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ABSTRACT
Winds arising from galaxies, star clusters, and active galactic nuclei are crucial players in
star and galaxy formation, but it has proven remarkably difficult to use observations of them
to determine physical properties of interest, particularly mass fluxes. Much of the difficulty
stems from a lack of a theory that links a physically realistic model for winds’ density, velocity
and covering factors to calculations of light emission and absorption. In this paper we provide
such a model. We consider a wind launched from a turbulent region with a range of column
densities, derive the differential acceleration of gas as a function of column density, and use
this result to compute winds’ absorption profiles, emission profiles and emission intensity
maps in both optically thin and optically thick species. The model is sufficiently simple that
all required computations can be done analytically up to straightforward numerical integrals,
rendering it suitable for the problem of deriving physical parameters by fitting models to
observed data. We show that our model produces realistic absorption and emission profiles
for some example cases, and argue that the most promising methods of deducing mass fluxes
are based on combinations of absorption lines of different optical depths, or on combining
absorption with measurements of molecular line emission. In the second paper in this series,
we expand on these ideas by introducing a set of observational diagnostics that are significantly
more robust than those commonly in use, and that can be used to obtain improved estimates
of wind properties.

Key words: line: profiles – radiative transfer – ISM: jets and outflows – galaxies: evolution –
galaxies: ISM – galaxies: starburst.

1 IN T RO D U C T I O N

Outflows of gas from galaxies, active galactic nuclei (AGNs) and
embedded star clusters are ubiquitous phenomena in astrophysics.
Wherever gas flows converge to form stars or accrete on to a black
hole, the subsequent release of energy appears to expel a portion
of the inflowing gas in a high speed wind. On cosmological scales,
outflows from galaxies are likely responsible for explaining both
the relatively small baryon fractions of dark matter haloes and the
ubiquity of metals in the intergalactic medium (Veilleux, Cecil &
Bland-Hawthorn 2005, and references therein). On the scales of
AGN, winds are a major candidate for explaining the observed
correlation between black hole mass and the properties of galactic
bulges (e.g. King 2003). On the scales of stars, outflows driven by
a variety of feedback mechanisms are the most likely explanation
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for why the typical outcome of the star formation process is an
unbound association rather than a bound cluster (Krumholz 2014b;
Krumholz et al. 2014, and references therein).

Despite their ubiquity and importance, however, outflows are very
difficult to measure. Some outflowing gas can be distinguished by
its high temperatures and thus its emission at X-ray wavelengths,
and outflows of hot gas are indeed observed wherever outflows
are present. However, this hot component is generally thought to
carry only a small fraction of the outflow mass flux, with the bulk
in a cooler component1 that is either entrained by the hot gas or
driven out by some other mechanism. This cooler component is
very difficult to separate from the usually much brighter emission
of the region responsible for launching the outflow, particularly

1 In this paper, ‘cool refers to any gas at a temperature � 105 K, including
both the traditional ‘warm (T ∼ 103–104 K) and ‘cold (T ∼ 10–100 K)
components of the interstellar medium.
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because, while the cool component is much denser than the hot, X-
ray emitting portion of the wind, it is generally much more diffuse
than the gas found in the launching region. Observations therefore
usually rely on spectroscopy in either absorption (e.g. Heckman
et al. 2000; Martin 2005; Rupke, Veilleux & Sanders 2005a,b; Stei-
del et al. 2010; Werk et al. 2014) or emission (e.g. Alatalo et al. 2011;
Genzel et al. 2011; Janssen et al. 2016), which allows the outflowing
component to be separated based on its velocity, or by observing
the tenuous off-plane emission of the flow (e.g. Leroy et al. 2015b).

Each of these techniques has serious limitations. Absorption
spectroscopy using background sources is limited by the avail-
ability of such sources, and thus is usually available for at most
a handful of lines of sight. ‘Down the barrel’ absorption measure-
ments, which use the galaxy itself as a backlight, must contend with
the lower signal to noise that having a weaker backlight implies,
along with the unknown distance between the absorbing systems
and the launching galaxy, which influences the conclusions that one
draws about the mass outflow rate. Emission spectroscopy is lim-
ited by confusion with the wind-launching region, which masks any
low-velocity component of the outflow behind the much brighter
emission of non-wind material moving at similar velocities. This
masking is not problematic if it is assumed that such low-velocity
material is doomed to fall back rather than enter the wind, but there
is little physical reason to make this assumption, and, as we will
show in this paper, it is often unjustified. Off-plane emission obser-
vations are possible only for the most nearby systems at close to
edge-on orientation, where our resolution is high enough to separate
the plane and off-plane regions, and the off-plane emission is bright
enough to be seen. Moreover, in such configurations the velocity of
the outflowing material is poorly constrained. Due to these limita-
tions, each type of measurement is very difficult to interpret, and
quantitative estimates of quantities such as mass outflow rates are
usually derived from simple heuristic arguments.

The goal of this work is to significantly improve this situation by
introducing a simple analytic model that self-consistently couples
the launching and kinematics of the cool component of the wind
with a calculation of its observable absorption and emission of
light. Our approach here differs from the more common tactic of
conducting a full numerical simulation of a wind and then post-
processing the results to produce synthetic emission or absorption
data (e.g. Fujita et al. 2009; Shen et al. 2012; Stinson et al. 2012;
Hummels et al. 2013; Suresh et al. 2015). While such an approach is
more accurate than any purely analytic model can hope for, because
simulations sample only a tiny part of parameter space they cannot
easily be used to extract physical quantities from a given set of
observed data. Moreover, because one cannot explore parameter
space with simulations, it is hard to draw general conclusions from
them.

Given these limitations of the fully numerical approach, ana-
lytic models that allow rapid and efficient computation are clearly
required. However, the few analytic models in the literature are ex-
tremely simple, and tend to adopt prescriptions for quantities like
the wind velocity, density, and covering fraction – e.g. homolo-
gously expanding spherical shells, or flows where only a single
velocity is present at any radial distance – that are chosen more
for numerical simplicity than on the basis of a detailed physical
model (e.g. Steidel et al. 2010; Prochaska, Kasen & Rubin 2011;
Scarlata & Panagia 2015). In contrast, here we develop a model
for computing the observable emission and absorption properties
of winds that, while still idealized enough to be amenable to an-
alytic treatment, is based on a physical model for wind launching
that naturally and deterministically links the wind mass flux, den-

sity distribution, and velocity distribution, and allows for partial
covering. We have implemented the software required to carry out
these computations as an extension of the open source code Derive
the Energetics and SPectra of Optically Thick Interstellar Clouds
(DESPOTIC) (Krumholz 2014a)2.

This paper is the first in a series. Here we develop our analytic
theory for the cool components of the wind, and illustrate the power
of our model with some examples. We draw some general conclu-
sions about what physical properties can and cannot be determined
robustly from different types of observations, but do not tackle the
full problem of constraining physical quantities from a set of ob-
servables. This inversion problem forms the basis for the second
paper in this series.

In the remainder of this paper, we first present our physical model
for the properties of winds in Section 2. We calculate how such
winds absorb (Section 3) light, and how they emit it in two limiting
cases (Sections 4 and 5). In Section 6 we bring this formalism
together to compute the observable properties of starburst galaxy
whose properties are inspired by those of M82. In Section 7 we
discuss what we have learned from this exercise, and we summarize
and conclude in Section 8.

2 PH Y S I C A L M O D E L

In order to compute the observable emission and absorption prop-
erties of a cool wind, we must begin from a model for the physical
properties of that wind – density, velocity, filling factor, etc. For this
purpose we will adopt the Thompson & Krumholz (2016) (here-
after TK16) model for wind launching, and extending it following
an approach that combines elements of this model with elements
of the models presented by Thompson et al. (2015) and Krumholz,
Kruijssen & Crocker (2017). In all our models we will assume that
the properties of the wind are a function only of the spherical radius
r (though the wind need not cover all possible directions from the
source – see below), and that the wind is in a steady state.

2.1 Summary of the TK16 Model

We begin with a brief conceptual overview of the wind model
proposed in TK16, in order to set the stage for our calculation
here. This model treats the gas from which the wind is launched
as an isothermal, turbulent medium with a lognormal probability
distribution function (PDF) for volume and column densities. The
medium is characterized by a mean surface density �0 at scale
r0, and is confined by a gravitational potential. Gravity is opposed
by some form of feedback, the operation of which is described
as exerting a constant force per unit solid angle, or equivalently
injecting momentum into the gas, in a direction opposite that of
gravity. The rate of momentum injection is ṗ, and ratio of the
feedback force to the gravitational force for the regions at the mean
surface density �0 is �, the generalized Eddington ratio.

This characterization of the feedback as exerting a constant force
per unit solid angle is reasonable for many possible feedback mecha-
nisms, including the pressure of direct starlight and the ram pressure
exerted by a hot flow past cold clouds (assuming, in both cases, a
basic spherical geometry). The primary requirement for this model

2 DESPOTIC is available from https://bitbucket.org/krumholz/despotic/. The
scripts that use DESPOTIC to generate all the figures in this paper are available
at https://bitbucket.org/krumholz/despotic_winds/
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to be applicable is that the material being ejected not trap the ‘work-
ing fluid (hot gas or radiation) for the feedback so effectively that it
converts to an energy-driven flow (e.g. trapped infrared photons or
confined hot gas). We state this requirement more precisely below.

The central argument in TK16 is that, if the Eddington ratio � < 1,
then the feedback mechanism cannot eject the bulk of the material
in a dynamical time. However, there is a lognormal distribution
of gas surface densities, and the force of gravity per unit solid
angle is proportional to the local gas surface density �. This means
that, in sufficiently underdense regions gravity may exert less force
per unit solid angle than the feedback mechanism, and as a result
material will be accelerated outward into a wind. To be precise, gas is
accelerated outward if its logarithmic column density x = ln �/�0

satisfies x < xcrit = ln �. Thus even in a gas where feedback cannot
expel the bulk of the material, it can still produce a wind by expelling
the lower tail of the gas column density PDF with x < xcrit. Since
turbulence in the still-confined bulk of the gas will re-fill the tail on
a dynamical time-scale, the result will be continual loss of mass.
The bulk of TK16 is concerned with calculating the wind mass flux
produced by this process. Our goal in the remainder of this section
is to compute the kinematics and structure of the resulting wind.

Before proceeding, we note that several aspects of the TK16
model have been verified in the numerical radiation hydrodynamic
simulations of Raskutti, Ostriker & Skinner (2016, 2017, submit-
ted). In particular, these simulations, which focus on the effects
of radiation pressure forces from forming star clusters on the sur-
rounding gas in GMCs, demonstrate that the gas has a lognormal
distribution, and only structures with sufficiently low surface den-
sity are ejected.

2.2 Wind acceleration laws

2.2.1 Ideal momentum-driven winds

The first step in our calculation is to determine the velocity struc-
ture of the wind material. Consider a region where the total mass
interior to some radius r is Mr, and there is some constant, isotropic
momentum injection rate ṗ at the origin, which is deposited in the
surrounding material and accelerates it outward. The assumption of
constant momentum deposition per unit solid angle is a simplifica-
tion that we shall drop in subsequent sections, but which we adopt
now for illustrative purposes. We also adopt the simplifying assump-
tion that on each line of sight all of the material is collected into a
single structure that intercepts and absorbs the injected momentum.
The equation of motion for a thin shell accelerating outward as part
of a time-steady wind, or a segment thereof (generically a ‘cloud),
with column density �c when viewed along a ray from the origin
is

dvr

dt
= vr

dvr

dr
= −GMr

r2
+ ṗ

4πr2

1

�c
, (1)

where vr is the radial velocity. In writing this equation, we assume
that the wind is quasi-ballistic, in the sense that individual ‘clouds
accelerate under the forces applied to them without regard to the
behaviour of other clouds.

Next we non-dimensionalize the system. Let r0 be the radius from
which the wind is launched, i.e. we take vr = 0 at r = r0. We define
a dimensionless position a by a = r/r0 and a dimensionless velocity
u by ur = vr/v0, where v0 = √

2 GM0/r0; here M0 is Mr evaluated
at r0, and thus v0 is just the escape velocity from radius r0 in the
case of a point mass potential. Similarly, we write the mass interior
to radius r as Mr = mM0, where m is a dimensionless function of a

that obeys m = 1 at a = 1. An isothermal mass distribution would
have m = a, while a point mass distribution has m = 1.

Let the gas at r0 have a mean column density �0 when viewed
along a radial ray outward from the origin, and let �0, c be the
local column density of the cloud we are considering at r = r0.
Following the approach of TK16, we define x = ln(�0,c/�0) as the
logarithmic under- or overdensity of a given cloud or segment of a
shell.

As the shell segment or cloud with which we are concerned
moves outward, it may change its cross-sectional area to the driving
mechanism. For pressureless dust, we expect the material to move
purely radially, and thus maintain a constant solid angle as seen from
the centre of the outflow, Ac ∝ r2, where Ac is the cloud area. For
a cloud that is pressure-confined, and has time as it moves outward
for pressure forces to act, the expansion will be dictated by pressure
balance: for a quasi-spherical cloud, the area scales with density as
Ac ∝ ρ−2/3, and the density scales with external pressure as ρ ∝
P 1/γcl , where γ cl is the cloud’s adiabatic index. If the mechanism
driving the cool gas is a hot wind with roughly constant velocity,
the density of the hot gas drops as ρw ∝ r−2, and its pressure
therefore drops as P ∝ r−2γw , where γ w is the adiabatic index of
the hot wind. Combining these scalings, the cloud’s area varies as
Ac ∝ r4γw/3γcl . For an adiabatic wind with γ w = 5/3 and a cool
cloud whose pressure is predominantly turbulent, giving γ cl ≈ 5/3
in many circumstances (Robertson & Goldreich 2012; Birnboim,
Federrath, & Krumholz 2017, in preparation), this produces Ac

∝ r4/3. If the cool gas pressure is predominantly thermal and the
gas is kept isothermal (e.g. by radiation), then γ cl ≈ 1, and Ac ∝
r20/9, though in this case the expansion would likely be limited by
the fact that the cloud cannot expand faster than its sound speed.
Finally, numerical simulations of magnetized clouds swept up by
hot winds by McCourt et al. (2015) suggest that magnetic fields
significantly reduce the rate of cloud expansion, though the amount
by which they do so is difficult to determine from McCourt et al.’s
numerical experiments, which have uniform pressure and a wind
that is idealized as plane parallel rather than spherically divergent.
In summary, depending on the nature of the cool material and the
driving mechanism, a wide range of behaviours for Ac(r) is possible.

For this reason, we choose to parametrize our ignorance by in-
troducing a function y such that the surface density �c = �0, c/y,
where y is a function of a that has the property y = 1 at a = 1;
the constant area case corresponds to y = 1, while the constant
solid angle case is y = a2. We refer to y as the expansion function.
Intuitively, it is simply the cross-sectional area of the cloud versus
radius, normalized by the area the cloud starts with at the radius r0.
Below we will consider both the limiting constant area and constant
solid angle cases, as well as an intermediate one, y = a.

Given these definitions, with some algebraic calculation,
equation (1) may be rewritten as

2ur

dur

da
= 1

a2

(
y�e−x − m

)
, (2)

where

� = ṗ

4πGM0�0
(3)

is the generalized Eddington ratio at radius r0. The boundary con-
dition is ur = 0 at a = 1, where the wind is launched. Only material
with column density x < xcrit = ln � has an outward acceleration at
a = 1 and becomes part of the wind. In the bulk of this paper we will
assume that all such material is part of the wind, but we note that
for many wind-driving mechanisms and expansion geometries the
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Table 1. Wind acceleration laws Ua(x), obtained by solving equation (2) for various potentials and cloud expansion
behaviours. Note that what is reported in the table is U2

a (x) rather than Ua(x).

Mass distribution
Cloud expansion Point, m = 1 Isothermal, m = a

Fixed area, y = 1 U2
a (x) = (

�e−x − 1
) (

a−1
a

)
U2

a (x) = �e−x
(

a−1
a

) − ln a

Intermediate, y = a U2
a (x) = �e−x ln a − a−1

a
U2

a (x) = (
�e−x − 1

)
ln a

Fixed solid angle, y = a2 U2
a (x) = (

�e−x − 1
a

)
(a − 1) U2

a (x) = �e−x (a − 1) − ln a

Figure 1. Example wind acceleration laws Ua(x), plotted for gas with
starting surface density x = −3 and winds with � = 0.1 and a variety of
expansion behaviour y and potentials m. The expansion behaviours shown
are constant area Ac (y = 1, blue), constant solid angle � (y = a2, red) and
intermediate between the two (y = a, green), and the potentials shown are
point (m = 1, solid) and isothermal (m = a, dashed).

velocity of the wind approaches 0 as x → xcrit. We therefore con-
sider in Appendix A how the conclusions of our paper would change
if we assumed that only material with starting logarithmic surface
density smaller than xcrit by some finite amount was launched into
the wind. We refer to a solution to equation (2) as a ballistic wind
acceleration law, and formally write it out as Ua(x), i.e. Ua(x) is the
function that maps between initial surface density x of a cloud and
its radial velocity ur at a particular radius a.

It is instructive to solve equation (2) in a few representative cases.
In Table 1 we give solutions for expansion functions y = 1 (constant
area), y = a (intermediate) and y = a2 (constant solid angle), and
potentials m = 1 (point mass) and m = a (isothermal). We plot
some examples in Fig. 1. We can classify possible solutions as wind
solutions, which have the property that Ua(x) is real and non-zero
for all combinations of x < xcrit and a > 1, and fountain solutions,
which do not have that property. For wind solutions a finite mass
flux reaches infinity, while for fountain solutions no mass reaches
infinity. Wind solutions arise for combinations of potential and
lateral expansion rate such that y increases with a faster than m
does, and fountains arise when the reverse is true. For winds, the
velocity approaches asymptotically constant values as a → ∞ if y
increases with a linearly or more slowly, and diverges to arbitrarily
high velocities if y increases with a superlinearly. This divergence
is not physically realistic, since ṗ cannot remain constant as ur →
∞, and does not occur for the more realistic wind models we shall
consider next.

2.2.2 Radiatively-driven winds

The computation in Section 2.2.1 is for an idealized wind with ṗ

constant, independent of cloud surface density �c. Clearly this is
not fully realistic. We therefore now consider more realistic driving

mechanisms where ṗ is not purely constant and derive acceleration
laws Ua(x) for them.

One potentially important mechanism for driving winds is the
momentum of starlight photons leaving a galaxy, interacting with
dust grains suspended in the gas (Murray, Quataert & Thompson
2005, 2010; Thompson et al. 2015). The grains then transmit this
momentum to the gas via collisions or magnetic forces. For a
direct radiation field (i.e. one that is travelling radially outward
from the stars, rather than a reprocessed one produced by the dust
grains themselves), the momentum carried by the radiation field
is ṗ = L/c, where L is the luminosity. We will assume that L is
constant with radius, so that a negligible portion of the radiation
field is absorbed by the wind; we check this assumption explicitly
in Section 2.4.

The momentum per unit area applied to the gas by the radiation
field is

d2pgas

dt dA
= ṗ

4πr2

(
1 − e−κF�c

)
(4)

where κF is the flux mean opacity of the dusty gas in the shell
under consideration. The corresponding non-dimensional equation
of motion (cf. equation 2) is

2ur

dur

da
= 1

a2

{
y�e−x

[
1 − exp

(
− exτ0

y

)]
− m

}
, (5)

where τ0 ≡ κF�0. Material is launched into a wind only at over-
densities x < xcrit, where xcrit is given implicitly by

�e−xcrit
[
1 − exp

(−τ0excrit
)] − 1 = 0. (6)

This equation has a solution for xcrit only if �τ 0 > 1, and so if
�τ 0 < 1 there is no wind at all. This is equivalent to the require-
ment κF > 4πGM0/ṗ, i.e. there is a lower limit on κF for wind
launching that depends on the mass and momentum flux. In the
case of young star clusters this limit is κF = 4πGc/〈L∗/M∗〉, where
〈L∗/M∗〉 is the light-to-mass ratio of the newborn stars (Krumholz
& Dekel 2010; Murray et al. 2010; Skinner & Ostriker 2015). From
equation (6), an upper limit on the surface density that can be
accelerated is �max = 〈L∗/M∗〉/4πcG. For the value of 〈L∗/M∗〉
appropriate for a fully sampled IMF, this limit is ≈400 M
 pc−2

(Raskutti et al. 2016).
In cases where a wind is launched, solutions for Ua(x) for various

choices of y and m are given in Table 2.3 We plot some examples,
and compare to an idealized wind, in Fig. 2. For a radiatively driven
wind, a point potential (m = 1) yields wind solutions, with a finite
mass flux reaching infinity. An isothermal potential (m = a) pro-
duces fountain solutions, with no mass reaching infinity, regardless
of the expansion factor y.

From the standpoint of observables, the main difference between
a purely ideal momentum-driven wind and one driven by direct

3 The solution for y = a2, m = 1 has previously been given in Raskutti,
Ostriker & Skinner (2017, submitted).
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Table 2. Same as Table 1, but for a radiation pressure-driven wind where the momentum input rate depends on the optical depth τ 0 (equation 5). In the
formulae below, τ ≡ τ 0ex, and Ei(x) is the exponential integral of x. We also give the maximum velocity umax for each case; this maximum depends only on m
and not on y, so a single value is given for each column

Cloud expansion Mass distribution
Point, m = 1 Isothermal, m = a

Fixed area, y = 1 U 2
a (x) = [

�e−x
(

1 − e−τ
) − 1

] (
a−1
a

)
U 2

a (x) = �e−x
(

1 − e−τ
) (

a−1
a

) − ln a

Intermediate, y = a U 2
a (x) = �e−x

[
Ei

(− τ
a

) − Ei(−τ ) + ln a
] − a−1

a
U 2

a (x) = �e−x
[
Ei

(− τ
a

) − Ei(−τ ) + ln a
] − ln a

Fixed solid angle,
y = a2

U 2
a (x) = �e−x

[
a

(
1 − e−τ/a2

)
− 1 + e−τ

+√
πτ

(
erf

√
τ − erf

√
τ/a2

)]
− a−1

a

U 2
a (x) = �e−x

[
a

(
1 − e−τ/a2

)
− 1 + e−τ

+ √
πτ

(
erf

√
τ − erf

√
τ/a2

)]
− ln a

Maximum velocity u2
max = �τ0 − 1 u2

max = �τ0 − ln �τ0 − 1
(optically thin)

Figure 2. Example wind acceleration laws Ua(x), plotted for gas with
starting surface density x = −3 and winds with � = 0.1. Black lines show
ideal momentum-driven winds, while other colours show radiatively driven
winds with a variety of τ 0 values, as indicated in the legend. Solid lines are
for point potentials, and dashed lines for isothermal potentials. Panels show,
from top to bottom, constant area (y = 1), intermediate (y = a) and constant
solid angle (y = a2) clouds. Note that, in the top panel, the black line for
ideal is completely hidden by the red line for τ 0 = 300.

photon pressure is that force imparted by the radiation field drops off
as the material becomes optically thin, i.e. in the case that y increases
with a. As a result, the velocity does not diverge to infinity as the
surface density drops to zero. Instead, because the radiative force is
proportional to the surface density for optically thin material, this
exactly compensates for the factor y in the first term of equation (5),
and the radiative acceleration becomes proportional to 1/a2. When
this gas travels outward, the velocity will reach a finite maximum
umax. If the potential is point-like, this maximum velocity is achieved
in the asymptotic limit as a → ∞, while for an isothermal potential
it occurs at a finite radius a (which depends on the initial surface
density x), and the velocity declines logarithmically at larger radii.

We give the value of umax along with the acceleration law Ua(x) in
Table 2.

2.2.3 Winds driven by a volume-filling hot gas

In addition to radiation pressure, another potentially important
mechanism for driving cool gas out of galaxies is the ram pres-
sure and hydrodynamic drag associated with a hot wind of super-
nova heated gas. The entrainment process is complex and poorly
understood. Hydrodynamic simulations suggest that it is quite de-
structive, with little if any cold material surviving acceleration
to significant speeds, and the effective cross-sectional area of
that material that does survive being significantly reduced (e.g.
Williamson et al. 2014; Scannapieco & Brüggen 2015; Brüggen &
Scannapieco 2016; Schneider & Robertson 2017). However, the
presence of magnetic fields may allow cold material to survive ac-
celeration (McCourt et al. 2015). It is also possible that cool material
is initially destroyed near where the wind is launched, but re-forms
at larger radii where it is more stable, and is subsequently acceler-
ated outward (e.g. Martin et al. 2015; Thompson et al. 2016). Given
our goal of producing a simple model that can be evaluated analyti-
cally and used to fit observations, we will not attempt to incorporate
all of the complex physics captured in this mostly numerical work,
and we will instead make a number of simplifying assumptions.

Consider a volume-filling hot wind with a mass flux Ṁh and a
velocity vh, which will be of order the hot gas sound speed. The
density of the hot wind is ρh = Ṁh/(4πr2vh), and its momentum
flux is Ṁhvh. A hot wind will not have exactly constant velocity,
but since thermal pressure-driven winds accelerate only very slowly
with radius (e.g. a supersonic wind in an isothermal potential has
vh ∝ √

ln r), we will treat vh as a constant for mathematical sim-
plicity.

As this wind impacts and flows by cold clouds, it will deposit
outward momentum into them at a rate

d2pgas

dt dA
= Ctρh(vh − vr )2, (7)

where vr is the velocity of the cold gas and Ct ≥ 1 is a coefficient
of order unity that describes the extra momentum transferred to
the cloud as a result of the turbulent wake created by the flow
of hot gas around the cold cloud. Using this in our equation of
motion equation (1), and non-dimensionalizing in analogy with
equation (2), gives

2ur

dur

da
= 1

a2

[
�ye−x

(
1 − ur

uh

)2

− m

]
, (8)
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Figure 3. Same as Fig. 2, except that now the coloured lines show hot
gas-driven winds with a variety of values for uh, as indicated in the legend.

where � = CtṀhvh/(4πGM0�0) is the momentum flux imparted
by the wind normalized to the strength of gravity, and uh = vh/v0.
The critical density for wind launching is xcrit = ln �, the same as
for an idealized wind. There is no closed-form analytic solution
for equation (8), but it is trivial to evaluate numerically. Fig. 3
shows some sample solutions for Ua(x) for a hot gas-driven wind.
The solutions are qualitatively similar to those for the idealized
case, except that the velocity increases more slowly as ur → uh,
and the velocity eventually asymptotes to a maximum of uh rather
than diverging as x → −∞ or a → ∞. Thus the hot wind case
is qualitatively similar to the radiation pressure case, except that
the maximum radial velocity umax is always uh. As in the radiative
case, the influence of a finite value of uh is largest for more rapidly
expanding clouds, and is more modest for y = 1 or even y = a.

2.3 Density structure

Given a wind acceleration law Ua(x), our next step is to calculate
the density structure of the wind. To do so, we begin from the TK16
ansatz that at any time the surface density of the gas in the wind
launching region follows a lognormal distribution. We also assume
that gas at starting column densities x that satisfy the condition for
wind launching (x < xcrit) will be ejected on a dynamical time-scale
of the wind launching region, so that the distribution of mass flux
with x obeys

dṀ

dx
= 4πr2

0 v0ρnormpM, (9)

where r0 and v0 are the launch radius and escape speed from this
radius, respectively, as defined in Section 2.2.1,

pM = 1√
2πσ 2

x

exp

[
−

(
x − σ 2

x /2
)2

2σ 2
x

]
(10)

is the mass-weighted lognormal distribution, and ρnorm is an overall
normalization constant. Following TK16, we take the dispersion of
the lognormal to be

σx =
√

ln
(
1 + RM2/4

)
, (11)

where M is the Mach number of the turbulence,

R = 1

2

(
3 − α

2 − α

) [
1 − M2(2−α)

1 − M2(3−α)

]
, (12)

and α = 2.5.
The material at distance a is clumpy, but we can define the con-

tribution to the mean density from material with initial column x,
dρmean(x), in terms of the mass in a shell dṀ(x)
t divided by the
volume of that shell, 4πr2

0 v0a
2Ua(x)
t ; here 
t is the time required

for material with initial surface density x to traverse the distance
from radius a to a + 
a. This yields

dρmean

dx
= ρnorm

pM

a2Ua

. (13)

It is convenient to write the normalization factor ρnorm in terms
of the overall isotropic mass loss rate Ṁ , evaluated immediately
outside the wind launch point (i.e. before any significant portion of
the gas has turned around, in fountain cases where the mass flux
does not reach infinity). Doing so gives

ρnorm = Ṁ

4πr2
0 v0

(
1

ζM

)
, (14)

where

ζM = 1

2

[
1 − erf

(−2xcrit + σ 2
x

2
√

2σx

)]
(15)

is the fraction of the mass with column densities x < xcrit. We pause
to emphasize that the Ṁ that appears here is the mass flux assuming
the wind subtends 4π sr, rather than the true mass flux, which may
be smaller if the wind covers a smaller solid angle. We will consider
geometries where the wind escapes only in certain directions (e.g.
only through a conical region) in Section 2.5.

We note that since pM is a function of x alone, and Ua maps
between x, a and ur, equation (13) implicitly gives dρmean/dx as a
function of ur and a, something we will exploit below. We illustrate
the nature of this relation in Figs 4 and 5.

In Fig. 4, the upper panel shows the relationship between radial
velocity ur and initial logarithmic surface density x at different radii,
with each line corresponding to a different radius. That is, at each
radius a, there is a one-to-one mapping between cloud velocity and
the surface density it had when first entrained into the wind, and this
relationship is different at different radii. The dashed line represents
the maximum possible column density x = xcrit – clouds with column
densities larger than this value are too strongly held by gravity to
accelerate outward. The lower panel of Fig. 4 is similar, but instead
it shows the relationship between ur and a2dρmean/dx (equation 13).
Recall that dρmean/dx describes the differential contribution made
by material of surface density x to the mean density in a given radial
shell; we multiply by a2 to normalize out the geometric drop in
mean density coming from the fact that shells at larger radii have
larger volumes. Thus each line in the lower panel of Fig. 4 can be
read as showing how much material at a given velocity contributes
to the total mass budget in a given radial shell. The upper envelope
of the lines shown in the figure corresponds to the acceleration law
Ua for a cloud with x = xcrit, i.e. the highest surface density cloud
that can be ejected into the wind at all.
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Figure 4. Example calculation of the density structure of a wind; the
example shown is an ideal wind with � = 0.2, M = 50, y = a2, and m = a.
Lines show the logarithmic surface density x (top panel) and the normalized
density per unit x scaled by shell volume, a2(dρmean/dx) (bottom panel) as a
function of radial velocity ur. The different lines correspond to different radii
a, with the lines starting and log a = 0.25 (darkest line) and increasing by
0.25 per line. In the top panel, the dashed black line shows x = xcrit = log �.

Figure 5. Mass flux and differential density dρmean/dx for the same wind
shown in Fig. 4. Colour indicates dρmean/dx as a function of radius a and
radial velocity ur. Solid lines show the acceleration law for material at a
range of starting surface densities x, i.e. material born with a particular
x corresponding to one of the lines will move along that line as it flows
outward. The lowest line corresponds to x = xcrit, and subsequent lines are
spaced so that 10 per cent of the wind mass flux at each radius is contributed
by gas with velocities between each pair of lines. The dot–dashed lines show
lines of constant line of sight velocity u = 1.5 for observations with total
impact parameter � = 0, 1, 2 and 4, as indicated (see Section 2.5).

In Fig. 5, we show how the acceleration law shown in Fig. 4
translates into masses and mass fluxes. Solid lines show wind ac-
celeration laws for different starting surface densities, i.e. they show
velocity versus radius for particular clouds. The lines are spaced so
that an equal amount of mass lies between each pair of them, and
they form a sequence in x, starting with x = xcrit (the lowest ve-
locity line) and then moving to lower x (higher velocity) with each
subsequent line. The colour shows the differential density of wind
material at any combination of radius a and velocity ur. Thus, for

example, one can read off from the colour scale that the densest
material at any given radius is at low velocity, and started with sur-
face densities x close to xcrit. Similarly, at any given velocity, the
mass budget will tend to be dominated by material at the largest
radius where there is any wind at all. However, we emphasize that
these statements are true for the particular example shown. Different
wind acceleration mechanisms and expansion laws would produce
different distributions in Fig. 5.

2.4 Domain of validity for momentum-driven winds

Before proceeding further, we pause to consider under what cir-
cumstances our simple kinematic model for wind acceleration is
reasonable. In particular, we assume that the force ṗ applied to the
wind does not explicitly depend on the distance a from the wind
launching region, though, as in the case of a radiatively driven or
hot gas-driven wind, it may indirectly depend on a through its de-
pendence on the wind density, velocity or some other property. This
is reasonable for a momentum-driven wind only if the momentum
transferred to the wind constitutes a relatively small fraction of the
total momentum budget available to the driving mechanism. For
example, in the case of radiation driving, our assumption of con-
stant ṗ and thus constant � is reasonable only for winds where the
optical depth averaged over scales much larger than an individual
cloud is small, so that the typical cloud that might be accelerated is
not shadowed by one closer to the source.4 If this were not the case,
then photons injected at small radii would not reach large radii, and
� would become a strong function of position. This limitation does
not apply to energy-driven mechanism such as the pressure exerted
by hot gas, since for these mechanisms different parts of the ex-
panding shell of cool material are in causal contact, and momentum
added to one region of the wind can be cancelled by momentum
added to the opposite region or to the central driving object.

To investigate under what circumstances our models are appropri-
ate for momentum-limited winds, we can compute the momentum
flux ṗsh(a) passing through a thin shell at radius a, and compare
this to the total momentum budget ṗ. We can write the momentum
flux as

ṗsh(a) =
∫ xcr

−∞

dṗ

dx
dx (16)

where

dṗ

dx
= v0Ua(x)

dṀ

dx
(17)

is the momentum flux carried by material with starting surface
densities in the range x to x + dx. Inserting our expression of
dṀ/dx (equation 9), we obtain

ṗsh(a)

ṗ
= 2

3fg�

(
r0

v0

) (
Ṁ

M0

)
1

ζM

∫ xcr

−∞
pMUa dx (18)

= 2

3fg�

(
tc

tw

)
1

ζM

∫ xcr

−∞
pMUa dx, (19)

where fg is the gas fraction, and in the second step we have defined
tc = r0/v0 and tw = M0/Ṁ as the crossing time and the wind mass
removal time, respectively. We can further simplify by noting that

4 Clouds may be shadowed at frequencies that are resonant with some line of
interest, and we explicitly allow for this possibility below. We only require
that such shadowing not be so broad in frequency as to substantially affect
the total momentum budget of the radiation field.
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the TK16 wind model predicts a wind mass flux Ṁ ≈ fgM0/ζMtc,
i.e. the mass flux is simply the gas mass fgM0 divided by the crossing
time (which is roughly the same as the free-fall time for a virialized
system), reduced by a factor of 1/ζ M representing the fraction of
the mass that is super-Eddington. Inserting this expression for Ṁ ,
we have

ṗsh(a)

ṗ
≈ 1

�

∫ xcr

−∞
pMUa dx. (20)

For our model to be valid for a momentum-limited driving mecha-
nism, this ratio should be �1.

It is immediately clear that an ideal wind cannot fully satisfy
this constraint if the material expands as y = a or faster, since in
this case the velocity diverges as a → ∞, and the momentum flux
therefore does as well. For all other driving mechanisms, and for
ideal driving with constant area, Ua remains finite as a → ∞, and
we can evaluate the maximum value of ṗsh(∞)/ṗ by substituting
in the limiting value of Ua. In Fig. 6 we plot the momentum flux
at infinity carried by an ideal wind with constant area clouds, and
by a radiatively driven wind for any expansion factor. We do not
make an analogous plot for hot gas-driven winds, because these are
energy-limited rather than momentum-limited, and thus can have
any value of ṗsh/ṗ.

From the figure, it is clear that the constraint that ṗsh(∞)/ṗ � 1
is well satisfied over most of parameter space for either radia-
tively driven or constant-area ideal winds. The only cases where
ṗsh(∞)/ṗ ∼ 1 for radiatively driven winds are for clouds with con-
stant solid angle, very high initial optical depth (τ 0 � 100), and
very high Eddington ratio (� � 0.3). This conforms with our in-
tuition about momentum-driven spherical shells, where we expect
the shell to gather all of the available momentum produced by the
source, as long as it remains optically thick (Thompson et al. 2015).
Over most of the parameter space of interest – e.g. log � ∼ −1 –
we can therefore safely use our models even for momentum-limited
winds. The physical reason ṗsh(∞)/ṗ � 1 for most of the region
of parameter space with � < 1 is fundamentally because only low
column density sightlines are accelerated, and these do not block a
significant fraction of the source.

2.5 Wind geometry

Thus far we have considered spherical, isotropic winds. However,
for winds driven from galaxies and AGN, then outflow is usually
blocked by the presence of large quantities of dense material over
solid angles subtended by the galactic or AGN accretion disc. More-
over, different chemical components of the wind (e.g. an ionized
component and a molecular component) may not always be mixed,
but may instead subtend different parts of the sky as viewed from
the driving object. In the context of our simple model, we idealize
this by considering that the wind may be limited to a certain range
of angle around some central axis. The wind is characterized by
an outer opening angle θout ∈ (0, π/2] and an inner opening angle
θ in ∈ [0, θout). The central axis of the wind is inclined by an angle φ

∈ [−π/2, π/2] relative to our line of sight, with φ = 0 correspond-
ing to the central axis lying in the plane of the sky and φ = π/2
corresponding to the axis pointing directly away from Earth. Thus
we can consider isotropic spherical winds, winds that are filled
cones, and winds that are sheaths bounded by an inner cone and an
outer cone.

Within this geometry, we consider some line of sight of interest,
and we characterize it by three coordinates, all of which we non-
dimensionalize by scaling to r0: � a is the impact parameter of the

Figure 6. Wind momentum flux through the shell at infinity, ṗsh(∞),
normalized by the driving momentum flux ṗ. The top panel shows this
quantity as a function of Eddington ratio � and Mach number M for an
ideal wind with constant-area clouds (i.e. a wind following the acceleration
law given in the top left entry in Table 1). Recall that M is the Mach
number of the region from which the wind is being accelerated, not the Mach
number of the wind gas (which we have implicitly assumed is �1, since we
treat thermal pressure as unimportant). The bottom three panels show this
quantity for radiatively driven winds with constant area, intermediate, and
constant solid angle clouds, as a function of � and the mean optical depth
τ 0; each of these calculations used M = 100. In each panel, colour shows
the value of ṗsh/ṗ at each parameter combination, while contours show loci
of constant log ṗsh/ṗ. The contours shown are log ṗsh/ṗ = −2,−1,−0.5
and 0, as indicated in the plot. The grey regions in the lower left corner of the
panels for radiatively driven winds are combinations of �τ 0 < 1, which are
forbidden because they do not result in a wind being driven. The shadowed
region in the upper right corner of the bottom panel indicates ṗsh/ṗ > 1,
where the model is invalid.

line of sight along the central axis of the wind, � t is the impact
parameter transverse to the wind axis, and s is position along the
line of sight, with s = 0 corresponding to the position where the
line of sight crosses the plane of the sky in which the wind centre
(a = 0) lies. Values of s < 0 correspond to the near side of the
wind to Earth, while s > 0 is the far side. We illustrate our adopted
geometry and coordinate system in Fig. 7.

The line of sight intersects the outer cone that defines the edges
of the wind region at any point (s, � a, � t) satisfying

(s cos φ − �a sin φ)2+� 2
t −(�a cos φ + s sin φ)2 tan2 θout =0,

(21)
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Figure 7. Geometry of our winds, showing only the upper half volume
� a > 0 to minimize confusion. In this example, we show a wind that is a
fully filled cone. The two panels show the same structures from two different
perspectives. The grey hemisphere shows the wind-launching region, while
the blue cone shows the outer edge of the wind region, with opening angle
θ = θout = 45◦. The black dashed line shows the central axis of the wind
cones, which is inclined at an angle φ = 10◦ relative to the line of sight.
The dotted and solid lines show an example line of sight with � a = 1.2,
� t = −0.3. The portions of this line of sight that lie within the wind are
drawn as solid, while the remainder is drawn as dotted.

subject to the constraint s2 + � 2
a + � 2

t > 1, and similarly for the
inner cone with opening angle θ in. It intersects the spherical region
within which there is no wind at any point satisfying s2 + � 2

a +
� 2

t = 1. Depending on the values of φ, θout, θ in, � a, and � t,
this system of non-linear equations may have a variable number of
solutions for positions along the line of sight s, which define where
the line of sight enters and exits the wind region. We refrain from
writing out all the possible cases, as they are somewhat tedious, but
it is straightforward to solve the equations to obtain them, and the
software required to do so is included in the public release as part
of DESPOTIC.

For the purposes of the remainder of this paper, we define s0, i

and s1, i as the positions s along the line of sight that define where

the line of sight enters and exits the wind, i.e. wind material exists
at any s satisfying s0, i < s < s1, i. If a given line of sight never exits
the wind on the near or far side, then s0, i and s1, i is −∞ or ∞,
respectively. We further denote by s+

0,i and s+
1,i the wind entry and

exit points only on the far side, s > 0, and we similarly denote by
s−

0,i and s−
1,i points on the near side. If a given line of sight is still

within the wind when it passes through the plane s = 0, then we will
have s−

1,i = 0 or s+
0,i = 0. Finally, we define the radii correspond-

ing to these points by a±
0,i =

√
(s±

0,i)2 + � 2
a + � 2

t , and similarly

for a±
1,i ; for notational simplicity we take the radii to always be or-

dered so that a±
0,i < a±

1,i < a±
0,i+1, and we define � = (�a, �t ), and

� = √
� 2

a + � 2
t .

3 L I N E A B S O R P T I O N B Y W I N D S

We are now in a position to compute the observable absorption
profile for light passing through the wind. In this calculation, we
assume that over the great majority of the wind the thermal veloc-
ity dispersion is small compared to the spread in wind velocities
associated with variations in the bulk velocity caused by variations
in the initial surface density x. We also assume that the solid angle
that clouds subtend is at most constant with radius, so y(a) ≤ a2.
Finally, we focus on the case of absorption of light from a back-
ground source at infinity, rather than light from the source galaxy
or star cluster located at the origin; the latter can be treated trivially
simply by neglecting absorption from any position s > 0, i.e. those
on the far side of the source.

Now consider a transition with oscillator strength �, produced
by a species for which the mass per member of the species is mX, i.e.
in gas of mass density ρ the number density of members of species
X is nX = ρ/mX. This is related to the abundance [X/H] of the
absorbing element relative to hydrogen, the ionization correction
fion, and the depletion factor fdep, by mX = μHmH/(fionfdep[X/H]),
where μH is the gas mass per H nucleus in units of mH (μH = 1.4 for
standard cosmic composition), fion is the fraction of the absorbing
element in the ionization state that produces the absorption, and
fdep is the fraction of the element that is in the gas phase rather
than depleted on to dust grains. The transition is between a lower
state � and an upper state u, which have degeneracies g� and gu,
respectively. The fractions of absorbers in the lower and upper
states are f� and fu, and the excitation temperature Tex is defined
as usual, exp (−hν0/kBTex) = g�fu/gun�, where ν0 is the line cen-
tre frequency. We are interested in computing the optical depth τ ν

produced by this transition for a measurement at line-of-sight ve-
locity v (corresponding to an observed frequency ν = ν0(1 + v/c))
along a line of sight that has a specific impact parameter. We define
u = v/v0 as the dimensionless line-of-sight velocity.

For this situation, the absorption coefficient is given by

κν = πe2

mec
�nXf�

(
1 − e−hν0/kBTex

)
φν, (22)

where φν is the line shape function, which measures the distribution
of the absorbers in frequency. For optical lines the fraction in the
lower state f� and the stimulated emission correction 1 − e−hν0/kTex

are generally both unity, but we retain them for generality, because
we shall discuss radio lines below. It is convenient to rewrite the
absorption coefficient in terms of the absorber velocity distribution,
as

κν = πe2

mec
�

λ0

v0
f�

(
1 − e−hν0/kBTex

) dnX

du
(23)
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where λ0 = c/ν0 is the line centre wavelength, and we use vacuum
rather than air wavelengths here and throughout. Note that, because
we have written κν as proportional to the gas bulk velocity distri-
bution dnX/du rather than the convolution of the bulk and thermal
velocity distributions, we have implicitly adopted a large-velocity
gradient approximation whereby we neglect thermal broadening in
comparison to bulk motion. Since we are concerned with the cool
components of the wind (temperature �104 K), this approximation
is quite reasonable: the thermal broadening for a species with atomic
mass μ in gas of temperature T is 9.1μ−1/2(T /104 K)1/2 km s−1,
while the winds with which we are concerned generally have ve-
locities of hundreds to thousands of km s−1.

To compute dnX/du, we need to compute the number density
absorbers within our observed beam. At a distance a from the origin,
using equation (13) the mean number density is

nX = 1

mX

∫ xcrit

−∞

dρmean

dx
dx. (24)

Since we are interested in the distribution of absorbers with respect
to velocity, it is helpful at this point to make a change of variables
from x to ur. Doing so gives

nX = 1

mX

∫ ∞

0

∑
i

dρmean/dx

|dUa/dx| dur, (25)

where dρmean/dx and dUa/dx are to be evaluated at overdensities
x = xi satisfying ur = Ua(x) with xi < xcrit. The summation is over
all such solutions, and the integrand is zero at values of (ur, a) such
that this equation has no real roots satisfying x < xcrit. We now make
one more change of variables: the quantity of interest to us is not
the radial velocity ur, but the line-of-sight velocity u. The two are
related by

u = ±ur

√
1 − � 2

a2
. (26)

Here the positive solution corresponds to the material at s > 0 and
the negative solution material at s < 0. Using equation (26), the
density is

nX = 1

mX

a√
a2 − � 2

∫ ∞

−∞

∑
i

dρmean/dx

|dUa/dx| du, (27)

where the summation is over solutions xi to the implicit equation

u2 = U 2
a (x)

(
1 − � 2

a2

)
, (28)

subject to the constraint x < xcrit. The density contribution dρmean/dx
and velocity derivative dUa/dx are to be evaluated at these solu-
tions. As above, if for a particular combination of u, � , and a
equation (28) has no real solutions with x < xcrit, then the integrand
is zero. With the volume density rewritten in the form given by
equation (27), it is trivial to extract the differential contribution of
the material at observed velocity u, which is simply

dnX

du
= 1

mX

a√
a2 − � 2

∑
i

dρmean/dx

|dUa/dx| . (29)

We can understand the procedure graphically via Fig. 5. In the
figure, the dot–dashed lines show loci of constant u = 1.5 through the
(a, ur) plane for a range of impact parameters � . For an observation
with a particular impact parameter � at a particular line-of-sight
velocity u, one can use the dot–dashed curve to read off the value
of x and the differential density dρmean/dx at each radius a. This
in turn defines the absorption coefficient at that radius. In the parts

of the figure where the dot–dashed line is outside the coloured
region, there is no material with line-of-sight velocity u, and thus
no absorption.

To proceed, we must now make some assumptions about geom-
etry. The need for a geometric assumption is easiest to understand
if we consider the analogous but simpler problem of computing the
amount of continuum light absorbed by dust along a line of sight.
For a fixed mass of dust, we will find very different amounts of light
are blocked if the dust is arranged into very small particles, each of
which is individually optically thin, than if we arrange the dust into
large boulders, each of which is individually opaque. The analogous
question in our line absorption case is whether the material in dif-
ferent radial shells is coherent over size scales such that individual
clouds become opaque. We will consider two limiting cases.

3.1 The uncorrelated case

First suppose that the clouds being ejected in the wind have such tiny
radial extents that each individually is optically thin, and that the
gas on different radial shells is completely uncorrelated – in effect,
the wind is like a mist, and each droplet in the mist is individually
transparent. This case is analogous to the case of dust consisting of
tiny particles. Since clouds are randomly placed, each one sees the
same average flux emerging from the direction of the source. Thus if
a flux Fν propagates a distance ds along a line of sight at a distance a
from the origin, it is reduced by an amount dFν = −κνFν ds. Since
κν is an explicit function of radius a, it is convenient to re-express
this as

dFν = −κν

(
a√

a2 − � 2

)
Fν r0 da, (30)

where the factor in parentheses is a geometric correction to account
for the angle between the radial length element da and the length
element along the line of sight ds. Note that this expression assumes
that scattering into the beam from other directions is negligible,
and thus is inapplicable for lines (e.g. Lyα) where this process is
important. If we let F (0)

ν be the flux at the point where the light
enters the wind, and insert equations (23) and (29) for κν , we can
integrate the equation to find the flux that reaches the observer at
infinity,

Fν = F (0)
ν e−τ

(uc)
ν , (31)

with

τ (uc)
ν = πe2

mec

�

mX

f�

(
1 − e−hν0/kBTex

) λ0

v0
r0

·
∑

j

∫ a±
1,j

a±
0,j

a2

a2 − � 2

∑
i

dρmean/dx

|dUa/dx| da. (32)

The summation here is over the ranges of radii when the line of sight
is within the wind; the positive sign applies to velocities u > 0, for
which only the far side of the wind can absorb, while the negative
sign applies to velocities u < 0, for which only the near side absorbs.
The superscript (uc) is to indicate that this is for the uncorrelated
case, and the integral here is dρmean/dx integrated along one of the
dot–dashed curves in Fig. 5. Inserting equation (13) for dρmean/dx
and simplifying gives

τ (uc)
ν = tX

tw
f�

(
1 − e−hν0/kBTex

)
�(uc)(u,� , 1,∞), (33)
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Table 3. Selected absorption line parameters. For each line or group of lines, we give a typical ionization correction (defined as the
fraction of that element in the ionization state that produces the absorption line) for low ionization sources such as star-forming galaxies
or LINERs, a depletion factor, an abundance relative to H, the mass per absorber/emitter mX, the oscillator strength �, and the strength
parameter tX (equation 34). Abundances and depletion factors for are taken from table 9.5 of Draine (2011), using their WIM values.
Oscillator strengths for atomic lines are from table 9.4 of Draine (2011) or table 2 of Morton (2003).

Line(s) fion fdep [X/H] mX [g] � tX [Gyr]

Mg I λ2853 0.1 0.64 4.4 × 10−5 8.2 × 10−19 1.0 34
Mg II λλ2796, 2804 0.9 0.64 4.4 × 10−5 9.3 × 10−20 0.62, 0.31 190, 95
Na I λλ5892, 5898 0.01a 1.0a 2 × 10−7 1.2 × 10−16 0.64, 0.32 0.32, 0.16
Fe II λ2383 0.5 0.14 3.5 × 10−5 9 × 10−19 0.32 8.5

aThe ionization fraction and depletion factor for Na are substantially uncertain, due to the fact that the dominant interstellar ionization
state, Na+, has no transitions at energies <13.6 eV. Only Na0 can be observed, and the ionization and depletion factors are determined
from its abundance coupled with an uncertain ionization correction. The depletion factor given in the table comes from Weingartner &
Draine (2001). However, the product fionfdep is better constrained than either one alone, and the value of 0.01 for this quantity that we
give in the table is consistent with these constraints (e.g. Rupke & Veilleux 2015). More discussion of the ionization state of Na is given
in Murray et al. (2007).

where we have defined the quantities

tX = �λ0

4GmX

e2

mec
(34)

tw = M0

Ṁ
, (35)

and

�(uc)(u, � , a0, a1)

= 1

ζM

∑
j

∫ min(a1,a±
1,j )

max(a0,a±
0,j )

∑
i

pM∣∣dU 2
a /dx

∣∣ 1

a2 − � 2
da. (36)

As a reminder, the integrand in the integral that defines
�(uc)(u, � , a0, a1) is to be evaluated at the solutions xi to
equation (28), and is taken to be zero if no real solution with x < xcrit

exists. The quantity tX (which has units of time) depends only on
fundamental constants and on the abundance of the absorbers, and
can be thought of as a parameter that describes the intrinsic strength
of the absorption feature in question. The quantity tw is a char-
acteristic time-scale for the wind; it is the time required for the
wind to carry away a mass M0. The function �(uc)(u,� , a0, a1) can
be thought of as a dimensionless version of the line shape func-
tion for material in the radial range from a0 to a1. In general, it
cannot be evaluated analytically, but is straightforward to compute
numerically.5

If there are multiple transitions that are closely enough spaced
in frequency that they must be considered together (e.g. doublets
such as Mg II λλ2796, 2804), then in the uncorrelated case we
can generalize equation (33) simply by adding the optical depths
contributed by each transition. Specifically, the optical depth for
multiple transitions becomes

τ (uc)
ν =

∑
k

tX,k

tw
f�,k

(
1 − e−hν0,k/kBTex,k

)

·�(uc)(u − uk,� , 1,∞), (37)

where the sum is over the k transitions under consideration, tX, k,
f�, k, ν0, k and Tex, k are the time-scale for each transition, lower
level population, rest frequency and excitation temperature for each

5 In this case, since a0 is always unity and a1 is always infinity, there is no
need to give the arguments explicitly. However, we retain them because we
will need them in subsequent discussions.

transition, and uk ≡ (1 − νk, 0/ν0, 0)(c/v0) is the dimensionless
velocity shift that corresponds to the wavelength separation of the
transitions.

Table 3 gives typical values of tX for frequently observed low
ionization species. We see that for many low ionization lines
tX/tw � 1 for any value of tw small enough (i.e. for any wind
mass loss rate Ṁ large enough) to be interesting from the stand-
point of galaxy formation. Depending on the transition selected and
the source in question, typical values of tX/tw are likely to be in
the range ∼1–100. Since we rarely observe complete absorption
by winds in these transitions, which is what we generally expect
for large tX/tw in the uncorrelated case, this is strong evidence that
reality is unlikely to be close to the uncorrelated case. We therefore
turn next to the correlated case.

3.2 The correlated case

If ‘flights’ of clouds that are launched at different times are corre-
lated in their angular coordinates, then equation (30) is not valid,
because all the material at a given radial position does not see the
same flux emerging from the direction of the source. Instead, the
flux incident to a given cloud may be reduced by absorption of
material closer to the source. This shadowed material absorbs no
additional light, but the correlation of material along some lines of
sight creates other lines of sight that are clear of gas and the source
is completely unabsorbed. As a consequence, the effective mean
optical depth for a particular wind is less than what it would have
been for uncorrelated clouds.

We can account for this effect as follows. First, we consider a
given ‘flight’ of clouds, ejected from the source over its dynamical
time. We assume that, at the point where it is launched, the wind
material is confined within a fraction fw of the total available solid
angle. At a distance a from the launching point, the fraction of the
solid angle covered is therefore

fc = fw
y

a2
. (38)

Within the covered region, clouds are more closely crowded to-
gether, which increases the mean volume density by a factor of 1/fc

compared to equation (13), and therefore the mean optical depth
within this solid angle increases by a factor of 1/fc compared to
equation (32). However, only a fraction fc of the light is attenuated
at all.

What is the value of fw? We note that gas in the launching region
should have a roughly lognormal distribution of area as well as
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mass, so that the differential area fraction occupied by material
with surface density between x and x + dx is given by

pA = 1√
2πσ 2

x

exp

[
−

(
x + σ 2

x /2
)

2σ 2
x

]
. (39)

In this case the total fraction of area subtended by regions from
which the wind is launched is

ζA =
∫ xcrit

−∞
pA dx = 1

2

[
1 + erf

(
2xcrit + σ 2

x

2
√

2σx

)]
, (40)

so as a rough guess one might set fw = ζ A. However, Raskutti,
Ostriker & Skinner (2017, submitted) find from their numerical
simulations that, while the distribution of mass with circumcluster
surface density follows a lognormal, the distribution of solid angle
with circumcluster surface density has an excess at low surface
density compared to a lognormal; this is equivalent to a lognormal
distribution that holds only within a fraction of the total available
solid angle. For this reason, we choose to leave fw as a free parameter,
for which ζ A is a rough estimate, but one that is probably a bit too
large.

In the limiting case in which all flights of clouds are aligned in
their angular distribution, and fw is the same for all flights of clouds,
the flux that reaches infinity in the case where y = a2 and thus fc = fw

is constant with radius will be

Fν = F (0)
ν {1 − fc + fc exp [−τν(∞)]} , (41)

where

τν(a) = r0

∑
j

∫ min(a,a±
1,j )

min(a,a±
0,j )

a′
√

a′2 − � 2

κν

fc
da′ (42)

= tX

tw
f�

(
1 − e−hν0/kBTex

)
�(c)(u,� , 1, a), (43)

and we have defined

�(c)(u,� , a0, a1)

= 1

ζM

∑
j

∫ min(a1,a±
1,j )

max(a0,a±
0,j )

1

fc

∑
i

pM∣∣dU 2
a /dx

∣∣ 1

(a2 − � 2)
da. (44)

The quantity τ ν(a) is the optical depth from radius a±
0,0 (i.e. the

minimum radius at which the line of sight is within the wind)
to radius a, accounting for the increase in attenuation that comes
from the absorbing material being concentrated into a fraction fc of
the available solid angle. Note that the quantity �(c) on which τ ν

depends differs from �(uc) only due to the extra factor 1/fc. Also,
we caution that as for the correlated case, equation (41) is not valid
for transitions where scattering into the beam from other directions
is significant.6

In equation (41), the term 1 − fc is the fraction of the solid angle
that is not covered, and thus from which light escapes unattenuated.

6 If there are multiple ‘flights’ of clouds that are internally corre-
lated but that were launched at different epochs and are not corre-
lated with each other, then equation (41) can be generalized to Fν =
F

(0)
ν

∏N
i=1

{
1 − fc,i + fc,i exp

[−τν,i (∞)
]}

, where there are N distinct
flights, and fc, i and τ ν, i(∞) are the covering fraction and optical depth
for flight i. In the limit N → ∞, and where the launching time interval and
thus the radial range that contributes to each τ ν, i(∞) becomes infinitesi-
mally small, this approaches the result for the uncorrelated case, equation
(33). However, since N is not generally known, we will, for the rest of this
paper, limit ourselves to the two limiting cases of a single correlated flight
or purely uncorrelated gas.

The term fce−τν (∞) is the product of the fraction of the solid angle
that is attenuated with the fraction of light that is transmitted through
this solid angle. The corresponding optical depth that would be
inferred by an observer at infinity who could not resolve individual
clouds within the beam is

τ (c)
ν = ln

F (0)
ν

Fν

= − ln {1 − fc + fc exp [−τν(∞)]} . (45)

Comparing this to equation (33), one can see with minimal algebra
that they are identical in the limit τ ν(∞) → 0. However, they behave
very differently in the limit τ ν(∞) → ∞, with τ (uc)

ν approaching
∞ as well in this case, while τ (c)

ν → − ln(1 − fc), and thus remains
finite.

The generalization of equation (41) to multiple overlapping tran-
sitions is the same as in the uncorrelated case,

τν(a) =
∑

k

tX,k

tw
f�,k

(
1 − e−hν0,k/kBTex,k

)

· �(c)(u − uk,� , 1, a). (46)

Physically, this amounts to saying that we simply add the contribu-
tions to the optical depth from each transition before considering
the effects of partial covering.

If y increases with radius more slowly than y = a2, then the
covering fraction decreases as clouds move away from the origin.
Consider light at a frequency corresponding to a velocity u < 0,
so it is attenuated only on the near side of the wind. The covering
fraction is at a maximum when this light begins to be attenuated
at a small radius, but it falls as the light moves farther from the
origin towards Earth. Thus some light will be attenuated only out
to a certain radius, and will not be attenuated at larger radii because
there will be no wind material covering it. The converse is true if we
consider the case u > 0. The covering fraction at s � 1 is small, so
no light is attenuated, but as the beam of light approaches the plane
s = 0 where the wind is being launched, the covering fraction rises,
so some light is again attenuated only within a certain distance of
the wind-launching plane.

For either near- or far-side attenuation, the flux that reaches in-
finity will be

Fν = F (0)
ν

{
1 − fc(a±

0,0) +
∫ ∞

a±
0,0

∣∣∣∣dfc

da

∣∣∣∣ exp [−τν(a)] da

}
, (47)

where |dfc/da| = fw|ay′ − 2y|/a2, and a±
0,0 is the smallest radius at

which the line of sight is within the wind and the covering fraction
is largest.7 As in equation (41), the term 1 − fc(a±

0,0) is the fraction
of the area that is never covered by wind material at any radius, and
thus is unattenuated. The integral in equation (47) is the integrated
transmission fraction for covered areas, and can be thought of as
a weighted average. Specifically, it is the fraction e−τν (a) of light
transmitted if attenuation occurs only out to radius a, weighted by
the fraction |dfc/da| da of the area that is attenuated only out to
radius a. The corresponding inferred optical depth will be

τ (c)
ν = − ln

{
1 − fc(a±

0,0) +
∫ ∞

a±
0,0

∣∣∣∣dfc

da

∣∣∣∣ exp [−τν(a)] da

}
. (48)

7 This expression is valid only for fc → 0 as a → ∞. Since this holds for
all the wind expansion laws with variable fc that we consider in this paper,
we refrain from giving the more general expression to avoid unnecessary
complexity.
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Figure 8. Profiles of optical depth τ ν (top panel) and transmission fraction
e−τν (bottom panel) as a function of velocity u for an ideal, spherical wind
in an isothermal potential, observed down the barrel (� = � t = 0). All
the lines are for winds with � = 0.2, M = 50, and the correlated case
uses fw = ζA = 0.33. The left column shows a wind with constant area
clouds, and the right column shows one with constant solid angle clouds.
Solid lines show the correlated case, and dashed lines show the uncorrelated
case. Colours indicate the value of tX/tw, from tX/tw = 0.1 (lightest) to
tX/tw = 100 (darkest) in steps of 0.5 dex. All calculations use lower state
fraction f� = 1 and excitation temperature Tex = 0.

Extending this solution to the case of multiple transitions is only
slightly more complex than in the case of fixed fc. The added com-
plication is that different transitions may have different signs of
u − uk, so some transitions produce absorption on the near side,
while others produce it on the far side. We cannot in general as-
sume that a+

0,0 = a−
0,0, and if fc is not constant then the fraction

of area that is not covered is different for the near and far sides,
i.e. fc(a+

0,0) �= fc(a−
0,0). However, this is easy to handle. Suppose

that a+
0,0 < a−

0,0, which under our assumption that fc is decreasing
with a (if it is not constant) implies that fc(a+

0,0) > fc(a−
0,0), i.e. that

the maximum covering fraction on the far side is higher than that
on the near side. In this case a fraction 1 − fc(a−

0,0) of the light
is not absorbed by gas on either the near or far side, a fraction
fc(a+

0,0) − fc(a−
0,0) is absorbed only on the far side, and a fraction

fc(a−
0,0) is absorbed on both sides. If a+

0,0 > a−
0,0, the converse is

true: some light is absorbed on neither side, some is absorbed only
on the near side, and some is absorbed on both sides. Considering
both possibilities, the corresponding effective optical depth is

τ (c)
ν = − ln

{
1 − fc(a∓

0,0) +
∫ a±

0,0

a∓
0,0

∣∣∣∣dfc

da

∣∣∣∣ exp
[−τ±

ν (a)
]

da

+
∫ ∞

a±
0,0

∣∣∣∣dfc

da

∣∣∣∣ exp
[−τ+

ν (a) − τ−
ν (a)

]
da

}
, (49)

where the upper sign in equation (49) applies if a+
0,0 < a−

0,0, the lower
if a+

0,0 > a−
0,0, and we define τ+

ν (a) and τ−
ν (a) as in equation (46),

except that τ+
ν (a) sums only over transitions for which u − uk > 0,

and τ−
ν (a) only over transitions for which u − uk < 0.

We show example optical depths and absorption profiles for sin-
gle transitions in Fig. 8. The plot shows both perfectly correlated

(equation 43) and uncorrelated (equation 45 or 48) cases, and also
compares absorption for a constant area case with a constant solid
angle case. For the correlated case, in this plot we use the approxima-
tion fw = ζ A. First comparing the uncorrelated and correlated cases,
we see that they are identical at large velocities, where the wind
becomes optically thin, but, as expected, they are very different at
velocities of order u ≈ 1, where even a moderate strength transition,
one with tX/tw ≈ 10, yields a wind that is completely opaque out to
line-of-sight velocities u ≈ 2. As noted above, this is not particularly
consistent with observations, which suggests that the correlated case
is more realistic. For the correlated case, the transmission saturates
at a minimum value of 1 − ζ A = 67 per cent for low velocities. For
constant solid angle clouds, this saturation level is reached at line-
of-sight velocities that can range from ≈20 per cent to ≈3 times the
escape speed, depending on the strength of the transition and the
wind mass flux.

4 LI NE EMI SSI ON BY WI NDS: SPECI ES IN
L O C A L T H E R M O DY NA M I C E QU I L I B R I U M

We next compute the emission profile for the wind. For a com-
pletely general emission mechanism, one where the emissivity is
a complex function of density and temperature and where radia-
tive transfer effects substantially modify level populations, such a
calculation can be accomplished only by brute force numerical in-
tegration. However, we can obtain a result analytically (at least up
to a straightforward numerical integral) in two limiting cases, both
of which are relevant for a wide range of observational diagnostics.
In this section we consider the first of these: transitions with critical
densities low enough that we can approximate the level popula-
tions as close to local thermodynamic equilibrium (LTE). The most
prominent example of this is emission in the low J lines of CO.

4.1 Line profiles

As for absorption, consider a line produced by an emitting species
for which there is one of that species per mass mX of gas. The species
has energy levels Ei with multiplicity gi, and we are concerned with
emission of a line corresponding to a transition between an upper
level u and a lower level �, for which the spontaneous emission rate
is Au�. In LTE, the fraction of the population in level i is given by
the usual Boltzmann distribution

fi = gie−Ei/kBT∑
j gj e−Ej /kBT

, (50)

where T is the gas kinetic temperature, which is identical to the
excitation temperature Tex for a species in LTE. The energy emission
rate per unit gas mass is

L
ρ

= 1

mX

fuEu�Au�, (51)

where Eu� = hν0 is the energy difference between the two levels,
and ν0 is the line centre frequency. Thus the energy emission rate
per unit volume for gas at radial distance a is

L = 1

mX

fuEu�Au�

∫ xcrit

−∞

dρmean

dx
dx, (52)

and making the same change of variables from x to line-of-sight
velocity u as in Section 3 gives

L = 1

mX

fuEu�Au�

a√
a2 − � 2

∫ ∞

−∞

∑
i

dρmean/dx

|dUa/dx| du, (53)
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Table 4. Selected emission line parameters; note that tX here is the same quantity as in Table 3, but for convenience we use different units in this table. The CO
abundance is set equal to the WIM C abundance taken from table 9.5 of Draine (2011); other abundances are the M82 values given in table 7 of Martı́n et al. (2006).
Einstein coefficients and wavelengths are taken from the Leiden Atomic and Molecular Database (Schöier et al. 2005, http://home.strw.leidenuniv.nl/∼moldata).

Line [X/H] mX � tX X(thin) α(thin)

[g] [Myr] [cm−2 / K km s−1] [M
 pc−2 / K km s−1]

CO 1.1 × 10−4 2.1 × 10−20

. . . J = 1 − 0 2.19 × 10−8 270 3.3 × 1018 0.036

. . . J = 2 − 1 2.92 × 10−8 180 1.4 × 1018 0.015

. . . J = 3 − 2 3.94 × 10−8 160 8.5 × 1017 0.0094
HCN 4.0 × 10−9 5.9 × 10−16

. . . J = 1 − 0 1.24 × 10−5 7.1 1.6 × 1020 1.8

. . . J = 2 − 1 1.65 × 10−5 4.8 6.6 × 1019 0.75

. . . J = 3 − 2 2.23 × 10−5 4.3 4.1 × 1019 0.47
CS 6.3 × 10−9 3.7 × 10−16

. . . J = 1 − 0 2.95 × 10−6 4.9 4.2 × 1020 4.7

. . . J = 2 − 1 3.93 × 10−6 3.3 1.8 × 1020 2.0

. . . J = 3 − 2 5.30 × 10−6 2.9 1.1 × 1020 1.2

where the sum as usual is over solutions xi to equation (28). The
specific luminosity at frequency ν is therefore

Lν = fu

mX

hc

v0
Au�

a√
a2 − � 2

∑
i

dρmean/dx

|dUa/dx| , (54)

where the final term is to be evaluated at a velocity
u = (c/v0)(1 − ν/ν0).

Because the wind can self-absorb, not all of the light that is
emitted at a given point will escape to infinity. Let τ ν(a) be the
optical depth at frequency ν from a given emitting radius a to the
observer at s = −∞. With this definition, we can compute the
specific intensity of light that an observer receives from the wind
by integrating along the line of sight:

Iν = r0

4π

∑
j

∫ a±
1,j

a±
0,j

Lνe−τν (a) a√
a2 − � 2

da, (55)

where the factor a/
√

a2 − � 2 accounts for the ratio of path length
ds to radial distance da. With some algebraic calculation, and invok-
ing the relation � = (gu/g�)mecλ

2
0/(8π2e2)Au� to convert between

Einstein coefficient and oscillator strength, we can rewrite this as

Iν = Bν(T )f�

(
1 − e−Eu�/kBT

) (
tX

tw

)
η(u, � ) (56)

where

η(u,� ) = 1

ζM

∑
j

∫ a±
1,j

a±
0,j

1

a2 − � 2
e−τν (a)

∑
i

pM

|dU 2
a /dx| da (57)

and Bν(T ) = (2hν3/c2)[1/(eEu�/kBT − 1)] is the usual Planck func-
tion. As for absorption of a background source, the characteristic
strength of the line is dictated primarily by a time-scale tX that
depends only on the abundance of the species and on quantum me-
chanical constants. We give values of tX for some lines of interest
in Table 4.

The remaining step in computing the line emission is to deter-
mine the self-absorption optical depth of the wind. Following our
calculation in Section 3, in the uncorrelated case the optical depth
at frequency ν for an emitting region at radius a to the observer
located at s = −∞ is

τ (uc)
ν = tX

tw
f�

(
1−e− Eu�

kBT

)
·
{

�(uc)(u, � , a, ∞), u < 0

�(uc)(u, � , 1, a), u > 0
. (58)

Here the case u < 0 represents emission coming from the near side
of the wind, which is absorbed by material at larger radii, so �(uc)

is evaluated from a to ∞. The case u > 0 corresponds to emission
from the far side, so absorption is by material at smaller radii and
the optical depth is computed from 1 to a.8

While self-absorption is exactly the same as absorption of light
from a background source in the uncorrelated case, they are not
identical in the correlated case. If clouds maintain a constant solid
angle so that the covering fraction fc is constant, then in the case of
self-absorption the entire emitting region is always covered, rather
than only a fraction fc of the emission as we assumed for absorption
of a background source – the absorbers line up perfectly with the
emitting region. Thus for constant fc (meaning cloud expansion as
y = a2) the optical depth is simply

τ (c)
ν = tX

tw
f�

(
1 − e− Eu�

kBT

)
·
{

�(c)(u, � , a, ∞), u < 0

�(c)(u, � , 1, a), u > 0
, (59)

i.e. the same as in the uncorrelated case (equation 58), but with �(c)

in place of �(uc). Since �(c) is larger than �(uc) by a factor of 1/fc,
this will produce higher absorption than in the uncorrelated case,
which is the opposite of the effect correlation has on background
absorbers. However, this is exactly as we should expect: if the gas
is clumped together in angle, it will be less effective at blocking
light emitted by a randomly placed background source, but more
effective at blocking light emitted by the gas itself.

If clouds do not maintain constant solid angle, then there is an
asymmetry between emission from the near and far sides. Recall
that we have assumed that the covering factor is non-increasing with
radius. This means that light emitted on the far side (u > 0) is emitted
in a region of the lower covering factor and then moves through a
region of the higher covering factor on its way to the observer. If the
wind is perfectly correlated, this means that the emitting region will
be fully covered at all radii, and so the optical depth is the same as
for the case of constant fc, i.e. it is the value given by equation (59).
In contrast, light emitted on the near side (u < 0) is emitted in a
region of the high covering factor and then moves through a region

8 Light emitted on the far side must, of course, pass through the near side too,
but since all the near side gas is at velocities u < 0, and we are neglecting the
velocity dispersion of the wind material in comparison to its bulk motion,
gas on the near side cannot absorb light from the far side, which has u > 0.
Thus only the far side contributes to the optical depth.
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Figure 9. Ratio of brightness temperature TB to gas kinetic temperature
T versus normalized velocity u for CO J = 1 − 0 emission from a spher-
ical, ideal wind with � = 0.2, M = 50. The top two panels show impact
parameter � = 0, and the bottom two show � = 2. The left column shows
winds with constant area clouds, while the right column shows winds with a
constant solid angle. Lines show results for values of tX/tw = 0.1 (lightest)
to tX/tw = 100 (darkest) in steps of 0.5 dex. As in Fig. 8, solid lines show
the correlated case, and dashed lines show the uncorrelated case.

of the lower covering factor as it propagates. In analogy to equation
(48), this produces an attenuation factor e−τ that is an area-weighted
average of the attenuation factors experienced by different portions
of the emitting region,

τ (c)
ν = − ln

{
1

fc(a)

∫ ∞

a

∣∣∣∣dfc

da′

∣∣∣∣
· exp

[
− tX

tw
f�

(
1 − e− hν0

kB T

)
�(c)(u,� , a, a′)

]}
da′. (60)

We show example LTE line emission profiles in Fig. 9; rather than
plotting intensity directly, we plot brightness temperature TB, the
temperature of a blackbody that produces the specified intensity at a
given frequency. The figure shows the results for the CO J = 1 − 0
line for gas at a temperature of T = 50 K, which gives f� = 0.05 and
Eu�/kBT = 0.11. As in Fig. 8, we adopt fw = ζ A for the correlated
case. Note that there is a small asymmetry between the near (u < 0)
and far (u > 0) side line emission, as expected based on the above
discussion, but for the parameters shown here, it is small enough
that it is not easily visible on the plot.

4.2 Integrated Intensity and the ‘X Factor

It is also of interest to examine the velocity- or frequency-integrated
intensity, and the closely related ‘X factor used to convert an inte-
grated intensity to a gas column (or equivalently an α factor used
to convert to a mass per unit area). We can obtain the integrated in-
tensity by integrating the line profile (equation 56) over frequency,
giving∫

Iν dν = Bν(T )f�

(
1 − e−Eu�/kBT

) (
tX

tw

) (
v0

λ0

)
�(� ) (61)

where

�(� ) =
∫ ∞

−∞
η(u,� ) du. (62)

We may write the velocity-integrated antenna temperature (with
respect to which X is more commonly defined) corresponding to
equation (61) as∫

TA dv = Tu�v0f�

(
1 − e−Eu�/kBT

) (
tX

tw

)
�(� ), (63)

where Tu� = Eu�/kB. This quantity can be compared to the total gas
column density along a line of sight to compute an X factor. The
total hydrogen column per unit area is given by

NH = v0

4πGμHmH

1

tw
� (thin)(� ), (64)

where μH is the mean mass per H nucleus in the gas, and we have
defined � (thin)(� ) as �(� ) with τ ν = 0, i.e. � (thin)(� ) is simply
the function �(� ) in the limit that all photons escape. Combining
the antenna temperature and the column, the X factor for any given
transition is

X = NH∫
TA dv

= X(thin)

fu

� (thin)(� )

�(� )
, (65)

where fu is the fraction of the population in state u, and

X(thin) = 8π

Au�Tu�λ
3
0 [X/H]

(66)

depends only on the abundance [X/H] of the species in question
and the quantum mechanical constants for the line. The combination
X(thin)/fu is the X factor if the gas is optically thin. The equivalent α

factor is

α = α(thin)

fu

� (thin)(� )

�(� )
(67)

with

α(thin) = 8πmX

Au�Tu�λ
3
0

. (68)

We give values of X(thin) and α(thin) for some commonly observed
lines in Table 4. Fig. 10 shows example calculations of integrated
intensity and XCO for CO J =1–0 emission, using the same param-
eters as shown in Fig. 9. Note that formally XCO diverges at � = 1
exactly; this is an artefact of assuming that the gas velocity is exactly
0 at a = 1.

5 LI NE EMI SSI ON BY WI NDS: O PTI CALLY
T H I N , SU B C R I T I C A L L I N E S

The other case for which we can compute emission analytically is
for lines with critical densities significantly higher than the mean
density for in the wind, and where radiative trapping effects are
unimportant; examples of this include collisionally excited emission
in the C II 158 μm line and recombination radiation in Balmer and
Paschen lines.

5.1 Emissivity and the microscopic density

For a subcritical line produced by collisions between two partners
with number densities n1 and n2, the emission rate per unit volume
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Figure 10. Velocity-integrated brightness temperature normalized to v0T
(top row) and CO to H2 conversion factor XCO or αCO (bottom row), both
plotted as a function of projected radius � . All quantities plotted are for CO
J =1–0 emission from a spherical, ideal wind with � = 0.2, M = 50 and a
temperature of 50 K. The left column shows winds with constant area clouds,
while the right column shows winds with a constant solid angle. Lines show
results for values of tX/tw = 0.1 (lightest) to tX/tw = 100 (darkest) in steps
of 0.5 dex. As in Fig. 9, solid lines show the correlated case, and dashed
lines show the uncorrelated case.

is proportional to n1n2. Let the total rate of energy emission per unit
volume by the gas be

L = �

(
ρ

mH

)2

, (69)

where ρ is the gas density, � is a cooling constant for the line, with
units of energy per unit volume per unit time and mH is the gas mass
per H nucleus. With this definition, the cooling rate constant � is
defined such that it is the rate of radiative emission per H nucleus
squared. It depends on the abundances of the species in question
and on the rate coefficients describing line emission; specifically,
for a line produced by a collision or reaction between two species
with abundances [X1/H] and [X2/H] and a rate coefficient k12, the
cooling constant is

� =
[

X1

H

] [
X2

H

]
k12

hc

λ0
, (70)

where λ0 is the wavelength for the transition in question. We limit
our calculation to cases where we can treat � as at least approx-
imately constant over the radiating region of the wind. Examples
of � for some lines of interest are given in Table 5. Note that our
assumption of constant � is not valid in cases where phase changes
within the wind significantly influence its emission; for example, if
cool clouds capable of producing C II emission only condense out
of a hot phase at radii a � 1, as happens for example in the model
of Thompson et al. (2016), our simple calculation cannot capture
this effect without including the additional phase information.

The density ρ, which appears in equation (69), is in general not the
same as the mean density ρmean computed in Section 2.3. Knowledge
of the mean density is sufficient to compute absorption and LTE
emission profiles, because for both of these processes the absorption

Table 5. Parameters for selected low critical density lines. Species lists the
species whose collision produces the line. Abundances for C II and O I are
the CNM C and O abundances given in table 9.5 of Draine (2011), while
those for Hα and Hβ assume fully ionized hydrogen and singly ionized
helium. Rate coefficients are taken from the Leiden Atomic and Molecular
Database (Schöier et al. 2005, http://home.strw.leidenuniv.nl/∼moldata) at
a temperature of 200 K for the low far-IR forbidden lines; the underlying
atomic data are from Launay & Roueff (1977) and Barinovs et al. (2005)
for C+ and Abrahamsson, Krems & Dalgarno (2007) for O. For Hα and Hβ

we use the case B effective α values at a temperature of 104 K and a density
of 103 cm−3 taken from table 14.2 of Draine (2011).

Line Species [X1, 2/H] � (erg cm3 s−1)

[C II] 158 μm C+, H 1.1 × 10−4, 1 1.4 × 10−28

[O I] O, H 4.6 × 10−4, 1
. . . 63 μm 1.5 × 10−28

. . . 145 μm 1.0 × 10−29

Hα H+, e− 1, 1.1 3.9 × 10−25

Hβ H+, e− 1, 1.1 1.4 × 10−25

and emission rates per unit mass are constant. For subcritical lines,
however, the emissivity per unit mass is not constant, and depends
on the local, microscopic density. This is much more uncertain than
the mean density, because it depends on the detailed interaction
between clouds and their surroundings in the wind. For example,
as clouds are accelerated by a hot wind, they may also be crushed.
This will not change the mean density in the wind, but it will change
the local density and thus enhance the rate of emission in subcritical
lines.

Given this complexity, our approach is to parametrize the prob-
lem. We can set a lower limit on the microscopic density by con-
sidering the case where the clouds are not compressed at all. This
amounts to computing the density for clouds that have initial column
�0/�̄0 = ex and area ratio A/A0 = y (where A0 is the area occu-
pied by the cloud when it is at radius r0, so y = �0, c/�c = A/A0,
assuming constant cloud mass) by assuming that the volume filling
fraction at r/r0 = a is equal to the solid angle filling fraction. If the
material has a log-normal distribution of area at radius r0, the initial
differential area occupied by material with column density in the
range x to x + dx is

dA0

dx
= 4πr2

0 pA (71)

where

pA = 1√
2πσ 2

x

exp

[
−

(
x + σ 2

x /2
)2

2σ 2
x

]
. (72)

The cross-sectional area of the same material when it reaches radius
r is simply dA = y dA0, and the fraction of the total solid angle is
df� = dA/(4πr2) = (ypA/a2) dx. The solid angle PDF is then

df�

dx
≡ p� = y

a2
pA, (73)

where this represents the fraction of the total solid angle containing
clouds with this x. Since we have the mapping Ua between u, x and
a, equation (73) implicitly defines the differential covering fraction
as a function of u and a.

The lower limit on microphysical density comes from assuming
that df�/dx also characterizes the volume filling factor of gas at
density x. In this case, the microphysical density of gas character-
ized by x, when it reaches radius a, is then given by the ratio of the
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contribution of that gas to the mean density, dρmean/dx (equa-
tion 13), to its contribution to the volume df�/dx = p�:

ρmicro,min(x, a) = ρnorm

(
pM

pA

)
1

Uay
. (74)

Given this result, we choose to write the actual microphysical den-
sity as

ρmicro(x, a) = cρρnorm

(
pM

pA

)
1

Uay
, (75)

where cρ is a clumping factor whose value is ≥1. If cρ does not vary
strongly with position or velocity, then it provides only an overall
scaling to the emission profile, without changing its shape.

5.2 Line profiles

Now that we have computed the microphysical density, we are
prepared to compute the line profile. Following the same approach
as in Section 4.1, the energy emission rate per unit volume for gas
at radial distance a is

L = �

mH

∫ xcrit

−∞

ρmicro

mH

dρmean

dx
dx (76)

and the specific luminosity at frequency ν is therefore

Lν = �

mH

λ0

v0

a√
a2 − � 2

∑
i

ρmicro

mH

dρmean/dx

|dUa/dx| . (77)

The intensity received by an observer at s = −∞, assuming that the
gas is optically thin, is

Iν =
[

cρ

18π
�

(
ρ0

mH

)2

r0

]
λ0

v0

(
tc

tw

)2

�(u, � ) (78)

with

ρ0 = 3M0

4πr3
0

(79)

tc = r0

v0
(80)

and

�(u,� ) = 1

ζ 2
M

·
∑

j

∫ a±
1,j

a±
0,j

1

ya(a2 − � 2)

∑
i

p2
M

pA

1

Ua

∣∣dU 2
a /dx

∣∣ da.

(81)

We can provide a physical interpretation to equation (78) as follows.
The first term, in square brackets, is up to factors of order unity the
characteristic intensity we would expect to be produced in the region
from which the wind is launched, since it involves the emissivity
multiplied by the square of the number density multiplied by the
size scale r0. The term λ0/v0 is the characteristic frequency width of
the emission. Thus the product of these two terms should roughly
describe the intensity of emission at u = 0, where emission is
presumably dominated not by the wind but by gas in the emitting
region.9 The term tc/tw is the ratio of the crossing time to the
wind ejection time; it provides a dimensionless measure of how

9 In fact, for some wind acceleration laws �(u, � ) diverges as u → 0.
This divergence is a result of a breakdown in the large-velocity gradient
approximation we have adopted. One cannot neglect the thermal velocity

Figure 11. The optically thin subcritical emission function �(u, � ) (equa-
tion 78) versus line-of-sight velocity u. All calculations show an ideal, spher-
ical wind with M = 50. The top two panels show impact parameter � = 0,
and the bottom two show � = 2. The left column shows winds with constant
area clouds, while the right column shows winds with a constant solid angle.
Lines show a range of values of �, from log � = 0 (darkest) to log � = −2
(lightest), in steps of 0.25 dex.

quickly the wind is evacuating the launching region, and thus how
much mass it contains at any given time. Finally, �(u, � ) is a
dimensionless function that determines the precise shape of the
emission in frequency. This term, together with tc/tw, determines
the brightness of the line wings, which come from the wind, will
be in comparison to the core of the line, which is dominated by the
wind-launching region.

We show an example calculation of optically thin line emission in
Fig. 11. Note that we plot only the shape function �(u, � ), because
for an optically thin subcritical wind the intensity is simply this
function multiplied by a dimensional constant.

The corresponding frequency-integrated intensity is∫
Iν dν = r0

4π

∑
j

∫ a1,j

a0,j

∫ xcrit

−∞
L a√

a2 − � 2
dx da (82)

With a bit of algebraic calculation, this reduces to∫
Iν dν =

[
cρ

36π
�

(
ρ0

mH

)2

r0

]
ξ (u,� ) (83)

where

ξ (� ) = 1

ζ 2
M

∑
j

∫ a±
1,j

a±
0,j

1

ya
√

a2 − � 2

∫ xcrit

−∞

p2
M

pA

1

U 2
a

dx da. (84)

However, we caution that this quantity is undefined for any location
in the flow where U 2

a = 0 at finite x. This is because the assumption
to steady state must break down in such cases. However, this di-
vergence does not prevent � from being well-defined at velocities
u > 0.

dispersion of the wind material at velocities near 0. However, this issue
only affects velocities smaller than the thermal velocity dispersion, i.e. �
10 km s−1.
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6 C A S E ST U DY: A N M8 2 - L I K E S TA R BU R S T

In this section we demonstrate the applications of our formalism by
computing a range of observable properties for the cool wind from
a galaxy whose bulk physical parameters are chosen to match those
of the dwarf starburst M82. In the process we will be able to make
a number of remarks about how the observable properties of wind
absorption and emission can be connected to the physical properties
of the underlying wind. We caution that in this section we are not
attempting to match the observed emission of M82 directly; such
an effort would require significant model fitting, a task we leave to
the next paper in this series. Our goal here is merely to demonstrate
that our model, though simple, can reproduce the major qualitative
features of a real wind.

6.1 Physical parameters for the model

The starbursting centre of M82 has a diameter of ≈29 arcsec
(Kennicutt 1998), corresponding to a radius r0 ≈ 250 pc. The circu-
lar speed at the edge of this region is ≈120 km s−1 (Greco, Martini
& Thompson 2012), so we take v0 to be a factor of

√
2 larger,

v0 = 170 km s−1. (Recall that v0 is the escape speed just consid-
ering material interior to radius r0 – the true escape speed for a
realistic halo will be substantially larger.) The corresponding mass
is M0 = 8.2 × 108 M
, which agrees well with the dynamical mass
measured by Förster Schreiber et al. (2001). We assume that the
potential is isothermal. The wind may be driven either by radiation
pressure (Coker, Thompson & Martini 2013) or by the hot gas,
which has a terminal velocity vh ≈1400–2200 km s−1 (Strickland
& Heckman 2009), corresponding to uh ≈ 10. For the purposes
of this example, we assume the latter and therefore use hot wind
model with uh = 10. For our fiducial model we assume constant
solid angle clouds.

To make a model of this system, we require knowledge of the
Mach number M and the Eddington ratio �. For the former, we
note that the gas velocity dispersion in the disc is measured to be
≈40 km s−1 (Leroy et al. 2015b), and the molecular gas temperature
within the galaxy is ≈50 K or more (Wild et al. 1992); combining
these gives M ∼ 100. For the latter, we assume that the isotropic
mass loss rate Ṁ , fraction of area from which the wind escapes
fA, and the Eddington ratio � are related as predicted by the TK16
model, which gives the mass loading factor η as a function of the
Eddington ratio. Specifically

η = fAṀ

Ṁ∗
= ζM

εff
, (85)

where εff ≈ 0.01 is the star formation rate per free-fall time
(Krumholz 2014b, and references therein) and Ṁ∗ = 4.1 M
 yr−1

is M82’s star formation rate (Kennicutt 1998) adjusted to a Chabrier
(2005) IMF. Since ζ M is a function of � andM, this relation enables
us to derive � for any value of Ṁ . As a fiducial parameter we adopt
an isotropic mass loss rate Ṁ = 100 M
 yr−1 and an area fraction
fA = 0.22 (see below), which corresponds to a total mass loss rate
of 22 M
 yr−1, consistent with the recent estimate of Leroy et al.
(2015b). Formally, we note that this should be interpreted as the
mass loss rate only in a single chemical phase, either ionized or
molecular, so that the actual mass loss rate incorporating all phases
is twice as large.

Finally, we require knowledge of the geometry. Observations of
line splitting strongly suggest that the wind geometry is biconical,
at least for the cool phase, with a moderate opening angle and a
small inclination relative to the plane of the sky (e.g. Heckman,
Armus & Miley 1990; McKeith et al. 1993, 1995; Shopbell &

Bland-Hawthorn 1998; Coker et al. 2013; Leroy et al. 2015a). For
the purposes of our example, we use φ = −5◦, θ in = 30◦, and
θout = 50◦, which are within the range of the published estimates.
The fraction of available area through which the wind is ejected is
fA = cos θ in − cos θout = 0.22. Again, we caution that our goal is
not to reproduce the observations precisely, but rather to reproduce
them qualitatively, so that a precise match can be used to constrain
the parameters of the model.

6.2 The fiducial model

We first examine a fiducial model with the parameters described
in the previous section, before considering how the results would
change if we were to alter some of the more uncertain of those
parameters. We show the Hα emission expected from our wind in
Fig. 12. This computation uses the value of � given in Table 5, and a
clumping factor cρ = 1, and thus should be regarded as a lower limit
on the true emission. We note that the model produces clear line
splitting and limb-brightening features as a result of the biconical
geometry. The median velocity shifts from negative to positive as
one moves upward along the wind cone, and there is an asymmetry
between the positive and negative velocity portions of the spectra.
Both of these features are a result of the tip in the wind cone, i.e.
the fact that φ �= 0.

Fig. 13 shows a map of CO J = 1 − 0 emission for our model, in
the same form as that for Hα shown in Fig. 12. For this computation
we use a gas temperature of 50 K, and the value of tX shown in
Table 4. Qualitatively the result is similar to that we obtain for the
Hα, including the effects of limb brightening and line splitting. The
overall intensity is comparable to that measured for M82 by Leroy
et al. (2015b).

In Fig. 14 we show absorption spectra for the Mg II λλ2796,
2804 and Na I λλ5892, 5898 doublets, computed using the same
model and measured at a range of distances along the wind axis.
We use fw = ζ A for the wind-filling fraction. For this computation,
we use the value of tX (and thus the abundance, depletion factor, and
ionization correction) given for these doublets in Table 3, and we
assume the correlated case. We also assume that the source being
absorbed is behind the wind, since in the geometry of M82 (and
unlike the case for many high-redshift observations) the wind cone
does not cover the disc of the galaxy.

We see that the Mg II doublet, due to its very large strength,
produces deep absorption features broad enough that the two dou-
blet transitions overlap. Moreover, because the optical depth along
obscured lines of sight greatly exceeds unity even for the weaker
doublet transition, the absorption features from the two transitions
are of nearly equal strength. Absorption is not total only because the
wind-filling factor is less than unity. In contrast, the much weaker
Na I transition is not opaque along most lines of sight. This produces
a clear difference in the strength of the two transitions, particularly
at larger elevations where the overall optical depth is smaller. For
both species the spectral shape is complex, as a result of the com-
bination of there being two physical components to the wind (the
near and far sides of the wind cone) as well as two transitions, with
comparable velocity shifts between the physical components and
the transitions.

6.3 Variations: dependence on cloud expansion, potential,
mass outflow rate

Having considered the fiducial model, we now turn to the question
of how the predictions of the model depend on three key parameters:
the rate at which clouds expand as they are accelerated by the wind,
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Figure 12. Computed Hα emission from our M82-like galaxy. The left-hand panel shows the velocity-integrated surface brightness of the line, as a function
of projected distance from the wind axis, which lies in the xz-plane. The angular distances given on the top and right axes are for an assumed distance of
3.5 Mpc. The grey region indicates lines of sight that do not intersect the wind, and the central circle is the wind-launching region. The right-hand panel shows
Hα line spectra measured at eight positions evenly along the wind axis, starting at z = −2 kpc (bottom) and increasing to z = 2 kpc (top) in steps of 0.5 kpc
(skipping z = 0, where there is no wind). These positions are marked with white squares in the left-hand panel.

Figure 13. Same as Fig. 12, for the CO J = 1 − 0 line rather than the Hα line. The intensity shown is the velocity-integrated antenna temperature.
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Figure 14. Transmission fraction versus wavelength for our M82-like
galaxy in the Mg II λλ2796, 2804 and Na I λλ5892, 5898 doublets. Black
lines show the total transmission fraction, while red and blue lines, respec-
tively, show the effects of the shorter and longer wavelength transitions of
the doublet by themselves. As indicated on the right, rows show a range
of positions along the wind central axis, from z = −2 kpc (bottom) and
increasing to z = 2 kpc (top) in steps of 0.5 kpc (skipping z = 0, where there
is no wind). These positions are the same as those used for the Hα emission
spectra shown in Fig. 12. Note that all Mg II spectra use the same y-axis
scale, but for Na I the scales are different in different panels. The central
wavelengths for the two transitions of the doublets are marked by dotted
vertical lines. The velocity scale shown on the top axis is relative to the
lower frequency of the two transitions.

the shape of the potential, and the overall mass flux of the wind. The
latter is generally the quantity of greatest interest, while the other
two quantities are essentially a nuisance parameter that, we as shall
see, contributes significantly to our uncertainty in the outflow rate.
This exercise will allow us to determine how well these quantities

Figure 15. Hα intensity measured at a position 1 kpc above the disc, along
the outflow central axis, for our M82-like model. The left- and right-hand
columns show the results for point and isothermal potentials, respectively,
while the rows from top to bottom show the results for clouds with constant
area, intermediate expansion and a constant solid angle. In each panel,
solid lines show the intensity for isotropic mass outflow rates from 10
to 1000 M
 yr−1, from lightest to darkest, in steps of 1/3 of a dex; the
actual mass outflow rate, considering our adopted geometry, is a factor
of 0.22 smaller. The red dashed line, which is the same in each panel,
is the line profile for the fiducial case of Ṁ = 100 M
 yr−2, isothermal
potential, constant solid angle expansion. The black vertical dotted lines
show velocities of ±v0.

can be deduced from observations of the spectrum. (The geometric
parameters will also, of course, affect the wind, but for simplicity
we treat them as fixed here.)

For the purposes of this test, we consider isotropic mass out-
flow rates with a ±1 dex range about our fiducial estimate Ṁ =
100 M
 yr−1, and we consider not just the fiducial case of constant
solid angle and an isothermal potential, but also the cases of con-
stant area and intermediate expansion, in both point and isothermal
potentials. For simplicity we focus on spectra taken 1 kpc above the
disc, along the central outflow axis; results for other positions yield
qualitatively similar conclusions.

Figs 15, 16, 17 and 18 show the Hα emission, CO emission, Mg II

absorption and Na I absorption spectra, respectively, that we obtain.
Clearly the expansion law can have as much as or more impact on
the observed spectrum than the outflow rate. We can make a few
remarks as to why. For Hα, we see line splitting only in the case
of constant solid angle clouds or intermediate expansion in a point
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Figure 16. Same as Fig. 15, but showing CO rather than Hα emission
spectra.

potential. For CO, the line splitting is much stronger for constant
solid angle clouds or for intermediate expansion in a point potential
than in the other cases. The reason is simple. Due to our adopted
geometry, there is no material whose direction of motion is purely
in the plane of the sky, so to have emission near zero velocity there
must be material in the wind with small radial velocity. Material
at small radial velocity exists at large radii only if the potential
m grows as fast as or faster than the cloud area y; in cases where
this is not the case, there is a dip in emission near v = 0. Absent
this condition being met, emission continues all the way to v = 0.
(However, this is only true of material with density near xcrit actually
enters the wind; see Appendix A.)

For the case of CO emission, we see a related phenomenon: the
positive–negative velocity asymmetry is much larger for smaller
expansion rates than for larger ones. The reason is the asymmetry
pointed out in Section 4.1: at positive velocity, regardless of whether
we are observing the portion of the outflow cone that is tipped
slightly towards or slightly away from us, the light we see was
emitted by that part of the outflow cone that lies on the far side of
the plane of the sky. As this light travels to us, it can be absorbed
only by gas that is at radii smaller than itself. At negative velocity,
the converse is true: regardless of where on the plane of the sky we
observe, the light at positive velocities must been emitted by gas
that lies closer to us than the plane of the sky. As it travels to us, it
is therefore going from smaller to larger radii. These two situations
are asymmetric: if clouds expand as they move out, then absorption
by material at smaller radius blocks much less light than absorption
by material at larger radius, because the small-radius absorbing

Figure 17. Same as Fig. 15, but showing Mg II absorption rather than Hα

emission spectra. The velocities given on the top horizontal axis are relative
to the shorter wavelength transition of the doublet, and the two vertical black
dotted lines show the central wavelengths of the two double transitions. Note
that the vertical axis range is different for each row.

clouds cover less area than the large-radius ones. Thus the positive-
velocity, far-side light is less absorbed than the negative-velocity,
near-side light, producing an asymmetry whereby the red side of
the line is brighter than the blue one. It is worth noting that, while
this is a phenomenon similar to p Cygni line profiles, the physics is
somewhat different from that in the classical p Cygni profile in that
what drives the asymmetry is not density or temperature variation
with radius. Instead, it is variations in the covering factor with a
radius.

For Hα emission and for both absorption measurements, we see
that the effect of outflow rate on the emission profile is generally
much smaller than the effects of expansion. For emission, the effect
is not even in the same direction at all velocities. An increase in
the outflow rate increases the value of the Eddington ratio �, which
in turn produces less emission at small velocity and more at large
velocity. For absorption, increasing the outflow rate decreases the
transmission fraction at all wavelengths, but does so in a complex
way that combines two different effects. As � increases, the cov-
ering fraction of the outflow material goes up, and this manifests
in the absorption spectra as an increase in the width and depth of
the flat bottoms of the absorption features. However, the increasing
mass outflow rate also increases the amount of material. This has
no effect for velocities already covered by optically thick material,
as is the case for most of the Mg II spectra, but it does increase the
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Figure 18. Same as Fig. 17, but for Na I instead of Mg II.

absorption feature depth for more optically thin velocities and trac-
ers, for example across the Na I spectra in the constant solid angle
case. In any event, the takeaway conclusion from this complexity
is that there is no simple way to deduce an outflow rate from an
observation of subcritical emission or absorption without fitting the
full spectrum. In contrast, for LTE emission, for example from CO,
the strength of the wind features in the spectrum does correlate
strongly with the outflow rate, particularly for positive velocities
(i.e. emission from the far side) some distance from line centre,
where geometric opacity effects are less important.

A third interesting point is that the potential matters significantly
less than the expansion rate. Expansion rates always affect the re-
sult, but the potential matters only near the transition between y > m
and y < m., i.e. between a fountain and a wind. Because of the im-
portance of the expansion rate, the often-used strategy of attempting
to differentiate between wind and fountain material by dividing be-
tween emission at velocities above and below v0 (the escape speed)
clearly does not work. Even in a wind, some material may be at
small velocity simply because it is still accelerating and has not yet
reached speeds above v0, while even in a fountain some material
may be above velocity v0 at small radii, but be destined to decelerate
and fall once it climbs to larger distances. All of the cases shown in
Figs 15–18 except for area expansion with an isothermal potential
are winds with precisely the same total mass fluxes reaching infin-
ity, while the isothermal-area case is a fountain where no mass flux
reaches infinity. However, in terms of the observable emission and
absorption, the point-area and isothermal-area cases (the former a

wind, the latter a fountain) are clearly far more similar than the
point-area and point-solid angle cases (both winds).

7 D I SCUSSI ON

While we defer to paper II a full discussion of how to make use
of the analytic model, we present here for the purpose of analysing
observations of winds, we can draw a few general conclusions based
on the examples presented so far.

7.1 Optical depths of winds

One perhaps unexpected result of our analysis is that the optical
depth of a particular wind tracer, in either emission or absorption,
is controlled primarily by a single dimensionless ratio tX/tw, where
tX is an intrinsic property of the transition that depends only on
the abundance of the species in question and its wavelength and
oscillator strength, and tw is the time-scale over which the wind (if
it were isotropic) would evacuate the wind-launching region. This
means that optical depth can, by itself, be used to obtain an upper
or lower limit on a wind’s mass flux.

Conversely, we can classify whether a particular transition is
likely to be optically thin or thick for winds with astrophysically
interesting mass fluxes based solely on abundances and quantum
mechanical transition properties. Lines such as Mg I λ2853 and
Mg II λλ2796, 2804 have time-scales of hundreds of Gyr, and thus
are likely to be opaque for any galactic wind of interest. Weaker
lines such as Na I λλ5892, 5898 and Fe II λ2383 have time-scales
of �1 Gyr, and thus may go between opaque and transparent de-
pending on the outflow rate. In the radio, low J lines of CO have
time-scales of ∼100 Myr and thus are likely to be opaque for strong
starbursts or AGNs that are capable of evacuating their gas on
time-scales of �100 Myr. They will be transparent in more gen-
tly mass-losing systems. Less abundant species such as HCN or
CS have time-scales of a few Myr, and thus will almost always be
transparent for galactic winds, though they might become opaque
for the winds driven by individual star clusters.

7.2 Cloud expansion as a dominant uncertainty
in mass flux measurements

A second general conclusion we can draw is that, particularly for
absorption and subcritical emission measurements, the observa-
tional signatures are at least as sensitive to the way that clouds of
cool gas behave geometrically as they are carried out in a wind (as
parametrized by their expansion laws) as they are to the overall rate
of mass loss in the wind. For absorption measurements in strong
lines, which include many of the commonly used low ionization
transitions such as Mg II λλ2796, 2804, the optical depth along
individual lines of sight is likely to be very high at any mass loss
rate large enough to be of astrophysical interest. As a result, the
amount of absorption is more closely related to the covering factor
of the wind material than to its total amount, and this in turn is
highly sensitive to how clouds of cool gas expand or do not expand
as they propagate outward in the wind.

For subcritical emission tracers, the differences in expansion fac-
tor affect emission by changing the wind density and its scaling
with velocity. If clouds do not expand substantially as they prop-
agate outward, y = 1, then most material accelerates slowly, and
maintains high density. High velocities are only reached by rare gas
that began with a column density much lower than the minimum
required for entrainment and ejection. Consequently, emission is
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dominated by low velocities. On the other hand, if clouds expand
rapidly and maintain constant solid angles as they move outward,
y = a2, then even material that is only marginally ejected at small
radii will continue to be accelerated as it moves to large radii, shift-
ing the emission to higher velocities.

Regardless of the ultimate source of the dependence on the cloud
geometry, the dependence of the emission or absorption signature
on the poorly known cloud expansion behaviour represents a dom-
inant uncertainty in any attempt to infer mass loss rates from these
techniques. A quick glance at Fig. 17 shows that the differences
in the absorption spectra produced by a wind carrying a constant
mass flux but with geometries of y = 1 or y = a2 are at least as
large as the differences produced if we fix the geometry but vary the
mass flux by a factor of 10 or more. The same is true for subcritical
emission. In most phenomenological models used to compute wind
mass fluxes, the flux is taken to be directly proportional to the ab-
sorption depth or emission intensity, so this translates directly into
a factor of 10 variation in the mass flux that one would estimate.

In contrast, emission from tracers where we are confident that the
gas is in LTE are much less sensitive to this uncertainty, except at
velocities near zero where the geometry of the absorbing material
has large effects. In practice, however, this is unlikely to matter,
since the signal near zero velocity will be dominated by the wind
source rather than the wind itself. Converting an observed line
profile in a line such as CO into a mass flux is by no means trivial,
a point to be discussed momentarily, but at least the profile depends
as or more strongly on the mass flux than on the poorly constrained
cloud geometry.

7.3 Winds versus fountains

A third important conclusion of our modelling is that the commonly
adopted method of estimating what gas will escape a galaxy versus
what gas will fall back in a fountain based on a division at the
escape velocity is potentially highly misleading. This picture is, at
least implicitly, based on the assumption that the wind is launched
ballistically, so that gas maintains its speed, with no additional forces
applied at large distance from the source. While some material
in winds is likely accelerated rapidly (e.g. in superbubbles; Roy
et al. 2013), it is far from certain that this is the predominant source
of cool gas in winds. Instead, entrainment by hot gas or pushing by
radiation likely contributes, and both require some time and distance
to accelerate material, with the bulk of the material ejected probably
lying close to the low end of the range of possible velocities. Clouds
that have a velocity below the escape speed at small radii may
nonetheless be accelerated to the escape speed at larger radii.

This problem is compounded by biases in the mapping between
mass and light. For absorption measurements, unless clouds main-
tain constant solid angle, measurements are most sensitive to the
lowest velocity material. This is because clouds have the highest
covering fractions, and thus absorb the most light, when they are
close to the launch point and thus at low velocity. As they gain
speed, their covering fraction diminishes, and they are underrep-
resented in an effectively area-weighted absorption spectrum. For
optically thin subcritical emission, such as that produced by Hα or
C II, there is another bias. As material moves outward and acceler-
ates, its density drops, and the luminosity per unit mass drops pro-
portionately. Again, the result is a strong bias towards low-velocity
emission, with high-velocity material being underrepresented in the
spectrum. Both biases are compounded by their dependence on the
poorly known wind geometry.

In contrast, for emission by gas in LTE the bias is substantially
weaker because the emission scales linearly rather than quadrati-
cally with density. What bias there is tends to be in the opposite
direction, in that gas at high velocities tends to have higher X / α

factors due to its lower optical depth. The lack of bias makes molec-
ular lines a promising candidate for determining outflow rates with
less bias, a topic to which we shall return in paper II. That said,
even for LTE emission one still cannot neatly divide gas between
fountain and escape based on its velocity. The low-velocity material
seen in molecular emission may be gas that has not yet accelerated
up to escape speed but will do so as it continues to flow outward,
and not counting it as part of the outflow can lead to a serious error.
Only if one assumes that gas acceleration is purely impulsive does
a division based on velocity work.

7.4 Caveats and limitations

We conclude this section by discussing some of the limitations of our
model. One prominent one that has already been mentioned several
times is that we have presented a detailed model for the physical and
kinematic properties of a wind, but not for its thermal or chemical
properties. Thus we are forced to rely on simple assumptions about
the abundances and chemical state of the gas, and, in cases where the
wind temperature is important, to assume that the entire cool phase
that we are modelling is characterized by a single temperature. In
practice, this means that any inferences based on our models should
be taken to apply to only on particular chemical and thermal phase
of an outflow. It also means that our tX values that characterize
transition strength are significantly uncertain. A related limitation
is that we have only treated emission in the limiting cases of gas
so dense that the emitting species can be assumed to be in LTE
everywhere there is significant emission, or so diffuse that we can
treat the entire population is being in the ground state. We have not
attempted to treat the intermediate case of partial thermalization,
although in principle one could extend our model to include this
effect, at least numerically.

A second significant limitation is that we have assumed that cool
material is present at all radii in an outflow, and thus forms a contin-
uous medium. A contrasting possibility is that originally cool ISM
gas is shock-heated to much higher temperature at small radii, e.g.
as outer shells and embedded clouds in superbubbles (Kim, Ostriker
& Raileanu 2017). While the denser material would cool rapidly and
experience limited acceleration, other material may become part of
a hot, diffuse flow that produces negligible absorption or emission
in optical, infrared, or radio lines. The cool gas we observe appears
only at large radii, where it condenses as the hot medium undergoes
adiabatic cooling (Martin et al. 2015; Roy et al. 2016; Thompson
et al. 2016). Were this the primary source of cool wind gas, our
model would not be applicable. While this is certainly possible, it
remains an open question whether this mechanism is the primary
source of cool gas, particularly molecular gas that requires very dust
column densities to resist photodissociation. We intend to explore
the observational signatures of such a re-condensation scenario in
future work.

A final caveat to our work is that, for the absorption case, we
have not included the effects of multiple scattering and fluores-
cent re-emission of photons, either those produced in the wind or
from an AGN. There is some observational evidence for this ef-
fect operating on very strong lines, particularly the Mg II doublet
(Weiner et al. 2009; Erb et al. 2012; Martin et al. 2012). This means
that, for sources with significant re-emission, we will overestimate
the depths of the absorption features. All models of this effect
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published to date have treated the wind as a fully filled spherical
shell (Prochaska et al. 2011; Scarlata & Panagia 2015), which in
the context of our model is not realistic: at Mach numbers of 30–
100, we predict that the covering factor of a wind is always below
50 per cent (and even smaller if the areal PDF is not purely lognor-
mal, as discussed in Section 3.2) unless the Eddington ratio � > 1,
a condition which, if met, almost certainly leads to ejection of all
the gas on a time-scale comparable to the dynamical time. For more
plausible wind mass fluxes, the covering fraction of the wind is typ-
ically tens of percent. In such a geometry, multiple scattering seems
likely to be much less important than in the closed geometries that
have been examined thus far. Clearly there is a need to revisit the
question of multiple scattering in the context of the much more
realistic geometry and density structure that we introduce here.

8 C O N C L U S I O N A N D F U T U R E P RO S P E C T S

In this paper we extend the simple but physically consistent model
of wind-launching introduced by Thompson & Krumholz (2016) to
consider the observable properties of the cool components of the
flow. Because the model considers a distribution of initial properties
for the clouds that are launching into a wind, it naturally gives rise
to a spread of velocities and densities in the resulting wind. This
produces line profiles that, when combined with simple but real-
istic geometries, produce relatively realistic line profiles for wind
emission in both sub- and supercritical lines, and for absorption. We
show that the strength of the emission and absorption features, and
in particular whether a given line will be optically thin or thick, is
well-characterized by the ratio between the time-scale for the wind
to evacuate the object from which it is launched, and a natural time-
scale that depends only on the abundance and quantum mechanical
properties of the species in question.

Our model can accommodate both idealized winds and more
realistic ones driven by either radiation pressure or the pressure of
a volume-filling hot gas. It can be fully described in terms of a few
free parameters, and is simple enough that we can use it to compute
line profiles in fractions of a second even on a single processor.
We provide software to carry out these computations as part of
the DESPOTIC software suite (Krumholz 2014a). This simplicity and
speed make our model ideal for the task of fitting observations and
thereby deducing the physical properties of winds, particularly mass
fluxes. We turn to the task of this fitting, and determining to what
extent robust conclusions may be extracted from observations of
various sorts, in Paper II.
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Brüggen M., Scannapieco E., 2016, ApJ, 822, 31
Chabrier G., 2005, in Corbelli E., Palla F., Zinnecker H., eds, Astrophysics

and Space Science Library, Vol. 327, The Initial Mass Function 50 Years
Later. Springer, Dordrecht, pp. 41-+

Coker C. T., Thompson T. A., Martini P., 2013, ApJ, 778, 79
Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium.

Princeton University Press, Princeton, NJ
Erb D. K., Quider A. M., Henry A. L., Martin C. L., 2012, ApJ, 759, 26
Förster Schreiber N. M., Genzel R., Lutz D., Kunze D., Sternberg A., 2001,

ApJ, 552, 544
Fujita A., Martin C. L., Mac Low M.-M., New K. C. B., Weaver R., 2009,

ApJ, 698, 693
Genzel R. et al., 2011, ApJ, 733, 101
Greco J. P., Martini P., Thompson T. A., 2012, ApJ, 757, 24
Heckman T. M., Armus L., Miley G. K., 1990, ApJS, 74, 833
Heckman T. M., Lehnert M. D., Strickland D. K., Armus L., 2000, ApJS,

129, 493
Hummels C. B., Bryan G. L., Smith B. D., Turk M. J., 2013, MNRAS, 430,

1548
Janssen A. W. et al., 2016, ApJ, 822, 43
Kennicutt, Jr R. C., 1998, ApJ, 498, 541
Kim C.-G., Ostriker E. C., Raileanu R., 2017, ApJ, 834, 25
King A., 2003, ApJ, 596, L27
Krumholz M. R., 2014a, MNRAS, 437, 1662
Krumholz M. R., 2014b, Phys. Rep., 539, 49
Krumholz M. R., Dekel A., 2010, MNRAS, 406, 112
Krumholz M. R. et al., 2014, Protostars Planets VI, 243
Krumholz M. R., Kruijssen J. M. D., Crocker R. M., 2017, MNRAS, 466,

1213
Launay J.-M., Roueff E., 1977, J. Phys. B At. Mol. Phys., 10, 879
Leroy A. K. et al., 2015a, ApJ, 801, 25
Leroy A. K. et al., 2015b, ApJ, 814, 83
Martin C. L., 2005, ApJ, 621, 227
Martı́n S., Mauersberger R., Martı́n-Pintado J., Henkel C., Garcı́a-Burillo

S., 2006, ApJS, 164, 450
Martin C. L., Shapley A. E., Coil A. L., Kornei K. A., Bundy K., Weiner

B. J., Noeske K. G., Schiminovich D., 2012, ApJ, 760, 127
Martin C. L., Dijkstra M., Henry A., Soto K. T., Danforth C. W., Wong J.,

2015, ApJ, 803, 6
McCourt M., O’Leary R. M., Madigan A.-M., Quataert E., 2015, MNRAS,

449, 2
McKeith C. D., Castles J., Greve A., Downes D., 1993, A&A, 272, 98
McKeith C. D., Greve A., Downes D., Prada F., 1995, A&A, 293, 703
Morton D. C., 2003, ApJS, 149, 205
Murray N., Quataert E., Thompson T. A., 2005, ApJ, 618, 569
Murray N., Martin C. L., Quataert E., Thompson T. A., 2007, ApJ, 660, 211
Murray N., Quataert E., Thompson T. A., 2010, ApJ, 709, 191
Prochaska J. X., Kasen D., Rubin K., 2011, ApJ, 734, 24
Raskutti S., Ostriker E. C., Skinner M. A., 2016, ApJ, 829, 130
Robertson B., Goldreich P., 2012, ApJ, 750, L31
Roy A., Nath B. B., Sharma P., Shchekinov Y., 2013, MNRAS, 434, 3572
Roy A., Nath B. B., Sharma P., Shchekinov Y., 2016, MNRAS, 463, 2296
Rupke D. S. N., Veilleux S., 2015, ApJ, 801, 126
Rupke D. S., Veilleux S., Sanders D. B., 2005a, ApJS, 160, 87
Rupke D. S., Veilleux S., Sanders D. B., 2005b, ApJS, 160, 115
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APPENDIX: EFFECTS O F N ON-ESCAPE
O F M AT E R I A L N E A R TH E C R I T I C A L
SURFAC E D ENSITY

In the main text we assume that all material that has an outward
acceleration at the wind-launching radius a = 1, i.e. all gas with
x < xcrit, enters the wind. However, for wind acceleration laws where
the wind expansion factor y grows with radius more slowly than the
potential m, this results in a component of the wind with arbitrarily
small velocities. It therefore might be reasonable to hypothesize that
material only enters the wind if its surface density is small enough
to produce an outward acceleration above some minimum value, so
that the wind does not include material moving at arbitrarily small
velocities.

Specifically, suppose that we consider a wind consisting only
of material with starting surface density x < xcrit + log fcrit, with
fcrit < 1. The computational machinery described in the main text
is unchanged, except that we set the contribution to emission or
absorption to zero for any value of x > xcrit + log fcrit. We use this
machinery to compute the same emission and absorption profiles
discussed in Section 6.3 for cases with a range of values of fcrit. To
ensure that we are comparing like with like, when using fcrit < 1,
we change the value of � in order to keep ζ M and thus the overall
mass flux fixed. Specifically, we compute � by solving a modified
version of equation (85),

η = fAṀ

Ṁ∗
= ζM (fcrit)

εff
, (A1)

where ζ M(fcrit) means ζ M evaluated using x = ln fcrit�.

Figure A1. Same as Fig. 15, except that we only show the case for an
isothermal potential, and all runs use the fiducial isotropic mass loss rate
100 M
 yr−2. Curves show the results for varying fcrit, from fcrit = 1
(darkest line; fiducial case) to fcrit = 0.1 (lightest line; only material with
surface densities 10 × smaller than fiducial is ejected), in steps of 0.25 dex.

We show the results for Hα and CO emission in Figs A1 and A2,
respectively; we focus on these rather than absorption because
the results are easier to interpret. It is clear that removal of gas
with x close to xcrit from the flow has an effect that is qualita-
tively similar to increasing the expansion factor of the flow: it
shifts emission to higher velocities, and causes line splitting to
appear. This is not surprising: removing gas near xcrit from the
flow increases the velocity of that gas that does remain and, to
keep the overall mass flow rate fixed, requires that � increase as
well, further raising the mass flux. Both effects put more mass
at high velocity, exactly as happens for larger cloud expansion
functions y.

MNRAS 471, 4061–4086 (2017)



4086 M. R. Krumholz et al.

Figure A2. Same as Fig. A1, but showing the CO brightness temperature
instead of the Hα intensity.
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