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ABSTRACT
Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with
velocity dispersions set by a competition between driving and dissipation. This balance has
been studied extensively in the context of gases with constant mean density. However, many
astrophysical systems are contracting under the influence of external pressure or gravity, and
the balance between driving and dissipation in a contracting, magnetized medium has yet to
be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations
of compression in a turbulent, magnetized medium that resembles the physical conditions
inside molecular clouds. We find that in some circumstances the combination of compression
and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-
magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized
gas reaches an equilibrium velocity dispersion much greater than would be expected for either
the hydrodynamic or the non-compressing case. We use the simulation results to construct an
analytic model that gives an effective equation of state for a coarse-grained parcel of the gas,
in the form of an ideal equation of state with a polytropic index that depends on the dissipation
and energy transfer rates between the magnetic and turbulent components. We argue that the
reduced dissipation rate and larger equilibrium velocity dispersion has important implications
for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical
and radiative processes that are sensitive to shocks and dissipation.

Key words: dynamo – magnetohydrodynamics (MHD) – plasmas – turbulence – ISM:
clouds – ISM: magnetic fields.

1 IN T RO D U C T I O N

Magnetized plasma is ubiquitous in astrophysical systems. Par-
ticularly, gas in the interstellar medium (ISM) is observed to be
magnetized, and a large fraction of its energy content is in the
form of magnetic fields (see Beck et al. 1996; Ferrière 2001; Feder-
rath 2016, and references within). The magnetic field in the ISM of
disc galaxies consists of an ordered rotating component on galactic
disc scales that is consistent with slow winding of the magnetic
field via macroscopic dynamo processes, and small-scale magnetic
fields that are generated by the winding of the magnetic field via
turbulent dynamo processes (Brandenburg & Subramanian 2005;
Brandenburg, Sokoloff & Subramanian 2012). For the Galaxy, the
values of the two components are comparable, with typical values
of 2–5 μG.

When portions of this magnetized fluid are subject to rapid ra-
diative cooling, for example in giant molecular clouds (GMCs),
the result is a highly supersonic, strongly magnetized flow. Within
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such a flow, the velocity dispersion is dictated by the balance be-
tween driving and dissipation processes. This balance, particularly
the dissipation part of it, has been studied extensively for both
non-magnetized and magnetized flows in the context of periodic
boxes with constant mean density (e.g. Mac Low et al. 1998; Stone,
Ostriker & Gammie 1998; Mac Low 1999; Ostriker, Gammie &
Stone 1999; Padoan & Nordlund 1999; Kritsuk et al. 2007; Lemas-
ter & Stone 2009). The general result from these simulations is that
the turbulence decays on a time-scale comparable to a large eddy
turnaround time and that the rates of decay are not substantially
altered by the presence or absence of a magnetic field.

The problem of the balance between driving and decay for
magnetized turbulence is most acute in molecular clouds. Since
these have linewidths indicating the presence of supersonic flow,
the fast dissipation of turbulence found by these simulations ne-
cessitates a mechanism to reinject the energy equally quickly.
A number of candidates have been proposed, including internal
feedback from H II regions (Matzner 2002; Krumholz, Matzner &
McKee 2006; Goldbaum et al. 2011) or protostellar outflows (Li
& Nakamura 2006; Nakamura & Li 2007; Wang et al. 2010; Fed-
errath et al. 2014a), driving of turbulence by ongoing accretion
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(Klessen & Hennebelle 2010; Goldbaum et al. 2011; Lee & Hen-
nebelle 2016) or gravitational contraction on small scales (Federrath
et al. 2011b; Sur et al. 2012), thermal instability driving (Koyama
& Inutsuka 2002; Hennebelle & Inutsuka 2006) and injection of
energy from external supernova shocks (Mac Low & Klessen 2004;
Padoan et al. 2016a,b; Pan et al. 2016). Alternately, it is possi-
ble that the linewidths do not reflect turbulent motion at all, and
instead indicate global gravitational collapse (Ballesteros-Paredes
et al. 2011; Zamora-Avilés & Vázquez-Semadeni 2014). Each of
these proposals, however, faces challenges – internal feedback must
maintain large linewidths without destroying the clouds in which
they occur, driving by accretion faces the problem of what happens
when the accretion eventually ends, thermal instability seems un-
likely to be a viable mechanism in molecule-dominated galaxies
that lack a significant warm phase, and external driving requires ef-
ficient coupling between the low-density external medium and the
dense clouds. The view that clouds are in global collapse is hard to
reconcile with the observed very low rates of star formation found
even in gas at densities � 105 cm−3 (Krumholz & Tan 2007; Fed-
errath & Klessen 2012; Krumholz, Dekel & McKee 2012; Evans,
Heiderman & Vutisalchavakul 2014; Padoan et al. 2014; Salim,
Federrath & Kewley 2015; Usero et al. 2015; Heyer et al. 2016;
Vutisalchavakul, Evans & Heyer 2016).

The problem of the persistence of turbulence in molecular clouds
is significantly eased if gravitational compression is able to pump
energy into turbulent motion, since this would provide a mecha-
nism to both power the turbulence and slow the collapse. The phe-
nomenon has been explored for non-magnetized flows by Robertson
& Goldreich (2012). In their work, an initially turbulent gas is com-
pressed in a scale-free manner by renormalizing the thermodynamic
variables according to the expected values from a uniform collapse.
As gas is compressed, the amplitude of the velocity field increases
because the compression does P dV work against the kinetic pres-
sure. On the other hand, the typical size of the eddies is reduced
by the compression, and this accelerates the decay of turbulence.
Depending on the compression rate, one process or the other dom-
inates, and the turbulence either increases or decays. Qualitatively,
the results are consistent with what one would have derived by
naively equating the rate of P dV work with a decay time-scale
of ∼1 eddy turnover time derived from non-compressing driven
turbulence simulations: the turbulence is amplified when the box
compression time is short compared to the eddy turnover time,
and decays if the converse holds. However, Robertson & Goldre-
ich (2012) did not include magnetic fields in their simulations, and
we know that all clouds in the ISM are magnetized to a level that
corresponds to a near equipartition between turbulent and magnetic
energy densities (Crutcher 2012, and references therein).

In this work, we seek to determine whether the result by
Robertson & Goldreich (2012) is altered in the presence of a mag-
netic field. We have already noted that, in driven turbulence sim-
ulations, magnetic fields make no qualitative difference. However,
driving turbulence by global compression is qualitatively different
than direct driving of the gas. In the first case, the scaling relations
of velocity and distance for global compression enhance all modes
similarly, and some modes, for which the dissipation is faster and
that are not replenished quickly enough by a turbulent cascade, can
decay and disappear. In the second case, the turbulence forcing ar-
bitrarily sets the geometry of the flow and phases of the various
modes, preventing the flow from achieving a more relaxed state.

A magnetic field might change the situation for a compress-
ing flow in two ways. First, a magnetic field and gas motions
can exchange energy via a turbulent dynamo (Kazantsev 1968;

Subramanian 1997, 1999; Brandenburg & Subramanian 2005;
Schleicher et al. 2010; Schober et al. 2012a,b,c; Bovino, Schle-
icher & Schober 2013; Schober et al. 2015). For driven turbulence,
the amount of energy stored in the dynamo is limited by the back
reaction of the Lorentz forces on the gas (Federrath et al. 2011a; Fed-
errath 2016), and as a result the energy stored in the magnetic field
is always subdominant compared to the turbulence. However, grav-
itational compression will amplify magnetic fields differently than
gas motions (Sur et al. 2010; Federrath et al. 2011b; Sur et al. 2012),
potentially leading to magnetic–turbulent interactions not found in
driven, non-compressing boxes. Secondly, magnetic fields will im-
pose anisotropy on the flow, and anisotropic turbulence shows a
different cascade pattern and a different decay rate than isotropic
turbulence (Cho, Lazarian & Vishniac 2002; Cho & Lazarian 2003;
Hansen, McKee & Klein 2011).

In this paper, we examine the effect of magnetic fields on global
compression of turbulent gas in idealized three-dimensional (3D)
magnetohydrodynamic (MHD) simulations. We distinguish be-
tween cases of zero net magnetic flux and cases with non-zero
net flux of various amplitudes. This is of theoretical importance
because a magnetic field with finite flux increases monotonically as
gas contracts, and of practical interest because fields with non-zero
net flux are likely present in proto-GMCs (Li & Henning 2011;
Li et al. 2011; Pillai et al. 2015). Rather than introducing cooling,
we assume that the gas is isothermal, which is a reasonable ap-
proximation for GMCs over a wide range of densities. We describe
our set-up in Section 2 and our simulated results in Section 3. We
then construct an analytic prediction for the effective equation of
state (EoS) of a system with mixed thermal, kinetic and magnetic
pressure components (Section 4), use some of the physical insights
to further analyse the dissipation in the simulations and compare
our predictions to the simulations (Section 4.4). In Section 5, we
discuss possible implication of our results to ISM and GMCs, and
in Section 6, we summarize and conclude.

2 SI M U L AT I O N S

2.1 The FLASH code

We use a modified version of the grid-based code FLASH

(Fryxell et al. 2000; Dubey et al. 2008) (http://www.flash.uchicago.
edu/site/flashcode/) to solve the 3D, compressible, ideal MHD equa-
tions,

∂

∂t
ρ + ∇ · (ρv) = 0, (1)

∂

∂t
(ρv) + ∇ ·

(
ρv⊗v − 1

4π
B⊗ B

)
+ ∇Ptot = 0, (2)

∂

∂t
e + ∇ ·

[
(e + Ptot) v − 1

4π
(B · v) B

]
= 0, (3)

∂

∂t
B − ∇ × (v × B) = 0, ∇ · B = 0. (4)

Here, ρ, v, Ptot = Pth + (1/8π) |B|2, B and e = ρεint +
(1/2)ρ |v|2 + (1/8π) |B|2 denote the gas density, velocity, pressure
(thermal plus magnetic), magnetic field and total energy density (in-
ternal, plus kinetic, plus magnetic), respectively. The MHD equa-
tions are closed with a quasi-isothermal EoS, Pth = (γ − 1)ρεint,
where we set γ = 1.000 01. Using this setting, we model a
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gas with an extremely high number of degrees of freedom,
f = 2/(γ − 1) ∼ 2 × 105, effectively resulting in a gas that is
isothermal. This is a standard procedure to obtain a quasi-isothermal
EoS and results in the same thermodynamic response of the gas as
a polytropic EoS, Pth ∝ ρ� with � = 1 (Federrath et al. 2014a).
The practical reason for choosing the simple ideal gas EoS with
γ = 1.000 01 is to keep track of how much energy is dissipated by
the turbulence, i.e. we solve the energy equation (3) and record the
change in energy every timestep.

The system of ideal MHD equations (1)–(4) are solved with
the robust HLL3R Riemann scheme by Waagan, Federrath &
Klingenberg (2011a), based on previous developments in applied
mathematics to preserve positive density and pressure by con-
struction (Bouchut, Klingenberg & Waagan 2007; Klingenberg,
Schmidt & Waagan 2007; Waagan 2009; Bouchut, Klingenberg &
Waagan 2010). For our particular simulations, the magnetic field
is shown to remain divergence free to a reasonable degree
(Appendix A).

2.2 Numerical scheme for solving the MHD equations in an
expanding or contracting coordinate system

The cosmology unit in FLASH allows one to use any hydrodynamics
solver written for a non-expanding universe to work unmodified
in a cosmological context. This is achieved by solving the MHD
equations in the comoving reference frame and accounting for the
additional terms in the MHD equations that appear due to the expan-
sion or contraction of the system. All calculations are assumed to
take place in comoving coordinates x = r/a, where r is the physical
(proper) position vector and a(t) is the time-dependent cosmological
scale factor. When transforming the MHD equations to the comov-
ing frame, the spatial derivative transforms as ∇x = a∇r and the
time derivative transforms as (∂/∂t)x = (∂/∂t)r + H r · ∇r , where
the Hubble constant is defined as H = ȧ/a. The physical (proper)
velocity is given as ṽ = H r + a ẋ, where the first term is the Hubble
flow and the second term contains the comoving velocity v = ẋ.

Using these relations between the physical and comoving deriva-
tives in addition to the following transformations from physical
(with tilde) to comoving hydrodynamical (HD) quantities (without
tilde),

ρ = a3ρ̃, (5)

B = a1/2 B̃, (6)

Ptot = aP̃tot, (7)

e = aẽ, (8)

εint = a−2ε̃int, (9)

the MHD equations in comoving coordinates have exactly the same
form as equations (1)–(4) with additional Hubble source terms on
the right-hand sides of the momentum, energy and induction equa-
tions:

∂

∂t
ρ + ∇ · (ρv) = 0, (10)

∂

∂t
(ρv) + ∇ ·

(
ρv⊗v − 1

4π
B⊗ B

)
+ ∇Ptot = −2Hρv, (11)

∂

∂t
e + ∇ ·

[
(e + Ptot) v − 1

4π
(B · v) B

]
=

−H [(3γ − 1)ρεint + 2ρv · v] , (12)

∂

∂t
B − ∇ × (v × B) = −3

2
H B, ∇ · B = 0. (13)

Note that we have changed all time and space derivatives in these
equations to the comoving frame, i.e. ∂/∂t ≡ (∂/∂t)x and ∇ ≡ ∇x .

Since the form of these equations is identical to the conservation
equations (1)–(4) without the Hubble source terms, we can use any
existing HD scheme to solve this set of equations in the comoving
frame. In order to account for the Hubble source terms on the right-
hand side of these equations, we use an operator-splitting approach,
where the comoving HD variables are modified in each time step
(after the hydro step) to account for the source terms.

First, we note that the mass continuity equation is unchanged
between physical and comoving coordinates. The momentum equa-
tion has the Hubble source term −2Hρv. Expanding the comoving
momentum equation (11) with respect to the change in a, we find

��̇ρv + ρv̇ +���∇(. . .) = −2Hρv, where ρ̇ = (dρ/da)(da/dt) = 0 be-
cause dρ/da = 0, and any spatial derivatives cancel, because a does
not depend on space. This leaves us with the simple differential
equation, v̇/v = −2ȧ/a, for which the solution is v′ = v(a/a′)2,
where v and a are the velocity and scale factor before account-
ing for the Hubble term (i.e. before the hydro step) and v′ and
a′ = a(t + �t) are the velocity and scale factor after the current
time step �t. An analogous correction has to be made in the co-
moving energy equation to account for the Hubble source term, i.e.
ε′

int = εint(a/a′)3γ−1.
These procedures to account for the Hubble flow in pure hydro-

dynamics (without magnetic fields) were already implemented in
the cosmology module of the public version of FLASH. However,
MHD was not supported. Here, we implemented the necessary
modifications of the induction equation with the Hubble source
term −(3/2)H B in equation (13), which requires a modification of
the comoving magnetic field with B′ = B(a/a′)3/2, analogous to the
operator-split corrections for the velocity and energy explained in
the previous paragraph.

2.3 Initial driving of turbulence

In order to establish a fully developed turbulent state, we first drive
turbulence for a few crossing times. The state after this initial driv-
ing phase serves as the initial condition for our numerical experi-
ments on the statistics of MHD turbulence in a contracting refer-
ence frame. Since we are focusing on MHD turbulence in molecular
clouds, we drive turbulence to a target mass-weighted (MW) Mach
number M = 〈vrms/cs〉MW = 9–10 (i.e. supersonic turbulence; see
Larson 1981; Solomon et al. 1987; Ossenkopf & Mac Low 2002;
Heyer & Brunt 2004; Heyer et al. 2009; Roman-Duval et al. 2011;
Schneider et al. 2013a) by applying a driving field ρ F as a source
term in the momentum equation (2). The sound speed is chosen as
cs = 1 in normalized units.

The turbulence driving field is constructed with a stochastic
Ornstein-Uhlenbeck (OU) process (Eswaran & Pope 1988; Schmidt
et al. 2009; Price & Federrath 2010), implemented by Federrath et al.
(2010) and available in the public version of the FLASH code. The
OU process creates a spatial and temporal driving pattern that varies
smoothly in space and time with an autocorrelation time-scale equal
to the turbulent turnover time (also called turbulent box-crossing
time), tturb = L/(2Mcs) = 0.05 for M = 10 on the largest scales
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(L/2) in our periodic simulation domain of side length L = 1 (nor-
malized units). The driving field F is constructed in Fourier space
such that most power is injected at the smallest wave numbers,
1 < |k| L/2π < 3. The peak of energy injection is on scale L/2,
i.e. k = 2, and falls off as a parabola towards smaller and higher
wave numbers, such that the driving power is identically zero at
k = 1 and k = 3, as in our previous studies of driven turbulence
(e.g. Federrath et al. 2010; Federrath 2013, 2016). This procedure
confines the effect of the driving to a narrow wavenumber range and
allows the turbulence to develop self-consistently on smaller scales
(k ≥ 3).

In constructing the driving field, we apply a Helmholtz decom-
position in Fourier space, in order to separate the driving field into
its solenoidal and compressive parts. This allows us to construct
a solenoidal (divergence-free) driving field (∇ · F = 0) or a com-
pressive (curl-free) driving field (∇ × F = 0). The influence of
different driving on the statistics of turbulence, on the amplification
of magnetic fields and on the star formation rate has been deter-
mined in Federrath, Klessen & Schmidt (2008), Federrath, Klessen
& Schmidt (2009), Federrath et al. (2010), Federrath et al. (2011a),
Federrath & Klessen (2012, 2013), Federrath (2013, 2016) and Fed-
errath et al. (2016a, 2017). For simplicity and since here we simply
want to seed a fully-developed initial turbulent state before starting
the contraction, we chose to use purely solenoidal (divergence-free)
driving.

2.4 Initial conditions and list of simulations

We start from gas with uniform density ρ0 = 1 (normalized units)
at rest and drive turbulence for t0 = 4 tturb = 0.2 in a fixed (non-
contracting) reference frame (a = 1), which establishes fully de-
veloped turbulence. After this, we begin the contraction phase,
a(t) < 1, at which point the driving is deactivated and turbulence
as well as magnetic-field dynamics are solely determined by the
contraction of the gas in the comoving reference frame given by
equations (10)–(13).

Table 1 provides a list of all the simulations performed. We
distinguish between three main cases: two purely HD runs, four
MHD runs without magnetic guide field (noGF), and four MHD runs
that include a constant guide field (GF) 〈Bz〉 in the z-direction of the
simulation domain; for each of the MHD cases, we consider multiple
field strengths in order to determine the sensitivity of the results to
this parameter. The simulations without GF use an initial turbulent
field generated with a flat power spectrum in the range k/(2π) = 2–

20, which produces initial turbulent fields (after the driving phase)
of Bturb = 9.2, 24 and 21, respectively (Table 1, middle section).
The simulations with GF were initialized with 〈Bz〉 = 0.35, 3.5
and 35, respectively, giving rise to initial turbulent fields (after the
driving phase) of Bturb = 5.5, 18 and 21, respectively (Table 1,
bottom section). We note that the field strength is in normalized
units, so the Alfvén speed vA = B/(4πρ0)1/2 in normalized units.
This means that B ∼ 3.5 corresponds to an Alfvén speed of one
and B ∼ 35 to an Alfvén speed of 10, comparable to the turbulent
velocity dispersion. Thus, we can think of our three GF cases as
representing three regimes of plasma β and Alfvén Mach number
MA (computed with respect to the GF): GF-Weak has β � 1,
MA 
 1, GF-Medium has β ∼ 1, MA 
 1, and GF-Strong has
β 
 1, MA ∼ 1.

All our simulations use the same resolution of N3
res = 5123 grid

cells (except MHD-noGF-Strong-LR with Nres = 256, used to in-
vestigate numerical convergence in Appendix A).

Finally, our simulations (Table 1) use the same time evolu-
tion for the scale factor a(t) = exp [H(t − t0)] for t ≥ t0 with
H = −(tturb/10)−1 = −200, i.e. fast contraction on a time-scale
ten times shorter than the initial turbulent crossing time. However,
we also run an HD-H1, MHD-noGF-Strong-H1 and MHD-GF-
Medium-H1 simulation with H = −1, in order to demonstrate that
our main conclusions do not depend on the choice of H (see Ap-
pendix B). Robertson & Goldreich (2012) discussed three different
cases for the contraction law in the pure HD limit, while here we are
primarily interested in the case of fast contraction (compression),
focusing on the effect of the magnetic field (MHD runs).

3 SI MULATI ON R ESULTS

3.1 Evolution of the Mach number and energy

Figs 1 and 2 show the time evolution of the rms Mach number and
the kinetic and thermal energies, respectively, in all simulations. We
show these quantities as a function of time during the initial driving
phase, and as a function scale factor once compression begins, with
the two phases separated by the solid vertical lines in the plots.
Since the scale factor is exponential in time (H = ȧ/a = −200)
and the plots use a logarithmic scale, position on the x-axis is
proportional to time during both phases, albeit with different scal-
ings. The top panels show our noGF simulations (without magnetic
GF) and the bottom panel shows our GF simulations. We show the

Table 1. List of simulation parameters at the beginning of the contraction phase.

Simulation model 〈Bz〉 Bturb H M σsat( per cent) N3
res

HD 0 0 −200 9.4 0 5123

HD-H1 0 0 −1 9.4 0 5123

noGF-Medium 0 9.2 −200 9.8 8 5123

noGF-Strong 0 24 −200 9.1 56 5123

noGF-Strong-LR 0 21 −200 9.5 40 2563

noGF-Strong-H1 0 24 −1 9.1 56 5123

GF-Weak 0.35 5.5 −200 9.3 3 5123

GF-Medium 3.5 18 −200 9.5 30 5123

GF-Medium-H1 3.5 18 −1 9.5 30 5123

GF-Strong 35 21 −200 9.8 140 5123

Note. The mean magnetic field (〈Bz〉) and turbulent magnetic field (Bturb) are in machine units (see the text). The asymptotic
saturation level (σ sat) is the total magnetic energy within the box divided by the total kinetic energy (at the beginning of the
contraction phase).
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Figure 1. The MW root-mean-square Mach number of the turbulent gas as
a function of time (t, to the left of the vertical solid line) and scale factor
(a, to the right of the vertical solid line). The vertical solid line separates
between the initial driving stage, when turbulence driving is active (Sec-
tion 2.3) and the box is static (a = 1), and the compression stage, when the
driving is disabled and the box contracts (a(t) < 1). Top panel: simulations
without magnetic guide field (‘noGF’). Bottom panel: simulations with mag-
netic guide field (‘GF’; see Table 1). We show the no-magnetic field case
(‘HD) in both panels to guide the eye. The dashed vertical line indicates the
value for which the dissipation rate equals the compression rate, following
equation (14).

pure hydrodynamic simulation (HD) in both panels to help guide
the eye.

First, examine Fig. 1. We see that, starting from the fully de-
veloped turbulent state at a = 1, all simulations start compression
(decreasing a), which drives turbulence, i.e. increasing v and M.
The turbulence is initially supersonic with M ∼ 9–10 (Table 1),
and increases to a peak of M ≈ 20. However, at a ∼ 0.2, in all sim-
ulations except noGF-Strong, the evolution reverses and turbulence
begins to decay. This change is also apparent in the kinetic energy
density evolution shown in Fig. 2, which increases sharply from
a = 1 to a ≈ 0.2, but then shows an inflection point and increases
less steeply thereafter.

This qualitative change from increasing to decaying turbulence
is not related to the turbulence becoming sonic or subsonic, which
only happens much later. Instead, it can be explained by the change
of dissipation with a. The dissipation time-scale is proportional
to the largest eddy turnover time (Mac Low 1999; Robertson &
Goldreich 2012) and the dissipation rate becomes comparable to
the compression rate when

η∗ vrms(a)

aλ
= η

vrms

aL
= |H | = − ȧ

a
, (14)

with vrms the root mean square of the velocity field, λ = L/2 the
largest eddy size and H = −200, the compression rate in our sim-
ulations (Section 2). The coefficient η∗ = η/2 is a dimensionless

Figure 2. Same as Fig. 1, but showing the kinetic (solid lines) and magnetic
(dashed lines) energy per unit volume, in normalized units (see Section 2).
We list the ratio σ sat ≡ eB/ekin at a = 1 in Table 1.

dissipation efficiency (see Section 4) and has been calibrated to be
η∗ ≈ 0.9 (see Section 4.4). We can solve equation (14) numerically
for a using the value of vrms(a) measured from the simulations,
and the result is a ≈ 0.2; we show the exact solution for the HD
run as the vertical dashed line in Fig. 1. It is evident that this typ-
ical time-scale for equality between compression and dissipation
successfully predicts the onset of efficient dissipation and roughly
coincides with the beginning of the decaying stage of turbulence.

From a = 1 to a ≈ 0.2, the magnetic field has only minor effects
on the evolution in all runs except GF-Strong. Compared to the HD
case, in the noGF models the magnetic field stores additional energy
that replenishes some of the kinetic energy that is dissipated. This
slightly delays the onset of the decaying stage and allows higher
maximum velocities or Mach numbers by about 10–20 per cent, but
this is clearly a modest effect. However, at later times the MHD and
HD runs show profound differences. In all the MHD runs, the Mach
number (Fig. 1) eventually stops decreasing and begins to increase
again. Corresponding to this, the slope of the kinetic energy versus
a curve (Fig. 2) steepens again.

The value of a at which the switch from decaying to increasing
turbulence happens appears to depend both on whether there is a GF,
and on the saturation level of the turbulent dynamo, as parametrized
by σ sat ≡ eB/ekin, at the onset of compression; we report this quantity
in Table 1. The noGF-medium run has σsat = 8 per cent, and does
not switch from decaying to increasing until a ≈ 0.001, while the
noGF-Strong (σsat = 56 per cent), GF-Weak (σsat = 3 per cent) and
GF-Medium (σsat = 30 per cent) all reverse at a ≈ 0.01. The GF-
Strong case (σsat = 130 per cent) never goes through a decaying
phase at all, and instead has a Mach number that increases almost
monotonically. In call cases, the difference between the MHD and
HD cases is large and growing with time. Even the noGF-Medium
case, with σsat = 8 per cent, has ∼10 times as much kinetic energy
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as the pure HD case by a = 0.001. The GF-Strong case has 10 times
the kinetic energy of the HD case even at a ≈ 0.1, and by a = 0.01
this gap has grown to more than two orders of magnitude.

3.2 Dissipationless flows

3.2.1 The transition to dissipationless flow

Having seen that the presence of a magnetic field causes a major
change in the behaviour of compressive turbulence, we now inves-
tigate in more detail the origin of this behaviour. We shall show that
this change the result of a shift in the flow pattern to one that is
nearly dissipationless. As a first step in this direction, we note that
the switch from decaying to increasing Mach number is associated
with the ratio of magnetic-to-kinetic pressure. In our dimension-
less units, the volume-averaged thermal pressure is 1/V, where V
is the box volume, and we define the volume-averaged kinetic and
magnetic pressures by

Pkin = 1

V

∫
1

2
ρv2 dV (15)

PB = 1

V

∫
1

3

(
B2

8π

)
dV . (16)

Note that the factor of 1/3 in the definition of PB might at first seem
surprising, but we shall see the justification for it in Section 4.

We plot the time evolution of Pkin and PB in all our runs in Fig. 3.
As in Figs 1 and 2, the x-axis is separated (by the vertical solid line)
into the initial driving stage on the left, and the contraction phase
on the right. At the beginning of compression, dissipation is com-
paratively unimportant because the compression time-scale is small
compared to the eddy turnover time-scale. Thus, the flow is nearly
dissipationless. We show below that, for adiabatic contraction, ki-
netic pressure acts as a gas with γ = 5/3 and turbulent magnetic
pressure acts as a gas with γ = 4/3, and we expect these pressures
to scale as

P

Pth
∝ ργ−1 ∝ a−3(γ−1). (17)

Thus, we expect the kinetic-to-thermal ratio to scale as a−2, and the
magnetic-to-thermal ratio to scale as a−1 for the case without a GF.
With a GF, flux conservation requires that the mean magnetic field
rise as Bmean ∝ a−2, and thus the scaling is the same, though for a
somewhat different reason. We show lines with slopes of −1 and
−2 in Fig. 3, and they are indeed good descriptions of the slope at
early times.

Unsurprisingly, the kinetic and magnetic pressures begin to drop
when the dissipation rate becomes comparable to the compression
rate. However, the kinetic term drops more steeply than the magnetic
term. This effect is due to the fact that the only true dissipation
channel in the system is via the kinetic term and that the dissipation
of the magnetic component is bottlenecked by the rate at which the
now overmagnetized gas can transfer energy back into the kinetic
component.

As a result of the difference in the dissipation rates, the magnetic
pressure ultimately exceeds the kinetic pressure in all cases except
GF-Weak. In all the other cases, the transition from decreasing to
increasing Mach number occurs almost exactly when this crossover
happens, although if one closely compares GF-Medium to noGF-
Medium, it is clear that at equal field strength the transition occurs
earlier, in terms of both a and in terms of ratio of Pkin to PB, in
the presence of a GF. Whether the flow is subsonic or supersonic

Figure 3. The ratio of kinetic to thermal pressure (solid lines) and magnetic
to thermal pressure (dashed lines) for the noGF simulations (top panel) and
GF simulations (bottom panel – see Table 1 for simulation details). The
dot–dashed horizontal line marks the sonic ratio, where the pressure equals
the thermal pressure (which is equivalent to Mach number M = √

3). The
slanted black solid and dashed lines in the top panel show the expected
adiabatic compression slope of the kinetic and magnetic pressure ratios
(see the text). The dot–dashed lines in the bottom panel show the magnetic
pressure that results from the volume-averaged z-component of the magnetic
field.

appears to make little difference to the transition, consistent with the
findings of Mac Low (1999) that the dissipation rate is not greatly
affected by whether the flow is subsonic or supersonic.

3.2.2 The nature of the dissipationless flow

When the magnetic pressure begins to dominate, or even earlier
in the presence of a net magnetic flux, the flow re-arranges itself
into a fundamentally different topology, characterized by a much
lower rate of dissipation. We illustrate this topology in Fig. 4, which
shows density field maps along the major three axes, and velocity
streamlines colour coded by their z-component of the Mach number.
The left column presents the initial state (a = 1) and the right
column a highly compressed stage for which the flow has had time
to settle into a self-consistent non-driven mode (a = 10−3). The runs
presented here are the HD run (top), noGF-Strong (middle) and GF-
Medium (bottom panels), but the other MHD runs are qualitatively
the same as the two shown in the figure.

Both the MHD runs exhibit a behaviour such that after compres-
sion has taken place, the flow settles into two main sheets sliding
across each other at supersonic velocities. Since there is no pre-
ferred direction in the noGF run, and in the x–y plane of the GF run,
in the simulation set-up, the division into the domains is arbitrary
(for this specific simulation it roughly coincides with the x-axis. It
is clear that this flow, which has naturally developed from standard
turbulence, is highly non-random, and that the expected dissipation
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Figure 4. Flow morphology for pure HD (top row), noGF-Strong (middle row) and GF-Medium (bottom row) at beginning of contraction (left column) and at
a = 10−3 (right column). Lines show Mach numbers of the z-component of velocity along streamlines for the flow. Background colour maps show comoving
density slices along the principle directions.
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Figure 5. The compressive ratio, 〈v2
c 〉/(〈v2

s 〉+〈v2
c 〉), of the flow, as a func-

tion of the scale factor, for the HD and noGF (top panel) and GF (bottom
panel) simulations. For supersonic turbulence, this value is expected to be
between ∼20 and 60 per cent, depending on the driving mode of the tur-
bulence (Federrath et al. 2011a). A lower value indicates that the flow is
dominated by incompressible modes, which is clearly seen for the runs that
include magnetic fields. The vertical lines show the scale factor for which
the magnetic pressure dominates over the kinetic pressure (Fig. 3). For scale
factors below this transition, the compressive modes decay and the system is
dominated by incompressible modes. Compressible modes only contribute
<1 per cent of the energy at late times for the MHD runs, while the HD run
maintains high compressive ratios of ∼10–40 per cent.

of these flows is greatly reduced compared to the standard flow of
the HD run or the initial state.

We can illustrate the reduces dissipation more directly by examin-
ing the ratio of flow power in compressible modes to the total power
in all modes, which we refer to as the compressive ratio. We show the
time evolution of this quantity for all runs in Fig. 5. We compute the
energy in solenoidal (〈v2

s 〉) and compressible (〈v2
c 〉) modes by per-

forming a Helmholtz decomposition of the velocity field (Federrath
et al. 2010; Federrath et al. 2011a; Pan et al. 2016; Jin et al. 2017).
The ratio of 〈v2

c 〉/(〈v2
s 〉+〈v2

c 〉) ∼ 0.2–0.6 for supersonic turbulence
depends on the driving mode (Federrath et al. 2011a). In the ab-
sence of magnetic fields, the flow remains in this range of values
even after driving ceases, during the compressive phase (the HD
case). However, Fig. 5 (top panel) demonstrates that when the mag-
netic field begins to dominate (a � 0.01 for noGF-Medium, and a �
0.03 for noGF-Strong; see also Fig. 3, top panel), the compressive
ratio drops rapidly. These values are marked by the vertical dashed
lines in Fig. 5 (top panel).

The GF-Strong run is particularly noteworthy in that it has a
compressive ratio �10 per cent even before the onset of compres-
sion, simply as a result of the strong magnetic field that prevents
flows across field lines. As a result, it never experiences significant

dissipation and never goes through a phase when the turbulence
decays.

4 TH E O R E T I C A L F R A M E WO R K FO R
C O M P R E S S I B L E M H D T U R BU L E N C E

Having seen that magnetic fields lead to novel and initially un-
expected effects in MHD turbulence, we now seek to construct a
theoretical model that we can use to interpret the results. Our basic
approach will be to think of the region we are simulating as a small
portion of a much larger cloud. We will then coarse-grain the MHD
equations over the scale of our box, allowing us to write down an
effective pressure in the box. We will use the results of our numer-
ical experiments, together with some basic physical arguments, to
provide an effective EoS to describe this pressure and its evolution,
so that we can interpret our numerical results in thermodynamic
terms.

4.1 Coarse-grained pressures

We begin by following the usual method of constructing a
set of coarse-grained equations (e.g. Germano 1992; Kuncic &
Bicknell 2004; Schmidt, Niemeyer & Hillebrandt 2006; Schmidt &
Federrath 2011). We define a spatial filter F�(x) with characteristic
scale � with which we can convolve all the fluid variables. For any
field φ(x), we define

φ ≡
∫

φ(x′)F�(x − x′) dx′, (18)

φ′ ≡ φ − φ, (19)

φ̃ ≡ ρφ

ρ
. (20)

Here, φ is the filtered variable, obtained by convolving φ with the
filter and φ′ is the fluctuating part that remains after the filtered part
has been removed.

Convolving the MHD equation of momentum conservation, equa-
tion (2), with the filter F�(x) gives

0 = ∂

∂t
(ρṽ) + ∇ ·

(
ρv ⊗ v − 1

4π
B ⊗ B + 1

8π
B2 I

)
+ ∇Pth, (21)

where I is the identity tensor. Per the usual approach, we now write
the averages over correlated terms as differences of the filtered
quantities and the sub-filter-scale (SFS) quantities,

0 = ∂

∂t
(ρṽ) + ∇ · (ρṽ ⊗ ṽ − 1

4π
B ⊗ B + 1

8π
B

2
I)

+ ∇Pth − ∇ · (
τR,SFS + τM,SFS

)
, (22)

where

τR,SFS = ρṽ ⊗ ṽ − ρv ⊗ v (23)

τM,SFS = − 1

4π
B ⊗ B + 1

8π
B

2

+ 1

4π
B ⊗ B − 1

8π
B2 (24)

are the Reynolds stress and Maxwell stress exerted by the SFS
components of the fluid velocity and magnetic field, respectively.
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As standard for the microphysical stress tensor, we decompose
the SFS stresses τR,SFS and τM,SFS into on- and off-diagonal com-
ponents, and identify the former as effective pressures. That is, we
define the effective kinetic and magnetic pressures by

Pkin = −1

3
tr τR,SFS (25)

τR,SFS = −Pkin I + πR,SFS (26)

PB = −1

3
tr τM,SFS (27)

τM,SFS = −PB I + πM,SFS. (28)

We use the notation PB for the effective magnetic pressure to dis-
tinguish it from Pmag, the true, microphysical magnetic pressure,
since we shall see below that they are somewhat different. For ho-
mogenous, isotropic turbulence the tensors πR,SFS and πM,SFS have
zero on their diagonals. In the presence of a large-scale GF where
isotropy is broken, this is not necessarily the case, and in principle,
the on-diagonal components of πR,SFS and πB,SFS can be as large
as Pkin and PB. However, since we are only after a heuristic model,
we will ignore this complication. With these definitions, the filtered
momentum equation reads

0 = ∂

∂t
(ρṽ) + ∇ ·

(
ρṽ ⊗ ṽ − 1

4π
B ⊗ B + 1

8π
B

2
I
)

+ ∇ (
Pth + Pkin + PB

)
− ∇ · (πR,SFS + πM,SFS). (29)

The final step in defining the coarse-grained pressures via an EoS
is to relate the pressures as we have defined them to the energy
content of the gas. The SFS kinetic and magnetic energies per unit
volume are simply the differences between the true energies per unit
volume and their analogues defined using the filtered quantities, i.e.

ekin,SFS = 1

2
ρv2 − 1

2
ρṽ2 (30)

eB,SFS = B2

8π
− B

2

8π
. (31)

From the definitions of τR,SFS, τM,SFS, Pkin and PB, it is immediately
clear that we have

Pkin = 2

3
ekin,SFS (32)

PB = 1

3
eB,SFS, (33)

i.e. the kinetic pressure is simply 2/3 of the SFS kinetic energy den-
sity, and the magnetic pressure is 1/3 the scale of the SFS magnetic
energy density. Note that this relationship between pressure and
energy density is different than the ones that obtain between the mi-
croscopic pressures and energy densities, for which Pth = (γ − 1)eth

and Pmag = eB = B2/8π. This difference is the reason for the factor
of 1/3 we introduce into PB as computed in equation (16). Inter-
preted in terms of an adiabatic index γ , we see that SFS kinetic
pressure acts like a fluid with a γ = 5/3 EoS, while SFS magnetic
pressure acts like a fluid with a γ = 4/3 EoS.

If the thermal pressure also obeys an EoS

P = (γ − 1) ρε, (34)

where ε is the energy per unit mass, then we can write the total
coarse-grained pressure as

Ptot = Pth + Pkin + PB (35)

= ρ

[
(γ − 1)εth + 2

3
εkin,SFS + 1

3
εB,SFS

]
, (36)

where the various ε terms are the thermal, SFS kinetic or SFS
magnetic energy per unit mass.

4.2 An effective EoS for supersonic magnetized gas

We now wish to model the reaction of the full system of isothermal,
turbulent and magnetized gas to compression, taking into account
dissipation terms and interactions between the various components.
Since these additional energy transfers are time dependent, they
cannot be modelled as a proper EoS, that is only a function of the
thermodynamic state. Instead, we model this behaviour as an ef-
fective EoS that also depends on the thermodynamic trajectory of
a parcel of gas. A similar approach has been successfully imple-
mented for stability analysis of gravitationally collapsing haloes,
filaments and sheets in a cosmological context in Birnboim & Dekel
(2003), Dekel & Birnboim (2006) and Birnboim, Padnos & Zinger
(2016). For the sake of notational simplicity, we shall from this
point forward drop the overlines and the SFS notation, and we will
understand that, unless otherwise stated, all quantities except ener-
gies are unit mass are filtered quantities, while specific energies are
SFS quantities.

In analogy to the definition of the adiabatic index (with the sub-
script s indicating constant entropy)

γ =
(

∂ ln P

∂ ln ρ

)
s

, (37)

we define γ eff as the full derivative of the pressure to density of a
fixed parcel of gas along a Lagrangian path,

γeff = d ln Ptot

d ln ρ
= ρ

Ptot

Ṗtot

ρ̇
, (38)

with the upper dot indicating full-time derivative and Ptot as defined
in equation (35).

4.2.1 Ideal EoS with dissipation

The time derivative of an ideal EoS (equation 34) can be separated
into its isentropic and non-isentropic part. We first differentiate the
pressure of a Lagrangian parcel of gas:

Ṗ = (γ − 1) (ε̇ρ + ερ̇) , (39)

The time derivative of the specific energy, ε̇, can be taken from its
thermodynamic definition,

ε̇ = −P V̇ − q, (40)

with V the specific volume (V = ρ−1) and q a general non-adiabatic
energy sink rate. A negative value of q corresponds to an en-
ergy source. Inserting equation (40) into equation (39) and using
equation (34) again, we find

Ṗ = γ
ρ̇

ρ
P − (γ − 1) ρq. (41)
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The interaction between two forms of energy, such as the transfer
between kinetic and magnetic components associated with dynamo
action, can be incorporated into this framework by introducing a
positive q term into one form of energy (for example the kinetic),
compensated by a negative contribution of equal magnitude to the
other (for example, magnetic energy).

4.2.2 Kinetic EoS with dissipation

Following Mac Low et al. (1998) and Robertson & Goldreich
(2012), we model the dissipation rate of turbulence as proportional
to the largest eddy turnover time (see equation 14),

qdis = η
v

aλ

v2

2
= η

v3

aL
, (42)

with η a dimensionless-free parameter (that depends on the numeri-
cal scheme and resolution) and λ the largest eddy scale (L/2). When
decay is efficient, we expect η to be of order unity, but once a dissipa-
tionless flow (DLF) pattern develops, it will be much smaller. This
term dissipates kinetic into thermal energy, and formally should
appear with a negative sign in the thermal component. However, by
using an isothermal EoS for the gas, the thermal energy of the gas is
fixed, and any heating of the gas is assumed to radiate out instantly.
We simply introduce this term as cooling, directly from the kinetic
pressure.

4.2.3 Energy transfer between the kinetic and magnetic
components

Turbulence enhances initially small seeds of the magnetic field via
small-scale dynamo processes (Brandenburg & Subramanian 2005).
The amplification rate is initially exponential and eventually de-
creases to zero as the magnetic energy and the turbulent energy
approach their saturation ratio, which is a function both of the
Mach number and turbulent driving pattern (Federrath et al. 2011a)
and the ratio of turbulent and magnetic dissipation, i.e. the magnetic
Prandtl number (Schekochihin et al. 2007; Federrath et al. 2014b;
Schober et al. 2015). Inspired by this behaviour, we model the
energy transfer rate from the kinetic to magnetic as

ε̇KB = �εB

(
1 − εB

σsatεkin

)
, (43)

where we recall that εB and εkin are the SFS magnetic and kinetic
energies. The saturation ratio, σsat = εsat

B /εsat
kin, is the ratio of the two

components before compression, and will be calibrated for each
simulation depending on its set-up. By analogy with the dissipation
rate, the growth rate of the magnetic field, �, is also taken as a
fraction of the largest eddy turnover rate,

� = ηB
v

aL
, (44)

with the dimensionless coefficient ηB of order unity.
While this internal energy transfer does not change the total

energy content of the gas, it does change the total pressure, because
of the difference in γ for each component. We thus treat it as a sink
term in ε̇kin and as a source term in ε̇B. We also note that this rate can
become negative if the magnetic energy exceeds its saturation level
with respect to the kinetic energy. While energy in such a physical
case will flow from magnetic to kinetic, as the fields are strong
enough to rearrange the material into a lower magnetic energy state,
there is no justification to assume that the rate at which this happens
is related to the eddy turnover rate. Regardless, we use equation (43)

even for that case. As we show later, this modelling, with the same
coefficients for εB → εkin as εkin → εB, leads to reasonable results,
although the value of ηB that we end up requiring is considerably
less than unity. We leave further investigation into this point for
later studies.

4.3 Calculation of γ eff

We have now everything in place for the calculation of γ eff. It is
convenient to write the total pressure (equation 35) as

Ptot = Pth

(
1 + αk + β−1

)
, (45)

with

αk = Pkin

Pth
= 1

3

v2

c2
s

= 1

3
M 2,

β = Pth

PB

= c2
s ρ

(
1

3

B2

8π

)−1

(46)

with M the rms Mach number of the flow, and β the plasma β

parameter for the coarse-grained case.
If the sound speed is constant as we have assumed, and we use

the relation in equation (39) for the kinetic and magnetic parts, we
get

Ṗtot = ρ̇

ρ

(
Pth + 5

3
Pkin + 4

3
PB

)
− 2

3
ρqdis − 1

3
ρε̇KB. (47)

By noting that (cf. equations 42 and 43)

ρqdis = 3η
v

aL
Pkin,

ρε̇KB = 3ηB
v

aL
PB

(
1 − εB

σsatεkin

)
, (48)

and using the relation

ρ̇

ρ
= −3

ȧ

a
, (49)

and equation (46), we get

Ṗtot = ρ̇

ρ
Pth

[
1 + αk

(
5

3
+ 2

3
η

v

ȧL

)

+β−1

(
4

3
+ 1

3
ηB

v

ȧL

(
1 − εB

σsatεkin

)) ]
. (50)

Plugging equation (50) into equation (38), we finally get

γeff = 1

1 + αk + β−1

[
1 + αk

(
5

3
+ 2

3
η

v

ȧL

)

+ β−1

(
4

3
+ 1

3
ηB

v

ȧL

(
1 − εB

σsatεkin

)) ]
. (51)

Equation (51) manifests a few important physical properties. The
equation properly interpolates between various extremes: when the
thermal component is dominant over the kinetic and magnetic com-
ponents, 1 � αk, β−1, γ eff reduces to 1, as expected (for an isother-
mal gas). Likewise, when the kinetic component dominates, αk �
1, β−1, γ eff reduces to 5/3 (and to 4/3 when the magnetic compo-
nent dominates). The sign of the dissipation term and the energy
transfer term depends on the sign of ȧ. This is consistent with the
expected behaviour that the dissipation always acts to reduce the
pressure. When gas contracts (ȧ < 0), γ eff drops, and the pressure
growth is reduced. When gas expands (ȧ > 0), γ eff increases, and
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the pressure drops due to the expansion, P ∝ ργeff drops even faster
because of the dissipation. The magnitude of the dissipation term
is not theoretically bound, and γ eff can become negative or very
large. This does not contradict our physical understanding. When
large dissipation is present (v � |ȧ|), it is possible that as gas is
compressed its pressure decreases, corresponding to a negative γ eff.

4.4 Comparison to simulations

In this section, we analyse the reaction of multicomponent gas to
contraction and compare the simulated runs (Sections 2 and 3) to
our analytic predictions. To quantify this reaction, we use γ eff (equa-
tion 38), and in order to compare the simulations to our predictions,
we derive this quantity in two separate ways. First, we take the
logarithmic derivative of the total pressure Ptot (equations 15, 16
and 35) with respect to density directly from the simulation, γ sim.
Then, we compare it to our analytic prediction, γ pred, according to
equation (51). It is of pedagogical and practical value to consider
first a simplified version of our analytic model, for which zero dissi-
pation is assumed. This is discussed in Section 4.4.1. A comparison
to the full model is presented in Section 4.4.2.

4.4.1 γ eff comparison without dissipation

Dissipation sinks energy from the gas as it is compressed. There-
fore, we expect gas to be more compressible (i.e. lower γ eff) when
dissipation cannot be neglected. By contrast, if dissipation is weak
enough, γ eff approaches the value expected for a gas with a mixture
of thermal, turbulent and magnetic pressure, with the different com-
ponents weighted according to the relative pressures of each com-
ponent. In terms of our model, this amounts to setting η = ηB = 0.
As discussed in the previous sections, we expect this approximation
to be valid at the initial stage, and then, to some degree, at late stages
when a DLF forms.

Fig. 6 compares γ sim (solid lines) with γ pred (dashed lines). The
horizontal dashed lines mark values of γ eff = 1, 4/3 and 5/3 that
correspond to the expected behaviour for purely isothermal, purely
magnetic and purely kinetic gas, respectively. For the HD simula-
tion, the gas initially starts close to the value predicted for super-
sonic turbulence, γ eff ∼ 5/3, and as dissipation becomes dominant
γ sim drops to ≈1/2. Once the turbulence has decayed significantly
(Fig. 1 top panel) and the kinetic pressure drops below the thermal
pressure (Fig. 3), no energy is left to dissipate, and the gas behaves
like an isothermal gas with γ eff = 1. The MHD runs without mag-
netic guide fields (noGF runs, top panel) initially behave similarly,
with γ eff dropping as dissipation becomes important. However, the
dissipation stops for a different reason. At late times, after the tran-
sition to DLF, the gas behaves as magnetic field-dominated, with
γ eff ≈ 4/3. The asymptotic behaviour at the initial stage and then
again for a � 10−2 is well recovered by our analytic model without
dissipation (top panel, dashed lines), for the HD and noGF runs.
Note that at a ≈ 1 the predicted values are slightly higher than the
simulated ones, indicating that some dissipation exists even for the
very early stages when compression starts.

The bottom panel presents a similar calculation, but for the runs
with guide fields (GF runs). In all three GF runs, γ sim approaches
γ eff ≈ 4/3 at large compressions. This occurs even when the mag-
netic pressure is sub-dominant to the kinetic one (GF-Weak) or
comparable (GF-Medium and GF-Strong), and our model predicts
that the gas behaves like a purely kinetic gas (GF-Weak, γ pred ≈ 5/3)
or intermediate (GF-Medium and GF-Strong, 4/3 < γ pred < 5/3).

Figure 6. Calculated γ eff (γ sim, solid lines) and dissipationless predicted
γ eff (equation 51 with η = ηB = 0, dashed lines) as a function of scale factor
and density, for the noGF runs (top panel) and GF runs (bottom panel). The
dashed horizontal lines mark the values of 1, 4/3 and 5/3 that correspond to
our expected values for thermal-, magnetic- and kinetic-dominated equations
of state, respectively.

This discrepancy indicates that some dissipation is present even at
those late stages. In summary, the simplified non-dissipative model
provides a very good prediction of the asymptotic values of γ for
the HD and noGF runs, and provides a reasonable prediction but
with a slight overestimate for the asymptotic γ eff of the GF runs.

4.4.2 γ eff comparison of full model

Fig. 7 shows a similar plot to Fig. 6, but with γ pred

that includes dissipation as the dashed lines. First, examine
the top panel. In this plot, we have used η = 1.8 and
ηB = 0.01 at compressions a � 10−2. These are by-eye fits; a more
systematic calibration is certainly possible, but since it is likely that
η depends on the numerical scheme and resolution, and ηB depends
on the specific geometry of the driving, we find little practical value
in estimating them more robustly here. To obtain a meaningful phys-
ical results, we would need to explicitly include physical dissipation
terms, i.e. kinematic viscosity and magnetic resistivity (Federrath
et al. 2011a; Federrath et al. 2014b; Federrath 2016).

For our purpose, it suffices to show that we can fit the numerical
results with reasonable values of η and ηB. The inclusion of the
kinetic dissipation term, ηv/aL, improves the small mismatch at
ρ ≈ 1 that was present in Fig. 6. This illustrates that for our simula-
tion set-up, dissipation makes a minor difference from the beginning
of the compression phase, even though it was not directly observed
in Fig. 3. For the HD and noGF runs (top panel), the predicted γ eff

curve is a reasonably good fit to the simulated one, even when the
dissipation dominates.
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Figure 7. Same as Fig. 6, but with the full predicted model (equation 51
shown as dashed lines, which correspond to the expected behaviour in the
presence of dissipation and kinetic-magnetic energy transfer where appro-
priate (see the text).

However, the fit would fail miserably when flows enter the self-
avoiding channel-flow phase. At that stage, our model would predict
an ever-increasing dissipation because of the rising turbulent veloc-
ity when, in fact, very little dissipation takes place. Similarly, as the
magnetic energy exceeds its saturation level, more and more energy
would be predicted by our model to be pumped from magnetic to
kinetic when, in fact, little energy does. To mimic this drop in trans-
fer terms, we simply set η = ηB = 0 when (αkβ)−1 = PB/Pkin > 3.
In the figure, the shutdown of the transfer terms produces the dis-
continuity in the predicted γ eff. Without it, γ eff would first shoot up
because of the large ε̇KB, and then shoot down because of the large
qdis. Obviously, the transition to the ineffective dissipation regime
is not sharp, and a better fit between the calculated and predicted
models can be obtained with a more sophisticated transition model.
However, at this stage, we value the simplicity of the model over
its accuracy. The success of the dissipation model when PB � Pkin,
combined with its failure beyond that point and the success of the
dissipationless model there, is the key physical finding of this paper.

Our model is somewhat less successful in the case when a GF
is present, as shown in the lower panel of Fig. 7. The model is
reasonable at first, but, as noted above, the switch to DLF appears
to depend not just on the ratio of magnetic to kinetic pressures
but also on the field topology. Our switch at PB/Pkin > 3 is too
conservative for this case, and as a result predicts strong dissipation
at intermediate values of a when in fact our simulations are already
switching to a low-dissipation state. We could improve the fits
by hand-tuning when we switch to η = ηB = 0, but without an
understanding of exactly how this switch depends on the magnetic
topology, we would have to do so independently for each run, which
seems of little value.

Regardless of our ability to predict exactly when the switch to
DLF will occur, we can still give a physical interpretation to our
results as follows. With our simulation set-up, the turbulence at the
compression stage is driven by globally re-normalizing the velocity
and distance. This type of driving enhances existing modes and
allows the system to settle into‘natural modes’ that are not forced
by an arbitrary external driving. From our results, it appears that
even a relatively small decay of some of the modes (e.g. even in the
case of a sub-dominant magnetic field) is enough to significantly
decrease the power in these modes and allows the flow to settle into
a DLF.

5 IM P L I C AT I O N S FO R I S M

While the study of dissipation in scale-free compression of turbu-
lence described above is general, our motivation for conducting this
study is not. We seek to find how magnetic fields alter the collapse of
GMCs and, in particular, to test whether realistic initial conditions
may delay the dissipation and consequent collapse of the GMCs.
The ISM, in which GMCs form, is a multiphase medium, with sub-
sonic turbulence in the diffuse, warm and hot phases and supersonic
turbulence in the denser, cold phases such as GMCs. The entire
ISM is furthermore interlaced with magnetic fields and immersed
in cosmic rays and radiation fields. The turbulence is maintained
by various energy sources, including driving by feedback from star
formation, gravitational collapse and galaxy dynamics (Federrath
et al. 2016a, 2017). In this work, we simplify this system to man-
ageable levels by focusing on its most basic aspects: we start with
gas that is supersonic and magnetized and test its response to quick
compression. The compression pumps energy into the turbulence
and into the magnetic field on all scales, without imposing any par-
ticular scale or randomness through external driving. We find that
even weak magnetic fields eventually force the gas to settle into
a channel-flow pattern with greatly reduced dissipation. This is in
stark contrast to the case where magnetic fields are absent, where
we find that (in agreement with previous purely HD simulations –
Robertson & Goldreich 2012) the kinetic energy steadily decays
and dissipation remains significant throughout the entire evolution
of the gas.

The greatly reduced dissipation rate for the flow that we find in the
presence of a magnetic field indicates that significantly less energy
input may be required to produce the observed linewidths in GMCs
than had previously been conjectured. However, a full exploration
of this issue will need to take into account many more processes,
amongst them the multiphase nature of the ISM and realistic stellar
feedback. The latter process, which will drive random turbulence on
a typical scale corresponding to the distance between stars within
each GMC, may actually increase the dissipation rate by disturbing
the DLF. Thus, while stellar feedback is highly energetic, it could
prove to be an effective cooling agent by increasing the dissipa-
tion. Even within our toy model, a more systematic test of various
compression models and rates is needed to test the universality (or
lack-thereof) of the dissipation model and the calibrated rates. We
leave these tests to future work.

At a minimum, however, we note that our results suggest that
dissipation inside a forming GMC will be much less than has
commonly been assumed. The gas from which GMCs form is ob-
served to be threaded by a significant net magnetic flux (Li &
Henning 2011; Li et al. 2011; Pillai et al. 2015), and in this case,
the flow can be nearly dissipationless almost immediately after
compression begins. Even in the limiting case of zero net flux but
fields close to equipartition, as observed, the dissipation rate is
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substantially reduced once the cloud has compressed by a factor of
∼100 in linear dimension. This is not all that much by interstellar
standards: the mean density of the Milky Way’s ISM is n ∼ 1 cm−3,
so a factor of 100 linear compression corresponds to a density
n ∼ 106 cm−3, i.e. typical of a prestellar core.

The onset of DLF will not necessarily halt collapse. Even in the
most favourable case, when no dissipation occurs, highly magne-
tized gas is unstable to scale-free collapse because its effective EoS
is γ eff = 4/3, which is right at the critical value for hydrostatic
gravitational stability (γ crit = 4/3). This indicates that, as a cloud
compresses, the force exerted by the magnetic field outwards grows
just as fast as the gravitational forces increases inwards. This gen-
eral point has been overlooked in the past, because the focus was
on comparing time-scales rather than using the formal requirement
for hydrostatic atmospheres. However, we note that if the external
compression is filamentary as is often found, the critical value for
stability drops to γ eff = 1, and, if linear magnetic fields prevent
compression perpendicular to the magnetic-field direction, the col-
lapse can only occur along one direction, for which the critical value
is γ eff = 0 (Birnboim et al. 2016).

The compression rate of observed GMCs can be characterized
in a way that relates it to our ideal simulations. We define the non-
dimensional compression rate HND = −tsoundH which is our (abso-
lute value of the) Hubble coefficient for the compression in units
of sound crossing time. If compression is driven by gravitational
collapse, this non-dimensional compression rate is (up to order of
unity corrections) tsound/tff, with tff the gravitational free-fall time.
By replacing tsound of our turbulent cloud by Mtturb (which is, again,
correct up to order of unity corrections) we get HND = Mtturb/tff .
The ratio of the turbulent time-scale to the free-fall time-scale for
reasonable GMC’s is tturb/tff = 2/

√
αvir, with αvir ≈ 1, the virial

parameter for virialized GMCs (see section 8.3 of Krumholz 2017),
yielding HND ≈ 2M. In our numerical simulations, tsound = 1 and
HND = −H spanning a range between 1 and 200 (see Table 1
and Appendix B). Since typical Mach numbers for local GMCs
(Schneider et al. 2013b) and in the Central Molecular Zone Cloud
G0.253+0.016 (Federrath et al. 2016b) are M ≈ 10 and for high-z
GMCs or ULIRGS can be as high as M ≈ 100, we argue that our
simulations bracket the observed range. Furthermore, as gas is com-
pressed, dissipation always dominates eventually over the adiabatic
compression. Faster compression rate simply extends the initial
stage in which dissipation can be neglected. We note, however, that
unlike realistic GMCs, our Mach number is independent of the com-
pression rate and is set by the initial driving. Our Mach numbers
(M ≈ 10) are smaller than is observed for ULIRGS, and is perhaps
comparable to that of local GMCs. Additionally, it does not follow
the correlation set by HND ≈ 2M that is expected by observations.
Since the onset of the dissipation is predicted by comparing the
dissipation time-scale (i.e. turbulent time-scale) and compression
time-scale, we expect that realistic GMCs will always start near the
onset of the dissipation phase, without the long adiabatic phase seen
for H = −200 in our simulations. We leave a more systematic test
of the dependence of our conclusion on the compression rate and
Mach numbers for future work.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we study the evolution of magnetized supersonically
turbulent gas as it is compressed. The compression is scale free and
corresponds to gravitational compression that operates on all scales,
much like the expansion of the universe in cosmology, but with a
scale factor that decreases with time (negative Hubble constant).

Our simulations of this scale-free compression are performed by
using a modified version of the cosmological expansion model in
the FLASH MHD code (Section 2) and explore a range of magnetic
field strengths and net fluxes.

The scale-free compression enhances all turbulent and magnetic
modes by the same factor, and does not impose any arbitrary scale or
randomness of phases. Consequently, the system is allowed to relax
into a self-consistent state for which naturally decaying modes de-
cay away while non-decaying modes are enhanced by the compres-
sion. We find that this relaxation, combined with a magnetic field,
produces a surprising result: after some time the gas re-arranges
itself into a self-avoiding channel flow, in which state the dissipa-
tion rate is nearly zero. This occurs whether or not there is a net
magnetic flux, but the transition happens more readily for non-zero
magnetic flux and for stronger fields, and it does not occur at all in
the absence of a magnetic field.

We interpret the simulations by comparing them to a theoretical
model for coarse-grained MHD turbulence. Our model treats the
flow has having three distinct energy reservoirs (thermal, kinetic,
and magnetic) that are coupled by dynamo action and dissipation.
This model allows us to construct an EoS with an effective adiabatic
index γ eff, whose value depends on the relative balance between the
different energy reservoirs and on the overall rate of dissipation. We
calibrate the transfer and dissipation terms from the simulations, and
show that, once calibrated, the model provides a good match to our
numerical experiments. A key features of the model, and of the
numerical results it describes, is that once the flow is sufficiently
magnetically dominated the dissipation rate for the flow is nearly
zero, and compression drives a continual increase in the kinetic
energy per unit mass and the Mach number.

The existence of this dissipationless state may have significant
implications for the ISM, and for giant molecular clouds in par-
ticular. These clouds are assembled by compression of regions of
atomic ISM with significant magnetic flux. If this compression re-
sembles the idealized gravitational contraction we consider here,
then GMCs may be in flow states where the dissipation rate is
much less than is commonly assumed based on earlier work in non-
compressing regions and on non-magnetized flows. This in turn
might significantly ease the problem of how GMCs maintain their
large linewidths while still forming stars with very low efficiencies.

Finally, we note that the analytic model derived here constitutes
a first step towards a physically motivated sub-resolution model for
the ISM. Given some idea (perhaps calibrated by observations; see
Birnboim, Balberg & Teyssier 2015) about the content of the turbu-
lence, thermodynamics and magnetic fields of the ISM, our model
predicts the behaviour of the gas in a way that can be implemented
into large-scale, low-resolution simulations that only resolve the
ISM as a coarse-grained mixture of the components. This too will
be investigated in future work.
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APPENDIX A : NUMERICAL TESTS

A1 The ∇ · B = 0 constraint

Physically, no energy should propagate into longitudinal modes of
the magnetic field. For highly supersonic, low-plasma β turbulence
simulations in FLASH using the HLL3R and HLL5R solver (Waagan
et al. 2011a), this has been demonstrated and compared with alterna-
tive schemes in Waagan et al. (2011b). However, the compression in
the simulations presented here could, in principle, change this con-
clusion because the amplitude of the magnetic fields is enhanced
due to adiabatic compression. Fig. A1 presents the ratio of magnetic
field energy in longitudinal modes to the total energy in magnetic
fields. As is evident, this value is never larger than 10−4, and, except
for GF-Weak, smaller than 10−5. Additionally, this value drops as
compression occurs and is largest near the commencement of com-
pression. We therefore do not expect the numerical errors in ∇ · B
to effect the conclusions of this paper.

A2 Convergence with numerical grid resolution

It is well known that the necessary grid resolution for simulating
fully developed turbulence with an inertial subrange is at least 10243

cells (e.g. Klein et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Federrath et al. 2010; Federrath 2013). However, this was not our
goal in this paper. We expect that for our particular focus on coarse-
grained values averaged over large scales, such a high resolution is
not critical. In the interest of computational efficiency and to allow
for many different simulations, we only ran 5123-cell boxes. Indeed,
previous studies have demonstrated that large-scale averages con-
verge even at a resolution of 2563 grid cells (Kitsionas et al. 2009;
Federrath et al. 2010; Price & Federrath 2010; Kritsuk et al. 2011).
In this appendix, we briefly demonstrate that our resolution of 5123

cells is sufficient for our needs.
We check for convergence by comparing two physically similar

MHD runs: noGF-Strong and noGF-Strong-LR (see Table 1). The
two simulations differ only in that the former has a lower resolution
of 2563, while the latter has our standard 5123 resolution. We find
that, at the end of the initial driving stage, the Mach numbers for
the two runs differ by 5 per cent, while the saturation levels for
the magnetic field strength differ by about 30 per cent. While these

differences are not negligible, they do not change the qualitative
results once compression begins. We demonstrate this in Fig. A2,
which shows the Mach number evolution, and in Fig. A3, which
shows γ eff; these figures can be compared to Figs 1 and 7 in the
main text. We see that the overall behaviour of both the Mach
number and the adiabatic index are nearly identical in the two
runs.

Figure A1. The ratio of longitudinal (div B) modes to the total magnetic
energy (solenoidal + longitudinal modes) for our simulation suite. The
relative energy in div(B) modes stays below 10−4 for all times and all scale
factors, and is thus negligible.

Figure A2. The Mach number dependence of time and compression (see
Fig. 1 and its legend) for our noGF-Strong and noGF-Strong-LR, which
share the same physical set-up, but with the LR simulation with half the
resolution along each axis.
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Figure A3. The simulated and predicted γ eff of the nominal resolution run
(noGF-Strong) and low resolution one (noGF-Strong-LR) with full dissipa-
tive terms (see Fig. 7 and its legend).

APPENDIX B: SLOW (H = −1 ) C O M P R E S S I O N

All the simulations used in the main text have H = −200 corre-
sponding to very fast compression. The motivation for this choice
is that, given our high Mach numbers (M ≈ 10, motivated by the
properties of observed molecular clouds), the dissipation time-scale
is very short. Consequently, values of H near unity would not show
a distinct amplification stage before the onset of compression, and
instead would proceed directly to the dissipation stage. We find
that ensuring the presence of a distinct amplification phase helps
elucidate the physics of the problem, which is why we elected to
use H = −200 as our standard choice. However, it is important to
demonstrate that our central result, the onset of DLF, is independent
of this choice. For this reason, in Fig. B1 we show the evolution of
the Mach number for three simulations (HD-H1, noGF-Strong-H1
and GF-Medium-H1; see Table 1) with a compression rate H = −1,
as well as our fiducial HD run to guide the eye. This compression
rate corresponds to the gas compression at roughly the sound speed,

Figure B1. Similar to Fig. 1, but presenting the evolution of the average
Mach number for slow compression runs.

Figure B2. Similar to Fig. 7, but presenting the simulated and predicted
γ eff for the slow compression runs.

significantly slower than what would be expected if the gas were to
contract at free-fall.

In these runs, the Mach number declines immediately once driv-
ing is turned off and compression starts, as we would expect for such
slow compression. However, in these runs we still see the charac-
teristic increase in Mach number at late times that occurs due to the
onset of DLF. We demonstrate this more clearly in Fig. B2, which
shows γ eff measured for the H = −1 simulations, as compared to
our theoretical model using the same values of η and ηB (including
the condition when we set these terms to zero) calibrated from the
H = −200 simulations, and used for Fig. 7 in the main text. We
first note that, as in the H = −200 simulations, at late times the
MHD runs have γ eff substantially above unity, demonstrating the
reduced dissipation that is the central result of this work. Moreover,
the plot shows that our model continues to provide a very good
description of the value of γ eff. Since dissipation is dominant from
the beginning, our model predicts the initial value of γ eff to be very
low, as is the case. At late times, our model predicts that γ eff should
increase as energy is pumped into the magnetic component and
that eventually dissipation should turn off, leading to an increase
in γ eff. Both of these predictions are borne out by the simulations.
The success of our model’s γ pred at reproducing the value γ sim we
measure from the simulations, using the same calibration of η and
ηB, suggests that our results are not dependent on the choice of a
particular compression rate H.
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