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ABSTRACT
We present a dynamical model for gas transport, star formation and winds in the nuclear
regions of galaxies, focusing on the Milky Way’s Central Molecular Zone (CMZ). In our
model angular momentum and mass are transported by a combination of gravitational and
bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and
the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We
show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar
is transported inwards to a star-forming, ring-shaped region at ∼100 pc from the Galactic
Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with
bursts lasting ∼5–10 Myr occurring at ∼20–40 Myr intervals. During quiescence the gas in
the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum
injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming
ring, with a time-averaged mass flux comparable to the star formation rate. We show that our
model agrees well with the observed properties of the CMZ, and places it near a star formation
minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and
winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting
distribution of galactic nuclei on the Kennicutt–Schmidt relation is in good agreement with
that observed in nearby galaxies.

Key words: stars: formation – ISM: kinematics and dynamics – Galaxy: nucleus – galaxies:
nuclei – galaxies: spiral – galaxies: star formation.

1 IN T RO D U C T I O N

In the past decade it has become clear from observations that star
formation in the Central Molecular Zone (CMZ; Morris & Ser-
abyn 1996) of the Milky Way, and in the centres of other nearby
galaxies (e.g. Barth et al. 1995; Jogee et al. 2002), deviates from
the patterns of star formation and gas distribution that are observed
at larger galactic radii. In the bulk of galactic discs, including that
of the Milky Way, the molecular gas that fuels star formation is
organized into clouds that are arranged in spiral patterns, either
flocculent or grand design. In contrast, in the Milky Way’s CMZ
much of the gas is collected into a partially filled, ring-like stream
of material ∼100 pc from the Galactic Centre, which appears to be
a persistent structure (Sofue 1995; Molinari et al. 2011; Kruijssen,
Dale & Longmore 2015; Henshaw et al. 2016). Clouds exist within
the ring, but appear to form a well-defined time sequence in terms of
their level of star formation activity (Longmore et al. 2013b). While
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rings such as this are occasionally seen at larger galactocentric radii
(e.g. Andromeda), they are far from the typical arrangement of gas.

Secondly, the molecular gas in the bulk of spiral galaxies ap-
pears to form stars with a fairly constant depletion time (defined
as the ratio of the gas surface density to the star formation sur-
face density), with either no dependence (e.g. Bigiel et al. 2008;
Leroy et al. 2008, 2013) or only a weak dependence (e.g. Meidt
et al. 2013; Suwannajak, Tan & Leroy 2014) on the large-scale
rate of shear or other galactic-scale dynamics. In contrast, galactic
centres exhibit a much wider range of depletion times than do the
outer parts of discs (e.g. Saintonge et al. 2012; Leroy et al. 2013;
Longmore et al. 2013a). Furthermore, in outer discs there is no
obvious evidence for dynamical effects at all if one considers gas
much denser than the ∼100 cm−3 traced by CO emission (e.g. Gao
& Solomon 2004; Garcı́a-Burillo et al. 2012; Usero et al. 2015). In
contrast, given its budget of dense gas, the Milky Way’s CMZ ap-
pears to be forming significantly fewer stars than one would expect if
it had the same depletion time observed elsewhere. The present-day
star formation rate of the CMZ is ∼0.05 M� yr−1 (Crocker 2012;
Longmore et al. 2013a; Koepferl et al. 2015), whereas the expected

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

mailto:mark.krumholz@anu.edu.au


1214 M. R. Krumholz, J. M. D. Kruijssen and R. M. Crocker

rate if the dense gas in the CMZ formed stars on a time-scale similar
to that found elsewhere in galaxies would be at least an order of
magnitude larger. At the extreme end of this variation are CMZ ob-
jects such as ‘The Brick’ (Longmore et al. 2012; Kauffmann, Pillai
& Zhang 2013; Rathborne et al. 2014b, 2015; Mills et al. 2015),
large clouds of extremely dense molecular gas that, if found in the
outer Galaxy, would be expected to be intensely star-forming, yet
in fact display almost no star formation activity.

A third potentially odd feature of Galactic Centre star forma-
tion is its burstiness. While star formation is always bursty when
measured on sufficiently small scales simply as a result of finite
molecular cloud masses and lifetimes (e.g. da Silva, Fumagalli
& Krumholz 2014; Kruijssen & Longmore 2014), there is sub-
stantial evidence that the Milky Way’s CMZ is significantly more
episodic than the rest of the disc. Lines of evidence for episodic
star formation in the CMZ include both direct star counts (Yusef-
Zadeh et al. 2009) that reveal more stars than would be expected
given the present-day production rate, and the presence of large
off-plane bubbles (Sofue & Handa 1984; Bland-Hawthorn & Co-
hen 2003; Su, Slatyer & Finkbeiner 2010) that would appear to
require ∼0.1 M� yr−1 to drive, somewhat higher than the present-
day star formation rate, but not higher than the time-averaged star
formation rate that would be inferred from the present-day mass
of the stellar bulge (Crocker 2012; Kruijssen et al. 2014; Crocker
et al. 2015).

In Krumholz & Kruijssen (2015, hereafter Paper I), we intro-
duced a model to explain some of the major observed features of
the Milky Way CMZ and, by extension, the analogous regions of
other barred spiral galaxies. The central idea of this model was to
note that the Galactic Bar will transport a relatively continuous sup-
ply of gas from the inner Lindblad resonance (ILR; r ∼ 1 kpc) to
the outskirts of the CMZ disc (r < 500 pc; Binney et al. 1991; Ko-
rmendy & Kennicutt 2004; Sormani, Binney & Magorrian 2015).
Once deposited there, gas in the CMZ will be subject to periodic
perturbations from the bar, which inside the ILR can drive acous-
tic instabilities that will simultaneously transport mass inward and
pump up the gas velocity dispersion (Bertin et al. 1989; Montene-
gro, Yuan & Elmegreen 1999), thereby preventing it from becoming
self-gravitating and forming stars. This process will continue until
the gas reaches ∼100 pc, where the observed rotation curve of the
Milky Way begins to turn over from flat to solid body, and the rate
of shear drops. The loss of shear suppresses acoustic instabilities
(which only occur when shear is present) and causes gas to accu-
mulate until it becomes self-gravitating and star formation begins.
[Indeed, the idea that low-shear regions tend to accumulate gas
and produce rings goes back considerably before our model (e.g.
Icke 1979 and Fukunaga 1983).] We showed that this mechanism
naturally produces the observed ring-like structure and explains its
location, and that it naturally explains the long depletion times ob-
served in the CMZ. We further conjectured that, once star formation
begins, stellar feedback would then expel much of the gas, leading
to quenching until the bar replenished the gas supply, and explaining
why star formation occurs in bursts, though we modify this picture
in this paper.

While this model has a number of attractive features, the last
portion of it necessarily remained conjectural, because we did not
model the process of star formation feedback and gas ejection di-
rectly in Paper I. We could not directly estimate the time-scale of
the bursts, for example, nor could we compute their magnitude, the
partition of inflowing material between star formation and loss in
a wind, and the level of variation we expect in the gas mass as a
result of starbursts. In this paper we seek to remedy this situation

by extending the model presented in Paper I with a treatment of star
formation feedback and wind ejection. As in Paper I, we focus first
on the Milky Way’s CMZ, because that is the region for which we
have by far the best dynamical information, but we then extend the
model to other galaxies.

The plan for the remainder of this paper is as follows. In Section 2
we present our basic model, and highlight the new treatment of
star formation and feedback that we have added in comparison
to Paper I. In Section 3 we present simulation results. We discuss
the implications of these results in Section 4, and summarize and
discuss prospects for future work in Section 5.

2 MO D EL

The model we build for the Milky Way’s CMZ is a generaliza-
tion of the one presented in Paper I. Here we summarize the most
salient aspects of that model, referring readers to Paper I for full
details, before moving on to the new aspects of the model included
here. Unless otherwise noted, all parameter choices made in this
paper are identical to the fiducial ones made in Paper I. All the
simulation code used for this project is publicly available from
https://bitbucket.org/krumholz/cmzsf.

2.1 Dynamical evolution

We approximate the gas in the CMZ as an axisymmetric thin disc
characterized by a surface density � and velocity dispersion σ ,
both as a function of radius r from the Galactic Centre. The gas
orbits in a potential derived from the measurements of Launhardt,
Zylka & Mezger (2002). We use these measurements to produce a
smooth, interpolated rotation curve vφ(r) from which we can derive
the dimensionless index β = d ln vφ/d ln r that describes the rate
of shear; formally, the dimensionless shear rate is 1 − β. We treat
the rotation curve as constant in time.1 We evolve the gas using
the VADER code of Krumholz & Forbes (2015), which solves the
equations of mass, energy and angular momentum conservation for
the disc in conservative form. As in Paper I, we place the inner and
outer edges of the region to be simulated at r = 10 and 450 pc,
respectively, and use 512 computational zones uniformly spaced in
log r. Our model here differs from that in Paper I only in that we
include source terms in the equations to represent the effects of star
formation and winds. Formally, the equations we solve are

∂

∂t
� + 1

r

∂

∂r
(rvr�) = −�̇∗ − �̇wind (1)

∂

∂t
E + 1

r

∂

∂r
[rvr(E + P )] − 1

r

∂

∂r

(
r

vφT
2πr2

)

= ĖSF,turb − Ėrad, (2)

where the source terms on the right-hand side of the first equation
represent the rates of change of gas surface density due to star
formation and loss by winds, while those in the second equation
represent the rate of change of turbulent energy due to star formation
feedback and due to radiative losses from shocks. We discuss the

1 Our approximation that the rotation curve is constant limits the total time
for which we can run our simulations to be such that the mass of stars formed
during the simulation is small compared to the dynamical mass responsible
for producing the rotation curve. For the run duration of 500 Myr that we
adopt below, this condition is satisfied for all our runs; in our fiducial case
the mass added to the domain is below 10 per cent of the dynamical mass
interior to the radius where stars form, and for all runs it is below 20 per cent.
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values of these terms below. In these equations P = �σ 2 is the
vertically integrated pressure, vr is the radial velocity and T is
the turbulent torque, which is related to vr via angular momentum
conservation:

vr = ∂T /∂r

2πr�vφ(1 + β)
. (3)

A key parameter of this model is the dimensionless rate of angular
momentum transport α produced by instabilities, which determines
T via

T = −2πr2αP (1 − β). (4)

As in Paper I, we consider two sources of transport: gravitational
and acoustic instability. The former is parametrized by the usual
Toomre (1964) Q parameter. The latter instability can occur when
gas orbits inside the ILR of a periodic perturber, in this case the
Galactic Bar. It arises when pressure waves within the disc driven
by the bar cause the perturbed gas orbits to align, leading to a
growing mode. The instability grows most strongly in regions of
weak self-gravity and high shear. Both gravitational and acoustic
modes can be combined into a single dispersion relation, derived by
Montenegro et al. (1999). In our simulations, we obtain numerical
solutions to this dispersion relation at each radius. When an unstable
mode is present, we compute the growth time-scale tgrowth of the
fastest growing mode. In unstable regions, we take

α = min(α0e
1−tgrowth/torb , 1), (5)

where torb is the local orbital period in the disc. We adopt the
same fiducial value α0 = 1 as in Paper I, so that, in regions of the
disc where an unstable mode has a growth time-scale equal to or
smaller than the orbital period, the rate of transport corresponds
to a large value α ≈ 1. We argue in Paper I that, given the nature
of the instabilities we are considering, this is the most plausible
value.

A second key parameter in our models is the rate of radiative
losses from the disc, Ėrad. These losses occur due to radiative shocks
produced by the turbulence in the disc, and result in the full disc
energy being radiated away each dynamical time. We compute Ėrad

exactly as in Paper I. We pause here to note an important implication
of the value of Ėrad: the loss of turbulent energy on a flow crossing
time-scale tends to push galactic discs towards α ≈ 1 in non-star-
forming regions. The reason is that, in the absence of star formation
as an energy source, maintaining energy balance in a galactic disc
requires that the rate of energy release by inward transport of mass
balance the rate of energy dissipation. If the time-scale for energy
dissipation is a dynamical time, then the rate of inward mass flow
required for balance corresponds to α ≈ 1, with the exact value
depending on the exact energy dissipation rate, the gas fraction and
the rotation curve (Krumholz & Burkert 2010).

The disc simulation requires boundary conditions at the inner
and outer edges. For the inner boundary, we set the mass flux to
be zero; in practice we find that no significant amount of mass
approaches the inner boundary, so this choice has no practical effect.
At the outer boundary, we impose a fixed inward mass flux Ṁ0, for
which we consider a range of possible values. This mass flux is
provided by material that is removed from its circular orbit by
the Galactic bar and transported inwards to settle into the CMZ
(Binney et al. 1991; Kormendy & Kennicutt 2004; Crocker 2012;
Sormani et al. 2015). The mass transport rate is uncertain, but
observations suggest it lies in the range Ṁin = 0.1–1.0 M� yr−1, so
we consider this range in our work. We set the velocity dispersion of
this inward-flowing material to σ in = 40 km s−1, following Paper I.

We initialize all our simulations by placing a uniform surface density
of 0.01 M� pc−2 with a velocity dispersion of 40 km s−1 in all zones,
thereby beginning the simulations in a nearly gas-free state.

2.2 Star formation

Where our model differs from that of Paper I is that we have added
models for star formation and feedback, which were absent from
that paper. To determine where star formation will occur, we must
answer the question of where the gas becomes self-gravitating.
Let Hg be the gas scaleheight, which we compute from the gas
surface density, velocity dispersion and stellar density as in Paper I.
Formally we can write the rate of star formation per unit area in the
disc as

�̇∗ = εff
�

tff
(6)

where

tff =
√

3πHg

16 G�
(7)

is the free-fall time at the mid-plane (using �/2Hg as the gas
density), and εff is the dimensionless star formation rate per free-
fall time (Krumholz 2014; Padoan et al. 2014). The value of εff

depends on the degree of gravitational boundedness as charac-
terized by the virial ratio αvir, and also on the Mach number,
plasma β, compressive to solenoidal ratio of the turbulence (e.g.
Krumholz & McKee 2005; Padoan & Nordlund 2011; Federrath &
Klessen 2012, 2013). However, αvir is by far the most important
parameter, and is the only one we can easily calculate given our
simple model. To determine its value, we note that the mid-plane
pressure in our disc is

pmp = �σ 2

Hg
. (8)

For a disc supported by pressure against self-gravity, we have (e.g.
Krumholz & McKee 2005)

pmp,eq = π

2
G�2. (9)

Note that we have �2 rather than �(� + ρ∗Hg) here because we
are interested in the support of the gas against its own self-gravity,
discounting the contribution from the gravity of the stars. From
these two expressions, we can express the virial parameter of the
gas as

αvir = pmp

pmp,eq
, (10)

so that gas becomes self-gravitating as αvir → 1 from above, and
is non-self-gravitating if αvir � 1. Note that, because we calculate
the scaleheight under the assumption of hydrostatic equilibrium
(see Paper I), our model does not permit αvir < 1, since αvir < 1
can be achieved only under non-equilibrium conditions. Given a
value αvir, we determine εff using an approximation suggested by
Padoan & Nordlund (2011), which is that εff declines approximately
exponentially with αvir. Both observations and simulations suggest
that εff ∼ 0.01 for αvir ≈ 1 (see the reviews by Krumholz 2014 and
Padoan et al. 2014, and references therein), and we expect that εff

→ 1 as αvir → 0. Thus we adopt the relationship

εff = exp
[
αvir log(εff,0)

]
, (11)

with εff, 0 = 0.01 as a fiducial choice. This expression has all
the properties we desire: εff → 1 as αvir → 0, εff = 0.01 at
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αvir = 1, and εff declines exponentially as αvir rises. While the
value of εff is tightly constrained by observations to lie near our
fiducial choice (e.g. Krumholz & Tan 2007; Krumholz, Dekel &
McKee 2012; Federrath 2013; Krumholz 2014; Evans, Heiderman
& Vutisalchavakul 2014; Salim, Federrath & Kewley 2015; Heyer
et al. 2016), we also consider the effects of varying εff, 0.

Before moving on we note that, although we have phrased our
star formation rate as a function of αvir, the virial ratio in our models
is closely related to the Toomre Q of the gas. One can show that
αvir ≈ 1 is equivalent to Q ≈ 1, and thus one may view the depen-
dence of εff on αvir in our model as qualitatively equivalent to the
condition that star formation starts up as Q approaches 1.

2.3 Stellar feedback

Feedback from stars in our model takes two forms: injection of
energy and ejection of mass in the form of winds. Both processes
are governed by the momentum input of massive stars, since stellar
winds and supernova ejecta that interact with the dense gas in the
CMZ will become radiative very quickly, a point to which we will
return in Section 4.4. The first step in our model of feedback is
therefore to compute the momentum injection rate from star forma-
tion. To do so, we use STARBURST99 (Leitherer et al. 1999; Vázquez
& Leitherer 2005) to compute the Type II supernova rate per unit
mass �SN(t), the bolometric luminosity per unit mass L(t) and the
wind momentum injection rate per unit mass Pwind(t) for simple
stellar populations of age t with a Kroupa (2002) IMF. The starlight
carries a momentum per unit stellar mass per unit time L(t)/c. For
the supernovae, we adopt a momentum injection per supernova of
pSN = 3 × 105 M� km s−1 based on recent simulations (e.g. Kim &
Ostriker 2015; Martizzi, Faucher-Giguère & Quataert 2015; Walch
& Naab 2015; Gentry et al. 2016), giving a supernova momentum
injection rate �SN(t)pSN.2 The total momentum injection rate per
unit time per unit area in our simulations is then simply the sum
of these three quantities, convolved with the star formation history,
i.e.

dṗ

dA
(t)

=
∫ t

0
�̇∗(t − t ′)

[
pSN�SN(t ′) + L(t ′)

c
+ Pwind(t ′)

]
dt ′. (12)

Since we know the star formation history from the prescription
above, this quantity is straightforward to evaluate.

We pause here for three brief comments on the model. First, al-
though we have included winds, radiation pressure and supernovae,
our choice of pSN implies that supernovae are by far the most im-
portant form of feedback; winds and radiation pressure are small
perturbations on this. Secondly, we consider only star formation
feedback and gravity as sources of turbulence, which means that we
are omitting a potential contribution to turbulence from a galactic
fountain or from accretion directly on to the CMZ from above (rather

2 One might worry that the momentum budget would be smaller at the
n ∼ 104 cm−3 densities found in the CMZ than for the n ∼ 1–100 cm−3

densities found at larger radii because supernova remnants would become
radiative more quickly. However, the simulations show that supernova mo-
mentum budget is not very sensitive to density, with fits to the simulation
results giving scalings that vary from pSN ∝ n−0.06 (Gentry et al. 2016) to
pSN ∝ n−0.19 (Martizzi et al. 2015). Moreover, the clustering expected in
high-density regions can also enhance the momentum budget by a factor of
several, pushing in the other direction (Gentry et al. 2016). Thus our fiducial
estimate should be reasonable even in the CMZ.

than through the disc). These effects could conceivably increase the
turbulent velocity dispersion from what we find, but are very poorly
constrained either observationally or theoretically. Thirdly, note that
we have not included a contribution from trapped infrared radiation
pressure. The significance of such an effect has been subject to
extensive discussion in the literature in the past few years (e.g.
Krumholz & Matzner 2009; Murray, Quataert & Thompson 2010;
Krumholz & Thompson 2012, 2013; Davis et al. 2014; Rosdahl &
Teyssier 2015; Tsang & Milosavljević 2015). We will not rehash
that discussion here, but we note that, even in the simulations where
trapped infrared radiation pressure is found to be most effective, it
becomes significant only when the gas column density and luminos-
ity are so high that the gas disc is optically thick even for radiation
whose colour temperature is equal to that of the dust photosphere;
Krumholz & Thompson (2013) show that the condition is met only
when the gas surface density exceeds ∼5000 M� pc−2 and the
star formation surface density exceeds ∼1000 M� pc−2 Myr −1.
While such extreme combinations of gas and star formation surface
density may exist on �1 pc scales in Galactic Centre star-forming
regions such as Sgr B2 (e.g. Schmiedeke et al. 2016), they are never
realized over the larger scales with which we are concerned, either
in the real Galactic Centre or in our models.

The second step is to consider where the momentum will be
deposited. The simplest assumption would be to inject momentum
where the stars form, but this ignores the fact that the stars will
form with some velocity dispersion relative to the gas out of which
they are born. Thereafter, they are not constrained to move on
exactly the same orbits as the gas. Since supernovae occur over
time-scale of ∼10 Myr after star formation, and the orbital period
at 100 pc from the Milky Way’s centre is only ∼3 Myr, stars that
are on slightly different orbits than the gas from which they form
will have time to drift some distance from their birth sites before
exploding, and this will blur out the location where they deposit
their momentum. We do not attempt to model this evolution in
detail, and instead resort to parametrizing it. Specifically, rather than
compute the momentum injection rate using the true star formation
rate �̇∗(r, t) in our simulation, we use the convolution of the star
formation rate with a Gaussian blur,

�̇∗,eff (r, t) = N−1
∫

exp

[
− (r − r ′)2

2(εrr ′)2

]
�̇∗(r ′, t) dr ′, (13)

where the normalization factor N is set by the requirement that∫
�̇∗ dA = ∫

�̇∗,eff dA, i.e. that the total amount of momentum
injected, integrated over the area of the disc, remains unchanged.
The dimensionless quantity εr parametrizes the amount by which
the stars spread out relative to the gas from which they form. Thus
the rate of momentum injection in our simulations becomes

dṗ

dA
(r, t) =

∫ ∞

0
�̇∗,eff (r, t − t ′) ·

×
[
pSN�SN(t ′) + L(t ′)

c
+ Pwind(t ′)

]
dt ′. (14)

To decide on a fiducial value of εr, note that if a population of stars
begins on a circular orbit with radius r and a velocity vφ , and their
orbits are perturbed by a random velocity v∗, the resulting elliptical
orbits will be confined to a range of radii (Binney & Tremaine 1987)

r∗ = r

(
1 ± 4

3

v∗
vφ

)
. (15)

Under the conditions observed in the CMZ, only some ∼50 per cent
of all stars are expected to form in bound clusters (e.g. Krui-
jssen 2012; Adamo et al. 2015), with the rest forming in unbound
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associations. The unbound stars will drift apart at the internal veloc-
ity dispersions of the gas clouds from which they form (Efremov &
Elmegreen 1998), while the bound clusters will move together, dis-
persing from their birth sites at the overall centre of mass velocity of
the cluster. We do not have direct measurements of either the veloc-
ity dispersions of associations or the bulk velocities of clusters, but
we note that, at larger galactic radii, bound clusters and unbound as-
sociations appear to have roughly the same velocity dispersions, so
we can use the measured velocity dispersions within CMZ clusters
as a rough proxy for the typical velocity dispersion v∗. Observed
one-dimensional velocity dispersions in Galactic Centre star clus-
ters such as the Arches (Clarkson et al. 2012) and Quintuplet (Stolte
et al. 2014) are typically ≈ 5–6 km s−1, and certainly no more than
10 km s−1, and these clusters are formed at r ≈ 90 pc from the
Galactic Centre, where the circular velocity vφ ≈ 150 km s−1. This
suggests that (4/3)(v∗/vφ) ∼ 0.05, and so we adopt εr = 0.05 as a
fiducial value. We also explore variations around this choice.

With the rate of momentum injection in hand, we can now proceed
to compute the rate at which star formation feedback both drives
turbulence and launches winds. Following Krumholz, Matzner &
McKee (2006), Matzner (2007), Goldbaum et al. (2011), and
Faucher-Giguère, Quataert & Hopkins (2013), we approximate that
supernova remnants and similar bubbles merge with the background
turbulence and add their energy to it once their expansion velocity
decreases to the turbulent velocity, in which case the rate of energy
injection into turbulence produced by a momentum injection rate
per unit area dṗ/dA is approximately(

dĖ

dA

)
SF,turb

= σ

(
dṗ

dA

)
. (16)

To avoid producing unphysically large velocity dispersions in very
low surface density cells, we suppress energy injection in cells with
surface densities below a minimum value of 1 M� pc−2. Thus our
final expression for the rate of energy injection by star formation
is(

dĖ

dA

)
SF,turb

= σ

(
dṗ

dA

)
e−�lim/�, (17)

with �lim = 1 M� pc−2.
The final term we must compute is the rate at which momentum

injection drives winds off the disc. We compute this rate following
the formalism of Thompson & Krumholz (2016). The essential idea
of this model is that turbulence will produce a lognormal distribution
of column densities in the disc. For a fixed rate of momentum
injection per unit area, one can compute a critical column density
below which the inertia of the gas is small enough that the upwards
momentum injection produces a force that exceeds the force of
gravity, leading material to be ejected. The rate of mass ejection
depends on the ratio of the momentum injection rate to the mean
Eddington injection rate, and on the Mach number of the turbulence,
which determines the dispersion of column densities. The Mach
number is simply M = σ/σth where σ th is the thermal velocity
dispersion, which we take to be 0.5 km s−1 as in Paper I.

To compute the Eddington injection rate, we must know the
depth of the potential from which the gas must escape, including
both the gaseous and stellar3 contributions. The former is easy to
compute: for gas of surface density � in a thin disc, the gravitational
acceleration is simply ggas = 2πG�, independent of height. The

3 ‘Stellar’ here should be understood to include any contribution from col-
lisionless dark matter as well.

corresponding acceleration from the stellar potential is somewhat
trickier to estimate, because the stars have a much larger scaleheight
than the gas, and thus the gravitational acceleration experienced by
a parcel of gas will increase as it rises above the mid-plane in a
wind. To escape from the CMZ and not simply be puffed above the
disc to fall back, the gas must have enough momentum to overcome
the gravitational acceleration well above the disc. Computing this
properly would require knowledge of the full three-dimensional
stellar potential, which is only poorly constrained, but we can make
a rough estimate. Following Paper I, we note that, in spherical
symmetry, the stellar mass density at radius r that is required to
produce a rotation curve with velocity vφ is given by

ρ∗,sphere = (1 + 2β)
v2

φ

4πGr2
, (18)

and for such a spherical distribution the characteristic scaleheight
is ∼r. We therefore approximate the stellar acceleration as g∗ ≈
2πGρ∗,spherer . A more flattened distribution would raise ρ∗ but
decrease the scaleheight of the stellar distribution by the same factor,
and thus produce about the same net result for the acceleration.

Combining the gaseous and stellar contributions, the Eddington
momentum injection rate in a region with gas surface density � is
(

dṗ

dA

)
Edd

= �(ggas + g∗), (19)

and, following Thompson & Krumholz (2016), we define the pa-
rameter xcrit as

xcrit = ln

[
dṗ/dA

(dṗ/dA)Edd

]
. (20)

Note that we use (ggas + g∗) rather than simply ggas when comput-
ing the Eddington rate, as opposed to our approach in computing
the virial ratio (cf. equation 9), because for the latter we are con-
cerned with whether self-gravity can induce the gas to collapse,
while for the former we are concerned with the question of whether
supernovae inject enough momentum into the gas to unbind it from
both itself and the stellar potential. Given M and xcrit, Thompson
& Krumholz (2016) show that the mass ejection rate is given by

�̇wind = ζ�
σ

Hg
, (21)

where

ζ = 1

2

[
1 − erf

(−2xcrit + σ 2
ln �

2
√

2σln �

)]
(22)

σ 2
ln � = ln

(
1 + R

M2

4

)
(23)

R = 0.5

(M−1.0 − 1

1 − M1.0

)
. (24)

Physically, equation (21) simply asserts that gas with little enough
inertia to be accelerated to the escape speed in a disc crossing time
will be removed on that same time-scale, while material of higher
inertia, as implied by higher surface density, will not. Note that the
dispersion in column densities σ ln � is smaller than the correspond-
ing dispersion in volume density for the same Mach number as a
result of line-of-sight averaging. All the above expressions are valid
in the limit M � 1.

As with energy injection, we exponentially suppress this effect
once the surface density has been driven too low, in order to avoid

MNRAS 466, 1213–1233 (2017)



1218 M. R. Krumholz, J. M. D. Kruijssen and R. M. Crocker

Table 1. List of simulations.

Input parameters Results
Run Name Ṁin εr εff,0 SFE ν−1

max (observed) ν−1
min (observed)

[M� yr−1] [Myr] [Myr]

m01r050f10 0.1 0.050 0.010 0.92 23 (23) 10 (10)
m03r025f10 0.3 0.025 0.010 0.70 42 (42) 6 (8)
m03r050f05 0.3 0.050 0.005 0.72 23 (23) 10 (10)
m03r050f10 0.3 0.050 0.010 0.72 21 (21) 5 (8)
m03r050f20 0.3 0.050 0.020 0.67 42 (42) 4 (8)
m03r100f10 0.3 0.100 0.010 0.59 15 (15) 7 (7)
m10r050f10 1.0 0.050 0.010 0.48 42 (42) 7 (8)

Notes. SFE stands for the star formation efficiency, defined as the time-averaged ratio of mass converted to stars
to mass converted into stars plus lost to the wind (see equation 30). Note that this is distinct from both the
instantaneous star formation efficiency or a single cloud and the star formation rate per free-fall time εff. For the
time-scales ν−1

max and ν−1
min, the first figure is the value computed using the true star formation rate, while the second

(in parentheses) is the figure using the observationally inferred star formation rate.

generating unphysically low surface density cells that produce nu-
merical problems. Thus in our code we modify equation (21) to

�̇wind = ζ�
σ

Hg
e−�lim/�. (25)

2.4 Numerical limits

One final modification we make to the code is to impose a floor on
the column density and a corresponding ceiling on the temperature.
We do this because, after very long run times, cells near the inner
edge of our grid can reach very low column densities and very high
velocity dispersions not as a result of winds, but simply as a result
of advection converting gravitational potential energy to velocity
dispersion. This does not affect the results or the ability of the code
to run, but it does result in time-steps that are inconveniently small.
We therefore add the following purely numerical source terms in all
cells:

�̇num = �floor

r/vφ

[
e�floor/�

1 + e(�/�floor)2

]
(26)

Ėnum = −�σ 2
NT

r/vφ

[
eσNT/σceil

1 + e(σceil/σNT)2

]
(27)

where σNT = √
σ 2 − c2

s is the non-thermal velocity dispersion,
cs = 0.5 km s−1 is our adopted thermal sound speed, �floor = 10−4

M� pc−2, and σ ceil = 400 km s−1. Thus these terms artificially add
mass and remove energy to keep the surface density from falling
below 10−4 M� pc−2 and the velocity dispersion from increasing
above 400 km s−1; both source terms are suppressed as e−x2

in cells
not near these limits. We have verified that both of these source
terms change the total mass or energy in the computational domain
by only a tiny amount over the full course of the simulations, while
increasing the mean time-step by a factor of ∼100.

3 R ESULTS

In Table 1 we summarize the full set of simulations that we have
run, and collect various quantitative results for them. Simulations
vary only in the value of the accretion rate Ṁin into the CMZ, the
value of the parameter εr that determines the radial extent over
which stellar feedback is spread, and the parameter εff, 0 that de-
fines the rate of star formation per free-fall time at a virial ratio
of unity; simulation names follow the convention mXXrYYYfZZ,
where XX = 10Ṁin/(M� yr−1), YYY = 1000εr and ZZ = 1000εff.

All other parameters are as described in Section 2, or in Paper I. We
run all simulations for 500 Myr.

3.1 Qualitative behaviour

We first focus on run m03r050f10 (Ṁin = 0.3 M� yr−1, εr = 0.05,
εff = 0.01), since it was run with our fiducial parameter choices, and
many of the qualitative features we find in this run are common to all
the simulations. Fig. 1 summarizes the outcome of this simulation.
Gas enters from the outer edge of the computational domain and
flows inward towards the origin as a result of acoustic instability.4

Just inside 100 pc, where the rotation curve turns from near-flat to
near-solid body, this instability shuts off due to the loss of shear. The
‘dead zone’ where the shear is too small to drive acoustic instability
is most easily visible in the plot of gas velocity dispersion, where it
manifests as a region where the dispersion falls to low values until
star formation begins and pumps it back up.

In this dead zone, gas accumulates and, as this happens, the ve-
locity dispersion, scaleheight and virial ratio all drop. Immediately
outside the dead zone the scaleheight remains fairly constant at tens
of pc and the velocity dispersion at tens of km s−1, but inside the
dead zone, the velocity dispersion drops as low as ∼1 km s−1 and
the scaleheight reaches ∼1 pc. This first occurs at ∼15–20 Myr
of evolution and, at this point, star formation begins. Momentum
injection from star formation begins in earnest a few Myr later,
and this in turn drives a wind with a mass flux comparable to the
star formation rate, while also pumping up the turbulent velocity
dispersion, scaleheight and virial ratio, all of which lower the star
formation rate. By ∼100 Myr of evolution, the system has settled
into a quasi-steady cycle, which we illustrate further in Fig. 2. Star
formation thereafter proceeds in bursts, always centred on a ring lo-
cated at the shear minimum. To be quantitative, the time-averaged
star formation rate peaks at rpeak = 100 pc, whereas the minimum
of shear is at r = 81 pc. Averaged over time, material at r = 100
± 10 pc accounts for 35 per cent of the mass and 48 per cent

4 We caution that this acoustic instability-dominated region is at the edge
of applicability for our thin disc model. The transport equations that VADER

solves are valid to order (Hg/r)2 (Krumholz & Burkert 2010; Krumholz &
Forbes 2015), and in the acoustic region Hg/r is in the range 0.3–0.5. Thus
in this region we are dropping terms that are smaller than the ones we have
retained by only ≈10–25 per cent. That said, since there are no interesting
dynamics in this region, and the gas simply flows through, the impact of
such errors is likely to be minimal in any event.
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Figure 1. Summary of the outcome of the fiducial simulation m03r050f10. In each panel, radial position is indicated on the x-axis and evolution time on the
y-axis. Coloured panels indicate the values of the quantities indicated in the colour bars: gas surface density �, velocity dispersion σ , scaleheight H, virial
ratio αvir, depletion time tdep = �/�̇∗, star formation rate �̇∗, wind mass launching rate �̇wind, and momentum injection rate dṗ/dA. In the two centre-right
panels, the line plots show the rotation velocity vφ (top) and the dimensionless rate of shear 1 − β (bottom) as a function of radius. Note that we plot only a
portion of the simulation domain in order to emphasize interesting features.

of the star formation in the computational domain. The velocity
dispersion, virial ratio and scaleheight in this region undergo cy-
cles of increase and decay, oscillating between σ ≈ 1–10 km s−1,
H ≈ 0.1–10 pc, αvir ≈ 1–2. These in turn drive corresponding cycles
in the depletion time, star formation rate and momentum injection
rate.

Examining the final panel in Fig. 2, one can see a clear phase
shift between momentum injection and star formation: at the start
of the time interval shown (blue points), the momentum injection
rate is high and the star formation rate is low. After ∼20 Myr
the momentum injection rate declines, and after ∼30 Myr the star
formation rate rises while the momentum injection rate remains
low. Finally, at ∼40 Myr, the momentum injection rate rises again,
returning to a value similar to that at the start of the cycle.

We can see the bursts more clearly by integrating over the entire
disc. In Fig. 3 we show the integrated rates of star formation, mass
inflow and mass outflow (via the wind) in the entire disc. It is clear
that, once the system reaches quasi-equilibrium, star formation is an
episodic phenomenon with a rough period of tens of Myr. The wind
mass-loss rate is also periodic, but with smaller oscillations than
the star formation rate. Wind mass launching has a slight phase lag
relative to star formation, as one might expect: winds are launched
a few Myr after a peak in the star formation rate, since this is when
supernova momentum injection peaks.

Before proceeding further, it is useful to distinguish between the
true star formation rate and what an observer would infer using a
star formation tracer. The most common tracers for the Galactic
CMZ are based on ionizing photon production, and we therefore
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Figure 2. The cycle of star formation in the star-forming ring in run
m03r050f10. The quantity shown on the horizontal axis is the total star
formation rate within the star-forming region at r = 100 ± 10 pc. The
quantities plotted on the vertical axes are the scaleheight H, virial ratio αvir,
velocity dispersion σ , and total momentum injection rate ṗ in this region.
We compute the first three of these quantities as averages over the ring,
weighted by the star formation rate in each annulus; total momentum injec-
tion rate ṗ and the star formation rate Ṁ∗ are integrated over the ring. Each
circle represents a snapshot in time separated by 0.4 Myr, and the points
plotted cover a time interval from 460 to 500 Myr of evolution. Points are
coloured by time offset from 460 Myr.

Figure 3. Area-integrated rates of star formation (solid blue line), mass loss
via winds (solid red line) and mass inflow from the outer boundary (dashed
black line) in run m03r050f10.

compute the total ionizing luminosity produced in our simulations
via

Q =
∫ ∞

0
Ṁ∗(t − t ′)q(t ′) dt ′, (28)

Figure 4. PDF dp/d log tdep for the logarithm of the instantaneous depletion
time tdep, computed using both the true (solid line) and observed (dashed
line) area-integrated star formation rates in run m03r10f10. The dotted
vertical line shows a depletion time of 2 Gyr.

where q(t) is the ionizing luminosity per unit mass for a simple
stellar population of age t; we derive this quantity from the same
STARBURST99 computations described in Section 2.3. We then convert
this to a star formation rate via

Ṁ∗,obs = Q

1.57 × 1053 (photons s−1)/(M� yr−1)
, (29)

where the conversion factor is derived from a STARBURST99 compu-
tation for a population with a constant star formation rate at an age
of 50 Myr. Because Ṁ∗,obs is derived from an integral over the stel-
lar population, it slightly lags and smoothes the true star formation
rate.

With this quantity in hand, in Fig. 4 we plot the corresponding
probability distribution function (PDF) for the true and observa-
tionally inferred log depletion times, dp/d log tdep. This quantity is
simply the probability density that the system would show a log
depletion time between log tdep and log tdep + d log tdep if it were
observed at a random time; in computing this statistic we only con-
sider times t > 200 Myr, to exclude the phase when the system
is still settling into steady state. We see that the system spends
≈40 per cent of its time with a depletion time >1 Gyr, a typical
value for outer discs, and the other ≈60 per cent with a substantially
smaller depletion time, which we might characterize as an outburst
state. If we use the observationally inferred star formation rate in-
stead, these figures shift to 30 per cent in ‘normal’ star-forming
mode and 70 per cent in ‘starburst’ mode; the difference arises be-
cause the use of the ionization-based star formation rate smears out
the bursts, making them appear to last longer.

To further characterize the burst behaviour, in Fig. 5 we show a
periodogram of the true and observed star formation rates; modulo
issues of numerical aliasing due to the finite number of samples and
the non-periodicity of the data, this quantity is simply the power
spectrum of the star formation history, plotted as a function of in-
verse frequency. From the periodogram, see that there are primary
power spikes at tens of Myr, with secondary spikes at ∼5–10 Myr.
To make this quantitative, we define two time-scales, ν−1

min, and ν−1
max,

as the minimum and maximum inverse frequencies for which the
power spectral density P(ν) is equal to 10 per cent of its peak value.
The choice of 10 per cent is somewhat arbitrary, but results are not
very sensitive to the exact threshold we choose, and visual examina-
tion of the periodograms and time series shows that this choice does
a good job of reproducing what one would pick out by eye. Intu-
itively, we may think of ν−1

min and ν−1
max as characterizing the shortest
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Figure 5. Periodogram of the true (solid line) and observed (dashed line,
almost completely hidden by the solid line) area-integrated star formation
rates in run m01r050f10. The x-axis shows the period and the y-axis shows
power normalized by the power in the highest power bin. We compute this
periodogram using a Hann window function.

and longest time-scale on which the star formation rate varies, with
the former describing the short duration of individual bursts, and
the latter describing the longer periodicity between bursts. For run
m03r050f10, we find ν−1

min = 5 Myr and ν−1
max = 21 Myr; if we con-

sider the observationally inferred star formation rate instead, the
longest period remains roughly the same, while the shortest one
increases to about 8 Myr.

During an outburst the star formation rate rises by a factor of
∼100, from a few per cent of the gas inflow rate to several times
the inflow rate. As noted above, the wind mass-loss rate varies less
than the star formation rate, showing only a factor of ∼10 changes
from peak to trough. Consequently, there is wide variation in the
ratio of the wind outflow rate to the star formation rate, known as
the mass loading factor. This can be as high as ∼10 immediately
after an outburst, and as small as ∼0.3 immediately after a burst
begins, before supernovae begin to occur. Averaging over all times
after 200 Myr, once the gas mass in the system reaches steady state,
we find that the star formation efficiency is

SFE =
〈
Ṁ∗

〉
〈
Ṁ∗ + Ṁwind

〉 = 0.72, (30)

where the angle brackets indicate an average over times >200 Myr.
Note that since the total gas mass in the CMZ in our model is in
steady state, the star formation efficiency is simply the mean fraction
of the gas that enters the CMZ that is ultimately converted to stars.
In our fiducial model, we find that 72 per cent of the inflowing mass
goes into stars, while the remaining 28 per cent is lost in the form of
winds. Phrased in terms of a mass loading factor, this corresponds
to a time-averaged mass loading factor of 0.39.

What causes the bursts? As limiting cases we could imagine that
changes in the star formation rate are driven by changes in the gas
mass while the gas depletion time remains fairly constant, changes
in the depletion time while the gas mass remains fairly constant, or
some combination of the two. To address this question, in Fig. 6
we show the total gas mass and the gas depletion time measured
from the simulations. We show these quantities both for the entire
computational domain and for the ring of material at rpeak ± 10 pc.
The figure clearly shows that while there is some periodic variation
in the gas mass, it is far smaller than the variation in the depletion
time. Thus bursts are not caused by wholesale ejection of mass from
the ring, though Fig. 1 shows that there clearly are local evacuations.
Instead, they are caused when the gas is driven to higher velocity

Figure 6. Depletion time (top panel) and gas mass (bottom panel) in run
m03r050f10. We show results both for the entire computational domain (blue
line) and for the ring of material at rpeak ± 10 pc, where rpeak = 100 pc is the
radius at which the time-averaged star formation rate reaches its maximum.

dispersions by the effects of stellar feedback. This in turn lowers the
star formation rate, both by raising the virial ratio and by increasing
the gas scaleheight and thus lowering the density. After several
tens of Myr, the momentum injection rate drops and is no longer
able to sustain the high level of turbulence. The velocity dispersion
decreases and another outburst cycle begins. We note that this form
of the feedback cycle is contrary to what we proposed in Paper I,
where we conjectured that there would be wholesale ejection.

3.2 Effects of varying εff, 0

The parameter εff, 0, which controls the star formation rate per free-
fall time, is significantly constrained by observations. However,
there are uncertainties nonetheless, not the least because the virial
ratios of observed objects are generally only determinable to the
factor of ∼2–3 level. For this reason we compare runs m03r050f05,
m03r050f10 and m03r050f20, in which we fix all parameters but
εff, 0, which we vary from 0.005 to 0.02. We compare the star for-
mation histories, depletion times, gas masses, periodograms and
depletion time PDFs in Fig. 7.

Examining the different columns in the figure, we see that all
runs again show very similar qualitative behaviour. The main effect
of varying εff, 0 is to change the amplitude and time-scale of the
periodic variation. Using εff, 0 = 0.005, a factor of 2 smaller than
our fiducial case, leads to a star formation rate and wind outflow
rate that vary somewhat more slowly but with somewhat larger
amplitude than our fiducial case, while εff, 0 = 0.02 produces more
frequent oscillations of smaller magnitude. This is reflected in the
spread in the depletion time PDF as well, with higher values of εff, 0

leading to shorter depletion times especially during quiescence,
thereby compressing the overall range of depletion times achieved.
With εff, 0 = 0.02, the depletion time never rises above 1 Gyr, which
is incompatible with observation of galactic centres.

However, the time variation of the star formation rate, as mea-
sured by the periodogram, is very similar in the three runs, as is the
time-averaged star formation efficiency. The exact values of ν−1

min,

MNRAS 466, 1213–1233 (2017)



1222 M. R. Krumholz, J. M. D. Kruijssen and R. M. Crocker

Figure 7. Results from runs m03r050f05, m03r050f10 and m03r050f20 (left, centre and right columns), which all have the same gas inflow rate and feedback
prescription, but differ in the parameter εff, 0 that describes the star formation rate per dynamical time. The top three rows show, as a function of time, from
top to bottom: mass per unit time Ṁ converted to stars (blue), lost in winds (red), and entering the outer edge of the disc (black dashed); gas depletion time
tdep computed over the entire disc (black) and over the ring of peak star formation at r = 100 ± 10 pc (gren); gas mass Mgas in the entire disc (black) and
the star-forming ring (green). The bottom two rows show the periodogram of the star formation rate and the PDF of depletion times, for both the true (solid
black) and observed (dashed black) star formation rates. All quantities are computed in exactly the same manner as those shown in Figs 3–6, and the data in
the central column here are identical to the data shown in those figures.

ν−1
max and SFE are given in Table 1. Clearly, the periodic behaviour

we observe is insensitive to the exact value of εff, 0.

3.3 Effects of varying εr

The most uncertain value in our model is εr, the radius over which
stellar feedback is spread due to the fact that newly formed stars
are not on orbits that are identical to those of the gas. We have
argued that it should be approximately 0.05 based on computing
the spreads in orbits we expect based on the observed velocity
dispersions of CMZ star clusters, but these velocity dispersions are
purely empirical inputs, and could conceivably have been different

at different times or in different galaxies. To test how uncertainty in
εr might affect our conclusions, in runs m03r025f10, m03r050f10
and m03r100f10, we hold all parameters except εr fixed, and vary
the value of εr from 0.025 to 0.1 (see Table 1).

We show the results of the three simulations with varying εr

in Fig. 8. Qualitatively, runs m03r025f10 and m03r050f10, cor-
responding to εr = 0.025 and 0.05, are nearly identical. Run
m03r100f10, corresponding to εr = 0.1, also shows bursty be-
haviour, but its periodicity is much more regular than in the other
two runs. While the PDF of depletion times is much the same, the
periodogram for this run shows a single dominant peak at about
20 Myr, rather than several peaks as shown in our other runs.
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Figure 8. Same as Fig. 7, but now comparing runs m03r05f10, m03r10f10 and m03r20f10, which use identical values for the parameters describing star
formation and inflow, but differ in the radial extent over which feedback is injected.

Examining the spatial distribution of gas and star formation for
this run (not shown), we see that, rather than a patchy and ir-
regular pattern of star formation found in the other runs, it has
a more regular morphology, with star formation always occur-
ring at the same radial location. Nonetheless, we find that bursti-
ness on ∼20 Myr time-scales is again a generic outcome of
the simulations.

We can understand these results, and in particular the difference
between the εr = 0.1 and smaller εr cases, by thinking about the
spread in feedback compared to the width of the star-forming ring.
As noted above, in our fiducial case close to 50 per cent of the
star formation takes place within a ring of ±10 pc width about
r = 100 pc, so the fractional width of the star-forming region is
roughly 10 per cent. For εr < 0.1, the feedback is localized within
the star-forming ring, and causes disruption of patches of it. This
leads to the chaotic, bursty behaviour we observe for the εr = 0.025
and 0.05 cases. On the other hand, for εr � 0.1, the feedback

becomes close to uniform across the star-forming ring. This re-
duces its effectiveness somewhat, since some of the momen-
tum is delivered to the non-star-forming gas outside the ring,
and also means that the star-forming region reacts coherently
rather than locally to the feedback. This coherent response ex-
plains the regular pattern we observe in star formation rates for
the εr = 0.1 case.

3.4 Effects of varying Ṁin

The final parameter of our model that we consider varying is Ṁin,
the mass accretion rate on to the CMZ from outside. We ex-
plore how this parameter affects the behaviour of the CMZ via
models m01r050f10, m03r050f10 and m10r050f10, where we use
values of Ṁin = 0.1, 0.3 and 1.0 M� yr−1, while holding all
other parameters fixed. We show the results of this experiment
in Fig. 9.
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Figure 9. Results from runs m01r050f10, m03r050f10 and m10r050f10 (left, centre and right columns). These all have the same parameters for star formation
and feedback, but differ in the mass inflow rate into the CMZ that we assume, with values of Ṁin = 0.1, 0.3 and 1.0 M� yr−1, respectively. Panels are the
same as in Fig. 8.

Examining the figure, it is clear that the primary quantities that
are influenced by the inflow rate are, not surprisingly, the star for-
mation and wind mass ejection rates, and steady-state gas mass
of the CMZ and in the 10 pc ring. All these quantities appear
to scale nearly linearly with the inflow rate. The temporal pat-
tern of star formation is qualitatively the same in all the runs. The
main systematic difference we see is in the partition of the in-
flow between star formation and winds. At the lowest inflow rate,
0.1 M� yr−1, the star formation rate exceeds the mass outflow
rate at essentially all times, leading to a comparatively high star
formation efficiency of ≈90 per cent. In contrast, at an inflow rate
of 1.0 M� yr−1 the wind outflow rate and star formation rate are
nearly the same, leading to a star formation efficiency closer to
50 per cent.

4 D I SCUSSI ON

4.1 A dynamical model of the CMZ

We are now in a position to make some general statements about
how star formation in the Milky Way’s CMZ, and the analogous
regions of other galaxies, should behave. Gas enters the CMZ as
a result of transfer by the Galactic Bar, and the bar further drives
instabilities in the region of high shear that transport mass and keep
the gas too turbulent to form stars. This ends where the rotation
curve switches from flat to near solid-body, and gas accumulates
in this region, forming a persistent ring-like structure. Within the
ring star formation occurs in bursts. The driving feature of the
bursts is an alternating cycle whereby turbulence decays, leading to
high densities and low virial parameters, both of which boost the
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star formation rate. This leads to the formation of a large stellar
population, which begins producing supernovae a few Myr later,
raising the level of turbulence and driving the star formation rate
back down. The low rate of star formation continues for a while, but
over time the supernovae fade and the turbulence decays, causing
the cycle to repeat. At the same time, the supernova feedback drives
a wind off the CMZ, which carries away a portion of the mass that
enters. A key requirement for this cycle to take place is that the time-
scale for turbulent decay and the onset of star formation is shorter
than the time required for the onset of supernova feedback, which
prevents the system from reaching an equilibrium in which injection
of energy by supernovae balances dissipation. This condition is
satisfied in the CMZ, because in the low-shear region at 100 pc, the
orbital period is only ≈3 Myr.

Based on our simulations, we can make the following quantitative
predictions about this cycle, which are robust against variations in
any of our uncertain parameters.

(i) We predict that the duration of outbursts should be ∼5–
10 Myr, while the overall cycle of burst and quiescence should
have a period of ∼15–40 Myr. The former number comes mostly
from the delay between the onset of star formation and the first
supernovae, while the latter comes from the time required for su-
pernovae to cease and for turbulence to decay, allowing gas to
become gravitationally unstable again.

(ii) Throughout this cycle there is a persistent, dense gas structure
at ∼100 pc from the Galactic Centre, where the Galactic rotation
curve begins to turn towards solid body and the shear reaches a
minimum. The mass in this structure varies periodically, and local
patches of it may be evacuated by feedback, but the overall variation
in mass in this structure is far smaller than the variation in the star
formation rate. Instead, changes in the star formation rate are driven
primarily by changes in the mean density and velocity dispersion
of this structure, which combine to produce a short depletion time
during outbursts and a long one during quiescence.

(iii) During quiescence, the gas depletion time of the CMZ is
of the order of 1 Gyr. During outburst this drops by a factor
of ∼10–100, reaching �100 Myr. The true depletion time is >1 Gyr
(i.e. comparable to what is seen in outer galaxies) for roughly
40 per cent of the time, and is shorter, indicating a starburst, about
60 per cent of the time. However, because of the short durations
of the bursts, and because the true time-averaged depletion time
is only a few hundred Myr, an observationally determined fraction
of the time spent in starburst will depend on the effective integra-
tion time of the star formation rate tracer used. If one measures
with an ionization-based star formation tracer, the CMZ spends
∼30 per cent of its time with what appears to be a ‘normal’ deple-
tion time >1 Gyr, and ∼70 per cent with a shorter depletion time.
The longer the integration time, the more time will appear to be
spent in outburst.

(iv) At an inflow rate of 0.3 M� yr−1, a slight majority of the gas
entering the CMZ is converted to stars, while the rest is ejected in a
wind driven primarily by supernova feedback. The balance between
star formation and wind loss depends mildly on the inflow rate, with
lower inflow rates producing higher star formation efficiencies and
higher inflow rates producing lower ones. This wind is launched
primarily from the same dense structure where star formation oc-
curs, and carries away a time-averaged mass flux that is slightly
smaller than the flux of mass going into stars. However, the ratio of
wind mass flux to star formation rate undergoes extreme variations,
ranging from ∼10 to ∼0.03 depending on where the system is in
the outburst cycle.

Figure 10. Observable cycle of properties of the star-forming ring at 100 ±
10 pc in run m10r050f10 from 480–500 Myr (coloured points) as compared
to the observed Milky Way ring (grey ellipses). Points are coloured by time
since 480 Myr, as in Fig. 2, with one point per 0.2 Myr of time. The properties
shown are, from top to bottom: area-weighted mean scaleheight H, mass-
weighted mean velocity dispersion σ , gas depletion time tdep, total gas mass
Mgas, and mass-weighted mean Toomre Q parameter for the gas, where at
each radius we have Q = κσ/πG�, where κ is the epicyclic frequency.
All quantities are shown as a function of the star formation rate as observed
with an ionization-based tracer. The observational constraints shown in grey
are taken from the compilations in Kruijssen et al. (2014), Longmore et al.
(2012, 2013a) and Henshaw et al. (2016); in cases where the authors did not
state an uncertainty, we have adopted an uncertainty of a factor of 2.

4.2 Comparison to the observed milky way CMZ

How do our models compare to what we actually observe in the
Milky Way? To address this, we focus on model m10r050f10, which
by a variety of metrics appears to be the closest match to the Milky
Way’s CMZ. We illustrate this in Fig. 10, which compares various
observable properties of the star-forming ring at r = 100 ± 10 pc
in the simulation to the same properties observed in the Milky
Way’s star-forming ring, as summarized in table 1 of Kruijssen
et al. (2014) and table 2 of Longmore et al. (2013a). This figure is
analogous to Fig. 2, except that since we are interested in observable
rather than intrinsic properties, we slightly modify the quantities
plotted; for example, we use the observable rather than the true
star formation rate, and we plot an area-weighted rather than a
star formation-weighted scaleheight. Fig. 10 clearly shows that this
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run spends a significant amount of time with properties that closely
resemble those of the observed star-forming ring in the Milky Way’s
CMZ.5 At face value, two evolutionary stages in the modelled cycle
seem to match best. At a time of t = (482.0, 486.9) Myr, the star-
forming ring in this model has Ṁ∗,obs = (0.050, 0.061) M� yr−1,
H = (7.1, 3.1) pc, σ = (11.8, 7.4) km s−1, tdep = (0.53, 0.42)
Gyr, Mgas = (2.65, 2.58) × 107 M� and Toomre Q parameter
Qgas = (1.55, 0.82); all of these properties match the properties of
some part of the observed star-forming ring in the Milky Way within
the observational uncertainties.

Both of the above two model snapshots are close to the star for-
mation minimum in the cycle, but their evolutionary states do differ.
At t = 482.0 Myr (Case A), the star formation rate is decreasing,
as the modelled star-forming ring has experienced a starburst some
5 Myr earlier (at t = 477 Myr) and will evolve through the star
formation minimum in another 3 Myr (at t = 485 Myr), with the
next star formation peak expected in 7 Myr (at t = 489 Myr). By
contrast, in the model snapshot at t = 487 Myr (Case B), the star
formation rate is rapidly increasing, as it is exactly midway between
the star formation minimum at t = 485 Myr and the maximum at
t = 489 Myr, with the most recent starburst 10 Myr earlier. If Case
A best describes the star-forming ring in the Milky Way’s CMZ,
then the formation of the Arches and Quintuplet clusters (with ages
of 3.5 and 4.8 Myr, respectively; see Schneider et al. 2014) has
taken place at the height of the most recent starburst. However, the
highest-density clouds in the star-forming ring (all situated on the
‘dust ridge’ between Sgr A∗ and Sgr B2, which has enough mass
to form several Arches-like clusters; Longmore et al. 2013b) have
such low velocity dispersions (<10 km s−1) and small scaleheights
(few pc) that they best match the conditions of Case B (cf. Henshaw
et al. 2016). In other words, our model predicts that these clouds
are unlikely to remain quiescent for another 7 Myr (as would be
required in Case A). These points suggest that the star-forming ring
in the Milky Way’s CMZ has a non-zero spread in evolutionary
times in the cycle of Fig. 10. This is not surprising; gas is continu-
ously spiralling on to the star-forming ring, implying that a natural
time interval for an evolutionary spread is the orbital time of the
gas streams within the ring. The time-scale is ∼4 Myr (Kruijssen
et al. 2015) and provides a good match to the time difference be-
tween these two best-fitting model snapshots. This does, however,
point to a limitation of our axisymmetric assumption.

This scenario has the following implications.

(i) The star-forming ring covers the entire timeline between
t = 482 and 487 Myr and on average resides at the star forma-
tion minimum (t = 485 Myr).

5 While this discussion focuses on the star-forming ring, we note that the
macroscopic properties of the models are also consistent with the observed,
large-scale spatial distribution of the gas in the CMZ. Longmore et al.
(2013a) find that a dust-inferred gas mass of 1.8 × 107 M� resides within
|�| < 1◦ (or r < 140 pc), with 2.3 × 107 M� residing at |�| > 1◦. The
masses shown in Fig. 10 reproduce the observed gas mass in the inner
CMZ to within the uncertainties and our predicted gas mass outside of the
star-forming ring of ∼1.4 × 107 M� also provides a good match to the
observed mass. Due to the high virial ratio of the gas in the outer CMZ,
its scaleheight is predicted to be substantially larger than that of the star-
forming ring (H ∼ 70 pc rather than H ∼ 10 pc). Again, this increase is
qualitatively consistent with observations. At |�| > 1◦, the total vertical
extent of the observed molecular gas emission (traced by 12CO, see fig. 3
of Bally et al. 2010) covers more than a degree in latitude (i.e. more than
140 pc). This increase of the scaleheight with radius is of the same order as
predicted by our models (see Fig. 1, as well as fig. 13 of Paper I).

Figure 11. Top panel: column density NH for model m10r050f10 at time
t = 485 Myr as seen from Earth, with positions indicated in Galactic longi-
tude � and Galactic latitude b. Bottom panel: the image shows the column
density map of Molinari et al. (2011), derived from Herschel observations.
We have superimposed on it the column density map shown in the top panel,
with the colour scale adjusted to match that used in the Herschel map; only
pixels with NH > 4 × 1022, the minimum column in the Herschel map, are
shown, and those that we do show have been left partially transparent to
allow comparison with the underlying image. The coloured circles in the
lower panel mark the locations of the star-forming molecular clouds Sgr
B2, Sgr B1 and Sgr C, as indicated; coordinates for these structures are
taken from table 3 of Henshaw et al. (2016). The coloured squares mark the
positions of the Arches and Quintuplet clusters, and the black star indicates
the position of Sgr A∗.

(ii) The previous starburst took place at t = 477 Myr, some
∼8 Myr ago.

(iii) The Arches and Quintuplet clusters represent the last clusters
that formed during this previous starburst (∼5 Myr ago).

(iv) The dust ridge contains the clouds that will collapse and form
stars first during the onset of the upcoming starburst (in 1–2 Myr).

(v) The non-star-forming, high-velocity dispersion, and large-
scale height gas in the star-forming ring has recently been accreted.

We further analyse the observable properties of the snapshot at
t = 485 Myr (corresponding to the average evolutionary phase of the
star-forming ring, i.e. at a star formation minimum). To do so, we
generate synthetic column density and position–velocity maps for
the model, placing them in Galactic coordinates for the purposes of
comparing to the observed CMZ. For the purposes of this calculation
we assume a Galactic Centre distance of 8.5 kpc (Ghez et al. 2008),
and following Kruijssen et al. (2015) and Henshaw et al. (2016)
we place the centre of our simulated disc at the position of Sgr A∗,
which in position–position–velocity space is (�, b, v) = (−0.◦056,
−0.◦047, −14.0 kms−1).

We show the column density map for our model, overlaid with
the observed column density distribution in the CMZ from Molinari
et al. (2011), in Fig. 11. The figure displays an impressive degree
of agreement. The predicted vertical gas distribution quantitatively
matches the observations, and the extent of the ring is nearly correct
as well. The locations of the most active sites of ongoing star for-
mation – Sgr B2, Sgr B1, and Sgr C – are exactly where the model
predicts that such sites should be found.

We show the synthetic position–velocity diagram in Fig. 12.
This can be compared to observations such as those presented by
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Figure 12. Position–velocity diagram for the same snapshot as shown in
Fig. 11. The top colour panel, labelled ‘mid-plane’, shows the column den-
sity per unit velocity along a cut through the Galactic mid-plane. The line
plot above this shows the velocity-integrated column density correspond-
ing to this. The bottom coloured panel, labelled ‘z-integrated’, shows the
total mass per unit velocity per degree of Galactic longitude, integrating
over Galactic latitude. The line plot below it shows the mass per degree of
Galactic longitude, integrating over the velocity and Galactic latitude. The
coloured circles and squares in the coloured panels indicate the positions
and velocities of Sgr A∗, Sgr B2, Sgr B1, Sgr C, Arches and Quintuplet, as
indicated. The black line in the coloured panels shows the best-fitting orbital
model describing the observed kinematics of the gas stream from Kruijssen
et al. (2015), which highlights the difference in kinematics expected when
the orbit is eccentric (with e = 0.3). Data are from the same sources as in
Fig. 11.

Henshaw et al. (2016, their figs 6–9). In comparison, we find that
the positional extent of our model is in good agreement with the
data, as one would have expected based on Fig. 11, but the model
velocities are somewhat higher than the observed ones. This is also
apparent in the offset between the velocities of the Sgr B2, B1, and
C molecular clouds and our data.

The discrepancy between model and data reflects the limitations
of our assumption of axisymmetry, which requires only circular
orbits. In reality, Kruijssen et al. (2015) show that the star-forming
ring is only partially filled with dense gas, which orbits in an open
stream with non-zero eccentricity e ≈ 0.3. The extent of this orbit is
from ≈ 60 to 120 pc, in excellent agreement with our model, but in
the unstable region we do not have filled circular orbits, but instead
partially filled elliptical ones. The orientation is such that the Sgr
molecular clouds, and the bulk of the dense gas, lie near the apoc-
entres of the orbit, producing line-of-sight velocities substantially
smaller than the circular velocities at their projected positions. In ad-
dition, the eccentric nature of the orbit leads to orbital precession,

which manifests itself as a vertical drift in the position–velocity
space of Fig. 12. A comparison to the orbital model of Kruijssen
et al. (2015) shows that the Sgr clouds reside on exactly those parts
of the orbit where the line-of-sight components of the velocities are
suppressed even further relative to the orbital motion. These effects
explain why our model does a very good job reproducing the posi-
tion of the star-forming ring, but is less successful at reproducing
the line-of-sight velocities. It also serves as a warning against the
limitations of our axisymmetric assumption: our model is capable
of predicting at which galactocentric radii the star formation should
occur, and how it should be regulated, but is not adequate to repro-
ducing the detailed kinematics, which likely vary substantially in
time in any event.

To facilitate future observational tests, we now present a number
of simple predictions for the volume density structure of the cold
interstellar medium in the Milky Way’s CMZ. As demonstrated
in Paper I, our model predicts a strong increase towards the Galac-
tic Centre of the mid-plane volume density (ρ = �/2Hg), the dense
gas fraction, and the critical density threshold above which gas
decouples from the turbulent flow and can collapse to form stars
(ρcrit = AαvirM2ρ, with A a constant of the order of unity; see
Krumholz & McKee 2005; Hennebelle & Chabrier 2008; Padoan
& Nordlund 2011; Federrath & Klessen 2012). We quantify this
prediction by considering the gas in the mid-plane and assum-
ing that it follows a lognormal volume density PDF as expected
for an isothermal, supersonically turbulent medium (e.g. Vazquez-
Semadeni 1994; Padoan, Nordlund & Jones 1997; Krumholz &
McKee 2005). For simplicity, we adopt a mixture of compressive
and solenoidal turbulence driving (cf. Federrath & Klessen 2012)
and assume that the magnetic field is not dynamically important.
At each galactocentric radius, we calculate the density PDF from
the mid-plane volume density and Mach number provided by our
model, and also derive the critical density for star formation as
in Krumholz & McKee (2005). The PDFs are then used to deter-
mine the gas mass fractions above several different volume density
thresholds as a function of Galactic longitude, where the integration
along the line of sight is carried out by weighting each element by
its local surface density.

The results of the above calculation are shown in Fig. 13 for the
same model snapshot as in Fig. 11 (at t = 485 Myr).6 The top panel
demonstrates that the mid-plane density in the gravitationally un-
stable, star-forming ring (|�| � 1◦) is much higher than elsewhere
in the CMZ. The mid-plane densities of n = 103–104 cm−3 pro-
vide a good match to the mean densities observed in the Galactic
star-forming ring (e.g. Bally et al. 2010; Longmore et al. 2012;
Rathborne et al. 2014a). In addition, the critical density for star
formation (which manifests itself in observed density PDFs as a
power-law deviation from the lognormal shape at high densities) is
predicted to range from ncrit ∼ 105–3 × 106 cm−3 throughout the
CMZ, with the highest values being reached in the star-forming ring.
Such critical densities are orders of magnitude higher than those pre-
dicted for solar neighbourhood clouds, but are expected at the high
pressures and densities of the CMZ gas (Kruijssen et al. 2014). In
gravitationally unstable gas, we predict ncrit ∼ 3 × 106 cm−3. This
is remarkably consistent with the ALMA observations of the CMZ
cloud G0.253+0.016 by Rathborne et al. (2014b), who identify a
power-law deviation from the lognormal column density PDF that

6 Across the star formation cycle in the star-forming ring (Fig. 10), the dense
gas fractions only vary by a factor of ∼3, whereas the critical density and
mid-plane densities vary by factors of ∼2 and ∼10, respectively.
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Figure 13. Density structure of the cold interstellar medium for the same
snapshot as shown in Fig. 11. Top panel: mid-plane volume density (black)
and critical volume density threshold for star formation (red) as a function
of Galactic longitude �. Bottom panel: mass fraction of all gas along the
line of sight above a volume density nref as a function of Galactic longitude.
The (solid, dashed, dotted) black lines represent nref = (104, 105, 106) cm−3

and the solid red line indicates the gas mass fraction eligible for star forma-
tion, i.e. nref = ncrit, where ncrit is the critical density from the top panel.
Throughout most of the Galactic Centre, the star-forming gas fraction is
minor (�1 per cent), but it is predicted to be as high as several per cent in
the star-forming ring.

corresponds to a volume density of n > 106 cm−3 when assuming
spherical symmetry. The location of the high-density gas coincides
with the only known site of star formation within the cloud (as
traced by a water maser, see Lis & Carlstrom 1994), providing fur-
ther support to the interpretation that cloud-scale star formation in
the CMZ is in accordance with the model presented here.

The bottom panel of Fig. 13 quantifies the increase of the dense
gas fraction towards the Galactic Centre. For different definitions of
‘dense’ (nref; see the legend), the figure shows that the star-forming
ring holds the highest dense gas fractions in the CMZ, ranging from
several per cent (for nref = 106 cm−3) to nearly 100 per cent (for
nref ∼ 104 cm−3). The gas fraction eligible for star formation, i.e.
f(n > ncrit), is shown by the red line, and explains why star formation
in the Milky Way’s CMZ is mostly confined to |�| < 1◦. Only at
those longitudes does a non-negligible fraction of the gas reside
at densities high enough to decouple from the turbulent flow and
collapse to form stars.

Currently available observations confirm the prediction of our
model that the majority of the cold interstellar medium in the CMZ
resides at densities n > 104 cm−3 (Longmore et al. 2013a), but ob-
servational tests of our predicted gas fraction above higher densities
cannot be carried out yet, because no high-spatial resolution survey
of the entire CMZ has been published. The few cases for which
high-resolution observations are available match the predictions of
Fig. 13 (Kauffmann et al. 2013; Rathborne et al. 2014b). However,
a definitive test of our model requires a wide-field survey at arc-
second (∼0.08 pc) resolution to enable the systematic mapping of
the high-density gas and protostellar core population in the CMZ.
This will be one of the main goals of the ongoing CMZoom Survey

with the Submillimeter Array (SMA, PIs Keto & Battersby), which
is expected to reach densities of several 105 cm−3. Future surveys
with the Atacama Large Millimeter/submillimeter Array (ALMA)
would grant access to even higher densities.

4.3 Galactic Centre star formation beyond the Milky Way

Thus far we have focused on the Milky Way’s CMZ, since that is the
region for which we have the best measurement of the rotation curve
and of the properties of the bar. However, there is every reason to
believe that the Milky Way’s centre is similar to that of other barred
spiral galaxies, and thus that the phenomena we have investigated
here should be generic in such systems. Inflows and bursts should
occur in any CMZ where there is a bar to drive transport, a low shear
region to trap the gas, and where the dynamical time at the low-
shear region is shorter than the lifetimes of massive stars, preventing
supernovae from establishing a time-steady equilibrium between
driving and dissipation. What will other galaxies’ CMZs look like
if we observe them? To answer this question, we imagine observing
the centre of an external galaxy and placing it on a Kennicutt–
Schmidt (KS) plot, whereby we place the star formation rate per
unit area on the y-axis and either the gas surface density � or the
gas surface density normalized by the orbital period �/torb on the
x-axis.

Because such an exercise is necessarily resolution-dependent, we
perform it in two ways. First, we consider an aperture of 750 pc
centred on the (generic) galactic centre. Our motivation for this
choice of size is that it is typical for large-scale nearby galaxy
surveys such as THINGS (Bigiel et al. 2008; Walter et al. 2008;
Leroy et al. 2008) and HERACLES (Leroy et al. 2009, 2013). We
compute the total gas mass and total star formation rate for all
radial bins whose centres lie within the aperture, and obtain the
area-normalized quantities by dividing both the gas mass and star
formation rate by the total area of this region. For the orbital period,
we use the value for the outermost bin within the 750 pc aperture.

Secondly, we consider a much higher resolution observation
focused on the star-forming ring. For this case we identify the
radius rpeak which has the highest time-averaged star formation
rate, and we consider the ring of material at rpeak ± 10 pc. We
use the gas mass, star formation rate and area only of this re-
gion, and the orbital period at its outer edge. This produces an
observation that is narrowly focused on the region of maximum
star formation.

In both cases we use the observationally inferred rather than
true star formation rate in our computation. Strictly speaking the
time-scales for our ‘observationally inferred’ star formation rate are
appropriate only for an observation based on an ionized gas tracer,
whereas many galactic centre observations use other tracers such
as infrared. However, the time-scales for ionization and bolometric
luminosity (which is what is closest to infrared) are not so disparate
that we worry about this detail. We perform this exercise for runs
m01r10f10, m03r10f10 and m10r10f10, which use our fiducial pa-
rameters for star formation and feedback, and vary in their mass
accretion rates, as we would expect for a realistic population of
galaxies with different bar strengths and gas contents.

We show the results in Fig. 14. Examining the left panel, it is clear
that the simulations with different accretion rates form a sequence
that slides from the bottom left to the upper right of the KS plot.
The lower extent of the locus of points occupied by a galaxy with
a particular accretion rate, observed at 750 pc resolution, moves
along a line of constant, ∼2 Gyr depletion time, while the upper
extent rises ∼1.5 orders of magnitude higher in star formation rate
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Figure 14. The observable properties of simulations m01r050f10 (red), m03r050f10 (green) and m10r050f10 (blue), corresponding to gas accretion rates
Ṁin = 0.1, 0.3 and 1.0 M� yr−1, in a KS plot. The left panel shows star formation rate per unit area �̇∗ versus gas surface density �, while the right shows �̇∗
versus surface density divided by orbital period, �/torb. In each panel, colours indicate the log of the probability that the system would fall into the indicated
pixel if observed at a random time >200 Myr of evolution in the simulation. We show the results both for an observation of the whole CMZ, and for one
focusing on the ring of peak star formation, as indicated by arrows. For comparison, in the left panel the two black dashed lines show constant depletion times
of 2 Gyr (bottom) and 200 Myr (top), respectively, while in the right panel they show gas depletion times of 100, 10 and one times the orbital period (bottom
to top). See main text for details on how all quantities are computed.

above this.7 The points corresponding to a high resolution observa-
tion show similar qualitative behaviour to the low-resolution ones,
but with much larger scatter. However, in both cases galaxies spend
roughly half their time near the line of 2 Gyr depletion time that
characterizes star formation in spiral galaxies at larger galactocen-
tric radii, and about half their time scattered above this line, with a
slight bias to being found at lower depletion time. These statistics
are in very good agreement with the observed sample of Leroy et al.
(2013).

The right panel of Fig. 14 tells a somewhat similar story. Mea-
sured at low resolution, galaxies spend about half their lives looking
like their centres deplete on time-scales of ∼100 orbits, with this
number dropping as low as ∼10 orbits for ∼50 per cent of the time.
Focusing on the ring where gas accumulates, star formation ac-
tually looks significantly less efficient than on larger scales when
measured in terms of the orbital period, with star formation rates
rising to push the depletion time below 100 orbital periods only
during outburst. This is simply a reflection of the fact that, during
the quiescent period, εff is somewhat less than 1 per cent because
the gas is supervirial, and the free-fall time is somewhat longer
than the orbital period because the gas is not quite self-gravitating.
Only when the gas becomes roughly virial and an outburst begins
do we begin to have depletion times that approach ∼10 orbital peri-

7 We caution at this point that the extent of the vertical rise may be overes-
timated somewhat, because our axisymmetric model forces star formation
events to be perfectly synchronized in azimuth, whereas in reality they are
not. The main effect of this will be to compress the range of the points along
the �̇∗ axis somewhat, though probably more at the high end than the low
end.

ods. This effect is not seen in the larger scale observations because,
although the gas and star formation are all concentrated in a ring
at ∼100 pc, the orbital period being used is that measured at much
larger galactocentric radii.

4.4 Properties of the cool wind

We next examine in more detail the properties of the galactic centre
winds that are launched in our simulations. In particular, we are
interested in the kinematics of the cold gas that is launched from
the winds, as well as the properties of any hot, escaping gas and
non-thermal particles. Observations constrain all of these quantities
in the Milky Way.

First consider the cold gas driven upwards by momentum injec-
tion. To obtain its velocity distribution, we again turn to the Thomp-
son & Krumholz (2016) momentum-driven wind model. The central
idea in this model is to consider a region of a galactic disc with mean
surface density �, but where there are a wide range of local surface
densities �′ as a result of turbulence. We then consider the vertical
equation of motion for a particular fluid element near the top of the
disc (i.e. at z ∼ H) in a region with local surface density �′. This
is

dv

dt
≈ −ggas − g∗ + dṗ/dA

�′ . (31)

Here v is the vertical velocity, the first and second terms represent
the force per unit mass exerted by gas and stars, and the final
term represents the force per unit mass on the fluid element due
to momentum injection from stellar feedback, which is provided at
a rate per unit area dṗ/dA. Note that, because gravity is a long-
range force that is produced by material over a large area, the
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Figure 15. Wind velocity distribution dṀwind/dv in simulations
m01r050f10, m03r050f10 and m10r050f10, corresponding to accretion rates
of Ṁ = 0.1, 0.3 and 1.0 M� yr−1, as indicated. Solid lines indicate the mean
over all times >200 Myr, while shaded regions indicate the range from 10th
to 90th percentile in time.

gravitational acceleration depends on the mean surface density �,
while the acceleration due to feedback depends on the local one �′.
Using our definitions of the Eddington injection rate, equation (19),
and its non-dimensionalization xcrit, equation (20), and defining
x = ln �′/� for convenience, we can rewrite the equation of motion
for a local fluid parcel as

dv

dt
= (ggas + g∗)

(
excrit−x − 1

)
. (32)

Gas is ejected in regions where the local surface density is low
enough that x < xcrit, and thus the left-hand side is positive, indicat-
ing an upward acceleration. If the gas is accelerated over a distance
∼r, and x remains constant as this happens, then its final speed will
be

v ≈ vesc

√
(excrit−x − 1), (33)

where we may think of vesc = √
2r(ggas + g∗) as the characteristic

escape speed for gas flowing out in the wind. Since this provides
a mapping between the local surface density �′ and the outflow
velocity, we can obtain the distribution of outflow velocity by com-
bining this mapping with the distribution of surface densities dm/dx
produced by turbulence. Specifically, if we let u = v/vesc, then for
any given u we can invert equation (33) to obtain x(u), and we can
write

dm

du
∝

∣∣∣∣dx

du

∣∣∣∣
(

dm

dx

)
x=x(u)

∝ 2u

u2 + 1

(
dm

dx

)
x=x(u)

. (34)

Following Thompson & Krumholz (2016), the mass distribution
dm/dx is a lognormal given by

dm

dx
= 1√

2πσ 2
x

exp

[
− (x − σ 2

x /2)2

2σ 2
x

]
, (35)

where we compute σ x from the Mach number as outlined in Thomp-
son & Krumholz. Armed with these relationships, we can compute
the velocity distribution of outflowing gas from each computational
zone, and by summing over zones we can obtain the full velocity
distribution at every instant.

We perform this computation for runs m01r10f10, m03r10f10
and m10r10f10 and plot the resulting wind velocity distribution in
Fig. 15. We see that the wind velocity distribution strongly peaks
at ≈350 km s−1, which is the escape speed from the star-forming
ring. There is a tail to higher velocities, which becomes increasingly
prominent at higher star formation rates, but the great majority of

the mass emerges close to the escape speed. The wind launch rate
at a given velocity varies by a factor of ∼3–5 at any given time.

4.5 The hot wind and non-thermal particles

Only a small fraction of the total energy injected by supernovae goes
into driving either turbulent motions or the cool wind. Indeed, one
can see this immediately from a simple argument. In a region with a
steady star formation rate per unit area �̇∗, if we have one supernova
per mass MSN of stars formed, then the supernova rate per unit area
is �̇∗/MSN. The momentum and energy injected per supernova are
pSN and ESN, respectively, giving momentum and energy injection
rates per unit area ṗSN = pSN�̇∗/MSN and ĖSN = ESN�̇∗/MSN.
The energy injection rate into turbulent motions is (equation 17)(

dĖ

dA

)
SF,turb

= σ
pSN

MSN
�̇∗, (36)

and the ratio of this to the total supernova energy budget is

(dĖ/dA)SF,turb

(dĖ/dA)SN
≈ σ

pSN

ESN
≈ σ

170 km s−1 , (37)

where the numerical evaluation is for our canonical values
pSN = 3 × 105 M� km s−1 and ESN = 1051 erg. Thus, for the
values of σ found in our simulation, only a small portion of the
supernova energy budget is consumed by driving turbulence. Simi-
larly, the wind kinetic luminosity per unit area is of the order of(

dĖ

dA

)
wind,kin

≈ 1

2
�̇windv

2
esc, (38)

and the ratio of this to the supernova energy injection rate is

(dĖ/dA)wind,kin

(dĖ/dA)SN
= �̇wind

�̇∗

(
MSNv2

esc

2ESN

)
≈ 0.09η, (39)

where the numerical evaluation is for MSN = 100 M� and
vesc = 300 km s−1, and η = �̇wind/�̇∗ is the mass loading factor,
which for our simulations is �1.

Thus we conclude that neither launching the wind nor driving
the turbulence consumes an appreciable fraction of the total super-
nova energy available. Instead, the energy released by supernovae
must either be lost to radiation, or must go into a hot wind that
carries it out. Unfortunately, our model does not allow computa-
tion of the partition between these two forms of energy loss, and
the simulations that have been published to date are not helpful in
addressing this question – answering it correctly requires simulat-
ing with enough resolution to resolve the Sedov–Taylor phase of
supernova remnant expansion, without using any artificial meth-
ods to lower the density in the vicinity of the supernovae. As we
discuss in Section 4.6, no published simulations meet these crite-
ria. Observations of superbubbles away from galactic centres sug-
gest that radiation cannot be the primary loss mechanism (Rosen
et al. 2014), but it is unclear whether we can generalize these con-
clusions to the very different environment of the CMZ. If radiative
losses do not dominate, then the hot wind must carry an energy
flux of order Ṁ∗ESN/MSN, and given our result that ∼50 per cent of
the incoming gas is converted to stars, this implies an energy flux
Ėhot ∼ ṀinESN/2MSN ≈ 1041(Ṁin/M� yr−1) erg s−1. This mate-
rial will mostly be launched from the star-forming ring at 100 pc.

The non-thermal particle energy injection rate should be
∼10 per cent of the hot gas energy budget, implying Ėnon-therm ∼
1040(Ṁin/M� yr−1) erg s−1. Because non-thermal particle acceler-
ation happens even if the hot gas does not vent, and because the

MNRAS 466, 1213–1233 (2017)



Star formation in Galactic Centres 1231

non-thermal particles have long mean-free paths and thus should
be able to escape the disc, this estimate should hold even if the
primary loss mechanism is radiation rather than a hot wind. Cosmic
ray escape is confirmed observationally (Crocker 2012, and refer-
ences therein): the diffuse non-thermal emission from the CMZ in
radio continuum and γ -ray bands implies that only a small fraction
(�10 per cent) of the power injected into non-thermal particles ac-
celerated in the CMZ is lost in situ radiatively; most of this power
is carried off by escaping cosmic rays [and is claimed by Crocker
et al. (2015) to be radiated on much larger sized scales in the Fermi
Bubbles]. This is also consistent with the upper limit on the dense
gas ionization rate by cosmic rays (ζ CR < 10−14 s−1) that is implied
by the observed temperature distribution of formaldehyde, which
extends down to gas temperatures as low as T ∼ 40 K and exhibits
substantial cloud-to-cloud variation, showing that cosmic rays do
not set the gas temperatures of CMZ clouds (Ginsburg et al. 2016).
These findings, in concert with the measured, hard spectrum of the
diffuse, non-thermal radio continuum and γ -ray radiation from the
CMZ, supports the notion that the region’s cosmic ray population
is advected away with the putative hot outflow.

4.6 Relationship to other models

A number of other authors have proposed models of the CMZ,
and it is worth commenting on the ways in which the model we
propose here compares to theirs. Kim et al. (2011) conduct 3D SPH
simulations of the flow of gas in a barred spiral potential chosen
to represent the Milky Way, including star formation and feedback,
and find that the gas forms a nuclear ring ∼200 pc from the Galactic
Centre, somewhat further out than we observed in the Milky Way.
The somewhat different location of the ring in their simulations is
likely a result of the potential they adopt, which is a simplified model
that, aside from the bar perturbation, possesses uniform shear, rather
than having a low-shear region as our more realistic potential does.
Once the simulation reaches equilibrium, Kim et al. find that the
gas mass in the CMZ is about constant at ∼107 M�, and the star
formation rate is relatively steady at ∼0.05 M� yr−1. While these
figures are quite similar to the averages of our fiducial case, Kim
et al.’s simulation does not show the bursty behaviour we observe
in our model. In contrast, we use the measured potential, which
does possess a shear minimum at the observed location of the gas
ring. The lack of burstiness in their star formation rate is likely
dependent on their feedback implementation (which is described in
Saitoh et al. 2008), and differs from what some other simulations
find. We discuss this topic further below.

Kim et al. (2012b), Kim, Seo & Kim (2012a) and Li, Shen &
Kim (2015) perform high-resolution 2D simulations of gas flows in
the presence of bars with a wide range of parameters, and find that,
for sufficiently slowly rotating bars, the typical outcome is a ring in
an x2 orbit at distances of hundreds of pc from the centres of their
simulated galaxies; the inner regions of their rings do correspond
roughly to where the rotation curve turns over to solid body, consis-
tent with the mechanism for ring formation that we have proposed.
They do not include self-gravity, star formation, or feedback in their
simulations, and thus do not make any predictions regarding these
phenomena.

Crocker (2012) and Crocker et al. (2015) provide a one-zone
model for the CMZ, focused on reproducing the properties of the
outflow and non-thermal emission found there. Because the model
is steady-state and one-zone, it does not address the questions of
spatial and temporal variation on which we focus. Conversely, how-
ever, our model does not address the properties of the outflow or

the non-thermal emission, and it would therefore be extremely in-
teresting to extend our model using Crocker et al.’s machinery for
the treatment of non-thermal emission. We plan to do so in future
work.

Most recently, Torrey et al. (2016) presented a model and a set
of 3D simulations for the behaviour of star formation in the central
regions of galaxies. Their main finding is that star formation in these
regions is bursty, with burst time-scales of ∼50 Myr. The mecha-
nism they identify is similar to what we find in our simulations,
namely that the dynamical time is comparable to the time for which
supernovae go off after a starburst, so star formation feedback tends
to ‘overshoot’, leading to alternating cycle of starburst and quench-
ing rather than a steady state. The ∼50 Myr variability time-scale
they find is a bit longer than ours, likely because they do not include
a non-axisymmetric stellar potential that is capable of driving mass
inflows. As a result, only the non-axisymmetric self-gravity of the
gas and the galactic fountain are available as mechanisms to refill the
gas in the CMZ once it has been expelled. In contrast, the outer parts
of our simulated disc continue to move mass inward efficiently as a
result of bar-driven instabilities regardless of what is happening in
the star-forming region. This difference probably causes the longer
delay in restarting star formation in their simulations compared to
ours.

A further difference between Torrey et al. (2016)’s model and
ours is that, in their simulations, the mechanism responsible for
causing bursts is gas expulsion rather than changes in the deple-
tion time of the gas, in contrast to our model where the opposite
holds. It is unclear which result is more realistic. While their sim-
ulations of course are 3D rather than 1D, the results are also in
strong contrast to those obtained by Kim et al. (2011) who also use
3D simulations, and much of the result appears to depend on the
sub-grid models used for feedback. Neither Kim et al. (2011) nor
Torrey et al. (2016) resolve the Sedov–Taylor phase of supernova
blast waves, and as a result they are forced to rely on approxi-
mate models for supernovae to avoid the ‘overcooling’ problem
(Katz 1992), whereby simulations that do not resolve blast waves
overestimate the rate of radiative losses from supernova remnants.
Kim et al. (2011) handle this problem using decoupled wind par-
ticles, following the prescription of Okamoto, Nemmen & Bower
(2008), while Torrey et al. (2016) directly add radial momentum to
the gas in cases where they do not resolve the blast wave. Although
our model is also based on momentum injection, it differs from Tor-
rey et al.’s approach in that we explicitly model the interaction of
this momentum with the density structure of the turbulent medium,
and determine the wind mass flux based on this model. In contrast,
Torrey et al.’s simulations do not resolve turbulence at the momen-
tum injection scale (since momentum is injected at the resolution
scale), and thus their approach implicitly differs from ours. None
of these approaches are perfect, and to the extent that the nature
of the starbursts depends on them, the results of any model are
somewhat suspect.

5 C O N C L U S I O N

In this paper we present a simple dynamical model for star formation
in the nuclear regions of galaxies. We focus on the Milky Way CMZ,
since this is the only nuclear region for which we have available
a very high resolution measurement of the rotation curve, but we
argue that the phenomena we find there should be generic in barred
spiral galaxies. This model captures several essential elements that
combine to produce the distinctive behaviour of star formation in
these regions; some of these elements have been explored before,

MNRAS 466, 1213–1233 (2017)



1232 M. R. Krumholz, J. M. D. Kruijssen and R. M. Crocker

but the model we present here is the first to combine them all. These
elements are as follows.

Mass transport by acoustic instability. The nuclear regions of
galaxies have gas depletion times far smaller than the Hubble time,
so for them to continue star formation at the present epoch requires a
constant resupply of mass. At large galactocentric radii, the required
transport is likely provided by gravitational instability (Krumholz &
Burkert 2010; Forbes, Krumholz & Burkert 2012; Forbes et al. 2014;
Goldbaum, Krumholz & Forbes 2015, 2016; Schmidt et al. 2016),
but this mechanism is suppressed in nuclear regions by strong shear.
However, inside the ILR of the bar, another transport mechanism
becomes available: acoustic instability driven by the bar, which
thrives in regions of high shear (Montenegro et al. 1999, Paper I).
This instability both moves gas inward and drives turbulence, keep-
ing it gravitationally stable and suppressing star formation as the
gas is transported. This explains the paucity of star formation in the
Milky Way found at radii from ∼150 to 500 pc.

The effects of the rotation curve. Because the mechanism for
mass transport and turbulence driving is sensitive to the amount of
shear, it must cease where the rotation curve switches from flat to
(near-)solid body, which is a common feature of galactic centres.
This causes gas to accumulate and become gravitationally unstable
in a particular region. Thus nuclear star formation is characterized
by the presence of persistent, long-lived, ring-like structures, rather
than by transient molecular clouds arranged in either grand design
or flocculent spiral patterns. In the Milky Way, this structure is found
at ≈100 pc from the Galactic Centre, and manifests as a partially
filled ring, within which the bulk of the CMZ’s dense gas and young
star clusters reside.

Evolutionary state of the Milky Way’s CMZ. Based on a detailed
comparison of our model to the observed properties of the CMZ,
we predict that the star-forming ring currently resides at a star
formation minimum, with the previous starburst having taken place
8 Myr ago. In the context of our model, the Arches and Quintuplet
clusters represent the final clusters to have formed during this latest
starburst (∼5 Myr ago). By contrast, the CMZ ‘dust ridge’ (spanning
in projection from Sgr A∗ to Sgr B2 and containing the most massive
and densest molecular clouds in the CMZ) will collapse and form
stars first during the onset of the upcoming starburst (expected in
1–2 Myr). We also provide quantitative predictions for the dense
gas fraction and critical density for star formation as a function of
Galactic longitude, finding that dense (n > 10(4, 5, 6) cm−3) gas and
star formation are mostly confined to |�| < 1◦ (or R < 150 pc). This
matches the position of the 100-pc stream in the CMZ (Molinari
et al. 2011; Kruijssen et al. 2015), as well as the major known sites
of recent star formation, such as Sgr B2, Sgr C, and the Arches and
Quintuplet clusters.

Supernova feedback-regulated star formation. Within the ring-
like structure acoustic instability is unable to drive turbulence or
transport mass, and thus the gas is liable to become gravitationally
unstable and begin vigorous star formation. When a starburst be-
gins, there is initially little feedback, because supernovae, which
provide the most important feedback mechanism, are delayed from
4 to 40 Myr after the onset of star formation. This leads to an over-
shoot, so that, when supernovae do begin to occur, the system does
not settle into forming stars at a steady state. Instead, the supernovae
raise the velocity dispersion, scale height and virial parameter in the
star-forming ring so that the star formation rate falls dramatically.
Star formation remains suppressed until there is time for super-
nova feedback to taper off and for turbulence to decay, leading to
the resumption of star formation. Because this cycle occurs within
a coherent star-forming structure whose location is fixed by the

galactic rotation curve, the overall nuclear star formation rate and
depletion time undergo large oscillations. In the KS diagram, which
measures the gas depletion time, this results in nuclear regions un-
dergoing large excursions, with some appearing similar to ‘normal’
galaxies and others resembling starburst galaxies.

Supernova-driven winds. The supernovae that regulate star for-
mation also drive a two-phase wind off the star-forming ring. The
cool phase of the wind dominates the mass flux, and carries off
mass at a rate that is comparable to or slightly smaller than the mass
flux going into stars. However, it carries away relatively little of the
supernova energy budget. The energy is most likely carried by a hot
phase that accompanies the cool, momentum-driven wind, though
it could conceivably also be lost to radiation. Some of this energy
likely goes into the production of non-thermal particles as well.
Wind launching is bursty like star formation, but the magnitude of
the variation is somewhat smaller than that of the star formation
rate.

Taken together, these elements are able to explain the observed
properties of nuclear star formation in Milky Way-like galaxies in
general, and in the CMZ of the Milky Way in particular.
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