation pressure
does impose an upper truncation on the Kennicutt–Schmidt relation,
and on galaxies’ possible rates of star formation (Thompson et al.
2005).

The remainder of this paper is as follows. In Section 2, we in-
troduce the basic equations that govern our model system, and in
Section 3, we determine the conditions under which these equations
admit stable and unstable equilibria. In Section 4, we consider the
astrophysical implications of our findings, which we discuss fur-
ther and summarize in Section 5. In a separate paper, we will apply
our results on indirect radiation pressure feedback to star-forming
subregions like individual giant molecular cloud complexes.

2 SETUP

2.1 Physical configuration

As a simple model of a galaxy disc, we consider a planar distribution
of stars and gas of infinite lateral extent with a vertical radiation flux
F∗ = F∗ ẑ entering the domain of interest at z = 0. By symmetry,
we can just treat the half-plane from vertical height z = 0 to z →
∞. We assume that all radiation is injected at z = 0 (i.e. there are
no internal sources of radiation at z> 0 except the thermal emission
of the gas itself) and that there is local thermodynamic equilibrium
such that the dust, gas, and radiation temperatures at any height z
are equal, Td(z) = Tg(z) = Tr(z) ≡ T(z). Note that the assumption
of equal gas and dust temperatures is reasonable as long as the gas
density is �104.5 cm−3 (e.g. Krumholz 2014a) so that collisional
coupling is efficient, which is the case for the starburst galaxies
with which we are concerned.

In a steady state, the power entering the slab at z = 0 must match
the power escaping to z → ∞.3 Moreover, as z → ∞, the density
must approach 0 for any physically reasonable configuration, so the
gas must become optically thin at some sufficiently large z (defining
the photosphere). This means that as z → ∞, the flux and radiation
energy density must approach the relationship F∞ = cE∞ẑ = F∗.

3This is not true if enthalpy-bearing mass forms a wind that escapes to
infinity; this is the so-called ‘photon tiring’ limit. In Appendix A, we show
that photon tiring is not a significant effect over the parameter space we
consider though it may, given some generous assumptions, start to play a
role for the very largest optical depths we investigate (τ ∗ � 30).
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Following Krumholz & Thompson (2012), we may thus define a
reference temperature

T∗ =
(

F∗
ca

)1/4

, (1)

where a = 7.565 × 10−15 erg cm−3 K−4 is the radiation density
constant. In steady state, T(z) must approach T∗ as z → ∞ and the
free-streaming radiation energy density must satisfy Er = F∗/c ≡
E∗.

We also define a reference acceleration at the top of the planar
matter distribution

g∗ = 4πG�1/2, (2)

where �1/2 is the column density in all matter (i.e. gas and stars)
integrated outwards from the mid-plane (i.e. half the total column by
symmetry; we use �1/2 for the moment in order to ease comparison
with the results of Krumholz & Thompson 2012 whose set-up was
a half-plane of gas in an external gravitational field). In general, we
shall allow for both gaseous and stellar contributions to the total
matter column as parametrized by the gas fraction

fgas ≡ �gas,1/2

�1/2
= �gas,1/2

�gas,1/2 + �stars,1/2
. (3)

Note that only gas contributes to the integrated optical depth of a
given column.

2.2 Non-dimensionalization

With T∗ and g∗ in place, we may now define a number of reference
quantities, viz. i) the reference scaleheight of an isothermal gas
distribution at T∗

z∗ = kBT∗
μg∗

= kBT∗
μ

1

4πG�1/2
, (4)

where μ is the mean molecular weight of the gas constituent parti-
cles; ii) a reference gas density

ρ∗ = �gas,1/2

z∗
= 4πGμ fgas�

2
1/2

kBT∗
; (5)

iii) a reference Eddington ratio (which is the Eddington ratio at
infinity)

fE,∗ = κR,∗F∗
g∗c

= τ∗F∗
4πG fgas�

2
1/2c

, (6)

where we use iv) the reference optical depth (from the mid-plane to
infinity but assuming the gas temperature is fixed at the photospheric
value);

τ∗ = κR,∗fgas�1/2; (7)

and v) the reference Rosseland mean opacity

κR,∗ ≡ κR(T∗). (8)

In physical units,

κR(10 K) ∼ 10−1.5 cm2 g−1 (9)

for dust at Solar neighbourhood abundances; we assume that the
dust abundance does not vary vertically within the gas column
whose stability we are calculating, an assumption that is likely to
be satisfied since turbulent motions will mix the dust vertically on
the turbulent eddy turnover time-scale. Note that in general we can
write

κR(T ) = κR,∗kR(T /T∗). (10)

Given that the opacity of dusty material varies with temperature as
roughly κ ∝ T2 (at temperatures �150 K; Semenov et al. 2003), we
will usually have what is given below that kR in equation (10) obeys

kR(�) = �2, (11)

where, here and in the following, we use the dimensionless tem-
perature � ≡ T/T∗. Below we also introduce a dimensionless non-
thermal ‘temperature’ parameter �NT to account for the fact that
star-forming gas is extremely turbulent, with a non-thermal veloc-
ity dispersion that contributes an effective pressure that can be a
significant, or even dominant, determinant of the overall dynamics.
Finally, we also define the dimensionless height ξ ≡ z/z∗ and, using
the column density given by

�(z) =
∫ z

0
ρ dz, (12)

where ρ is the gas density, we can define a dimensionless column
density

s ≡ �

ρ∗z∗
, (13)

so that

d�

dz
= ρ∗

ds

dξ
. (14)

2.3 Density and temperature profiles

In order to be in mechanical equilibrium, we demand that there is
momentum balance at all heights in the gas distribution. Adopting
the two-temperature FLD approximation4 treated by Krumholz et al.
(2007), this condition of hydrostatic balance implies that

dptot

dz
+ λ

dE

dz
+ ρg = 0, (15)

where ptot is the total gas pressure (including a possible non-thermal
pressure contribution from turbulence), g is the height-dependent
gravitational acceleration, and λ is the dimensionless flux limiter
which, following Krumholz & Thompson (2012), we adopt from
Levermore & Pomraning (1981) and Levermore (1984). Including
both the gas self-gravity and an external gravitational field due to the
stars, the expression for the z-dependent gravitational acceleration
in our set-up is

g(z) =
∫ z

0
4πG

[
ρ(z′) + ρs

]
dz′

� 4πG
[
�(z) + �stars,1/2

]
. (16)

Here, the second near equality requires (as we shall henceforth
assume) that the scaleheight zs of the stellar volumetric density
distribution is much smaller than the gas scaleheight so that we
understand the gravity of the stars to be attributable to an infinites-
imal mass sheet in the mid-plane. This is a poor assumption for
real galaxies, where the stellar scaleheight is always at least as
large as the gas scaleheight. However, our goal here is to establish
the position of the critical curve where hydrostatic equilibrium be-
comes impossible, which is defined by the divergence of the gas
scaleheight. Thus, in the locus we are interested in investigating;

4Note that the limitations of FLD exposed by the VET and IMC treatments
have to do with FLD’s approximation of the radiation field direction in a
turbulent porous flow. These limitations do not affect the hydrostatic case
of interest here.
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we are in fact in the limit where the stellar scaleheight is small in
comparison to the gas scaleheight.

Note that in the FLD approximation (in one dimension) and given
flux conservation, the radiation flux impinging from the mid-plane
F∗ and the z-dependent radiation energy density E = aT4 are related
by

λ
dE

dz
= −κRρF∗

c
. (17)

Using the invariance of flux with z and directly adapting the results
from Krumholz & Thompson (2012), we can rewrite this equation
as

aT 4
∗

z∗

d
(
�4

)
dξ

= −kRκR,∗ρ∗
λc

ds

dξ
. (18)

Finally, fully simplifying and using the scaling factors pre-defined
above we have from equations (15) and (18) a final pair of coupled
dimensionless ordinary differential equations (ODEs) that together
specify the profiles of the dimensionless gas (surface) density, s,
and dimensionless temperature, �:

d

dξ

[
ds

dξ
(� + �NT)

]
= − [

1 + fgas(s − 1) − fE,∗kr

] ds

dξ
(19)

and

d

dξ

(
λ�3

kr

dξ

ds

d�

dξ

)
= 0, (20)

where in equation (19) we have accounted for turbulence via the
introduction of the (constant) non-thermal temperature �NT (which,
note, is absent from equation 20). We assume that �NT is indepen-
dent of ξ , which amounts to assuming that the velocity dispersion
that characterizes the turbulence is independent of height. This as-
sumption is consistent with observations, which do not show large
vertical gradients in interstellar medium (ISM) velocity dispersions.
It is also what is expected from the fact that turbulent motions gen-
erally have most of their power on the largest scales, which implies
that most of the support is provided by motions on size scales
comparable to the gas scaleheight, precluding the possibility of
variations on smaller scales. Physically, equation (19) above asserts
that the gas pressure gradient balances the force of gravity (from
gas and stars), diluted by radiation pressure, at every point; equation
(20) asserts that the temperature gradient is such as to conserve the
radiation flux (Krumholz & Thompson 2012).

Adopting the results of Krumholz & Thompson (2012), the
boundary conditions (BCs) for this ODE system are

s(0) = 0, (21)

lim
ξ→∞

s(ξ ) = 1, (22)

lim
ξ→∞

�(ξ ) = 1, (23)

d�

dξ

∣∣∣∣
ξ=0

= − τ∗kR

4λ�3

ds

dξ

∣∣∣∣
ξ=0

. (24)

Here, BC22 is equivalent to demanding that
∫ ∞

0 ρ dz = �1/2 and
BCs 23 and 24 are equivalent to demanding that the flux be F∗ as
z → ∞ and at z= 0, respectively. Note that the gas density gradient
at the mid-plane ξ = 0, where the gravitational field due to the gas

Figure 1. Equilibrium profiles for the dimensionless volumetric density
ds/dξ (blue), dimensionless temperature � (red), and absolute value of
the dimensionless temperature gradient d�/dξ (pink) in a self-gravitating
gaseous disc with fgas = 0.8 computed for an opacity law kR = �2 and with
fE,∗ = 0.04, τ ∗ = 3 (solid) and fE,∗ = 0.01, τ ∗= 1 (dashed). For the latter
(dashed line) case, the temperature profile is governed by radiative transfer
exclusively; for the former (solid line), the temperature profile is governed
by convection (i.e. equation31) for 0 ≤ ξ < 2.9 (‘C’) and by radiative
transfer (i.e. equation 20) for ξ ≥ 2.9 (note the kink in the solid pink curve
at ξ = 2.9). The Eddington ratios at ξ = 0 for these solutions are 0.17 and
0.013, respectively.

vanishes, obeys the equation

d2s

dξ 2

∣∣∣∣
ξ=0

= −
[

ds

dξ

1

� + �NT

(
1 − fgas − fE,∗kr + d�

dξ

)]
ξ=0

.

(25)

Fig.1 shows some example dimensionless temperature and volu-
metric density (ds/dξ ) profiles obtained by solving our ODE system
numerically with �NT = 0. One example shows a case that is entirely
convectively stable, while the other shows a case where convection
occurs (see Section 3).

3 EQU ILIBRIA

In this section, we first consider the case of no turbulence, �NT = 0,
before exploring the effects of non-zero �NT in Section 3.4.

3.1 Existence of equilibria

An important feature of the system of equations we have written
down is that the existence of an equilibrium solution for an arbitrary
combination of fE,∗, τ ∗, and kR is not guaranteed; rather, for any
specified τ ∗ and kR there will exist a critical Eddington ratio, called
by us fE,crit,rt (with rt = radiative transfer)5 above which radiation
pressure is too strong for a hydrostatic atmosphere to form. In
this case, the gas becomes turbulent as a result of RRT instability,
and may become unbound entirely. A necessary but insufficient
condition to guarantee mechanical equilibrium can be obtained by
consideration of the ξ → ∞ limit of equation (19): for finite � →
1 at ∞ from BC 23, we have that kR → 1 at ∞; a finite gas column
( BC22) then requires that 1 − fE,∗ be positive. However, even if
fE,∗ < 1, there may still be no solution that obeys both BCs 22

5Labelled fE,crit by Krumholz & Thompson (2012).
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Figure 2. Curves for fE,crit,rt (solid) and for fE,stab (dotted) at different
gas fractions, as labelled, with kR = �2 and �NT = 0. The case labelled
ggas= 0 corresponds to vanishing gas self-gravity (while maintaining finite
optical depth) as investigated by Krumholz & Thompson (2012); this case
is obtained by setting fgas = 0 in equation (19) (and equation 25). The solid
curves for fE,crit,rt show the largest fE,∗ that permits equilibrium for a column
whose temperature profile is governed by radiative transfer without regard to
convective stability. The dotted curves for fE,stab show the maximum values
of Eddington ratio at given τ ∗ such that convectively stable equilibria are
possible.

and 23. Operationally, we follow Krumholz & Thompson (2012)
by using a shooting method to numerically determine fE,crit,rt, the
maximum value of fE,∗ for which an equilibrium solution exists for
a given optical depth τ ∗ and for kR = �2. We show fE,crit,rt as a
function of τ ∗ at sample values of fgas in Fig. 2 (solid lines). For
comparison, we also show the value of fE,crit,rt obtained by Krumholz
& Thompson (2012) for the case of a constant gravitational field
(i.e. vanishing gas self-gravity denoted by ggas = 0 in the legend;
this limit can be obtained by setting fgas = 0 in equation (20) while
maintaining finite optical depth).

Some trends evident in this figure are worth remarking on: In
the optically thin limit, the temperature gradient washes out and the
atmosphere is increasingly well approximated as isothermal with a
dimensionless temperature of �→ 1. This means that imposing bal-
ance of gravity and radiation pressure at infinity increasingly well
corresponds to imposing balance of these forces all the way down
to the mid-plane. Note, however, that the limiting fE,crit is gas frac-
tion dependent: From equation (24), as the mid-plane temperature
gradient washes out, the density profile must be increasingly well
described as that for an isothermal atmosphere with a non-positive
density gradient. But then consideration of equation (25) shows that
we must have (1 − fgas − fE,∗) ≥ 0 in the τ → 0 limit. This sets the
critical dimensionless Eddington ratio as fE,crit → 1 − fgas in the
optically thin limit. In the opposite optically thick limit, the tempera-
ture gradient grows and the mid-plane temperature becomes �1. In
this case, the radiation pressure gradient can render the atmosphere
unstable towards the mid-plane even if the Eddington condition
is satisfied at infinity. Thus, fE,crit becomes increasingly small for
increasing optical depth but again with a limiting behaviour that
is gas fraction dependent (though in the opposite sense to previ-
ous): because gas self-gravity vanishes in the mid-plane, as fgas is
dialled upwards in the optically thick limit, the mid-plane density
declines and, relative to small fgas, the density gradient flattens off.
This reduces the optical depth near the mid-plane, lowering the
temperature gradient and the resulting mid-plane radiation pressure

gradient, rendering the atmosphere comparatively more stable with
increasing gas fraction case at fixed large τ ∗ and fE,∗.

3.2 Convective stability

An important point of difference between our set-up and the con-
stant gravitational field case investigated by Krumholz & Thomp-
son (2012, 2013) is that we now incorporate gas self-gravity,
which contributes a vanishing force in the mid-plane. Indeed, with
ds/dξ ∝ ρgas and � ∝ T (so that both ds/dξ and � are positive) and
with our radiation source located in the mid-plane (so that −d�/dξ

is also positive at z = 0), an equilibrium solution may, on the basis
of equation (25), turn out to have positive, zero, or negative density
gradient (d2s/dξ 2) in the mid-plane. On physical grounds, a con-
figuration with an inverted density distribution seems likely to be
unstable, a point we now examine in detail.

3.2.1 Nature of instability and true stability criterion

Though physical intuition might indeed suggest that an inverted
density distribution be unstable, to be rigorous we should consider
two questions: i) what is the nature of the (putative) instability? and
ii) for what sort of configuration will the column be susceptible to
such instability?

With respect to question i), for the particular circumstances we
investigate here, a number of potential instabilities can be imme-
diately ruled out. Blaes & Socrates (2003) find that local radiative
instability occurs only in the presence of magnetic fields or when the
opacity contains an explicit density dependence, neither of which
condition is met here. (In real galaxies magnetic fields are of course
present, but we shall see below that another instability is more im-
portant in any event.) The RRT instability described by Jacquet &
Krumholz (2011) is an interface instability that cannot develop for
the smoothly varying density distribution allowed in the equilibrium
situation we investigate.

In fact, we find that the putative equilibrium density and temper-
ature profiles that correspond to equilibrium for fE,∗ approaching
fE,crit,rt are susceptible to the classical convective instability. The
criterion for convective stability – that the specific entropy, Sg, in-
crease outwards – may be expressed as the requirement that (Blaes
& Socrates 2003) the Brunt–Väisälä frequency, Ng, be real or

N2
g ≡ − (γ − 1)ρT

γptot
g · ∇Sg > 0, (26)

where

Sg ≡ kB

μ(γ − 1)
log

(
ptot

ργ

)
+ const (27)

is the specific entropy of the gas and γ = 5/3 is the adiabatic index.6

From these equations, a sufficient condition for convective stability

6Note that it is solely the gas adiabatic index that appears in these equations.
While there are modes for which the radiation entropy profile matters, it is
only the entropy of the gas that matters for the classical convective instability
(Blaes & Socrates 2003). This holds even if the radiation contributes non-
negligibly to the total energy budget. Also, note that our adoption of a
fixed γ = 5/3 is something of an oversimplification for H2. For a realistic
ortho- to para-H2 ratio of 3, γ ≈ 5/3 at temperatures up to ∼50 K, and
decreases smoothly to γ ≈ 1.4 over the temperature range from ∼ 50−500 K
(Decampli et al. 1978; Boley et al. 2007). Given that the difference between
γ = 5/3 and γ = 1.4 only amounts to an ≈50 per cent change in the adiabatic
temperature gradient we derive below, this effect is unlikely to be significant.
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is g · ∇Sg < 0 or (for our 1Dsituation with ∇X = dX/dz ≡ X
′
)

T ′

T + TNT
− (γ − 1)ρ ′

ρ
> 0, (28)

where TNT ≡ T∗�NT is a constant dimensional non-thermal tem-
perature that accounts for turbulent energy density and pressure.
Rearranging and putting in terms of our dimensionless parameters,
for convective stability we require

d�

dξ
≥

(
d�

dξ

)
ad

, (29)

where(
d�

dξ

)
ad

≡ (γ − 1) (� + �NT)
d2s

dξ 2

dξ

ds
. (30)

The subscript ‘ad’ indicates that this is the value of d�/dξ for which
the gas is adiabatic. Combining this equation with equation (19) for
hydrostatic equilibrium, we find that the temperature gradient of a
column that is simultaneously convectively stable and in equilibrium
must be less negative than(

d�

dξ

)
ad

= γ − 1

γ

[
fE,∗kr + (1 − s)fgas − 1

]
. (31)

For a column in equilibrium with radiation sources located in
the mid-plane, d�/dξ is minimized (most negative) in the mid-
plane while � and (1 −s) are maximized in the mid-plane meaning
that convective stability is most difficult to satisfy there; thus, an
equilibrium configuration that is convectively stable in the mid-
plane is stable over the entire column. On the other hand, for ξ

→ ∞, (d�/dξ )ad → (γ − 1)/γ (fE,∗ − 1) which is less than zero
for any putative hydrostatic equilibrium configuration (which must
have fE,∗ < 1) while d�/dξ → 0 (from below) so a hydrostatic
system is always convectively stable at infinity. Most generally, at
finite ξ one can see that both increasing the fraction of total surface
density in gas or dialling up the Eddington ratio at infinity, fE,∗, tend
to render the system less stable with respect to convection.

3.2.2 Convectively stable equilibria

Under what circumstances will convective stability hold? To answer
this question, we next identify the family of curves (distinguished by
their gas fraction fgas) giving the maximum value of the Eddington
ratio at infinity fE,∗ (which we call fE,stab) that, at a given reference
optical depth τ ∗, is simultaneously in mechanical equilibrium and
convectively stable. To determine these curves, it is sufficient to use
the numerical procedure described above and then impose a refined
constraint on the mid-plane density gradient that can be obtained
from a rearrangement of equation (30), namely, that

d2s

dξ 2
≤ 1

γ − 1

d�

dξ

ds

dξ

1

� + �NT
(32)

at z = 0. We display curves for fE,stab for the case �NT = 0 with
three representative values of fgas (together with fE,crit,rt curves for
the same fgas values) in Fig. 2.

We can obtain an explicit form for fE,stab from a rearrangement of
equation (31) applied to the mid-plane, viz.

fE,stab =
[

1

kr

(
1 − fgas + γ

γ − 1

d�

dξ

)]
z=0

. (33)

This relation reveals that in the limit fgas → 1, a convectively stable
column actually requires d�/dξ > 0 at z= 0. Such a positive mid-
plane temperature gradient seems likely unphysical if the radiation

sources are located there but, in the star formation context, the limit
fgas → 1 is unphysical anyway given there has to be mass in the
stars responsible for the radiation field.

3.3 Modified stability curves with convective heat transfer

Thus far we have only considered hydrostatic equilibria where radia-
tive transfer determines (via equation 20) the temperature gradient
in a self-gravitating gaseous disc. In Fig. 2, for a given value of fgas,
the region of the parameter space between the fE,stab and the fE,flat,rt

curves represents a potential equilibrium configuration which is,
however, convectively unstable. If convection is initiated over some
range of the gas column, one must consider the possibility that con-
vective heat transport will modify the temperature profile, exactly
as it does in stars. However, the effects of convection in this case are
subtle, because the situation is somewhat different than is typically
found in stellar interiors. To see this, note that the heat flux per unit
area carried by material convection must be of the order of

Fconv ∼ ρ
kB

μ
vc�c

∣∣∣∣dT

dz

∣∣∣∣ , (34)

where vc is the characteristic convective velocity and �c is the char-
acteristic size of a convective eddy. Non-dimensionalizing this ex-
pression and normalizing to F∗

Fconv

F∗
∼ τ∗

fE,∗

cg,∗
c

M�

∣∣∣∣d�

dξ

∣∣∣∣ , (35)

where cg,∗ = √
kBT∗/μ is the isothermal sound speed at tempera-

ture T∗, M = vc/cg,∗ is the Mach number of the convective flow,
and � = �c/z∗ is the convective Eddy size normalized to the isother-
mal scaleheight. The convective eddies cannot be much larger than
the scaleheight, and � must drop from its maximum to unity over
about a scaleheight, so the factor �|d�/dξ | is at most of the order
of unity. Similarly, for conventional convection, the Mach number
M cannot be large compared to unity. In contrast, observed galax-
ies possess photospheric temperatures, T∗, of, at most, ∼100 K, in
which case cg,∗/c ∼ 10−6. Thus, even for relatively large values of
τ ∗ and small fE,∗, we are still likely to have Fconv/F∗ � 1, indicat-
ing that conventional convection cannot contribute significantly to
carrying of the heat flux.

Convection in this radiation-dominated regime is a topic of cur-
rent research. The most thorough numerical exploration to date is
that of Jiang et al. (2015, 2017), who investigate convection in the
diffuse outer layers of massive stars where, in analogy with our sit-
uation, the density is low enough that even transsonic matter motion
does not carry a significant heat flux. They find that if the optical
depth per pressure scaleheight is smaller than the ratio of the gas
sound speed to c (as is the case for us), the gas becomes porous,
allowing significantly larger radiative fluxes to pass through the
matter than would be the case for a laminar matter distribution. In
effect, the gas is convective, but the heat flux is carried by bubbles of
radiation rather than hot matter. Particularly, in the presence of mag-
netic fields this leads to a much flatter entropy profile than would be
predicted for standard radiative transport, but not as perfectly flat
as would be produced by efficient convection in a stellar core, for
example.7

7The instability can also drive supersonic motions in the gas, which in
principle should contribute to pressure support and thus set a minimum
value of �NT in equation (15). However, we can ignore this complication
because, while the turbulent pressure becomes larger than the gas pressure
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Given the uncertainty in the nature of this regime of radiation-
dominated convection, and the paucity of numerical sampling of
parameter space that would be used to calibrate a model based
on mixing length theory or the like, our approach is simply to
bracket reality by considering the two extreme limits. One limit is
to assume that, in this regime, convection carries negligible heat
flux. In this limit, we ignore the effects of convective instability
and calculate the heat transport exactly as we would in the absence
of convection (i.e. using equation 20), and fE,crit,rt sets the largest
fE,∗ that permits an equilibrium. The opposite limit is to assume
that convection is so efficient that it is, by itself, able to flatten the
entropy gradient completely, as is usually the case deep in a stellar
interior. Mathematically, this limit is equivalent to replacing d�/dξ

with (d�/dξ )ad (equation 31) wherever solution of equation (20)
results in a value of d�/dξ more negative than (d�/dξ )ad.

Operationally, we determine the profiles in the limit of efficient
convection as follows. As we have seen above, an equilibrium col-
umn may become convective from the mid-plane up to some finite
height ξ conv, above which radiative transfer again determines the
temperature profile. Thus, the equation governing the temperature
profile over the height range 0 → ξ conv for a column that has attained
marginal stability with respect to convection is given by equation
(29), with the inequality replaced by an equality. For ξ > ξ conv, the
temperature profile again becomes determined by radiation transfer
(equation 20). The value of ξ conv is determined implicitly by(

d�

dξ

)
rt, ξ=ξconv

≡
(

d�

dξ

)
ad, ξ=ξconv

, (36)

where the LHS of this equation is the temperature gradient due to
laminar radiative transfer, and is defined by the (analytic) integral
of equation (20) subject to BC24:(

d�

dξ

)
rad, ξ=ξconv

= − τ∗kr

4λ�3

ds

dξ
. (37)

At ξ conv, we require continuity of � and s and their first derivatives,
though the second and higher derivatives will be discontinuous
in general. We can therefore solve the problem numerically by
integrating equations (15) and (29) together starting from ξ = 0
until we reach a height where equation (36) is satisfied; this defines
ξ conv. We then switch to integrating equations (15) and (20) together
from ξ conv to infinity, using the values of �, s, and their derivatives
at ξ conv as BCs for this stage. We show an example density and
temperature profile generated via this procedure in the solid lines
in Fig.1.

Given this procedure for obtaining profiles in the limit of per-
fectly efficient convection, we can now repeat our analysis above
to determine, for any specified gas fraction fgas, the value of fE,crit,c:
the largest possible fE,∗ such that the dusty gas column can be hy-
drostatic. We show example results of this calculation in Fig. 3 for
a gas fraction fgas = 0.8. Here, the lowest curve indicates fE,stab, the
value of fE,∗ at which the gas first becomes unstable to convection.
The upper curve is fE,crit,rt, the maximum value of fE,∗ for which a
hydrostatic atmosphere can exist if there is no convection and heat
transfer is solely due to radiative transfer through a laminar medium.
The middle curve indicates fE,crit,c, the maximum value of fE,∗ for
which a (quasi-)hydrostatic atmosphere exists in the presence of ef-
fective convection. In reality, where convection is neither perfectly
efficient nor negligible, the true stability limit must lie between the

in this regime, it is always much smaller than the radiation pressure, and is
therefore subdominant when it comes to determining hydrostatic balance.

Figure 3. Maximum fE,∗ such that a gas column with fgas = 0.8, kR = �2,
and �NT = 0 can be in hydrostatic balance in the limiting cases that radiation-
dominated convection is able to flatten the entropy gradient completely
(solid line, fE,crit,c) and that radiation-dominated convection transports no
more heat than laminar radiative transfer (dashed line, fE,crit,rt). The true
stability condition must lie in the heavily shaded band between the solid and
dashed curves; in the lightly shaded zone, the atmosphere is convectively
unstable but otherwise hydrostatic. As in the previous figures, the solid blue
line, for reference, is the vanishing gas self-gravity (fixed gravitational field)
case investigated previously by Krumholz & Thompson (2012).

Figure 4. Curves for fE,crit,c (upper in each pair, solid) and fE,stab (lower
in each pair, dotted; see caption to Fig. 2) at different gas fractions with
kR = �2 and �NT = 0. The upper curves correspond to the maximum fE,∗
such that a gas column can be in hydrostatic balance (for the nominated gas
fractions) in the limiting case that radiation-dominated convection is able to
flatten the entropy gradient completely.

two upper curves. The difference between the two curves is rela-
tively modest even up to ∼50 per cent gas fractions, but can become
large for even higher gas fractions. We illustrate how fE,crit,c, the sta-
bility limit assuming efficient convection, depends on gas fraction
in Fig. 4.

3.4 Stability curves with turbulence: the effect of
non-zero �NT

In real star-forming gas discs (the focus of Section4), gas is always
highly turbulent as a result of supernova feedback and gravitational
instability (e.g. Krumholz et al. 2017). We must therefore consider
how such turbulence, driven by mechanisms other than radiation
pressure, might modify the conditions under which radiation pres-
sure can drive additional turbulence or eject gas in a wind. The
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Figure 5. Values of fE,∗ at which a gas column with fgas = 0.1 becomes
convectively unstable for �NT = 0, 1, and 10, as illustrated in the legend.
As usual, we include the stability line for g = const from Krumholz &
Thompson (2012) for reference.

Figure 6. Curves of hydrostatic stability assuming no convective heat trans-
port fE,crit,rt (yellow) and convective stability fE,stab (green) for columns with
no turbulence (�NT= 0; dashed) and strong turbulence (�NT = 105; solid).
The blue line is the g = const stability line of Krumholz & Thompson (2012)
for reference.

interaction of turbulence with radiation when the gas is optically
thin to IR radiation (the so-called single scattering limit) has previ-
ously been investigated by Thompson & Krumholz (2016), but here
we are interested in the case where the gas is optically thick to the IR.

While full solution of this problem will ultimately require sim-
ulations, we can qualitatively estimate the effects of turbulence by
adopting a non-zero value for the non-thermal ‘temperature’ �NT,
which parameterizes the degree of turbulent support. Qualitatively,
the effect of non-zero �NT is to flatten the gas density profile and
increase the scaleheight. Since the convective stability condition is
critically dependent on the sharpness of the temperature and density
profiles, the primary effect of increasing �NT is to render the gas
column more stable against convection. We illustrate this effect in
Fig. 5, where we plot convective stability lines for different values
of �NT. Clearly, the effect of non-zero �NT is to render the gas more
convectively stable when the optical depth is high.

While the inclusion of turbulent support alters the conditions un-
der which the gas is convectively unstable, it has almost no effect
on the critical value of fE,∗ at which it is no longer possible for the
gas to be hydrostatic. We illustrate this in Fig. 6, where we compare
stability lines with �NT = 0 and �NT = 105 for the example of a

column with fgas = 0.5. (Our choice of �NT = 105 is explained in
Section 4.1.) Clearly, even for very large �NT, the locus at which
hydrostatic equilibrium becomes impossible, if we assume that con-
vection is ineffective, (fE,crit,rt) is essentially unchanged. Physically,
we can understand this effect as resulting from the fact that when
radiation is the primary carrier of heat, the temperature profile de-
pends only on the column density, and not the absolute height. Thus,
a large value of �NT increases the scaleheight of the atmosphere,
but has no effect on the run of temperature versus column, or �

versus s in our non-dimensional variables. Since stability depends
mostly on this relationship, the point at which stability is lost is
mostly insensitive to �NT. Moreover, because the fE,crit c curve must
lie between fE,stab and fE,crit,rt (cf. Section 3.3), and the effect of non-
zero �NT is simply to push fE,stab towards fE,crit,rt, one can see that
the real locus of hydrostatic equilibrium can only be very mildly
dependent on �NT and, thus, turbulence.

Put another way, turbulence does not affect stability if we assume
that heat transport is dominated by radiation, because in this regime
all turbulence does is to make the atmosphere more extended with-
out altering the relationship between temperature and gas column.
If we consider the possibility that convection might transport heat,
then the effect of turbulence is simply to push the convective case
closer to the non-convective one, since anything that increases the
gas scaleheight will flatten temperature gradients and thus reduce
the tendency for convection to start up. Because heat transport is
bounded between these two limiting cases, turbulence has little
effect on stability.

4 IMPLI CATI ONS FOR STAR-FORMI NG
SYSTEMS

We have now determined, for a galactic disc of a specified gas
fraction and photospheric optical depth τ ∗, the critical Eddington
ratio fE,∗ below which the radiation is unable to set the gas into
motion at all, and above which it is likely to eject it in bulk. Our
next step is to translate this critical line in dimensionless space
into the space of gas and star formation rate surface density, the
observable quantities used most often to characterize star-forming
systems.

4.1 From dimensionless to physical quantities

To map our curves into this new parameter space, we begin by
noting that while observers often report star formation rates, the
directly observable quantity is in fact the radiation flux in some
tracer; for the starburst systems with which we are concerned, this
tracer is generally the total IR luminosity, which is taken as a proxy
for the bolometric luminosity since most of the flux emerges in the
IR. This quantity is then converted to a star formation rate per unit
area via a conversion factor

F∗ = �̇∗. (38)

Kennicutt & Evans (2012) recommend a conversion factor of
 = 4.1 × 1017 erg g−1 ≈ 6.7 × 109 L� (M� yr−1)−1. Given
this mapping between flux and observed areal star formation rate,
we can immediately express the mapping between the dimension-
less parameters τ ∗ and fE,∗ and the physical ones �gas and �̇∗. Using
the opacity scaling κR = κ0(T/T0)2, and the definitions of T∗, fE,∗,
and τ ∗ given above, we can define

F∗,crit ≡
(
16πGcσSBT 4

0

)1/2

κ0
� 1.9 × 1013L� kpc−2, (39)
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which is nearly identical to the limit derived by Thompson et al.
(2005) in their consideration of self-gravitating optically thick disks.
Then, after some algebra one can show that

�̇∗ = F∗,crit



√
τ∗fE,∗
fgas

= 2.8 × 103

√
τ∗fE,∗
fgas

M� yr−1 kpc−2 (40)

and

�gas = 2√
κ0

(
σSBT 4

0

πGc

)1/4
(

τ 3
∗

f 3
gasfE,∗

)1/4

= 5.3 × 103

(
τ 3
∗

f 3
gasfE,∗

)1/4

M� pc−2. (41)

For the numerical evaluations, we have used κ0 = 10−1.5 cm2 g−1

and T0 = 10 K,8 appropriate for the dust abundance in the Solar
neighbourhood. We specialize to this case because, as we show
below, trapped radiation pressure will prove to be important only in
the most luminous and actively star-forming galaxies, and these are
invariably observed to be near-Solar in their metallicities. However,
it is trivial to extrapolate the results to non-Solar metallicities, since
examination of the above equations immediately reveals that, at
fixed τ ∗ and fE,∗, changes in the value of κ0 simply scale the star
formation and gas surface densities as �̇∗ ∝ κ−1

0 and �gas ∝ κ
−1/2
0 .

Thus, the effect of varying the dust opacity per unit mass is simply
to slide the stability curves that we derive below along a line of
slope 2 in the (�gas, �̇∗) plane.

We pause here to remark on two related issues. First, note that
below we use critical curves calculated in Section 3 with vanishing
non-thermal temperature (i.e. �NT= 0) for determining the stability
of real star-forming systems. This seems to neglect the point that
gas in real star-forming systems is driven by extrinsic non-thermal
velocity dispersion imposed by both gravitational instability and
supernova feedback and this turbulence hugely puffs up the gas in
such systems. Moreover, the scale of �NT is large; let us parametrize
the turbulent pressure as

Pturb � ρσ 2
gas ≡ ρ

μ
kBT∗�NT. (42)

Then, note that we expect that real systems self-regulate so as to
achieve a Qgas close to 1 (Thompson et al. 2005, and references
therein; Krumholz et al. 2017) where

Qgas = κσgas

πG�gas
, (43)

in which κ is the epicyclic frequency. Taking κ ��∼ 200 km s kpc-1

(where � is the angular frequency), typical for a ULIRG, we nor-
malize the gas velocity dispersion in such a system to

σgas � 340 km s−1 Qgas

(
�gas

5000 M�/pc−2

)(
κ

200 km s kpc−1

)
(44)

8Note that in the presence of an additional source of radiative flux connected
to an AGN, FAGN, the RHS of equation (40) for the critical star formation
rate surface density contains an additional term −FAGN/ whereas equation
(41) is unmodified.

so that in the most extreme systems we expect

�NT = 1.4 × 105
( σgas

340 km s−1

)2
(

T∗
100 K

)−1

. (45)

However, as far as the stability of real systems subject to indirect
radiation pressure goes, this discussion is moot: as we have al-
ready shown in Section 3.4, the introduction of a large �NT ∼ 105

does not materially change the true critical fE,∗ above which hy-
drostatic equilibrium cannot be attained (which lies between fE,crit,c

and fE,crit,rt). Nor will it change the mid-plane temperature or con-
sequent radiation energy density. In other words, the critical locus
for fE,∗, and the consequent radiation pressure stability curves in the
Kennicutt–Schmidt parameter space we have calculated above, all
carry through to realistic cases where high degrees of turbulence
puff up star-forming gaseous discs so that they are Toomre (1964)
stable.

A second important point is that, up to dimensionless constants
of O(1), F∗,crit is identical to the characteristic flux identified by
Thompson et al. (2005) (also cf. Scoville 2003) for marginally
Toomre-stable (Q∼ 1)optically thick star-forming discs radiating at
their Eddington limit. However, nowhere above have we assumed
Q ∼ 1; in fact, we have shown that the conditions for hydrostatic
equilibrium to be possible are nearly independent of �NT, and thus
of Q. In fact, the direct correspondence between F∗,crit and the
characteristic flux previously derived by Thompson et al. (2005) is
a result of the fact that the limit does not depend on the vertical gas
density distribution or its scaleheight but only on the overall optical
depth.

Returning to our main argument, equations (40) and (41) allow
us to translate a curve in the (τ ∗, fE,∗) plane directly into one in
the (�gas, �̇∗) plane, provided we know the gas fraction. While this
is sometimes also directly observable, in many instances it is not,
particularly for the starburst systems of greatest interest to us; in
these galaxies, high dust columns can make it almost impossible to
observe the old stellar population, particularly at high redshift. For
this reason, it is helpful to consider what gas fractions are possible
at a given point in (�gas, �̇∗) space. At any given point in this space
the gas fraction is bounded from above, because there is minimum
mass in stars required to produce the observed light. The light-
to-mass ratio of a simple stellar population with a standard initial
mass function (IMF) has a maximum value � ≈ 2200 erg s−1 g−1

≈ 1100 L� M−1
� (Fall et al. 2010), and declines thereafter. Thus, an

‘observed’ star formation rate �̇∗ (in reality an observed bolometric
flux F∗ = �̇∗) requires a minimum stellar mass per unit area
�∗ = (/�)�̇∗ to produce it. The gas fraction therefore has a
maximum value

fgas,max = �gas

�gas + (/�)�̇∗
. (46)

More generally, it is convenient to express the mapping between
position in the (�gas, �̇∗) plane using the approximation suggested
by Krumholz & Dekel (2010). They point out that, for a stellar
population formed by continuous star formation over a time t, the
light-to-mass ratio can be written approximately as

F∗
�∗

≈ �

max (1, t/tcr)
, (47)

where tcr = /� ≈ 6.9 Myr. The physical basis for this approxi-
mation is that for t � tcr none of the massive stars producing the
bulk of the light have had time to evolve off the main sequence and
die, so the bolometric luminosity is simply proportional to the mass
of the stellar population. For t � tcr, the massive stellar population
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Figure 7. Schematic of the method for constructing the stability curve. Thin
black lines show lines of constant gas fraction (equation 49; in this example
fgas = 0.9) for stellar population ages t = 0, 20, and 50 Myr, as indicated.
The thick coloured line indicates the stability curve (in this example we
have used fE,crit,c(τ ∗, fgas), the stability curve assuming efficient convection)
translated into (�gas, �̇∗) coordinates via equations (40) and (41); colour
along the line indicates the value of τ ∗ at that point. For any choice of stellar
population age, the gas and star formation rate surface density at which a
hydrostatic solution ceases to exist for this gas fraction corresponds to the
point where the thin black and thick coloured lines cross. In the unshaded
region of parameter space labelled ‘Stable’, radiation pressure is unable to
destabilize the gas and cause a loss of hydrostatic balance, while in the
shaded, ‘Unstable’ region it can. Note that in the presence of an additional
source of radiative flux connected to an active galactic nucleus (AGN), FAGN,
the stability curve would be shifted downwards by an amount ∼FAGN/.

reaches statistical equilibrium between new stars forming and older
ones dying, and thus the luminosity becomes proportional to the
star formation rate; since the stellar mass is just the star formation
rate multiplied by t, the light-to-mass ratio therefore scales as 1/t
for large t. Our equation (47) simply interpolates between these two
limits, with the value of tcr chosen to ensure that F∗ → �̇∗ as t →
∞. Using equation (47), we can express the gas fraction at a given
point in the (�gas, �̇∗) plane as a function of the effective stellar
population age as

fgas = �gas

�gas + max(t, tcr)�̇∗
. (48)

Equivalently, we can say that a specified gas fraction corresponds
to a particular line of slope unity in the (�gas, �̇∗) plane

�̇∗ =
(

1 − fgas

fgas

)
�gas

max(t, tcr)
. (49)

4.2 Stability region for star-forming systems

We are now ready to determine the locus of the stability curve in
the plane of observables. Mathematically, this locus is defined by
the solution to the non-linear system defined by equations (40),
(41), and (49), and the dimensionless stability curve fE,∗ = fE,crit(τ ∗,
fgas). For any specified t and choice of fgas, this constitutes a set
of four equations in the four unknowns τ ∗, fE,∗, �̇∗, and �gas,
which is straightforward to solve numerically. Conceptually, one can
visualize the solution procedure as shown in Fig. 7. Choose a stellar

population age t and a value of fgas. Via equation (49), this defines a
line of slope unity in the (�gas, �̇∗) plane along which the solution
must lie. Similarly, for fixed fgas, if one varies τ ∗ then equations (40)
and (41) define a parametric curve in the (�gas, �̇∗) plane, which
represents the locus of stability. The point (�gas, �̇∗) where this
curve crosses the constant gas fraction line is the combination of
gas and star formation rate surface density that is marginally stable
for the chosen gas fraction and stellar population of age.

By varying fgas, one traces out a curve in the (�gas, �̇∗) plane that
defines the boundary between stable and unstable for all possible
gas fractions at the chosen stellar population age; values of �gas

or �̇∗ below this line are stable, while those above it are unstable.
This procedure can be applied for any stability curve of the form
fE,∗(τ ∗, fgas), and thus we can use it to generate the curves where
convection sets in, and where hydrostatic balance is lost under
the limiting assumptions of maximally inefficient and maximally
efficient radiation-dominated convection.

In Fig. 8, we show the loci of stability for two stellar popula-
tion ages t = 0 (though it would be identical for any t < tcr) and
t= 30 Myr. In this figure, the red line shows the stability curve under
the assumption that radiation-dominated convection is maximally
efficient and flattens the entropy gradient perfectly, while the green
line shows the stability condition under the assumption that a con-
vectively unstable region transports no more heat than a stable one
where the flux is carried by radiation alone. The true stability curve
must lie between these two limits, in the shaded region marked
‘critical zone’ in the plot. The blue curve shows the locus where
convective instability occurs. In all cases, the stable region is below
and to the left of the curves, while the unstable region is above and
to the right.

In the figure, we also show a selection of observed galaxies culled
from the literature. The primary point to take from this comparison
is that the stability curves are generally far from the data, even in the
most optimistic case where the stellar population age is assumed
to be �10 Myr (though we emphasize that, in this case, the star
formation rate conversion that is normally adopted is invalid, and
the star formation rate shown becomes merely a lower limit). For a
more realistic but still optimistic case of a stellar population age of
30 Myr, not a single observed galaxy lies in region where radiation
pressure prevents the atmosphere from being hydrostatic, even if we
adopt the most optimistic assumptions about convection. Crucially,
however, the stability curve is a surprisingly good match for the
upper envelope of the observed distribution, an observation whose
implications we tease out in the next section.

5 D I SCUSSI ON AND CONCLUSI ON

The idea that radiation pressure on dust-bearing gas may be respon-
sible for launching galaxy scale outflows dates back to more than
50 yr (Harwit 1962; Chiao & Wickramasinghe 1972; Ferrara et al.
1990). Furthermore, the role and importance of IR radiation pres-
sure as an agent of feedback in star cluster and galaxy formation has
been a subject of particularly intense scrutiny over the last decade
(Scoville 2003; Murray, Quataert & Thompson 2005; Thompson,
Quataert & Murray 2005; Fall et al. 2010; Murray & Rahman 2010;
Murray, Ménard & Thompson 2011; Krumholz & Thompson 2012,
2013; Raskutti, Ostriker & Skinner 2016; Thompson & Krumholz
2016), and numerical simulations that treat radiative transfer with
varying levels of sophistication have yielded sharply divergent re-
sults, with some finding that radiation pressure feedback is im-
portant in rapidly star-forming systems (e.g. Hopkins, Quataert &
Murray 2011, 2012), while others have found the opposite result
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Figure 8. Radiation pressure stability curves versus observations. The top panel is for a stellar population age t < tcr ≈ 6.9 Myr, while the bottom is for
a stellar population age of 30 Myr. In both panels, the thick red curve shows the maximum star formation rate (for given gas surface density) for which a
gas column can be in hydrostatic balance, assuming that radiation-dominated convection is able to flatten the entropy gradient completely; the value of the
gas fraction along this curve is indicated in boldface numbers at selected points. The thick green curve shows the same quantity computed in the limit that
radiation-dominated convection transports no more heat than laminar radiative transfer. The true stability condition must lie between these limits, in the region
labelled critical zone. The thick blue curve shows the locus of convective stability; systems above and to the right of this curve are subject to convection, while
those below and to the left are convectively stable. Coloured points show observed global star formation rates versus gas surface densities in a sample culled
from the following sources: local galaxies from Kennicutt (1998), z ∼ 2 sub-mm galaxies from Bouché et al. (2007), and galaxies on and somewhat above the
star-forming main sequence at z ∼ 1−3 from Daddi et al. (2008, 2010b); Genzel et al. (2010); Tacconi et al. (2013). The observations have been homogenized
to a Chabrier (2005) IMF and the convention for αCO suggested by Daddi et al. (2010a); see Krumholz et al. (2012) for details.

(e.g. Rosdahl et al. 2015). In this context, consideration of Fig. 8
reveals one significant positive finding and one significant negative
finding with respect to the possible role of indirect radiation pres-
sure in regulating galaxy formation. We first focus on the latter,
leaving the former to the following section.

5.1 IR radiation pressure as a regulator of star formation

Our negative finding is that the large majority of real star-forming
systems lie well within the region where radiation pressure is dy-
namically unimportant, and this remains true even if we focus solely

on starburst galaxies that are far from the star-forming main se-
quence. Moreover, the shape of the critical curve imposed by radia-
tion forces in the (�gas, �̇∗) plane is not morphologically similar to
the Kennicutt–Schmidt relation. This result, while consistent with
some more recent studies (e.g. Reissl et al. 2018), stands in contrast
to at least some earlier works. For instance, Thompson et al. (2005)
determined that as systems transition from being optically thin to op-
tically thick to reradiated IR, their self-regulated marginally stable
(Q∼ 1) star formation activity undergoes a corresponding transi-
tion in scaling from �̇∗ ∝ �2

gas to �̇∗ ∼ const; this scaling (and the
absolute normalization of the relations determined by Thompson
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et al. 2005) generated a plausible match to the empirical Kennicutt–
Schmidt relation (Andrews & Thompson 2011). Other authors have
computed a dust Eddington limit by adopting a constant ‘character-
istic’ IR opacity that is then held fixed (e.g. Hopkins et al. 2010),
or using a simple scaling based on an estimated mid-plane temper-
ature. A fixed IR opacity corresponds to a critical curve that is a
line of slope unity in the (�gas, �̇∗) plane, again close enough to
the slope of the observed Kennicutt–Schmidt relation to suggest a
possible correspondence.

Here, we have improved on these approaches by properly solv-
ing the equation of radiation transfer and thus determining the self-
consistent run of density and temperature versus height implied by
simultaneous radiative and hydrostatic balance. This, in turn, al-
lows us to compute the true self-consistent value of τ IR. Our more
accurate calculation shows that the true Eddington limit line bears
little resemblance to the observed Kennicutt–Schmidt relation, and
thus cannot be responsible for setting it, or for regulating star for-
mation more broadly. However, this does not preclude that indirect
radiation pressure effects may be important for regulating intense
localized star formation on subgalactic scales, i.e. in individual gi-
ant molecular clouds collapsing to form star clusters; we will revisit
this question in future work. Nor does it rule out the possibility that
radiation pressure effects might reduce the star formation rate by
pressurizing the ISM (e.g. Rosdahl et al. 2015; Costa et al. 2017),
though this seems unlikely to occur except quite near the gas ejec-
tion line, since this line is defined by the condition that radiation
pressure begin to dominate the mid-plane.

From the observational side, the molecular gas in those few galax-
ies that may fall within the convectively unstable zone will, as al-
ready mentioned, be highly turbulent as a result of supernova feed-
back and gravitational instability (e.g. Krumholz et al. 2017). There
is no obvious route to separating convective motions from turbulent
ones, nor is there any reason to believe that any radiation-driven
convective motions will be significant compared to those induced
by gravitational instabilities or supernova explosions.

A corollary of this finding applies to numerical simulations and
the subgrid models they employ, which also often rely on the ansatz
of a fixed IR opacity. Recall that a central finding of radiation-
hydrodynamic simulations to date is that for Eddington ratios be-
low the critical value: radiation does not cause any gas motions or
drive any turbulence.9 The reason this happens is that, in the stable
regime, the gas column is able to self-adjust so that it settles to an
opacity profile κ(z) whereby at every point the outward radiative
and pressure forces balance the inward gravitational force. A key
part of this self-adjustment occurs through the temperature depen-
dence of the opacity, which provides a feedback loop between the
density distribution and the radiative force: as the density distribu-
tion changes, the temperature profile and the radiative force do as
well.

Now, consider what happens when we remove this feedback loop
by fixing κ IR as in the subgrid models; for simplicity in this thought
experiment, we will hold g constant as well, though including self-
gravity would lead to qualitatively the same conclusion. With fixed

9Formally we note that we have found the regime where hydrostatic atmo-
spheres exist, not proven that those atmospheres are stable. We can rule out
the possibility of local instabilities in this regime, since none of the local
instability conditions found by Blaes & Socrates (2003) are satisfied. How-
ever, we cannot completely rule out the possibility that our hydrostatic atmo-
spheres are subject to a heretofore undiscovered global instability, though the
fact that no evidence of such an instability has emerged from the numerical
simulations strongly suggests that this is not the case.

κ IR and g, the ratio of gravitational to radiative force is constant,
and we can immediately see that a wind will be driven whenever
the flux F∗ > gc/κ IR, or, in terms of our dimensionless variables,
fE,∗ > κR,∗/κ IR. For κ IR = 5 cm2 g−1 (as used, for example, in Hop-
kins et al. 2011) and our standard opacity function (equation 9)
and scaling between flux and star formation rate (Section 4.1),
this condition evaluates numerically to fE,∗ > 7 × 10−3�̇

1/2
∗,0 , where

�̇∗,0 is the star formation rate per unit area measured in units of
M� pc−2 Myr−1. Thus, for areal star formation rates typical of
those found in high-z galaxies, the constant κ IR model predicts the
launching of winds at Eddington ratios as small as ∼0.01, indepen-
dent of τ ∗. Comparison of this prediction to the true stability curves
derived in Section 3 shows that Eddington ratios this small should
lead to wind launching only for τ ∗ � 10, whereas most real galaxies
have τ ∗ � 1 (see Appendix A). Thus, a constant κ IR model, at least
for commonly used values of κ IR, makes launching radiation-driven
outflows much easier than it should be. The ultimate source of this
problem is the choice to adopt a fixed opacity, rather than one that
self-adjusts as a function of Eddington ratio and optical depth as
it should. Whether incorrect wind launching actually occurs in any
given simulation will depend on the distribution of Eddington ratios
within it, which will, in turn, depend on the details of the local grav-
itational field and stellar luminosity. However, the fact that the use
of a fixed κ IR can easily lead to gas ejection in situations where it
should not be possible is a source of concern for the results derived
with current subgrid models. To avoid this problem, absent a simu-
lation having the resolution and physics sufficient to capture the run
of temperature versus position within an irradiated gas column, a
second-best solution would be to explicitly estimate fE,∗ and τ ∗, and
to inject enough momentum to drive a wind only if the condition
fE,∗ > fE,crit is met.

5.2 IR radiation pressure as a limit to gas densities and star
formation rates

While our results imply that radiation pressure is not an important
regulator of star formation in most galaxies on global scales, we
have also found that the extremum in the (�gas, �̇∗) parameter space
occupied by real systems is coincident with the critical line above
which trapped radiation pressure turns on and is able to eject gas. We
emphasize that there is no a priori reason why our calculation should
have produced this result. In the dimensionless parameter space of
τ ∗ and fE,∗ that defines our system, the critical value of fE,∗ above
which gas is ejected follows purely from the mathematical form of
the equations; the only astrophysical input to this result is the scaling
of opacity with temperature, κ ∝ T2, which holds simply because
the mean grain size is much smaller than the radiation wavelength.
The translation of this line into the observational parameter space of
gas and star formation surface density depends only on fundamental
constants, on the light-to-mass ratios of stellar populations, and on
the specific opacity of interstellar dust at Solar metallicity. Thus, in
our calculation of a critical Eddington ratio line, we have used no
information whatsoever about galaxies or their assembly history.
The fact that our calculated limit nevertheless closely matches the
observed upper limit on surface densities of star formation seems
unlikely to be a coincidence, and strongly hints that ejection by
indirect radiation pressure prescribes the region of the (�gas, �̇∗)
plane that may be occupied. Indeed, it was this correspondence that
motivated previous work on the importance of radiation pressure in
extreme systems (Thompson et al. 2005).

The observed galaxies that come closest to the radiation pressure
limit are recent merger systems like Arp 220 or sub-mm galaxies.
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Our finding suggests a scenario whereby mergers can drive gas
to higher gas surface densities and star formation rates along the
Kennicutt–Schmidt relation (which is set by physics that has little
to do with radiation pressure), but if the surface density or star
formation rate becomes too high, the system crosses the critical
line. At that point, radiation is suddenly able to eject the majority
of the mass over a very short time-scale, driving the surface density
and star formation rate back down and to the left on the Kennicutt–
Schmidt plot. Thus, IR radiation pressure sets a maximum flux for
star-forming galaxies.
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A P P E N D I X A : PH OTO N T I R I N G

Radiation from a massive star may induce a quasi-steady-state wind
whose mechanical luminosity is ultimately bound by the radiative
luminosity at the wind base; this limit on the mechanical power of
the wind is known as the photon tiring limit (Owocki & Gayley
1997; Owocki, Gayley & Shaviv 2004). In our stability calculation,
we implicitly assume that if the radiation flux is so large that no
hydrostatic configuration is possible, the radiation will eject gas.
However, this is possible only if the act of driving such a wind
would not exceed the photon tiring limit, i.e. if it is possible to
drive off a wind without using more energy than the radiation field
has available. This situation is somewhat different than the case of
a massive star where the wind is quasi-steady, but the analogous
question of a galactic disc is whether there is sufficient power in the
radiation field for it to remove the atmosphere within a dynamical
time.

In the spirit of deriving the most stringent possible limit on when
photon tiring will become important, we neglect gas internal energy
and turbulence and consider only gas kinetic and gravitational and
potential energy surface density. For a slab of gas that is being
ejected at velocity ż, the energy content is therefore

Egas = Tgas + Ugas � �gas

(
ż2/2 + gz

)
. (A1)

To accelerate the gas upward in the potential well with an acceler-
ation z̈, the rate per unit area at which the radiation field must do
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mechanical work on the gas is

Ėgas � �gasż (z̈ + g). (A2)

Again, in the spirit of deriving a lower limit, we consider the power
required to raise the gas steadily (z̈ → 0) and take the ratio of this
to the power per unit area in the radiation, viz. the radiative flux F∗.
The rough figure of merit, therefore, is

Ėgas

F∗
∼ �gas ż g

F∗
= �gas ż κ

cfE,∗
= ż

c

τ∗
fE,∗

� 10−3 τ∗
fE,∗

(
ż

300 km s−1

)
. (A3)

From this expression and by inspection of, e.g. Fig. 3, the mechan-
ical power per unit area required to eject the gas at a speed com-
parable to the escape speed from a galactic disc only approaches
the radiative flux, Ėgas/F∗ ∼ 1, for τ ∗ � 30. For comparison, using
our Solar neighbourhood dust opacity (equation 9) and the Kenni-
cutt & Evans (2012) scaling between flux and star formation rate
(Section 4.1), we have

τ∗ = 7.2 × 10−6

(
�gas,1/2

M� pc−2

)(
�̇∗

M� pc−2 Myr−1

)1/2

. (A4)

Consulting Fig. 8, the highest observed gas surface densities and
areal star formation rates are of the order of 104 M� pc−2 and
103 M� pc−2 Myr−3, respectively, corresponding to τ ∗ ≈ 2. Thus,
observed galaxies are well away from the range where photon tiring
is an important limit.

Moreover, our calculation of photon tiring neglects wind accel-
eration and, more importantly, relies on what is probably an un-
realistically large normalizing wind velocity. While it may seem
reasonable to normalize ż to a circular velocity vcirc typical for
a large spiral galaxy, the VET and IMC radiation hydrodynamics
studies reviewed in Section1 show that the gas atmosphere suffers
a very mild near-logarithmic acceleration in the super-Eddington
case. When this happens, the gas is ejected without the need for it
to be accelerated to speeds comparable to the circular velocity. In
summary, it is safe to neglect photon tiring over the parameter space
we consider.
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