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We present a highly-parallel multi-frequency hybrid radiation hydrodynamics algorithm 
that combines a spatially-adaptive long characteristics method for the radiation field from 
point sources with a moment method that handles the diffuse radiation field produced by a 
volume-filling fluid. Our Hybrid Adaptive Ray-Moment Method (HARM2) operates on patch-
based adaptive grids, is compatible with asynchronous time stepping, and works with 
any moment method. In comparison to previous long characteristics methods, we have 
greatly improved the parallel performance of the adaptive long-characteristics method by 
developing a new completely asynchronous and non-blocking communication algorithm. 
As a result of this improvement, our implementation achieves near-perfect scaling up 
to O(103) processors on distributed memory machines. We present a series of tests to 
demonstrate the accuracy and performance of the method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Radiation-hydrodynamics (RHD) is a challenging numerical problem, but it is a crucial component in modeling sev-
eral physical phenomena in the fields of astrophysics, laser physics, and plasma physics. Accurate solution of the radiative 
transfer (RT) equation, which governs the evolution of radiation interacting with matter, is difficult because of its high di-
mensionality. This equation depends on six independent variables: three spatial, two angles describing the direction of the 
propagation of photons, and one frequency dimension. For time-dependent RHD calculations, this solution must be obtained 
at every time step, and then coupled to the hydrodynamics. Even on parallel supercomputers direct solution of the RT 
equation at each time step of a time-dependent calculation is prohibitively expensive, because of this most numerical RHD 
codes use approximations to treat the evolution of the radiation field and its interaction with matter.

One common approach to solving the RHD equations is to reduce the dimensionality of the problem. This class of 
approximations are known as moment methods because they take the moments of the radiative transfer equation in direct 
analogy to the Chapman–Enskog procedure used to derive the hydrodynamic equations from the kinetic theory of gases 
[1,2]. This method averages over the angular dependence, and thus is a good approximation for smooth, diffuse radiation 
fields such as those present in optically thick media when the radiation is tightly coupled to the matter. The accuracy with 
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which moment methods recover the angular dependence of the true solution depends on the order at which the moments 
are closed, and on the closure relation adopted. Common approximations include flux-limited diffusion (FLD; closure at 
first moment) [3–5], the M1 method (closure at the 2nd moment using a minimum entropy closure) [6,7], and Variable 
Eddington Tensor (VET; closure at the 2nd moment using an approximate solution to the full transfer equation) [8–10]. 
Regardless of the order and closure relation, the computational cost of these methods usually scales as N or N log N , where 
N is the number of cells, and the technique is highly parallelizable [1].

An alternative technique used to solve the RT equation numerically is characteristics-based ray tracing, which solves this 
equation directly along specific rays. With this method, the directionality of the radiative flux is highly accurate, but the 
accuracy depends on the sampling of rays. Two widely used schemes for ray tracing in grid-based codes are long and hybrid
characteristics. Long characteristics traces rays on a cell by cell basis, and provides maximum possible accuracy. Hybrid 
characteristics is a combination of long characteristics within individual grids and short characteristics between grids (i.e., in 
which only neighboring grid cells are used to interpolate incoming intensities) [11,12]. The method of short characteristics is 
faster but more diffusive compared to long characteristics methods. The computational cost for both methods scales linearly 
with the number of sources, rays traced, and grid cells with which the rays interact, making these methods prohibitively 
expensive for treating diffuse radiation fields where every computational cell is a source. Instead, they are ideal for treating 
the radial radiation fields of point sources. Even for this application, however, one major drawback of ray tracing methods, 
especially long characteristics, is that they are difficult to parallelize in a code where the hydrodynamics is parallelized by 
domain decomposition. In such a configuration, each ray will usually cross multiple processor domains, creating significant 
communications overheads and serial bottlenecks.

In summary, moment methods are better at approximating the diffuse radiation field from a fluid but are poor at mod-
eling the propagation of radiation from point sources where the direction of the field is important. Characteristics methods, 
in contrast, are good at approximating the direction-dependent radiation fields from point sources but are too computation-
ally expensive for practical use in simulating a diffuse radiating fluid. When both point and diffuse radiation sources are 
present, therefore, a natural approach is to combine both techniques by using long characteristics to model the propagation 
of radiation from a point source and its subsequent interaction (e.g., absorption) with the fluid and then use a moment 
method to follow the subsequent diffuse re-emission.

This technique has been developed in several numerical codes in the past 20 years, but these codes typically have been 
limited to cases where a geometric symmetry simplifies the long characteristics solution. Wolfire and Cassinelli [13,14] in-
troduced a formal decomposition between the direct and dust-reprocessed radiation fields for a calculation in 1D spherical 
geometry. The first published 2D simulation using such a method is Murray et al. [15], who coupled long characteristics to 
FLD to model the direct (ray tracer) and scattered (FLD) radiation field in accretion disk coronae. Kuiper et al. [16] incorpo-
rated a similar hybrid approach in the 3D grid based code Pluto, but again limiting the problem to a special geometry: in 
this case a single point source at the origin of a spherical computational grid. Most recently, Klassen et al. [17] developed a 
hybrid scheme in the FLASH adaptive mesh refinement (AMR) code but uses FLD plus hybrid characteristics which, although 
faster, is less accurate than long characteristic methods.

The reason that many authors have resorted to special geometries or abandoned long characteristics is the difficulty in 
parallelizing long characteristics in a general geometry, particularly in the case of adaptive grids. The problem is difficult 
because it is unknown a priori how far rays will travel and what grids they will interact with in an adaptive grid framework. 
In a distributed memory paradigm where different grids may be stored in memory on different processors, this can easily 
result in a complex communication pattern with numerous serial bottlenecks. Indeed, all implementations of long charac-
teristics on adaptive grids published to date use synchronous communication algorithms in which processors must wait for 
other processors to receive ray information [18], leading to exactly this problem.

In this paper we present our Hybrid Adaptive Ray-Moment Method (HARM2) which uses long characteristics to treat 
radiation from point sources coupled to a moment method to handle the diffuse radiation field from the fluid. HARM2 works 
on adaptive grids with asynchronous time stepping. We have greatly improved the parallelism of the long characteristics 
solve in a distributed memory framework through a new, completely asynchronous, non-blocking communication method. 
The rest of this paper is organized as follows. We begin with a formal derivation of our method for decomposing the 
radiation field into two components in section 2. Section 3 describes our numerical implementation of our hybrid radiation 
scheme in the astrophysical AMR code Orion. Next we confirm the robustness of our method by providing validation and 
performance tests in sections 4 and 5, respectively. Finally, we summarize our methods and results in section 6.

2. Decomposition of the radiation-hydrodynamics problem

Here we describe a formal method to separate the radiation field into two components – (1) the diffuse radiation 
from the fluid and (2) the direct radiation field from point sources [19]. Formally, we consider a system consisting of a 
volume-filling radiating fluid plus point sources of radiation, and we wish to decompose the radiation fields produced by 
the fluid and the point sources. An example where such a decomposition is valuable is in the problem of simulating stars 
embedded in an optically thick, dusty medium such as is present during the early formation of a star cluster while the stars 
are actively accreting. The radiative flux from the stars will be absorbed by nearby dust and the dust will re-emit thermal 
radiation in the infrared. This radiation will be highly coupled to the interstellar medium and diffuse through the dense gas.

We begin with the equations of radiation-hydrodynamics (RHD) written in the lab-frame [20,21]:
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∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂

∂t
(ρv) + ∇ · (ρvv) = −∇ P + G (2)

∂

∂t
(ρE) + ∇ · [(ρE + P v)] = cG0 (3)

where ρ , v, E , and P are the density, velocity, specific energy (thermal plus kinetic), and thermal pressure of the fluid, 
respectively; and 

(
G0,G

)
is the radiation four-force density which is the negative of the radiation energy stress tensor and 

is given by

cG0 =
∞∫

0

dν

∫
d� [κ(n, ν)I(n, ν) − η(n, ν)] (4)

cG =
∞∫

0

dν

∫
d� [κ(n, ν)I(n, ν) − η(n, ν)] n (5)

where I(n, ν) is the intensity of the radiation field at frequency ν in direction n. We note that the physical quantities given 
in Equations (1)–(3) depend on spatial position and time. The time-like and space-like components of 

(
G0,G

)
represent 

the rate of energy and momentum transfer from the radiation to the fluid, respectively. The intensity is governed by the 
time-independent radiative transfer equation

n∇ I(ν,n) = −κ(n, ν)I(n, ν) + η(n, ν) (6)

where κ(n, ν) and η(n, ν) are the direction and frequency dependent absorption and emission coefficients in the lab-frame, 
respectively. For simplicity, we have neglected the effects of scattering because we expect to solve the equations of RHD 
in astrophysical problems where absorption is the dominant transfer mechanism. However, it would be straightforward 
to extend the method to include scattering in the diffuse component, as we point out below. We also ignore the time-
dependence of the radiative transfer equation because our primary target application is systems where the light travel time 
is orders of magnitude smaller than the system dynamical time, and thus the radiation intensity is always in instantaneous 
equilibrium.

We now separate I(n, ν) into two components

I(n, ν) = Idir(n, ν) + Idiff(n, ν) (7)

to describe the direct radiation fields from point sources (Idir) and the diffuse radiation field (Idiff) emitted by the fluid. 
Since the sources that contribute to the direct radiation field are point sources we can represent their intensity as a sum of 
δ-functions

Idir(n, ν) =
N∑

i=1

Isrc,i(ν)δ
(
n − nsrc,i

)
, (8)

where nsrc,i = (x − xi)/|x − xi | for any position x in the computational domain, xi and Isrc,i are the position and intensity 
of the ith point source, and we assume that the sources are isotropic emitters, so Isrc,i is independent of n.1 With this 
formulation Idir is non-zero only at special values of n, i.e., those that point from the position of a source xi to the position 
in question x, and zero for all others; while Idiff will be non-zero everywhere. However, because the four-force vector (G0, G)

depends on integrals over n, the δ-function contributions from Idir may dominate at some positions, while the contribution 
from Idiff dominates elsewhere. This makes solution with a pure moment method difficult, and motivates us to treat the 
radiation fields of the point sources and fluid separately so that we can properly take into account the direction of the 
radiation fields from point sources. With this decomposition Equations (4)–(5) become

cG0 =
∞∫

0

dν

∫
d� [κ(n, ν)Idir(n, ν) − ηdir(n, ν)] +

∞∫
0

dν

∫
d� [κ(n, ν)Idiff(n, ν) − ηdiff(n, ν)] (9)

cG =
∞∫

0

dν

∫
d� [κ(n, ν)Idir(n, ν) − ηdir(n, ν)] n +

∞∫
0

dν

∫
d� [κ(n, ν)Idiff(n, ν) − ηdiff(n, ν)] n (10)

where ηdir(n, ν) and ηdiff(n, ν) describes the emission due to point sources and the fluid, respectively.

1 Note that this limits our method to non-relativistic problems, where we can neglect the effects of relativistic beaming of the source radiation fields.
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Table 1
Variable definitions used in Section 3.

Variable Description

dl Path length of ray across cell
dE/dt Energy absorbed by fluid in cell from direct radiation
dp/dt Momenta absorbed by fluid in cell from direct radiation
dLray,i Absorbed luminosity from ray for the ith frequency bin
dti Time step on level i
j HEALPix ray level
j0 Initial HEALPix ray level
jmax “Maximum” ray level for adaptive ray trace
κi total absorption opacity for the ith frequency bin
l AMR Level
lmax Maximum AMR level
Lν Specific luminosity of point source
Li Luminosity of point source integrated over ith frequency bin
Lray,i Luminosity in ith frequency bin along ray
n Normal direction of ray
NCPU Number of processors
Ndestroyed,k Number of rays “destroyed” on processor k
Ndestroyed Number of rays “destroyed” on all processors
Nmax Maximum number of rays used as a counter
Nν Number of frequency bins used for adaptive ray trace
Npix( j) Number of HEALPix pixels on level j
Nray,k Number of rays deleted on processor k
Nsrc Number of point sources
	x linear size of cell

c Angular resolution of ray trace [rays/cell]
�cell Solid Angle subtended by a cell
�ray Solid angle associated with ray
τ Optical depth of cell

This decomposition allows the following general approach to a hybrid scheme: (1) use a long characteristics method to 
solve for Idir, (2) use a moment method to solve for Idiff , (3) add the two components to obtain the radiation four-force den-
sity (G0, G), (4) update the hydrodynamic state using the radiation four-force density. As a further benefit to this approach, 
we note that there is no requirement that steps (1) and (2) use the same frequency resolution, since (G0, G) depends only 
on an integral over frequency. It is relatively straightforward to bin the intensity from the point sources by frequency with 
a ray tracer since each ray can be approximated by an array of intensities, while using a lower frequency resolution in the 
(generally more expensive) moment method. This is ideal for point sources such as stars which have color temperatures 
much higher than the absorbing medium.

3. The HARM2 algorithm

In this section we describe the HARM2 algorithm. We have implemented this algorithm in the Orion astrophysical 
adaptive mesh refinement (AMR) code [4,22–24] and we use this implementation for all the algorithm tests described 
below. Orion uses grid-based adaptivity [25,26] with individual time steps for each level, and the HARM2 algorithm can be 
applied to any AMR code following this design. Variable definitions from this section are defined in Table 1. Orion uses the 
FLD approximation for its moment method [4], and we will use this for all tests below, but HARM2 is equally compatible 
with any other moment method.

3.1. Update cycle

Consider an adaptive mesh covering some computational domain of interest. The mesh consists of levels with different 
cells sizes, with l = 0 denoting the coarsest level and l = lmax the finest. Each level, in turn, is made up of a union of 
rectangular grids, each with the same cell size. In a distributed-memory parallel computation, different grids may be stored 
in memory on different processors or nodes. The grids on a given level need not be contiguous, but they are required to be 
non-overlapping, and the grids are properly nested such that a cell of a level l grid may have as its neighbor the domain 
edge, another level l cell, or a cell of level l − 1 or l + 1, but not a cell of any other level. Point sources are only placed at 
locations covered by a grid of level lmax. Each level advances on a time step dtl , ordered such that dtl ≥ dtl+1, and so that, 
after some number of time steps on level l + 1, the simulation time tl+1 on that level will be equal to the time tl on the 
next coarsest level. That is, we require that, a level l + 1 syncs up in time with the next coarsest level l. In all the tests we 
perform with Orion the time steps obey dtl+1 = dtl/2, and synchronization occurs every 2 fine time steps, but this is not 
required by HARM2.
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Given this setup, our algorithm is as follows:

1. Operator split the direct and diffuse components of the radiation field:
(a) if l equals 0 or tstart,l is greater than tstart,l−1, where tstart,i is the current time on level i, then

i. Loop over point sources and inject rays onto grids that belong to level lmax where they are located.
ii. Advance rays across grids on level lmax and all coarser grids that the rays interact with, store the rates at which 

radiative energy and momentum, dE/dt and dp/dt , are absorbed by the gas (Section 3.2).
iii. Restrict dE/dt and dp/dt from finer level grids down to level l.

(b) Add (dE/dt) dtl and (dp/dt) dtl to the gas energy and momenta, respectively.
(c) Update the diffuse radiation field with a moment method.

2. Apply hydrodynamics update to all cells on level l.
3. Update point sources if l = lmax.

For the pattern of time steps used by Orion, whereby there are 2 fine time steps per coarse time step, this method results in 
2lmax ray trace updates per update on the coarsest level. Note that, because we only perform a ray trace if tstart,l > tstart,l−1, 
we do not perform any redundant ray tracing steps. In other words, we perform the ray trace at a given time only if we 
have not already performed it at that time.

3.2. Direct radiation field: adaptive ray trace

We now describe the adaptive ray tracing procedure that forms step 1a(ii) of the algorithm above. Consider a single point 
source with a specific luminosity given by Lν and luminosity given by L� = ∫ ∞

0 Lν dν . The generalization to multiple point 
sources is trivial. We discretize the point source spectrum in frequency into Nν frequency bins, with the ith bin covering 
a range in frequency (νi−1/2, νi+1/2). Let Li = ∫ νi+1/2

νi−1/2
Lν dν be the luminosity of the point source integrated over the ith 

frequency such that 
∑

Li = L� . We generally expect that Li will be the energy radiated per unit time in a given frequency 
bin, but the algorithm is identical if we instead take Li to be a photon luminosity, measured in photons per unit time.

We wish to solve the transfer equation along rays that end at this source. Along a ray characterized by a direction n
and a solid angle �ray that it subtends, the propagation of the radiation is described by the time-independent transfer 
equation (i.e., Equation (6)), with the emission term η set to zero because we are taking the direct radiation field to have 
zero emissivity except at the point sources. Multiplying both sides of this equation by 4πr2/�ray, we obtain an integrated 
form of the transfer equation

∂Lray,i

∂r
= −κi Lray,i, (11)

where Lray,i(r) is the luminosity along the ray at a distance r from the point source and κi is the total absorption opacity 
for the ith frequency bin in units of cm−1. This equation is subject to the boundary condition Lray,i(0) = Li/Npix, where 
Npix = 4π/�ray. We solve this equation by discretizing it along the line segments defined by the intersection of the ray 
with the cells of the computational mesh. Specifically, when a ray with luminosity Lray,i passes through a cell along a 
segment of length dl, the optical depth of the segment is τi = κi dl, and the luminosity of the ray decreases by an amount

dLray,i = Lray,i
(
1 − e−τi

)
. (12)

In the process, the cell absorbs an amount of energy and momentum at a rate

dE

dt
=

Nν∑
i=1

dLray,i (13)

dp

dt
=

Nν∑
i=1

dLray,i

c
n. (14)

The total absorption rate for each cell is simply the sum of dE/dt and dp/dt over all rays from all point sources that pass 
through it. When computing the line segments dl, we only consider grids that are not masked by any finer grid. That is, 
when solving Equation (11), we only ever consider the most highly spatially resolved data at any given position.

We choose the directions n and solid angles �ray using the angular discretization introduced by Abel and Wandelt [27]
and Wise and Abel [18]. In this approach, n and �ray are chosen using the Hierarchical Equal Area isoLatitude Pixeliza-
tion of the sphere (HEALPix) scheme [28], which divides the surface area of a sphere into equal area pixels that can be 
further subdivided into four equal-area sub-pixels. There are Npix(0) = 12 pixels at the coarsest HEALPix level, and there 
are Npix( j) = 12 × 4 j pixels on HEALPix level j; note that the HEALPix level j and the AMR grid level l are distinct and in 
general are not the same. The scheme is adaptive in that, as we trace rays away from point sources, we subdivide them as 
needed to ensure that cells are adequately resolved. Specifically, we divide a ray into 4 sub-rays if it satisfies the condition
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�cell

�ray
= Npix( j)

4π

(
	x

r

)2

< 
c, (15)

where �cell = (	x/r)2 is the solid angle subtended by a cell of linear size 	x at a distance r from the point source. 
The quantity 
c is the minimum number of rays required to go through each cell, which we usually set to 4 following the 
resolution tests of Krumholz et al. [29] and Wise and Abel [18] but, in general, the exact value for 
c is problem-dependent. 
The initial luminosity per ray for frequency bin i is Lray,i, j0 = Li/Npix( j0) where j0 is the initial healpix level. When a ray 
splits, we solve the transfer equation along the sub-rays using the boundary condition Lray,i, j+1(R) = Lray,i, j(R)/4, where 
Lray,i, j(R) is the luminosity of the ray at frequency bin i on HEALPix level j. As proposed by Krumholz et al. [29], we 
randomly rotate the orientation of the rays every time they are cast to minimize errors due to discretization in angle. 
Finally, we terminate the ray trace when either a ray exits the computational domain, or when Lray, j(r) < 0.001Lray, j(0)

where Lray, j(0) = ∑
i Li/ 

(
12 × 4 j− j0

)
, i.e., when 99.9% of the energy originally assigned to that ray on ray level j has been 

absorbed.

3.3. Parallelization

Thus far the algorithm we have described is substantially identical to that of Wise and Abel [18]. However, we adopt 
a very different, and much more efficient strategy to parallelize this procedure. The primary challenge to parallelizing this 
algorithm is avoiding serial bottlenecks. The grids through which the rays must be traced may be distributed across any 
number of processors, and solution of Equation (11) is an intrinsically serial process because the rate of change of the 
energy and momentum in any cell due to radiation arriving along a particular ray depends upon the properties of all 
cells that lie between the point source and the cell in question. Since the numbers and positions of point sources and 
computational grids in the AMR structure, and their distribution in memory, are not known a priori, minimizing bottlenecks 
requires an opportunistic approach: rays should be able to be processed in arbitrary order, with each processor performing 
ray tracing given the data available to it, and waiting for other processors only when no useful work can be done. To this 
end, communication must be non-blocking and asynchronous. At the same time, each process must be able to determine 
when the entire ray trace has been completed, so that it can proceed to the remainder of the update cycle (the moment 
method, hydrodynamics, etc.), and this determination must be robust against race conditions.

Recall that we consider the tracing of a particular ray done when it either exits the computational domain or when 
99.9% of its energy has been absorbed. To handle the problem of determining when the algorithm should terminate without 
relying on blocking communication, we pretend we know how many rays could be created by computing a maximum 
number of rays to be used as a counter:

Nmax = Nsrc × 12 × 4 jmax (16)

where Nsrc is the number of sources and jmax is the maximum HEALPix level we allow; we set this to 20 in all of our tests. 
Our algorithm involves accounting for “all rays” that are destroyed on each processor by computing

Ndestroyed,k =
∑

Nray,k

4 jmax− j (17)

where k is the processor number, j is the HEALPix level of the ray that is deleted due to absorption or leaving the 
computational domain, and Nray,k is the total number of rays that have been deleted on processor k. This information 
is communicated to all other processors. Once the total destroyed,

Ndestroyed =
∑
NCPU

Ndestroyed,k, (18)

on each processor equals Nmax the ray trace is complete.
With this bookkeeping method understood, we present our message passing scheme as Algorithm 1. Note that this 

algorithm requires version 3.0 or later of the Message Passing Interface (MPI) standard, because only that version supports 
some of the non-blocking communications we require (e.g., MPI_Iprobe see Algorithm 1). A detailed description of our 
parallelization strategy follows. Every processor has 4 flags that can change: (i) alldone which is initially set to false and 
will be set to true once all rays have been destroyed, (ii) workremains which is set to true if rays exist on this processor 
and false otherwise, (iii) datarecv which is set to true when the processor can receive rays from other processor(s), and 
(iv) countrecv which is set to true when the processor can receive Ndestroyed,k , the number of rays destroyed from other 
processor(s). Every processor also has a counter, loopiter, which tracks the number of times the parallelization algorithm 
is iterated over.

For each processor, our algorithm is as follows:

1. Inject rays from point sources to grids.
2. Compute Nmax (Equation (16)).
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Algorithm 1: Asynchronous parallelization algorithm developed for the communication of rays to other processors.
Data: Rays and destroyed ray counts

compute maxRays;
all_done = False;
do

do
foreach grid that belongs to this processor do

advance all rays, return number “destroyed” and add to destroyedCount;
end
check grids to see if work_remains;

while work_remains;
Non-blocking MPI_Isend rays to other processors;
do

Non-blocking MPI_Iprobe other processors for rays;
if MPI_Iprobe returns true then

Blocking MPI_Recv(rays);
end

while MPI_Iprobe for rays returns true;
Non-blocking MPI_Testsome rays MPI_Isend requests;
Non-blocking MPI_Testsome destroyed counts MPI_Isend requests;
do

Non-blocking MPI_Iprobe other processors for destroyed counts;
if MPI_Iprobe returns true then

Blocking MPI_Recv(processor destroyed counts);
end

while MPI_Iprobe for destroyed counts returns true;
if destroyedCount greater than previous destroyedCount then

Non-blocking MPI_Isend(destroyedCount to all processors);
end
if no work_Remains and Ray Send Requests == 0 and Destroyed Count Send Requests == 0 and sum(destroyedCount) == maxRays then

all_done = True;
end

while not all_done;

3. Set alldone to false, set loopiter = 0, and enter outer while(not alldone) loop.
(a) Set workremains to true if rays exist on grids that belong to this processor, otherwise set workremains to false.
(b) If workremains is true enter while(workremains) loop.

i. Loop over all grids that belong to this processor and for each grid advance all rays that belong to that grid until 
they (i) leave the grid and need to be moved to another grid, (ii) become extinct, or (iii) leave the domain. Every 
time (ii) or (iii) occurs for a ray we delete the ray and increase the value of Ndestroyed,k on this processor per 
Equation (17). If (i) occurs we determine the new grid and processor for that ray.

ii. Set workremains to false.
iii. Loop over rays that must be transferred to other grids and check if they belong to a grid on this processor or 

another processor. If the former is true place the ray on the correct grid and set workremains to true, otherwise 
the ray must be transferred to another processor so we place the ray in a linked list, outgoing_ray_list, to be 
communicated to the other processors.

iv. Repeat until all rays have been either destroyed and/or placed into outgoing_ray_list.
(c) Loop over rays in outgoing_ray_list. Place rays from outgoing_ray_list into a contiguous array for MPI communi-

cation (one array per receiving processor) and perform a non-blocking MPI_Isend for each array to send it to the 
appropriate processor.

(d) Set datarecv to true and if (loopiter modulo NCPU == 0)2 then enter the while(datarecv) loop to begin receiving 
rays from other processors.

i. Probe other processors with the non-blocking MPI_ Iprobe function to see if rays need to be received, if this is 
true set datarecv to true otherwise set it to false.

ii. If datarecv is true then receive rays on this processor with MPI_Recv. Place the incoming rays onto the new 
grids they belong to.

iii. Repeat until MPI_Iprobe returns false.
(e) If this processor sent rays to another processor then perform non-blocking MPI_Testsome to test for some given ray 

send requests to complete.
(f) If workremains is false then perform non-blocking MPI_Testsome to test for some of the Ndestroyed, k send requests 

to complete.

2 This requirement reduces the time spent on performing MPI_Iprobes which becomes more expensive as Nprocs increases.
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(g) Set countrecv to true and if (loopiter modulo NCPU == 0) then enter the while(countrecv) loop to begin receiv-
ing rays from other processors.

i. Probe other processors with the non-blocking MPI_ Iprobe function to see if the value of Ndestroyed,k on those 
processors needs to be received. If this is true set countrecv to true, otherwise set it to false.

ii. Receive Ndestroyed,k from processor k on this processor with MPI_Recv if countrecv is true and assign to the kth 
element of an array rayDestProc containing NCPU elements.

iii. Repeat until MPI_Iprobe returns false.
(h) If Ndestroyed,k on this processor has increased in the outer loop iteration then send this number with a non-blocking

MPI_Isend to all other processors.
(i) Compute sum of rayDestProc. If this value equals Nmax terminate the outer loop, else repeat outer loop and incre-

ment loopiter by 1.

4. Validation tests

In this section we demonstrate the accuracy of our adaptive ray tracing algorithm, the absorption of the direct radia-
tion field from point sources supplied by our adaptive ray tracing scheme, and our hybrid radiative transfer algorithm by 
performing four tests. In the first test, we turn off absorption of the radiation field to trace the radiative flux from a point 
source located at the center to demonstrate that our method recovers the correct r−2 fall-off of the flux. The second test 
focuses on the coupling of the hydrodynamics with the adaptive ray trace. We also demonstrate that HARM2 can handle 
multiple sources with the third and fourth tests. Our third test demonstrates that our hybrid radiative transfer method can 
properly cast shadows and transfer radiative energy to the gas by illuminating a dense clump in a low-density medium with 
two point sources when the hydrodynamics is neglected. Finally, our fourth test follows a similar setup as the third test but 
demonstrates how the hydrodynamics are coupled to HARM2. We set 
c = 4 for all validation tests in this section, and we 
use only a single frequency bin. For the first two tests we disable the moment method part of HARM2, so that we can focus 
on the ray-tracing part of the algorithm. Further validation tests for the moment method have been presented in Krumholz 
et al. [4].

4.1. Flux test

To demonstrate the accuracy of our adaptive ray trace and its ability to maintain spherical symmetry, we place a point 
source of luminosity L� at the origin of a cubical domain extending from −1 to +1 pc in all directions. We set the opacity in 
all cells to zero and take L� = 106 L� where L� = 3.84 × 1033 erg s−1 is the luminosity of the Sun. We use a base resolution 
of 1283 and two levels of refinement. We refine cells that are located within 16 cells from the star.

In this setup, the total energy contained in the region that is a distance < r from the origin should be exactly Eexact(<

r) = L�r/c, where the quantity r/c is simply the light-crossing time of the distance r. We can compare this to the total 
energy in this region returned by our code, which we can compute by noting that the radiation energy density of a given 
cell that is traversed by a series of rays is

U rad =
∑

i

Lray,i

dV

dli

c
(19)

where Lray,i is the luminosity for ray i, dV is the cell volume, and dli is the path length of the ray through the cell. The 
total energy contained within cells whose distance r j from the origin is < r is then

Enum(< r) =
∑

cells, r j<r

U rad, j dV (20)

where U rad, j is the total radiation energy density summed over all cells with distance < r from the origin. Perfect agreement 
would consist of Enum(< r) = Eexact(< r).

Our results are shown in Fig. 1. The left panel shows the line-of-sight projected radiation energy density of the point 
source radiation field (i.e., Equation (19)) integrated over the line of sight, which drops off as r−2 as expected. The two right 
panels compare Enum(< r) and Eexact(< r). We find that the difference between the numerical and exact results is always 
< 5%, with the maximum error occurring close to the source where the resolution is poor. This error is expected because of 
the fact that we are using Cartesian rather than spherical grids.

4.2. Radiation-pressure-dominated HII region

Next we perform a test to illustrate the coupling of the radiative transfer from the adaptive ray trace with the hydrody-
namics, based on a similarity solution obtained by Krumholz and Matzner [30]. We consider an initially-uniform, cold gas 
with an isothermal equation of state. At time t = 0 a point source of radiation with luminosity L� turns on and begins de-
positing momentum in the gas. We consider material that has a very high opacity to photons coming directly from the point 
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Fig. 1. Performance test for the adaptive ray trace. Left panel: Projection plot of the stellar radiation density for a source with luminosity 106 L� . The 
source flux falls off as F (r) ∝ r−2 as expected. Right panels: Comparison of the numerical and analytical results of the energy enclosed within radius r (i.e, 
Enum(< r)) for the same source. Top panel: The pink dashed line shows the exact analytical solution and the teal solid line is the numerical result from 
the adaptive ray trace. The bottom panel shows the residuals from the exact and numerical solutions. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

source, but a very low opacity to any re-emitted photons. A real-world example of this would be interstellar dust absorbing 
ultraviolet photons from a star, and then re-emitting them as infrared light, to which the dust is essentially transparent.

Because the opacity is high, all of the radiation from the point source is absorbed in an extremely thin layer, but then 
escapes immediately. Thus the point source deposits radial momentum into the gas at a rate dp/dt = L�/c. After a short 
time the material around the point source will have been swept into a thin shell of radius rsh and mass Msh = 4πr3

shρ0/3, 
where ρ0 is the initial density. The shell obeys an equation of motion

d

dt
(Mshṙsh) = L�

c
. (21)

This equation admits a similarly solution given by

rsh(t) = 1.15
( n0

105 cm−3

)−1/4
(

L�

106 L�

)1/4 (
t

Myr

)1/2

pc (22)

where n0 = ρ0/μmp is the number density, μ is the mean molecular weight which we set to 2.33 for molecular hydrogen 
and helium mixed in the usual cosmic ratio, and mp is the proton mass.

To test the ability of our code to reproduce this solution, we consider a domain with a width of 1 pc, a uniform number 
density of n0 = 105 cm−3 (ρ0 = 3.89 × 10−19 g cm−3), and a point source of luminosity L� = 106 L� at the origin. We set 
the specific opacity to κ/ρ = 106 cm2 g−1. We perform 3 tests on non-adaptive grids with varying resolution (643, 1283, 
and 2563) to explore how the accuracy of the adaptive ray trace depends on resolution.

Fig. 2 shows a snapshot of the simulation results at t = 0.1 Myr. The top panels show the density slices and the bottom 
panels show the deposition rate of the stellar radiation energy density. We run the simulations to t = 0.35 Myr, but at later 
times we develop the carbuncle instability which distorts the shape of shock waves that move along grid directions [31,32]. 
One can eliminate this instability by implementing extra dissipation in grid-aligned flows [32], but since real applications 
are never perfectly grid-aligned, we have not done so here.

In Fig. 3 we show how the radius of the shell in our simulation compares to the analytic similarity solution. We define 
the radius of the shell to be the density weighted average distance from the origin for cells where the density exceeds 1.5 
ρ0:

Rsh =
∑

cells, ρ j>1.5ρ0
ρ jr j∑

cells, ρ j>1.5ρ0
ρ j

. (23)

The top panel shows the shell radius as a function of time for each resolution and for the analytic solution, while the 
bottom panel shows the residuals. As in Fig. 1, the residuals are largest at early times when the shell is poorly resolved, but 
the agreement becomes excellent at later times. The accuracy of the solution also improves with increasing resolution, as 
expected.

4.3. Hybrid radiation tests with multiple sources

To demonstrate that our hybrid radiation algorithm can properly cast shadows we perform two validation tests in which 
we have two point sources irradiate a dense clump of material. These tests are similar to the tests presented in Rijkhorst 
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Fig. 2. Results from the radiation-pressure-dominated H ii region test to demonstrate the performance of the adaptive ray trace coupled to the hydrody-
namics. Top (bottom) panels show slice plots of the gas density (rate of absorbed radiation energy density per unit time) for our radiation dominated 
sphere test at three different uni-grid resolutions (643, 1283, and 2563) taken at t = 0.1 Myr. As the bottom panels show, the direct radiation is absorbed 
only by the dense shell due to the high specific opacity, κ = 106 cm2/g, used.

Fig. 3. Shell position (top panel) and residuals (bottom panel) as compared to the analytical solution (i.e., eqn. (22)) for our radiation dominated sphere 
test at three different uni-grid resolutions (643, 1283, and 2563). The largest deviations from the analytical solution occur at early times when the shell is 
located close to the source but the numerical result follows the analytical solution better as the shell expands.

et al. [11], Jiang et al. [9], and Klassen et al. [17]. In our setup, we have a dense clump of material with radius 267 AU 
at the center of a (2000 AU)3 computational domain. We take the clump density to be ρc = 3.89 × 10−17 g cm−3 with 
uniform temperature of 20 K. It is surrounded by a low density medium with density ρa = 3.89 × 10−20 g cm−3. The clump 
is irradiated by two point sources, each with luminosity L = 1 L� . The two point sources are both located 368 AU from the 
edge of the spherical clump, and they are placed 90◦ apart from one another, so that they irradiate the clump from two 
angles.

We perform two tests to show that our new hybrid radiative transfer method can properly cast shadows and affect the 
hydrodynamics. The first test, presented in Section 4.3.1, assumes that the ambient medium is at the same temperature as 
the clump (20 K) so that we can follow the radiative heating of the gas. For this test we disable the hydrodynamics. In 
the second test, we set the temperature of the ambient medium to be 20 × 103 K so that the clump is initially in pressure 
balance with the low-density medium. In this test we enable the hydrodynamics. For both tests we use one frequency bin 
for the absorption of the direct radiation field and assume that the gas opacity is κ = 64 cm2/g following the frequency 
dependent dust opacities in Weingartner and Draine [33] (their Rv = 5.5 extinction curve) corresponding to a frequency 



934 A.L. Rosen et al. / Journal of Computational Physics 330 (2017) 924–942
Fig. 4. Irradiation of a dense clump by two point sources in a homogenous medium. The left panel shows the irradiation by the point sources’ direct 
radiation fields while the middle panel shows the dust-reprocessed irradiation. The right panel shows the total irradiation by the stellar sources and dusty 
gas. The white region in the left panel, which shows where the direct irradiation is zero, demonstrates that our method can properly cast shadows.

Fig. 5. Same as the left and right panels of Fig. 4, except showing the gas temperature where we only consider heating by the direct radiation field by 
including the adaptive ray trace (left panel) and where we consider heating by the direct radiation field and cooling by the dusty gas using HARM2 (right 
panel).

of ν = kTeff/h = 1.21 × 1014 Hz, where we have assumed Teff = 5800 K (i.e, the peak color temperature of the Sun). Our 
moment method uses the gray opacities from Semenov et al. [34].

4.3.1. Irradiation of a dense clump by two point sources with HARM2

We perform our first hybrid radiation test on a uniform (256)3 grid, disabling the hydrodynamics but allowing for 
absorption of the radiative energy by the gas. We run this test for t = 2 × 106 s for two cases. In the first case, we only 
include absorption by the direct radiation field, i.e., we do not use the moment method, and in the second case we use the 
HARM2 algorithm. Fig. 4 shows the irradiation from the direct radiation field from point sources (left panel), the irradiation 
from the dust-reprocessed radiation field (middle panel), and the combined irradiation from the point sources and dusty gas 
(right panel). The white region for the source irradiation demonstrates that our adaptive ray tracing method can properly 
cast shadows. The dusty gas absorbs energy from the direct radiation field, heats up, and re-emits as shown in the middle 
panel of Fig. 4.

Fig. 5 compares the temperature distribution for our run using the full HARM2 algorithm (right panel) to a case where we 
use only the ray trace, and omit the moment method (left panel). The temperature is highest near the point sources due to 
the larger radiative flux, thus leading to a larger absorption rate by the low-density gas. As the irradiation decreases farther 
away from the source, the gas attains lower temperatures due to the decreased heating rate of the absorbing medium. The 
right panel of Fig. 5 shows that the re-emission by dust leads to lower temperatures and smoothes the radiation field. Note 
the almost discontinuous change in the gas temperature in the vicinity of the point sources in the full HARM2 case. This 
is a result of a sharp drop in the opacity used for the moment method calculation, which causes a corresponding drop in 
the emissivity of the gas and thus a rise in its temperature. The physical origin of this discontinuity is sublimation of dust 
grains at temperatures above ∼ 1000 K (e.g., see Fig. 4 of Semenov et al. [34]), but from a numerical standpoint this is 
less important than the capability that this demonstrates. Our code can properly capture situations where the opacity that 
should be used for the direct radiation is very different than the opacity that is relevant for the reprocessed radiation field, 
for example because the direct and reprocessed radiation fields have very different color temperatures.
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Fig. 6. Snapshots of the radiation-hydrodynamical time evolution of a dense clump in a low-density transparent medium that is irradiated by two point 
sources using our HARM2 radiative transfer method. Different columns show different times, and different rows show different quantities: density (top), 
temperature (middle), and velocity magnitude (bottom). The heating and momentum deposition by the point sources’ direct radiation fields cause the edges 
of the clump to expand. The gray stars denote the location of the radiating point sources.

4.3.2. Irradiation of a dense clump by two point sources with HARM2and hydrodynamics
Our fourth validation test demonstrates our HARM2 algorithm operating in the context of a full radiation-hydrodynamic 

problem. We set the initial conditions to be exactly the same as the previous test except for the ambient gas temperature, 
which we set to 20 × 103 K so that the clump is initially in pressure balance with the ambient medium. Additionally, 
we enable the hydrodynamics and we also set the ambient medium to be transparent to the direct and diffuse radiation 
fields. Our base grid is (128)3 and we refine the entire clump to one greater level of refinement (i.e., the clump has (256)3

refinement).
Fig. 6 shows the evolution of the density, temperature, and clump velocity of the simulation. This Figure demonstrates 

that the absorption of the point sources’ direct radiation field heats up the sides of the clump that are closest to the 
sources, causing the edges to expand. The momentum imparted by the direct radiation field to the clump also causes it to 
expand non-uniformly. We note that as the cloud becomes over-pressurized it expands into the ambient medium yielding 
large velocities along the edges of the cloud. As the simulation evolves the cloud is slowly disrupted leading to low density 
material expanding towards the point sources. The expansion of this low density material leads to instabilities as the clump 
material mixes with the low density gas. At late times the expansion of the low-density clump material closest to the point 
sources slows as the direct radiation field imparts momentum to the gas.

5. Performance tests

It is important for our code to scale well with number of processors, especially for large simulations. Scaling tests 
demonstrate the efficiency of a parallel application when increasing the number of processors. In this section we present 
both weak and strong scaling tests to demonstrate the parallel performance of our adaptive ray trace algorithm. We also 
perform a strong scaling test for our hybrid radiation algorithm in section 5.2.3 in an AMR simulation to demonstrate the 
scaling capability of HARM2 for a demanding, research application. For all tests, we set 
c = 4 and also have the initial ray 
level set to 4 so that 3072 rays are initialized at the beginning of each ray trace step. All of the following performance tests 
were run on the Sandy Bridge nodes on the NASA NAS machine Pleiades.

5.1. Weak scaling

Weak scaling tests demonstrate how well a parallel code scales with the number of processors while the workload 
assigned to each processor remains the same. For this purpose, we perform a weak scaling test on non-adaptive grids 
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Fig. 7. Weak scaling test with one 323 block per process. Each block is (1 pc)3 and contains one radiating source at its center. Rays are terminated after 
they have traveled 0.6 pc from the source to ensure communication of rays to neighboring grids. Weak scaling results are shown for the ray communication 
(gray dotted line), ray tracing across cells (pink dashed line), overhead associated with the adaptive ray trace (purple dot-dashed line), adaptive ray trace 
excluding the communication of rays (blue line), the total cost of the adaptive ray trace including parallel communication of rays (teal dot-dashed line), 
and the total time spent on the hydrodynamics and adaptive ray tracing (solid black line). Ray communication is cheaper than the adaptive ray trace (ray 
trace and associated overhead) for NCPU � 1000 processors. The communication shows a N0.67

CPU dependence. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

where each processor has one 323 grid and one radiating sink particle. Each 323 grid represents a (1 pc)3 domain with 
constant gas density, n = 104 cm−3, with a radiating source placed at the center. The physics modules we include are the 
adaptive ray trace and hydrodynamics. We set the opacity in all cells to zero so that no absorption of the radiation field 
occurs. To ensure that each processor performs the same amount of work with the ray trace, including the propagation of 
rays and the subsequent communication of rays to other processors, we terminate rays once they have traveled 0.6 pc from 
their originating source. This allows for rays to propagate to their neighboring grids and also enforces that all grids, except 
the grids along the domain edges, communicate the same number of rays to their neighbors. In short, the rays interact with 
the cells they cross but do not add energy or momenta to the fluid.

Our weak scaling tests were run on NCPU = n3 processors, where n = [1, 2, ..., 9, 10], for 50 time steps per weak scaling 
test. The weak scaling test results are presented in Fig. 7 and show the total time spent per time step (black solid line) 
and the timing of the adaptive ray trace components: ray communication (gray dotted line), ray trace across cells (pink 
dashed line), adaptive ray trace overhead (i.e., locating ray grids, ray splitting, etc. – purple dot-dashed line), total adaptive 
ray trace (ray trace and associated overhead – blue dashed line), and the full adaptive ray trace which includes the ray 
communication (dot-dashed teal line). We note that a horizontal line denotes perfect weak scaling.

Our timing results show that the tracing of rays across cells has near-perfect weak scaling for all processor counts and 
that the adaptive ray trace overhead exhibits near perfect weak scaling until ∼216 processors. We also find that the costs 
associated with the overhead are more expensive than ray tracing alone. Finally, our ray communication algorithm is cheaper 
than the ray tracing up to ∼343 processors and cheaper than the costs associated with the adaptive ray trace overhead up 
to ∼729 processors. The ray communication only becomes as expensive as the adaptive ray trace at ∼1000 processors. 
This is because our asynchronous communication algorithm, described in section 3.3, has a N0.67

CPU dependence. These results 
confirm that our communication algorithm is much more scalable and efficient when compared to previous methods. For 
example, the ray communication timing in Wise and Abel [18] followed a N1.5

CPU dependence and became the dominant cost 
of the ray trace at only ∼ 200 CPUs, despite the fact that their weak scaling test uses 643 rather than 323 blocks, and thus 
is significantly less stringent than ours.

5.2. Strong scaling

Strong scaling demonstrates how well the code performs as the number of processors for a given problem increases 
while the total workload remains the same. We perform three tests to demonstrate the strong scalability of the adaptive 
ray trace and the HARM2 algorithm in a demanding, research application. The first two tests are performed on non-adaptive 
grids. The first test measures the strong scalability of the adaptive ray trace based on the number of cells that interact 
with rays (see section 5.2.1) while the second test focuses on the strong scalability of the adaptive ray trace as a function 
of the number of frequency bins used (see section 5.2.2). The third test shows the parallel performance of HARM2 in a 
demanding, research AMR simulation. In addition to HARM2, this test also includes other physics modules in Orion such as 
hydrodynamics, self-gravity, and sub-grid star particles. Each test and their results are described below.
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Fig. 8. Strong scaling test with a 2563 uni-grid calculation with a radiating point source at the center. We performed two tests where the rays are terminated 
after they travel 0.2 or 0.4 pc from their source and a third test where the rays transverse the entire domain. Perfect strong scaling would yield a flat line 
for each test. Our results show that the strong scaling performance improves as the volume that the rays interact with increases and that near-perfect 
strong scaling is attained when the rays transverse the entire domain.

Table 2
Fitted scaling results from our uni-grid strong scaling tests presented 
in Fig. 8, together with the fraction of the computational volume over 
which the ray trace is performed. A value of a = 0 would imply perfect 
strong scaling.

DRay Ray-interaction volume a (Na
CPU)

0.2 pc 0.0335 0.52
0.4 pc 0.2681 0.27
Whole 1 0.084

5.2.1. Uni-grid ray trace test with varying termination lengths
We first use a setup similar to a single instance of our weak scaling test: a (1 pc)3 domain with a single point source 

placed at its center. The resolution of the computational domain is 2563 cells and each grid consists of 163 cells yielding 
a total of 4096 grids, with no adaptivity. We perform three sub-tests with this setup in which the rays are destroyed after 
traveling 0.2 pc from their source, 0.4 pc from their source, or allowed to transverse the entire domain, respectively. These 
calculations were performed on NCPU = 2n processors with n = [2, ..., 9, 10] for 5 time steps per test.

Our strong scaling results are presented in Fig. 8, which shows the total CPU time per time step, tCPU, for the adaptive 
ray trace. (Note that, whereas in Fig. 7 we plotted the time per processor, here we plot the total time summed over all 
processors, so that perfect scaling would again appear as a flat horizontal line.) To better quantify the results, we perform a 
χ2 fit of our measured results to the functional dependence tCPU ∝ Na

CPU; perfect strong scaling would be a = 0. We report 
these results in Table 2.

When we allow rays to traverse the entire computational domain, we find near-perfect strong scaling out to 1024 pro-
cessors: tCPU ∝ N0.084

CPU . As we lower the distance that rays propagate, the scaling deteriorates, for the obvious reason that 
processors which are assigned computational domains that rays do not reach are simply idle because they do not contribute 
to the ray trace computation. Indeed, we also report the fraction of the computational volume over which rays propagate in 
Table 2, and it is clear that the scaling is worse when this value is small.

5.2.2. Timing with varying frequency bins
Our adaptive ray trace algorithm allows for an arbitrary number of frequency bins Nν . Each ray has two arrays that 

contain Nν doubles (size 8 bytes) that hold the ray’s initial and current frequency-dependent luminosities, respectively. The 
choice of Nν impacts the cost of the computation in two ways: (1) the ray trace operations must loop over all frequency 
bins when creating rays, advancing them across cells, and checking if they become extinct due to absorption by the fluid; 
and (2) MPI communication operations depend on the size of the message that is being sent and/or received. Therefore, 
increasing the number of frequency bins for the adaptive ray trace will lead to an increased cost in the overhead associated 
with the advancement and communication of rays.

To test the scaling efficiency of the adaptive ray trace as a function of Nν we ran a series of tests where we vary 
the number of frequency bins. Our initial setup of our test problem is the same as the strong scaling test discussed in 
section 5.2.1 in which a radiating source is at the center of a (1 pc)3 box. We terminate the rays after they have traveled 0.5 
pc and perform tests for Nν = (1, 2, 8, 16, 20, 32, 48, 64) frequency bins. Our base grid is 2563 and we ran our scaling tests 
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Fig. 9. Frequency bin scaling test where we have varied the number of frequency bins Nν . There is one source at the center of a (128)3 domain and we 
truncate rays once they have traveled 0.5 pc. The cost of the ray trace rises with Nν , as expected, but this effect is small for low Nν .

on 128 processors for 50 time steps per test. Perfect strong scaling on this test would be a computational cost proportional 
to Nν , since the number of ray-cell interactions is linear in Nν .

Our strong scaling results with varying Nν are shown in Fig. 9. We find that the wall clock time spent per ray trace 
increases with Nν as expected, but that this increase is highly-sublinear, particularly at small Nν . We find tν ∝ N0.14

ν for 
1–8 frequency bins and tν ∝ N0.65

ν for 16–64 frequency bins. While these results might at first seem surprising, they make 
sense when we recall that the overhead associated with the ray tracing – solving the geometric problem of finding the paths 
of rays through cells and grids, the probing and handshaking parts of the communication steps – does not scale with Nν . 
As we increase Nν , this overhead is “amortized” over a larger number of frequency bins, and thus we obtain what appears 
to be better-than-perfect strong scaling. As the number of frequency bins increases, this effect becomes less important, and 
the parts of the computation that do scale with Nν – computing the opacities of cells and updating fluxes, transferring flux 
data between processors – begin to dominate. For sufficiently large Nν we do begin to approach the expected N1.0

ν scaling, 
but our results thus far demonstrate that we can use up to ∼ 10 frequency bins at near-zero additional cost, and several 
tens at only modest cost, compared to the single-frequency case.

5.2.3. AMR simulation: application to high-mass star formation
Our final strong scaling test is an AMR simulation that includes hydrodynamics, self-gravity, radiative transfer, and ra-

diating sink particles to demonstrate how our new HARM2 algorithm scales in a demanding research application. Here we 
perform strong scaling tests for two different outputs from an Orion AMR simulation of the formation of a high-mass stellar 
system. The results of this simulation will be presented in Rosen et al. [35] but we briefly summarize our problem setup 
here.

Our initial condition is a rotating, laminar 150 M� molecular core with radius 0.1 pc. The core follows a ρ(r) ∝ r−3/2

density profile. We use a domain size of 0.4 pc on each side, a base resolution of 1283 and five levels of refinement which 
yields a maximum resolution of 20 AU on the finest level. To properly model the absorption of the direct radiation field 
from stars we use the frequency dependent stellar atmosphere profiles from Lejeune et al. [36] to model the stellar spectra. 
Our choice of the opacities depend on whether the primary absorber is dust or molecular gas. Dust is the primary absorber 
for gas temperatures below Tsub = 1500 K (i.e., the temperature at which dust sublimes) [34] while molecular hydrogen 
is the primary absorber for gas temperatures within Tsub ≤ T < TH ii where TH ii ≈ 104 K is the temperature at which 
we expect hydrogen to become fully ionized, and thus to have the usual Thompson opacity for electron scattering. If the 
primary absorber is dust we use the frequency dependent dust opacities from Weingartner and Draine [33] (their Rv = 5.5
extinction curve), if it is molecular hydrogen we set the molecular gas opacity to 0.01 cm2 g−1, and if T ≥ TH ii we set the 
opacity to zero. The last of these is a numerical convenience, because we have not implemented scattering or ionization 
chemistry, and because the regions in our computation with T > TH ii generally contain so little mass they will be optically 
thin anyway. We assume a dust-to-gas ratio of 0.01 and choose Nν = 10.

At t = 0 the molecular core begins to gravitationally collapse. As the core collapses a star forms at the center and 
continues to grow in mass via accretion. An accretion disk forms around the star due to conservation of angular momentum 
of the infalling material. Gravitational instabilities develop in the disk causing it to fragment into companion stars. The 
absorption of energy and momenta from the direct stellar radiation field and the diffuse dust-reprocessed radiation field 
from the fluid results in low-density, radiation pressure dominated bubbles near the poles of the most massive star that 
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Fig. 10. Example AMR simulation that uses our HARM2 algorithm. Here we show slice plots along the x-direction of the mass density (top) and absorbed 
direct radiation energy density (bottom) for two snapshots of a simulation of the formation a high mass star system. Gray stars denote the location of the 
stars, with the most massive star being largest. The left (right) panels show the snapshot when the simulation has progressed to 15.22 kyrs (23.67 kyrs) 
where the most massive star is 16.59 M� (33.57 M�).

expand with time. Fig. 10 shows slices parallel to the x-direction of the gas density (top panels) and absorbed direct 
radiation energy density (bottom panels) by the dust and gas for two different snapshots of this simulation at t = 15.22 kyrs
and t = 23.67 kyrs. We only show the central (8000 AU)2 region of the computational domain because the majority of the 
domain is not affected by the direct radiation field. The most massive stars in these snapshots are 16.59 M� and 33.57 
M� , respectively. The early snapshot contains one star while the later snapshot contains eight stars where the companions 
range from 0.01–1.48 M� in stellar mass. These snapshots represent typical “early” and “late” stages of the computation, 
with the latter being much more computationally expensive due to the larger number of sources and the greater distances 
that the direct radiation can propagate before being absorbed. We note that both the early and late stages are strong tests 
of the scalability, because the radiating sources are confined to a small portion of the computational volume, rather than 
being scattered throughout (cf., the test presented in Wise and Abel [18], which used a cosmological simulation where point 
sources were distributed nearly-isotropically.)

Our strong scaling results are shown in Fig. 11, where we measure the time spent on the hydrodynamics, gravity, FLD, 
adaptive ray trace, and the total radiation module (adaptive ray trace and FLD). A horizontal line would correspond to perfect 
strong scaling. We ran each timing test for five time steps on NCPU = 16 × n processors where n = [1, 2, ..., 8]. The early 
snapshot contains 448 grids and the later snapshot contains 1137 grids at the beginning of each test. The top panel shows 
the timing results for the early snapshot and the bottom panel shows the results for the later snapshot. Comparison of the 
two panels show that the scalability for all modules in Orion become better at later times, especially for the adaptive ray 
trace when more grids are processing rays. This is due to the increase in number of grids per processor which reduces the 
MPI communication costs. A general rule of thumb for patch-based AMR methods such as Orion is that the code is efficient 
at ∼ 4 grids per CPU or more, and our tests are consistent with this. We find that our timing results for the adaptive ray 
trace follows tWC,ART ∝ N0.97

CPU for the early snapshot and tWC,ART ∝ N0.56
CPU for the later snapshot. These results agree with our 

strong scaling results from section 5.2.1 which showed that our parallelization procedure for the adaptive ray trace becomes 
more efficient as the number of grids that interact with rays increases. We find that the moment method, FLD in our case, 
is the most expensive module while gravity is the cheapest, and that the adaptive ray trace can be cheaper and/or about 
the same expense as the hydrodynamics.

6. Summary

In this paper, we have presented our implementation of HARM2 – a new highly-parallel multi-frequency hybrid radiation 
hydrodynamics module that combines an adaptive long characteristics method for the (direct) radial radiation field from 
point sources with a moment method that handles the (thermal) diffuse radiation field produced by a volume-filling fluid. 
Our new method is designed to be used with adaptive grids and is not limited to specific geometries. We have coupled 
HARM2 to the hydrodynamics in the astrophysical AMR code Orion which includes flux limited diffusion, but our method 
can be applied to any AMR hydrodynamics code that has asynchronous time stepping and can incorporate any moment 
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Fig. 11. Strong scaling test with a 1283 AMR simulation with 5 levels of refinement of the formation of a massive star system shown at two different 
simulation outputs from 15.22 kyrs (top) and 23.67 kyrs (bottom). The early (late) snapshot has 448 (1137) grids. The bottom panel shows that the 
scalability of the adaptive ray trace increases as the simulation progresses because rays interact with a larger volume of the computational domain (e.g., 
see Fig. 10).

method. Although our implementation is not the first hybrid radiation scheme implemented in an AMR code, it is more 
accurate than previous methods because it uses long rather than hybrid characteristics. Furthermore, our new algorithm can 
be used in a variety of radiation hydrodynamics problems in which the radiation from point sources and diffuse radiation 
field from the fluid should be modeled. Such examples are the study of the formation of isolated high-mass stars and 
clustered star formation in the dusty interstellar medium.

One of the major difficulties with incorporating a long characteristics method in an AMR code that allows for a general 
geometry, where the hydrodynamics is parallelized by domain decomposition, is the parallel communication of rays. This 
is because ray tracing is a highly serial process and each ray will usually cross multiple processor domains. In order to 
avoid significant communication overheads and serial bottlenecks that often occur with long characteristics methods we 
have implemented a new completely asynchronous and non-blocking communication algorithm for ray communication. We 
performed a variety of weak and strong scaling tests of this method, and found that its performance is dramatically im-
proved compared to previous long characteristics methods. In idealized tests without adaptive grids we obtain near-perfect 
weak scaling out to >1000 cores, and, in problems where the characteristic trace covers the entire computational domain, 
near-perfect strong scaling as well. Previous implementations became communications-bound at processor counts a factor 
of ∼4 smaller than this. In a realistic, demanding research application with a complex, adaptive grid geometry, and using 
10 frequency bins for the characteristic trace, we find excellent scaling as long as there are at least ∼3–4 grids per CPU, 
and we find that the cost of adaptive ray tracing is smaller than or comparable to hydrodynamics, and significantly cheaper 
than flux limited diffusion.

Since HARM2 works for adaptive grids in a general geometry, it can be used in a variety of high-resolution simulations 
that require radiative transfer. Our implementation in Orion will be made public in an upcoming release of the Orion code, 
and the HARM2 source code will be made available immediately upon request to any developers who are interested in 
implementing HARM2 in their own AMR codes.



A.L. Rosen et al. / Journal of Computational Physics 330 (2017) 924–942 941
Acknowledgements

We thank the referees for their comments and suggestions, which improved the quality of this work. We thank Nathan 
Roth, Andrew Myers, and Pak Shing Li for their assistance in integrating HARM2 into Orion, Chris McKee for helpful com-
ments throughout the development process, and John Wise and Christian Baczynski for comments and advice. ALR and 
MRK acknowledge support from the National Aeronautics and Space Administration (NASA) through Hubble Archival Re-
search grant HST-AR-13265.02-A issued by the Space Telescope Science Institute, which is operated by the Association of 
Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and Chandra Theory Grant Award Num-
ber TM5-16007X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical 
Observatory for and on behalf of NASA under contract NAS8-03060. ALR and ATL acknowledge support from the NSF 
Graduate Research Fellowship Program (number DGE-0809125). RIK acknowledges support from NASA through ATP grant 
NNX13AB84G, the NSF through grant AST-1211729 and the US Department of Energy at the Lawrence Livermore National 
Laboratory under contract DE-AC52-07NA27344. MRK and RIK acknowledge support from NASA TCAN grant NNX-14AB52G. 
MRK acknowledges support from Australian Research Council grant DP160100695.

References

[1] M.R. Krumholz, Star formation with adaptive mesh refinement radiation hydrodynamics, in: J. Alves, B.G. Elmegreen, J.M. Girart, V. Trimble (Eds.), 
Computational Star Formation, in: IAU Symposium, vol. 270, 2011, pp. 187–194.

[2] R. Teyssier, Grid-based hydrodynamics in astrophysical fluid flows, Annu. Rev. Astron. Astrophys. 53 (2015) 325–364, http://dx.doi.org/10.1146/annurev-
astro-082214-122309.

[3] C.D. Levermore, G.C. Pomraning, A flux-limited diffusion theory, Astrophys. J. 248 (1981) 321–334, http://dx.doi.org/10.1086/159157.
[4] M.R. Krumholz, R.I. Klein, C.F. McKee, J. Bolstad, Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics, Astrophys. 

J. 667 (2007) 626–643, http://dx.doi.org/10.1086/520791.
[5] B. Commerçon, R. Teyssier, E. Audit, P. Hennebelle, G. Chabrier, Radiation hydrodynamics with adaptive mesh refinement and application to prestellar 

core collapse. I. Methods, Astron. Astrophys. 529 (2011) A35+, http://dx.doi.org/10.1051/0004-6361/201015880.
[6] M. González, E. Audit, Numerical treatment of radiative transfer, Astrophys. Space Sci. 298 (2005) 357–362, http://dx.doi.org/10.1007/s10509-005-

3969-2.
[7] J. Rosdahl, R. Teyssier, A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT, Mon. Not. R. Astron. Soc. 449 (2015) 

4380–4403, http://dx.doi.org/10.1093/mnras/stv567.
[8] P.G. Dykema, R.I. Klein, J.I. Castor, A new scheme for multidimensional line transfer, III: a two-dimensional Lagrangian variable tensor method with 

discontinuous finite-element SN transport, Astrophys. J. 457 (1996) 892, http://dx.doi.org/10.1086/176784.
[9] Y.-F. Jiang, J.M. Stone, S.W. Davis, A Godunov method for multidimensional radiation magnetohydrodynamics based on a variable Eddington tensor, 

Astrophys. J. Supp. 199 (2012) 14, http://dx.doi.org/10.1088/0067-0049/199/1/14.
[10] S.W. Davis, J.M. Stone, Y.-F. Jiang, A radiation transfer solver for athena using short characteristics, Astrophys. J. Supp. 199 (2012) 9, http://dx.doi.org/

10.1088/0067-0049/199/1/9.
[11] E.-J. Rijkhorst, T. Plewa, A. Dubey, G. Mellema, Hybrid characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics, 

Astron. Astrophys. 452 (2006) 907–920, http://dx.doi.org/10.1051/0004-6361:20053401.
[12] L. Buntemeyer, R. Banerjee, T. Peters, M. Klassen, R.E. Pudritz, Radiation hydrodynamics using characteristics on adaptive decomposed domains for 

massively parallel star formation simulations, New Astron. 43 (2016) 49–69, http://dx.doi.org/10.1016/j.newast.2015.07.002.
[13] M.G. Wolfire, J.P. Cassinelli, The temperature structure in accretion flows onto massive protostars, Astrophys. J. 310 (1986) 207–221, http://dx.doi.org/

10.1086/164676.
[14] M.G. Wolfire, J.P. Cassinelli, Conditions for the formation of massive stars, Astrophys. J. 319 (1987) 850–867.
[15] S.D. Murray, J.I. Castor, R.I. Klein, C.F. McKee, Accretion disk coronae in high-luminosity systems, Astrophys. J. 435 (1994) 631–646, http://dx.doi.org/

10.1086/174842.
[16] R. Kuiper, H. Klahr, C. Dullemond, W. Kley, T. Henning, Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in 

massive star formation, Astron. & Astrophys. 511 (2010) A81, http://dx.doi.org/10.1051/0004-6361/200912355.
[17] M. Klassen, R. Kuiper, R.E. Pudritz, T. Peters, R. Banerjee, L. Buntemeyer, A general hybrid radiation transport scheme for star formation simulations on 

an adaptive grid, Astrophys. J. 797 (2014) 4, http://dx.doi.org/10.1088/0004-637X/797/1/4.
[18] J.H. Wise, T. Abel, ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing, Mon. Not. R. Astron. Soc. 

414 (2011) 3458–3491, http://dx.doi.org/10.1111/j.1365-2966.2011.18646.x.
[19] M.L. Norman, P. Paschos, T. Abel, Simulating inhomogeneous reionization, Mem. Soc. Astron. Ital. 69 (1998) 455.
[20] D. Mihalas, R.I. Klein, On the solution of the time-dependent inertial-frame equation of radiative transfer in moving media to O (v/c), J. Comput. Phys. 

46 (1982) 97–137, http://dx.doi.org/10.1016/0021-9991(82)90007-9.
[21] D. Mihalas, L.H. Auer, On laboratory-frame radiation hydrodynamics, J. Quant. Spectrosc. Radiat. Transf. 71 (2001) 61–97, http://dx.doi.org/10.1016/

S0022-4073(01)00013-9.
[22] R.I. Klein, Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds, J. Comput. Appl. Math. 109 (1999) 

123–152.
[23] R.T. Fisher, Single and Multiple Star Formation in Turbulent Molecular Cloud Cores, Ph.D. thesis, University of California, Berkeley, 2002.
[24] P.S. Li, D.F. Martin, R.I. Klein, C.F. McKee, A stable, accurate methodology for high Mach number, strong magnetic field MHD turbulence with adaptive 

mesh refinement: resolution and refinement studies, Astrophys. J. 745 (2012) 139–151.
[25] M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984) 484–512.
[26] M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989) 64–84.
[27] T. Abel, B.D. Wandelt, Adaptive ray tracing for radiative transfer around point sources, Mon. Not. R. Astron. Soc. 330 (2002) L53–L56, http://dx.doi.org/

10.1046/j.1365-8711.2002.05206.x.
[28] K.M. Górski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelmann, HEALPix: a framework for high-resolution discretization and 

fast analysis of data distributed on the sphere, Astrophys. J. 622 (2005) 759–771, http://dx.doi.org/10.1086/427976.
[29] M.R. Krumholz, J.M. Stone, T.A. Gardiner, Magnetohydrodynamic evolution of H II regions in molecular clouds: simulation methodology, tests, and 

uniform media, Astrophys. J. 671 (2007) 518–535, http://dx.doi.org/10.1086/522665.
[30] M.R. Krumholz, C.D. Matzner, The dynamics of radiation-pressure-dominated H II regions, Astrophys. J. 703 (2009) 1352–1362, http://dx.doi.org/

10.1088/0004-637X/703/2/1352.

http://refhub.elsevier.com/S0021-9991(16)30556-3/bib6B72756D686F6C7A3230313162s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib6B72756D686F6C7A3230313162s1
http://dx.doi.org/10.1146/annurev-astro-082214-122309
http://dx.doi.org/10.1086/159157
http://dx.doi.org/10.1086/520791
http://dx.doi.org/10.1051/0004-6361/201015880
http://dx.doi.org/10.1007/s10509-005-3969-2
http://dx.doi.org/10.1093/mnras/stv567
http://dx.doi.org/10.1086/176784
http://dx.doi.org/10.1088/0067-0049/199/1/14
http://dx.doi.org/10.1088/0067-0049/199/1/9
http://dx.doi.org/10.1051/0004-6361:20053401
http://dx.doi.org/10.1016/j.newast.2015.07.002
http://dx.doi.org/10.1086/164676
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib776F6C66697265383761s1
http://dx.doi.org/10.1086/174842
http://dx.doi.org/10.1051/0004-6361/200912355
http://dx.doi.org/10.1088/0004-637X/797/1/4
http://dx.doi.org/10.1111/j.1365-2966.2011.18646.x
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib4E6F726D616E3139393861s1
http://dx.doi.org/10.1016/0021-9991(82)90007-9
http://dx.doi.org/10.1016/S0022-4073(01)00013-9
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib4B6C65696E3139393961s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib4B6C65696E3139393961s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib666973686572303261s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib4C693230313261s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib4C693230313261s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib626572676572383461s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib626572676572383961s1
http://dx.doi.org/10.1046/j.1365-8711.2002.05206.x
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1086/522665
http://dx.doi.org/10.1088/0004-637X/703/2/1352
http://dx.doi.org/10.1146/annurev-astro-082214-122309
http://dx.doi.org/10.1007/s10509-005-3969-2
http://dx.doi.org/10.1088/0067-0049/199/1/9
http://dx.doi.org/10.1086/164676
http://dx.doi.org/10.1086/174842
http://dx.doi.org/10.1016/S0022-4073(01)00013-9
http://dx.doi.org/10.1046/j.1365-8711.2002.05206.x
http://dx.doi.org/10.1088/0004-637X/703/2/1352


942 A.L. Rosen et al. / Journal of Computational Physics 330 (2017) 924–942
[31] M. Pandolfi, D. D’Ambrosio, Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon, J. Comput. Phys. 166 (271) 
(2001) 31.

[32] J.M. Stone, T.A. Gardiner, P. Teuben, J.F. Hawley, J.B. Simon, Athena: a new code for astrophysical MHD, Astrophys. J. Suppl. Ser. 178 (2008) 137–177, 
http://dx.doi.org/10.1086/588755.

[33] J.C. Weingartner, B.T. Draine, Dust grain-size distributions and extinction in the milky way, large Magellanic cloud, and small Magellanic cloud, Astro-
phys. J. 548 (2001) 296–309, http://dx.doi.org/10.1086/318651.

[34] D. Semenov, T. Henning, C. Helling, M. Ilgner, E. Sedlmayr, Rosseland and Planck mean opacities for protoplanetary discs, Astron. Astrophys. 410 (2003) 
611–621, http://dx.doi.org/10.1051/0004-6361:20031279.

[35] A.L. Rosen, M.R. Krumholz, C.F. McKee, R.I. Klein, An unstable truth: how massive stars get their mass, ArXiv e-prints.
[36] T. Lejeune, F. Cuisinier, R. Buser, Standard stellar library for evolutionary synthesis, I: calibration of theoretical spectra, Astron. Astrophys. Suppl. Ser. 

125 (1997) 229–246, http://dx.doi.org/10.1051/aas:1997373.

http://refhub.elsevier.com/S0021-9991(16)30556-3/bib70616E646F6C666932303031s1
http://refhub.elsevier.com/S0021-9991(16)30556-3/bib70616E646F6C666932303031s1
http://dx.doi.org/10.1086/588755
http://dx.doi.org/10.1086/318651
http://dx.doi.org/10.1051/0004-6361:20031279
http://dx.doi.org/10.1051/aas:1997373

	Hybrid Adaptive Ray-Moment Method (HARM2): A highly parallel method for radiation hydrodynamics on adaptive grids
	1 Introduction
	2 Decomposition of the radiation-hydrodynamics problem
	3 The HARM2 algorithm
	3.1 Update cycle
	3.2 Direct radiation ﬁeld: adaptive ray trace
	3.3 Parallelization

	4 Validation tests
	4.1 Flux test
	4.2 Radiation-pressure-dominated HII region
	4.3 Hybrid radiation tests with multiple sources
	4.3.1 Irradiation of a dense clump by two point sources with HARM2
	4.3.2 Irradiation of a dense clump by two point sources with HARM2and hydrodynamics


	5 Performance tests
	5.1 Weak scaling
	5.2 Strong scaling
	5.2.1 Uni-grid ray trace test with varying termination lengths
	5.2.2 Timing with varying frequency bins
	5.2.3 AMR simulation: application to high-mass star formation


	6 Summary
	Acknowledgements
	References


