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Enhanced momentum feedback from clustered supernovae
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ABSTRACT
Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered
in space and time. This clustering of SNe may alter the momentum per SN deposited in the
interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling
rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which
explore a large parameter space of the number of SNe, and the background gas density and
metallicity. The results are provided as a table and an analytic fitting formula. We find that
for clusters with up to ∼100 SNe, the asymptotic momentum scales superlinearly with the
number of SNe, resulting in a momentum per SN which can be an order of magnitude larger
than for a single SN, with a maximum efficiency for clusters with 10–100 SNe. We argue that
additional physical processes not included in our simulations – self-gravity, breakout from
a galactic disc, and galactic shear – can slightly reduce the momentum enhancement from
clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated
SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We
conclude with a discussion of the possible role of mixing between hot and cold gas, induced
by multidimensional instabilities or pre-existing density variations, as a limiting factor in the
build-up of momentum by clustered SNe, and suggest future numerical experiments to explore
these effects.
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1 IN T RO D U C T I O N

Supernovae (SNe) play a key role in regulating star formation at
galactic scales. SN energy, if retained, can disrupt molecular clouds
and small galaxies (Dekel & Silk 1986). Even if significant energy
is lost to radiative cooling, SNe inject momentum which cannot be
radiated away, which drives turbulence, the dominant form of dy-
namical pressure support in galactic discs (Jenkins & Tripp 2011;
Kim, Kim & Ostriker 2011). This turbulent support both prevents
the collapse of star-forming regions (locally limiting star formation;
Ostriker & Shetty 2011; Faucher-Giguère, Quataert & Hop-
kins 2013) and drives galactic winds (globally limiting star for-
mation; Murray, Quataert & Thompson 2005; Hopkins, Quataert
& Murray 2012; Creasey, Theuns & Bower 2013; Dekel &
Krumholz 2013; Thompson & Krumholz 2016).

Unfortunately, the processes controlling supernova remnant
(SNR) evolution operate at smaller scales than what can typically
be resolved by galaxy or cosmological simulations. In particular,
the dense shells of SNRs rapidly radiate away most of the SN
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energy, leaving a cold dense shell and a hot diffuse interior. If a
simulation cannot resolve these two zones, then it cannot realis-
tically evolve the SNR, resulting in problems such as overcool-
ing (Katz 1992). To counteract this, some authors have prescribed
turning off cooling for young, unresolved SNRs (Gerritsen 1997;
Stinson et al. 2006), while others have proposed models which
mimic the otherwise unresolved multiphase nature of the inter-
stellar medium (ISM; Keller et al. 2014). These methods have their
strengths, but the most direct way to incorporate the relevant physics
is multiscale modelling: evolve a number of SNRs in a representa-
tive set of environments using simulations with high enough resolu-
tion to resolve the relevant processes, and use those results in large,
low-resolution simulations.

Early attempts at using high-resolution simulations to create
subgrid SN feedback models focused on producing energy-driven
models (Thornton et al. 1998), but recently there has been in-
creased interest in momentum-driven models, both by those us-
ing high-resolution simulations to study SNRs directly (Iffrig &
Hennebelle 2015; Kim & Ostriker 2015; Martizzi, Faucher-Giguère
& Quataert 2015; Walch & Naab 2015) and by those who use
such models in lower resolution simulations (Hopkins, Quataert &
Murray 2011; Shetty & Ostriker 2012; Hennebelle & Iffrig 2014;
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Goldbaum, Krumholz & Forbes 2016). This change in emphasis
has been driven by the realization that, while the energy content of
SNRs is important for producing hot galactic winds which are ob-
servable in X-rays, the momentum budget is more important when
it comes to SNRs regulating star formation and possibly ejecting
cool gas from galaxies (Dekel & Krumholz 2013).

At early times, before radiative losses are important, an SNR
is in the Sedov stage, during which the energy is approximately
conserved and the radial momentum is increasing. Once radiative
losses become significant, it enters a pressure-driven snowplough
phase, during which the energy is decreasing and the momentum is
still increasing. As the bubble expands and cools (adiabatically and
radiatively), its pressure will eventually decrease to the ISM pres-
sure, at which point it becomes a momentum-driven snowplough.
Asymptotically, in the idealized case of a spherical SNR expand-
ing into a uniform, cold medium, this results in zero energy being
added to the ISM, but a non-zero and finite amount of momentum
being added. The goal of high-resolution simulations is to follow
all of these phases, and identify the asymptotic momentum as a
function of the properties of the driving stars and the large-scale
environment, making this value available for use in larger scale
models.

A number of authors have performed systematic parameter stud-
ies of the expansion of an SNR from a single SN in spherical
symmetry (Chevalier 1974; Cioffi, McKee & Bertschinger 1988;
Thornton et al. 1998). The most complete of these studies, that of
Thornton et al. (1998), spanned metallicities from 10−3 to 100.5

times solar and ambient densities from 0.1 to 103 H atoms cm−3.
More recently, there have been a number of 3D simulations which
allowed the study of SNR evolution within a more realistic, non-
spherically symmetric background. Martizzi et al. (2015), Kim &
Ostriker (2015), and Walch & Naab (2015) all found that inho-
mogeneities present prior to the first SN explosion – such as those
expected due to a multiphase structure of the ISM or ionized bubbles
created by pre-SN radiation – did not change the final momentum
by more than 60 per cent. A more interesting effect was found
by considering the inhomogeneities which result from bubbles of
previous SNRs. Kim & Ostriker (2015) found that a series of clus-
tered SNe can decrease the momentum per SN, in some cases by
almost a factor of 2. On the other hand, Walch & Naab (2015)
found that multiple SNe might increase the momentum per SN, by
at least 25 per cent, depending on the delay time between SNe.
The dependence on delay time further complicates this discrepancy
between authors since neither set of authors used realistic delay
time distributions for the number of SNe considered. Yadav et al.
(2016) used 3D simulations to study how clustered SNe can merge
into a superbubble (using a realistic SN delay time distribution),
but did not study the momentum produced and did not test the ef-
fect of gas metallicity. So we are left with a series of questions:
for a realistic delay time distribution of clustered SNe, does the
momentum per SN increase or decrease relative to single SN mod-
els, and by how much? Does the result depend on the density or
metallicity of the environment in which the SNe explode? Does it
vary systematically with the number of SNe which are clustered
together?

In this paper, we seek to measure directly the impact which
clustering has on the momentum budget of SNe. In order to sample
a wide range of densities, metallicities, and cluster sizes, we create
a suite of several hundred 1D, spherically symmetric simulations.
Using a 1D geometry means we lose the ability to simulate non-
spherically symmetric inhomogeneities but in doing so we gain
the ability to probe a far wider parameter space than any previous

studies of multiple SNe, and to achieve far higher spatial resolutions
than previous works studying momentum feedback. As we will
show, both are necessary for understanding how clustering impacts
momentum feedback.

The remainder of this paper is as follows. In Section 2, we discuss
the numerical methods used in this study. The numerical results of
our simulations are presented in Section 3. In Section 4, we use
these results to build a model which can predict the momentum
injection per SN as a function of density, metallicity, and number
of SNe, in a form suitable for inclusion in subgrid and analytic
models. We discuss the significance of our results and model in
Section 5, comparing to previous works. Finally, we summarize our
conclusions in Section 6.

2 N U M E R I C A L M E T H O D S

Our simulations make use of a custom-built 1D spherically sym-
metric moving-mesh code which solves the finite-volume equations
of compressible hydrodynamics. Our code includes radiative cool-
ing and injection of mass and energy by both SNe and pre-SN
winds. The star cluster is assumed to lie at the centre of our sim-
ulation, with our computational domain beginning just outside the
cluster and extending outwards. SN ejecta and pre-SN winds are
added to the innermost zone of this domain. We run these simu-
lations until all SNe have occurred and the momentum reaches a
maximum.

In the rest of this section, we go into greater depth on the nu-
merical methods used in our simulations and the limitations of our
assumptions. In Appendix A, we test our code against both the an-
alytic Sedov solution and the earlier numerical results of Thornton
et al. (1998) for isolated SNe, and verify that it reproduces them
well. For the interested reader, our code has been publicly released.1

2.1 Initial conditions

All our simulations begin with a star cluster of mass Mcluster placed
at the origin surrounded by an initially uniform, stationary ideal gas
with adiabatic index γ = 5/3. We vary Mcluster from 102–105 M�
(using steps of 1 dex, with an additional step at 102.5 M� to better
resolve a key region of parameter space). We explore gas mass
densities in steps of 1 dex, ranging from ρ0 = 1.33 × 10−3 to 102

mH cm−3, where mH = 1.67 × 10−24 g is the mass of the hydrogen
atom, corresponding to gas number densities of n0 = ρ0/(1.33mH) H
nuclei cm−3 for a helium mass fraction Y = 0.23 and a metal mass
fraction Z = 0.02. We consider gas metallicities in steps of half
a dex, ranging from Z0 = 10−3 to 100.5 Z�, excluding 10−2.5 Z�,
where we have taken solar metallicity to be Z� = 0.02. The density
and metallicity grids are chosen to closely match those explored by
Thornton et al. (1998). Consistent with Thornton et al., we compute
mean molecular weights assuming a fixed helium mass fraction,
Y = 0.23, taking the remainder to be hydrogen (X = 1 − Z − Y).
The gas has an initial temperature of 104 K, but is allowed to cool
to lower temperatures via radiation – see Section 2.3.

Our simulations start with 1024 zones, linearly spaced from radii
Rin to Rout, which follow the scaling

Rout = 300

(
ρ0

1.33mHcm−3

)−1/3 (
Mcluster

100 M�

)1/3

pc (1)

Rin = 10−4Rout. (2)

1 Source code available at: github.com/egentry/clustered_SNe
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This scaling is somewhat arbitrary and was set by initial tests; it was
chosen to approximately reflect the final size of each simulation.
If the outer boundary is too small, the domain will automatically
extend when a shock nears the outer boundary.

2.2 Hydrodynamics

Our code solves the equations of compressible hydrodynamics in
spherical symmetry using a moving-mesh finite-volume method,
including source terms for radiative cooling. Our method is an
extension of the one implemented by Duffell (2016). The equations
we solve are

d

dt

∫
UdV −

∫
FdA = S, (3)

where UdV is the vector of conserved quantities

U =

⎛
⎜⎜⎜⎝

ρ

ρur

ρe

ρZ

⎞
⎟⎟⎟⎠ (4)

for a density ρ, a bulk fluid velocity u, a specific total energy e, and
a local metallicity Z. The quantity F is the conservative flux, given
by

F =

⎛
⎜⎜⎜⎜⎝

(ur − wr )ρ

(ur − wr )ρur + P

(ur − wr )ρe + Pur + H

(ur − wr )ρZ

⎞
⎟⎟⎟⎟⎠, (5)

where w is the computational mesh velocity, which is set to be the
average velocity of the two zones adjacent to the boundary

w(i+1/2)
r = u(i)

r + u(i+1)
r

2
(6)

approximating Lagrangian hydrodynamics. Here P is the pressure
given by

P = (γ − 1)ρeint (7)

and eint is the specific internal energy:

eint = e − 1

2
v2

r . (8)

At the inner boundary, we enforce a zero flux boundary condition;
the outer boundary condition does not matter, as we automatically
add zones before the shock reaches the outer boundary (and we
have assumed that the background is homogeneous).

This formulation implicitly introduces artificial mesh viscosity,
particular at the inner boundary (i.e. wall heating), which leads to
unphysically high temperatures. We counteract this by explicitly
including an artificial conduction term, H. We use the artificial
conduction prescription of Noh (1987, equation 2.3):

H =
{

h0ρ|�u|�eint + h1ρcs�eint �u < 0

0 �u > 0,
(9)

where cs is the adiabatic sound speed, h0 and h1 are tunable con-
stants, typically of order unity, and � represents the differential
of a variable across adjacent zones. We chose these constants to be
h0 = 0 and h1 = 0.1, which experimentation showed were the small-
est values which were still sufficient to remove most unphysical wall
heating. This parametrization is similar to physical conduction in

the strong shock regime with a saturated conduction coefficient
which has been lowered by a factor of a few by turbulence and
magnetic fields (Cowie & McKee 1977).

In addition to these conservative fluxes, we also include non-
conservative source terms

S = Shydro + Scooling + Swinds (10)

Shydro =

⎛
⎜⎜⎜⎝

0∫
2(P/r) dV

0

0

⎞
⎟⎟⎟⎠ (11)

Scooling =

⎛
⎜⎜⎜⎝

0

0

Ėcooling

0

⎞
⎟⎟⎟⎠ (12)

Swinds = Ṁwinds�t

⎛
⎜⎜⎜⎝

1
uwinds

(1/2)u2
winds + eint,winds

Zwinds

⎞
⎟⎟⎟⎠. (13)

We defer a discussion of the cooling rate Ėcooling to Section 2.3, and
a discussion of the wind source term (which is only added to the
innermost zone) to Section 2.5.1.

The conservative fluxes (excepting conduction) were solved using
an HLLC Riemann solver (Toro, Spruce & Speares 1994) taken from
the implementation of Duffell (2016). Artificial conduction and the
non-conservative source terms were handled by operator splitting,
solving each term individually.

By using a moving mesh with wr ≈ ur, we approximate La-
grangian hydrodynamics. This reduced numerical errors in the ad-
vective flux terms, as well as automatically adjusting to give higher
resolution at locations with higher densities (assuming we start with
a grid of uniform density). This improves our accuracy at shocks,
where high densities lead to rapid cooling, which drives the subse-
quent evolution of the SNR. By using an approximately Lagrangian
scheme, we can better resolve the dynamically important regions,
without wasting computational time on the less important diffuse
bubble.

For strong shocks, we need to set a limit on how much zones
can expand or compress. The innermost zone (where SN energy is
injected) will significantly expand, so we need to split it in order
to retain accuracy where our blasts are being injected. For compu-
tational efficiency, we also need to allow zones to merge, because
otherwise the zones near the shock become so thin that the computa-
tional cost of evolving them is prohibitive. We handle zone splitting
and merging using the adaptive mesh algorithm implemented by
Duffell (2016): zones thicker (thinner) than 10 (0.1) times the aver-
age zone thickness are split (merged).

To improve numerical stability in regions of highly supersonic
flow, we also implement a dual-energy formalism. This approach
counteracts the common problem in conservative, total energy codes
such as ours that, at Mach numbers greater than unity, the internal
energy eint can be much smaller than the total energy e, so that small
truncation errors in e can correspond to an order unity or larger error
in eint, and thus in the temperature and radiative cooling rate. Our
dual-energy approach is as follows. For most zones and time-steps,
we follow the updated procedure described above and derive eint

from the mass, momentum, and total energy (equation 8). However,
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in any zone and time-step where this procedure yields a value of
eint < 0, we instead compute the internal energy via

eint(t + �t) = eint(t)

(
dV (t + �t)

dV (t)

)1−γ

+ �ecool. (14)

This includes adiabatic heating/cooling and radiative cooling; this
ignores advective fluxes, which should be minimal for a pseudo-
Lagrangian code, and conductive fluxes. The errors introduced by
this dual-energy formalism have negligible effects on the overall
dynamics and numerical conservation of energy.

2.3 Cooling

Cooling plays a significant role in SNR evolution, with most of
the energy from the SN being radiated from a thin, dense shell.
To include this cooling, we use the GRACKLE chemistry and cool-
ing library (Bryan et al. 2014; Kim et al. 2014), using operator
splitting to evolve the thermal energy over each time-step. GRACKLE

sub-steps the thermal evolution using cooling rates pre-computed
using CLOUDY (Ferland et al. 1998), assuming ionization equilib-
rium but not thermal equilibrium between metallicity-dependent
optically thin cooling and a cosmological UV background at red-
shift z = 0 providing photoheating and photoionization (Haardt
& Madau 2012). For simplicity, we only include heating from a
cosmological background, rather than including galactic heating
sources. We leave testing more realistic heating backgrounds and
non-ionization equilibrium cooling models for a later work.

2.4 Cluster model

In order to test the SN momentum produced by a cluster, we need
to determine the number of SNe from a cluster and when those
SNe will occur. For each simulation with a given cluster mass, we
use the SLUG2 code (da Silva, Fumagalli & Krumholz 2012, 2014;
Krumholz et al. 2015) to draw the desired mass in stars from a
Kroupa (2002) initial mass function (IMF), using the default ‘Stop-
nearest’ policy. All stars above an initial mass of 8 M� are assumed
to result in core-collapse SNe, after stellar lifetimes determined
by the Geneva stellar evolution tracks assuming solar metallicity
(Z = 0.014; Ekström et al. 2012). Generally, we find 1 SN per
roughly 100 M� of stars, and those SNe occur roughly 3–40 Myr
after the birth of the cluster. Given the power-law tail of the IMF,
we expect most SN to come from relatively low mass stars, M�

≈ 8 M�. We do not include Type Ia SNe for most of our sim-
ulations, but we do test the impact of short-delay Type Ia SNe in
Section 5.3.2.

Since we are stochastically drawing an IMF, our results for low-
mass clusters can depend significantly on the random seed. To min-
imize the uncertainty in our results induced by this stochasticity,
we ran multiple realizations of the lowest cluster masses. Specif-
ically, we ran nine realizations of each 102 M� cluster and four
realizations of each 102.5 M� cluster.

This cluster model is not perfect. The stellar evolution tracks
assume a single stellar metallicity, while ideally we would like the
tracks to depend on the background metallicity for each simulation.
Our cluster model also ignores the effects of stellar rotation and
binarity. All of these can affect stellar lifetimes.

2.5 SN injection model

When an SN occurs, we add energy, mass, and metals to the inner-
most computational zone. For the energy, we adopt a fixed injection

of 1051 erg per SN. For the mass and metallicity, we use the data
of Woosley & Heger (2007), who provide a grid of SN mass and
metal yields as a function of initial stellar mass over a range of
initial masses from 12 to 120 M�. Within this range, we linearly
interpolate as a function of initial mass; outside this range, we use
the nearest neighbour (i.e. stars with masses 8–12 M� are assumed
to produce the same yield as 12 M� stars).

As with our cluster model, this SN model is imperfect. First,
this model overpredicts the ejecta mass for stars with initial masses
of 8–12 M� (the most common progenitors). For example, this
model predicts that a 9 M� star will eject 9.4 M� of mate-
rial. This is clearly unphysical, but the true ejected mass is com-
parable; Sukhbold et al. (2016) show that the true ejected mass
(≈7.4 M�) differs by less than 50 per cent from our simplified
model. Overall, this will tend to overpredict the ejecta mass, biasing
our results towards slightly more efficient cooling and slightly lower
momenta.

Biasing our results in the opposite direction (for fixed cluster
mass), we assume that all of our massive stars explode, even though
some low-mass progenitors (8–9 M�) may not explode (Woosley &
Heger 2015) and some high-mass progenitors will collapse directly
into black holes (Ertl et al. 2016; Sukhbold et al. 2016), a pathway
which can depend significantly on the stellar metallicity (Pejcha &
Thompson 2015). However, while models differ as to whether more
massive stars explode, almost all models agree that all 9–12 M�
stars should explode, so the total number of SNe should not change
drastically.

More significantly, SN energies can vary with initial progenitor
mass. In particular, Sukhbold et al. (2016) find that stars with initial
masses of 9–12 M� explode with <0.7 × 1051 erg of energy.
As these are the most common progenitors, this leads to an IMF-
averaged explosion energy of ≈0.6–0.8 × 1051 erg, depending on
the explosion model. While it is common to assume an explosion
energy of 1051 erg (e.g. Thornton et al. 1998; Kim et al. 2014; Iffrig
& Hennebelle 2015; Kim & Ostriker 2015; Martizzi et al. 2015;
Walch & Naab 2015), in doing so we overpredict the average SN
energy by a factor of 1.2–1.7.

As with our stellar evolution tracks, the data of Woosley & Heger
(2007) are only for stars of solar metallicity, so we are unable to vary
our SN model with the background metallicity. Moreover, we are
combining the ejecta computed by Woosley & Heger (2007) with
the lifetimes computed by Ekström et al. (2012); these make differ-
ent assumptions about stellar evolution, and are not fully consistent.
Theoretical uncertainties in stellar lifetimes are not too worrisome
though; for low-mass clusters, we are dominated by stochastic scat-
ter in the IMF; for high-mass clusters, the SNe are effectively a
continuous wind. The models of Woosley & Heger (2007) and
Ekström et al. (2012) also differ in the details of pre-SN mass-loss,
but these discrepancies primarily exist for the most massive stars,
which are the least common in our simulations.

2.5.1 Winds

If SN ejecta mass is important because more mass leads to faster
cooling, then we cannot simply ignore pre-SN mass-loss; that mass
has to go somewhere. The pre-SN mass-loss can be determined from
the data of Woosley & Heger (2007), but that does not tell us when
that mass was lost, or its physical properties when it was lost (e.g.
metallicity, wind velocity, wind energy). For simplicity, we assume
that pre-SN mass-loss occurs uniformly through a star’s lifetime,
as a wind with metallicity equal to the background metallicity, at a
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Figure 1. Example density profile of a simulation with Z = Z�,
ρ = 1.33mH cm−3, and Mcluster = 105 M� (NSNe = 1008), shortly af-
ter the last SN (t = 38 Myr).

Figure 2. The same simulation as the one shown in Fig. 1, except now at
the moment of peak momentum (t = 285 Myr). The shock has weakened,
causing it to thicken considerably.

velocity of 103 km s−1, and a temperature of 104 K. The total mass,
metal mass, momentum, and energy of this wind are added to the
innermost zone.

3 N U M E R I C A L R E S U LTS

We run a total of 672 simulations, sampling a three-dimensional
parameter space composed of density ρ, metallicity Z, and cluster
mass Mcluster. As an example of the outcome of our simulations,
in Fig. 1 we show the density profile immediately after the last
SN occurs in the simulation with ρ = 1.33 mH cm−3, Z = Z�,
and Mcluster = 105 M�. In Fig. 2, we show the density profile for
this simulation at the time when the radial momentum reaches its
maximum, and we show the momentum as a function of time in
Fig. 3 and the cumulative energy budget as a function of time in
Fig. 4.

In Table 1, we provide an overview of our results, extracting
the following key parameters when all SNe have occurred and the
momentum reaches a maximum: the peak momentum p; the time,
t, at which the momentum reaches a maximum (defining t = 0 as
the time of cluster formation); the radius of the shock, R, at this
time (defined by the furthest zone with an overdensity compared
to the background); the mass of the remnant, MR, enclosed by the
shock radius at this time; and the kinetic and internal energies, ER, kin

and ER, int, enclosed by the shock radius at this time; finally, we also

Figure 3. The evolution of the momentum per SN of the cluster shown in
Figs 1 and 2. The time of maximal momentum is marked by a vertical black
dashed line; the duration of SN events is denoted by solid black ticks. For
many SNe, the energy injection behaves more like a continuous wind rather
than discrete explosions.

Figure 4. The evolution of the cumulative energy budget of the cluster
shown in Figs 1 through 3. The time of maximal momentum is marked by
a vertical black dashed line; SN times are denoted by solid black ticks. The
kinetic component is measured directly from the simulation; the radiated
component is inferred by comparing the decrease in total energy compared
to the decrease which would have occurred if there were no SNe and the
background cooled anyway; the thermal component is assumed to be what-
ever remains.

include a flag for untrustworthy results, which we explain in the next
paragraph. In Table 2, we provide the time-dependent evolution of
these parameters for every simulation and each snapshot before the
time of peak momentum.

Not all of our simulations are trustworthy. In some runs, a strong
reverse shock reaches the inner boundary before the SNR momen-
tum peaks. In these simulations, the shock reflects off our hard
inner boundary, whereas in reality the shock converging on the
origin would certainly become unstable and would not reflect. In
these cases, we cannot reasonably measure a maximum momen-
tum. Fortunately, this behaviour only occurs in a small part of our
parameter space (40/672 runs), and in what follows we will exclude
these runs from our analysis. We also exclude any other realiza-
tions of the same initial conditions (an additional 99/672 runs) so
as not to bias ourselves by only allowing atypical realizations. In
Section 4.1.1, we explain the astrophysical causes and implications
of these flagged runs.

The quantities MR and ER, int need to be interpreted with some
care. At late times (when these quantities are extracted), the shock
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Table 1. Overview of numeric results. The table shown here is only a stub; it is provided in its entirety as a machine-readable table. The machine-readable
table also includes a column with an id unique to each row, to allow cross-referencing with Table 2, which has been hidden here to save space.

ρ Z Mcluster NSNe t R MR p ER, kin ER, int Flag
(1.33 mH cm−3) (Z�) (M�) (Myr) (pc) ( M�) (g cm s−1) (erg) (erg)

10+0 10+0.0 102.0 1 5.9 56.0 2.42 × 104 5.22 × 1043 3.14 × 1049 1.77 × 1048 0
10+0 10+0.0 102.5 3 55.3 294.3 3.51 × 106 1.10 × 1045 9.47 × 1049 2.73 × 1050 0
10+0 10+0.0 103.0 11 91.8 533.0 2.08 × 107 6.72 × 1045 5.94 × 1050 1.63 × 1051 0
10+0 10+0.0 104.0 104 173.3 1149.0 2.09 × 108 7.18 × 1046 6.67 × 1051 1.63 × 1052 0
10+0 10+0.0 105.0 1008 285.2 2133.0 1.34 × 109 4.88 × 1047 4.79 × 1052 1.04 × 1053 0

Table 2. Momentum evolution. The table shown here is only a stub; it is provided in its entirety as a machine-readable table.

ID t Rshock(t) MR(t) p(t) ER, kin(t) ER, int(t) NSNe( < t)
(Myr) (pc) ( M�) (g cm s−1) (erg) (erg)

25451948-485f-46fe-b87b-f4329d03b203 4.0 1.3 6.92 × 100 0.00 × 100 0.00 × 100 1.00 × 1051 1
25451948-485f-46fe-b87b-f4329d03b203 5.0 61.4 3.20 × 104 1.73 × 1044 2.58 × 1050 5.84 × 1050 2
25451948-485f-46fe-b87b-f4329d03b203 10.2 152.9 4.92 × 105 1.24 × 1045 8.26 × 1050 1.14 × 1051 5
25451948-485f-46fe-b87b-f4329d03b203 15.4 209.2 1.26 × 106 2.18 × 1045 9.88 × 1050 1.40 × 1051 7
25451948-485f-46fe-b87b-f4329d03b203 20.5 249.3 2.13 × 106 2.83 × 1045 1.07 × 1051 2.43 × 1051 9
25451948-485f-46fe-b87b-f4329d03b203 25.6 283.1 3.12 × 106 3.56 × 1045 1.06 × 1051 1.61 × 1051 9
25451948-485f-46fe-b87b-f4329d03b203 35.3 335.1 5.18 × 106 4.59 × 1045 1.05 × 1051 2.84 × 1051 11

Figure 5. An overview of the final momentum per SN and how it varies
with the number of SNe and gas density at fixed metallicity (Z = Z�).
The locations of our simulations in parameter space are marked by black
scatter points (excluding flagged runs), which are not a perfect grid because
the numbers of SNe are drawn stochastically. The colour image is an in-
terpolation of our simulation results using a Gaussian radial basis function,
evaluated on a 100 by 100 grid with seven grey-scale contours logarithmi-
cally spaced between 3 × 103 and 6 × 104 km s−1 (exclusive).

has weakened and is becoming a linear sound wave moving through
a uniform medium, as illustrated in Fig. 2. At this time, the bubble-
shell decomposition no longer is a good description, and MR and
ER, int are becoming increasingly dominated by background mate-
rial which has simply had a sound wave pass through it, but has not
been irreversibly affected by a shock. It would be inaccurate to in-
clude this material and its internal energy in SN-driven ‘feedback’,
and it is difficult to meaningfully disentangle SN-dominated ma-
terial and background-dominated material as the SNR is merging
into the ISM. It is easier to disentangle kinetic variables since the
background is static; all momentum and kinetic energy must be a
result of the SNe. The kinetic energy ER, kin does not asymptote, but
it varies slowly at late times, as illustrated in Fig. 4.

As an example of how these results vary across our parameter
space, we plot the asymptotic momentum per SN in two cuts through
this parameter space in Figs 5 (momentum per SN as a function of

Figure 6. The same as Fig. 5, except now allowing metallicity to vary while
holding density fixed at 1.33 mH cm−3. The top contour level shown in Fig. 5
is not shown here, as the dynamic range of the data is not as large.

ρ and NSNe at fixed Z) and 6 (momentum per SN as a function of Z
and NSNe at fixed ρ). In Figs 7 and 8, we provide analogous figures
for the asymptotic kinetic energy, which is typically 1–10 per cent
of the injected SN energy.

4 T H E M O M E N T U M BU D G E T O F C L U S T E R E D
SNe

Figs 5 and 6 show significant structure in the momentum as a func-
tion of number of SNe, gas metallicity, and density. In particular, we
note three behaviours. (1) For fixed density and metallicity, start-
ing with a few SNe, the momentum per SN initially increases with
increasing number of SNe, reaches a maximum between 10–100
SNe (the exact location depends on density and metallicity), then
decreases. (2) For a few SNe, the momentum per SN increases
with decreasing density and gas metallicity. (3) For many SNe,
the opposite is true, as momentum per SN increases with increasing
density and, to a smaller extent, metallicity. In this section, we show
how these primary behaviours are a consequence of clustered SNR
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Figure 7. Same as Fig. 5, except now the colour image shows final kinetic
energy with four grey-scale contours linearly spaced between 2 × 1049 and
1.2 × 1050 erg (exclusive).

Figure 8. The same as Fig. 7, except now allowing metallicity to vary while
holding density fixed at 1.33 mH cm−3. The top two contour levels shown
in Fig. 7 are not shown here, as the dynamic range of the data is not as large.

evolution falling into one of two physical regimes: the small-N
regime and the superbubble regime.

4.1 Qualitative analysis

4.1.1 The small-N regime

To understand how SN momentum budgets act when the number
of clustered SNe is relatively small, we start with its limiting case:
single, isolated SNe. Feedback from isolated SNe has been well
explored, as discussed in Section 1. In particular, Thornton et al.
(1998) found that lower gas metallicities and densities resulted in
higher energy feedback, which is what we expect physically; lower
gas metallicity and density result in weaker cooling, sapping less
energy from an SNR, increasing the amount of energy feedback.
This is also expected to apply for momentum feedback, and in Fig. 9
we show that our results match the scaling between momentum and
density expected by Cioffi et al. (1988).

As the number of SNe increases, the picture is similar to a se-
ries of isolated SNe, but with each successive SN occurring in a
lower density bubble. As discussed above, this leads to progressively
more efficient momentum production as the region is progressively
evacuated. Fig. 10 illustrates this process directly, by plotting the
momentum versus time for a simulation in which two SNe occur.
The first SN occurs 20 Myr after cluster formation and its rem-
nant quickly asymptotes to a momentum ≈3 × 105 M� km s−1, in
agreement with the usual value found for single SNe. The second

Figure 9. The scaling of momentum with background density, for Z = Z�
and NSNe = 1, compared to the p ∝ ρ−1/7 scaling (normalized to the mean
momentum of the lowest density clusters) expected for isolated SNe in a
homogeneous background (Cioffi et al. 1988).

Figure 10. The evolution of the momentum per SN of a Z = Z�, ρ =
1.33 mH cm−3, and NSNe = 2 cluster. The moment of maximal momentum
is marked by the vertical dashed black line; the times of SNe are denoted by
solid black ticks.

SN occurs 5 Myr later, and thanks to the vastly lower density inside
the bubble, experiences much smaller radiative losses. This leads
it to inject ≈2 × 106 M� km s−1 of momentum by the time the
momentum peaks, which is almost 10 times more momentum than
injected by the first SN.

This breaks down for the clusters with the fewest SNe embed-
ded in the highest density backgrounds, which behave more like
multiple, isolated SNe. As density increases, SNRs evolve more
rapidly, quickly cooling, lowering their internal pressure, and then
being crushed by the pressure of the surrounding ISM. For the most
dense gas with the fewest SNe, the SNR bubbles can be destroyed
between SNe. As subsequent SNe are no longer occurring in the
bubble of previous SNe, we believe that clustering effects should
be minimal.

Unfortunately, since the bubble has collapsed before all SNe
have been injected, our numerical methods break down due to the
reverse shock propagating all the way to the origin and undergoing
unphysical reflection (see Section 3). We are therefore forced to
exclude this regime from our analysis. In our three-dimensional
parameter space, the excluded region is roughly defined by the
parameters

ρ ≥ 1.33 mH cm−3 and NSNe < 10, and Z < 0.1 Z�.

While we cannot simulate this part of parameter space directly, the
above analysis suggests that there should be no clustering effects
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Figure 11. The scaling of momentum per SN with number of SNe, evalu-
ated at the time of the last SN for each cluster. The clusters shown all have
solar metallicity and the lowest density simulated, 1.33 × 10−3 mH cm−3.
We plot the theoretical scaling for an adiabatic superbubble (equation 15),
normalized to the cluster with the most SNe (the cluster which is expected
to best correspond to the adiabatic case).

present in it, and thus for the purpose of subgrid modelling it is
likely safe to adopt a momentum budget of 3 × 105 M� km s−1 per
SN, the same as in the isolated SN regime.

4.1.2 The superbubble regime

While the few-SN model predicts that momentum efficiency in-
creases as the number of SNe increases, our data show a turnover
after about 10–100 SNe, beyond which the momentum efficiency
begins to drop as the number of SNe increases. This can be under-
stood within the framework of a superbubble powered by a continu-
ous wind (see Fig. 3 for an example of the momentum evolution of
a large cluster). As more SNe occur, the bubble density decreases
while the bubble temperature increases, both of which lead to less
efficient cooling. While this leads to strong momentum feedback for
a few SNe, it eventually saturates; if most of the energy is already
being retained, suppressing cooling even further will only have a
marginal effect.

Castor, McCray & Weaver (1975) provide a simplified bubble
model which allows us to begin to understand superbubble evolu-
tion. They assume a constant energy injection rate, but if that energy
is injected over a period of time which is the same for all clusters
(effectively assuming that stellar evolution models do not depend
strongly on metallicity or density), then their approach is also valid
for an energy injection rate which is a power law with respect to
time. Using their bubble solution, we can find the momentum per
SN at the time of the last SN:

p(tlastSN)/NSNe ∝ N−0.2
SNe ρ0.2

0 . (15)

We compare this predicted scaling to our numerical results for the
lowest density simulated (thereby ensuring that we are as close
as possible to the adiabatic limit) in Fig. 11. As the plot shows,
the analytic scaling is in reasonable agreement with the numeric
results.

As shown in Fig. 3, a significant amount of momentum evolution
occurs after the last SN. During this phase, the superbubble expands
adiabatically until the bubble pressure equals the ISM pressure, P0,
at which point the shell’s momentum reaches a maximum, since the
pressure gradient switches direction. For an adiabatic index γ = 5/3

Figure 12. The scaling of asymptotic momentum per SN with number
of SNe. These are the same clusters as those shown in Fig. 11 (1.33 ×
10−3 mH cm−3; Z = Z�) but evaluated at a different time. We plot theoretical
scalings for an adiabatic superbubble at time of the last SN (blue solid line;
equation 15) and at the time the interior pressure equals the exterior pressure
(green dashed line; equation 16).

Figure 13. The scaling of asymptotic momentum per SN with background
density, for Z = Z� and Mcluster = 105 M� (NSNe ≈ 103) clusters, compared
to the superbubble predictions for the end of the SN injection phase (p/NSNe

∝ ρ0.2) and when the interior pressure equals the exterior pressure (p/NSNe

∝ ρ0.2 + (0.3/γ )).

for the gas inside the SNR, this results in a final momentum per SN

pfinal/NSNe ∝ P
−1/(2γ )
0 N

−0.2+(0.2/γ )
SNe ρ

0.2+(0.3/γ )
0

≈ P −0.3
0 N−0.08

SNe ρ0.38
0 . (16)

This analytic scaling with respect to number of SNe can be com-
pared to our numeric data in Fig. 12; the scaling with respect to gas
density is shown in Fig. 13.

It is not surprising that these scalings are not perfect; Sharma et al.
(2014) predict that even 103 SNe are not enough to satisfy assump-
tions behind models like those of Castor et al. (1975). Specifically,
Sharma et al. (2014) predict no wind-dominated region (where ρ ∝
r−2) which ends in a stable termination shock before the pressure-
dominated bubble begins; these predictions are in agreement with
our results (see Figs 1 and 2). Our simulations do not satisfy all of
the assumptions of superbubble models like those of Castor et al.
(1975); these models are sufficient for a qualitative analysis, but
they are insufficient for a quantitative understanding.
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4.2 Quantitative model

Informed by the qualitative understanding developed in Section 4.1,
we now construct a quantitative parametric model which we con-
strain using our simulation results (Table 1). In both the small-N
and superbubble limits, we expect the results to behave like a power
law in number of SNe, gas density, and metallicity, but we expect
these to be different power laws. Therefore, we choose to construct
a model of two power laws with a smooth break. In the few-SN
(small-N) limit, we use a model of the form(

p

NSNe

)
few

=
(

p

NSNe

)
0,few

(
Z

Z�

)ηZ,few

×
(

ρ

mH cm−3

)ηρ,few
(

NSNe

1

)ηN,few

(17)

and in the many SNe (superbubble) limit, we use a similar form,(
p

NSNe

)
many

=
(

p

NSNe

)
0,many

(
Z

Z�

)ηZ,many

×
(

ρ

mH cm−3

)ηρ,many
(

NSNe

1000

)ηN,many

(18)

which are smoothly combined using

p

NSNe
=

(
p

NSNe

)
few

(
p

NSNe

)
many(

p

NSNe

)
few

+
(

p

NSNe

)
many

(19)

≈ min

[(
p

NSNe

)
few

,

(
p

NSNe

)
many

]
. (20)

Assuming that our simulation results have a random additive
Gaussian noise of variance σ 2, we can construct a Gaussian likeli-
hood function for the results of each simulation. Even though σ 2 is
unknown, this allows us to determine a maximum likelihood esti-
mate (MLE) for our best-fitting model parameters. We would also
like to understand the uncertainties in those parameters. For that we
need the posterior, which through Bayes’ theorem requires a prior
distribution, π on those parameters. Since we do not have strong
prior information on most of these parameters, we choose uniform,
independent priors on our parameters: log (σ 2), log (p/NSNe)0, few,
ηZ, few, ηρ, few, ηN, few, log (p/NSNe)0, many, ηZ, many, ηρ, many, ηN, many.

Combining this prior with a Gaussian likelihood for our data re-
sults in the posterior distribution of our model parameters. We sam-
ple this posterior distribution using a Markov chain Monte Carlo
scheme, using Gibbs sampling to draw samples of σ 2 from an in-
verse gamma distribution and using a Metropolis–Hastings random
walk for the remaining parameters. We use the MLE as the starting
guess, discard the first 10 000 steps as burn-in steps, and save the
next 100 000 steps. Using these samples, we can now estimate un-
certainties on our model parameters: for each parameter, we use the
median as our best-fitting value, and the 16th and 84th percentiles
as our uncertainty interval (effectively marginalizing over all other
parameters) resulting in(

p

NSNe

)
0,few

= 4249+741
−683 × 100 M� km s−1 (21)

ηZ,few = 0.05+0.05
−0.06 (22)

ηρ,few = −0.06+0.03
−0.03 (23)

Figure 14. Comparison of a slice of our simulation results (Z = Z�,
ρ = 1.33mH cm−3) to our model with an uncertainty envelop bounding
the 16th and 84th percentiles of our predictive momentum model. Some
slices fit better and some slices fit worse, but overall this is a represen-
tative slice. For comparison, we also plot a typical unclustered model,
p/(100 M�NSNe) = 3000 km s−1 (Ostriker & Shetty 2011, green dashed
line).

ηN,few = 2.20+0.24
−0.23 (24)

(
p

NSNe

)
0,many

= 23546+1072
−1073 × 100 M� km s−1 (25)

ηZ,many = 0.15+0.01
−0.01 (26)

ηρ,many = 0.14+0.01
−0.01 (27)

ηN,many = −0.07+0.02
−0.02 (28)

σ = 6075+214
−202 × 100 M� km s−1 (29)

Our posterior samples are also useful for estimating the uncertainty
in the predicted momentum from a particular cluster. For a given
gas metallicity, density, and number of SNe, each posterior sam-
ple predicts a slightly different momentum and an uncertainty σ

on that momentum. For each posterior sample, we then generate
realizations of the noise with variance σ 2. For N posterior sam-
ples and M noise realizations, this gives us N × M samples of the
momentum predictive distribution, which allows us to estimate the
median and the 16th and 84th percentiles of the predictive distribu-
tion for a given cluster. We compare this predictive model and its
uncertainties to our a subset of our numeric data in Fig. 14.

5 D I SCUSSI ON

Using our numeric results and quantitative model, we can now com-
ment on the significance of these results in the context of previous
works. We first examine the implications of our results for models
of momentum-regulated star and galaxy formation in Section 5.1.
We then compare our results to those of previous authors in Sec-
tion 5.2, and in Section 5.3 we discuss the potential importance of
physical processes we have omitted.

5.1 Implications of high momentum efficiency of clustered SNe

In models of momentum-driven feedback, the key parameter is
p/m∗, the amount of momentum injected per unit mass of stars
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formed in a given system. Non-clustered models of SN mo-
mentum production usually assume p/m∗ ≈ p/(100 M�NSNe) ≈
1000−3000 km s−1 (with a weak dependence on density) for a
mass m∗ of stars formed (Thompson, Quataert & Murray 2005;
Ostriker & Shetty 2011; Shetty & Ostriker 2012; Dekel &
Krumholz 2013; Faucher-Giguère, Quataert & Hopkins 2013;
Hopkins et al. 2014; Hayward & Hopkins 2016; Kim & Os-
triker 2015; Kimm et al. 2015). For a star cluster with a single SN
(Mcluster ≈ 100 M�), our best-fitting model is a little higher than
but still consistent with 1000–3000 km s−1 given the uncertainties
in our model. For higher mass clusters, the discrepancy becomes
significant. The most extreme difference is found for Mcluster = 103–
104 M� (NSNe = 101–102), for which our value of p/m∗ can be
greater than the unclustered value by an order of magnitude (see
Figs 5 and 14). But these are just the extremes; for a typical dis-
tribution of cluster masses found in a galaxy, what is the average
effect?

To evaluate the mean value of p/m∗ for star formation on galac-
tic scales, we must integrate our model for individual clusters,
p/Mcluster, over a cluster mass function dN/dMcluster. The resulting
mean momentum yield per unit mass of stars formed is

p

m∗
=

∫ (
p

Mcluster

)
dN

d ln Mcluster
dMcluster. (30)

If we adopt a typical mass distribution dN/dMcluster ∝ M−2
cluster over

the range Mcluster = 102–105 M�, comparable to what is observed
in nearby galaxies (Krumholz 2014, and references therein), and use
our fitting formula (equation 19) to evaluate p/NSNe as a function of
Mcluster (for NSNe ≈ Mcluster/100 M�), this yields a value of p/m∗ ≈
1–2 × 104 km s−1 over the metallicity range Z/Z� = 0.01–1 and
density range ρ/mH = 0.1–105. This is ∼0.5–1 dex higher than the
value usually adopted based on single SN models. This result is
only logarithmically sensitive to the adopted limits on the cluster
mass function.

This increased momentum yield will significantly alter the con-
clusions of analytic models in which star formation is regulated
primarily by SN momentum input (e.g. Ostriker & Shetty 2011;
Shetty & Ostriker 2012; Faucher-Giguère et al. 2013; Hayward
& Hopkins 2016). The same is true for models where SN mo-
mentum is primarily responsible for launching galactic winds (e.g.
Dekel & Krumholz 2013; Hayward & Hopkins 2016; Thompson
& Krumholz 2016). In general, the higher momentum yield we
obtain will shift such models to predict lower star formation rates
for fixed galactic surface densities, which may require re-tuning of
other parameters to bring the models back into agreement with ob-
served relationships between star formation rate and gas content.2

The models will also predict stronger outflows, though these are
significantly less constrained by observations.

The momentum yield per SN is also a critical input to numerical
methods which handle subgrid feedback through explicit momen-
tum injection (e.g. Kim et al. 2011; Hopkins et al. 2014; Kimm
et al. 2015; Goldbaum et al. 2016). These models should be also
be rerun using our updated estimates of the SN momentum yield.
Even models which do not use explicit momentum injection, but

2 The situation is more complex for models which include regulation of star
formation by FUV radiation instead of or in addition to SN feedback (e.g.
Krumholz, McKee & Tumlinson 2009; Ostriker, McKee & Leroy 2010;
Krumholz 2013). In these models, the effects of enhanced momentum injec-
tion will be more modest or absent, depending on the details of the individual
model.

Figure 15. The momentum evolution of a ρ = 1.33 mH cm−3, Z = Z�,
Mcluster = 103 M� (NSNe = 11) cluster, rerun with a range of initial
resolutions, using both Eulerian and Lagrangian methods. The asymptotic
momentum predicted by our model is shown by the blue horizontal band
which bounds the 16th and 84th percentiles of the predictive distribution.

which attempt to include SN feedback by explicitly resolving the
Sedov phase (e.g. Hopkins et al. 2011), may need to be reconsid-
ered, at least for simulations of galaxies large enough for there to
be significant numbers of clustered SNe.

5.2 Comparison to previous work and convergence study

We find that clustered SNe generally lead to an increase in the mo-
mentum injected by SNe, in some cases by an order of magnitude.
The results of previous authors diverge strongly, as noted in Sec-
tion 1, with some finding that clustering leads to an enhancement in
momentum per SN and others finding a decrease, but none finding
an increase as large as an order of magnitude. To understand this
discrepancy, we need to understand the role of mixing and how it
enters various simulations.

In SN-driven bubbles, the cooling rate plays a significant role in
setting the dynamics of the system. This cooling rate is itself affected
by the mixing rate at interfaces between hot diffuse gas (which
dominates the thermal energy) and cold dense gas (which is most
radiatively efficient). If the mixing of energy and matter increases,
the cooling rate can increase and the final momentum can decrease.
This mixing can be increased by both non-physical sources (i.e.
due to numerical diffusion) and physical sources (i.e. conduction
or hydrodynamic instabilities which transport energy across the
contact discontinuity). While these two channels have very different
causes, they can have similar effects on the momentum and energy
evolution of the system (Fierlinger et al. 2016). We will look at
these two channels in turn.

Hydrodynamic solvers which advect mass between adjacent cells
fundamentally introduce mixing errors. These errors can be de-
creased by improving the resolution or decreasing the mass ad-
vected between cells (as we have done by moving our numerical
mesh with the fluid). In order to understand how the choice of res-
olution and numerical methods affects our results, we re-ran one
of our clusters [ρ = 1.33 mH cm−3, Z = Z�, Mcluster = 103 M�,
NSNe = 11; this particular cluster will be useful in later comparisons
to Kim & Ostriker (2015)] at a number of initial resolutions, using
both a fixed mesh and a moving mesh. (A fixed mesh corresponds
to Eulerian hydrodynamics – fixing w = 0 in our methods dis-
cussed in Section 2 – which is less accurate and more diffusive than
our pseudo-Lagrangian methods.) We show the results in Fig. 15
and note a few key observations. First, the Lagrangian runs appear
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Figure 16. Same as Fig. 4, except now for a ρ = 1.33 mH cm−3, Z = Z�,
Mcluster = 103 M� (NSNe = 11) cluster, evolved using Lagrangian methods
with an initial resolution of 0.6 pc.

Figure 17. Same as Fig. 16, except with the resolution degraded to 2.5 pc,
and using a fixed Eulerian mesh.

to be converged (within the uncertainties of our predictive model)
by the resolution used for this cluster in our parameter study (an
initial resolution of 0.6 pc). Secondly, the Eulerian runs introduce
larger errors (as expected) and converge much more slowly. This
suggests that Eulerian and low-resolution simulations could have
greater errors than high-resolution, Lagrangian simulations. We can
better understand these errors by comparing the energy evolution
of a high-resolution Lagrangian run (Fig. 16) and a low-resolution
Eulerian run (Fig. 17). While the same amount of energy is injected
for each SN in both simulations, that energy is radiated away much
more rapidly in the low-resolution (Eulerian) simulation, draining
the bubble of the energy which drives the momentum growth seen
in Fig. 15. [This connection between cooling time and resolution for
multiple SNe was also found by Krause et al. (2013).] The amount
of mixing can significantly impact the final momentum, but given
the convergence seen in Fig. 15, the results we have obtained appear
to be converged.

While our resolution study suggests that high-resolution, low-
diffusion simulations are required to achieve accurate results, that
conclusion might not apply if there are stronger, physical diffusive
processes present (Fierlinger et al. 2016). For an SNR or a super-
bubble, a number of processes can mix gas between the hot bubble
interior and the cool shell; for a review, see appendix B of Fierlinger
et al. (2016). Our 1D code cannot simulate many of these processes

directly,3 but higher dimensional simulations can. In order to test
the effects of these more complex mixing interfaces, we will com-
pare our results to existing 3D simulations of multiple SNe in an
inhomogeneous background.

Martizzi et al. (2015), Walch & Naab (2015), and Kim & Ostriker
(2015) all tested the effects which a turbulent or multiphase back-
ground might have on SNR evolution. For 1 SN, they all found that
an inhomogeneous background makes a relatively small difference:
a change of less than 60 per cent. They also test multiple SNe in an
inhomogeneous background, but none compare the results to mul-
tiple SNe in a homogeneous background. So in order to understand
the effect of mixing in the case of multiple SNe, we will compare one
of our clusters (ρ = 1.33 mH cm−3, Z = Z�, Mcluster = 103 M�,
NSNe = 11; the cluster used in our resolution study) with a mul-
tiphase multiple SN cluster from Kim & Ostriker (2015, ρ =
1.4 mH cm−3, Z = Z�, NSNe = 10). Note that although these clusters
were chosen to be as similar as possible (except with a difference in
background media), they also differ in SN delay time distributions,
ejecta, and mass-loss prescriptions. Nevertheless, we can compare
our results to those of Kim & Ostriker (2015) and find that their
cluster cools much more rapidly than ours, leading to an asymptotic
momentum per SN which is a factor of 20 lower than ours.

We believe that this difference is due to physical mixing which
is present in their simulations but not ours. While our results can
be brought into agreement with theirs by degrading our resolu-
tion and using less accurate numerical methods (as shown by our
convergence study), subsequent simulations have shown their re-
sults to be converged with respect to resolution (Kim, Ostriker &
Raileanu 2016). If a two-phase background results in significantly
increased physical mixing, that would explain how their converged
simulations could appear similar to our less accurate, unresolved
simulations: a strong source of physical mixing can appear similar
to strong artificial mixing (Fierlinger et al. 2016), while being less
sensitive to the resolution.

One might ask at this point whether the enhanced momentum
injection we find is solely a result of our use of 1D simulations,
which necessarily suppress mixing. Such a conclusion might be
comforting, but is far from warranted. The overall lesson to draw
from this comparison is that the cooling rate and momentum bud-
get for bubbles produced by multiple SNe is exquisitely sensitive
to the amount of mixing, whether physical or numerical. For a
homogeneous background, very high resolution is required to get
a converged value for the asymptotic momentum. This resolution
requirement can be rendered irrelevant if strong, physical mixing
occurs, allowing convergence at much lower resolution. But accu-
rate results require more than just convergence; to be confident in
the accuracy of a set of results, one must be confident that the physi-
cal mixing processes have been properly captured. In their multiple
SN simulations, Kim & Ostriker (2015) include a two-phase back-
ground, but not magnetic fields, which are known to suppress mixing
across contact discontinuities in other contexts (e.g. Markevitch &
Vikhlinin 2007). Thus, their results should probably be regarded as
lower limits. Sharma et al. (2014) do include magnetic fields, but
only the context of a uniform medium. Given the state of the field,
and the resolution requirements we have obtained in the uniform
case, it seems clear that there is an urgent need to re-examine the
momentum budget of clustered SNe in a multidimensional context,

3 There exist prescriptions for approximating mixing instabilities in 1D
codes (e.g. Duffell 2016), but none were incorporated in our work.

MNRAS 465, 2471–2488 (2017)



2482 E. S. Gentry et al.

properly including all the mechanisms which can both enhance and
suppress mixing.

5.3 The effects of additional physics

In order to render the problem as clean as possible, we have focused
only on Type II SN feedback in a uniform medium. We now consider
how other physical processes which we have heretofore neglected
might alter our results.

5.3.1 Pre-SN radiative feedback

Before any SNe occur, we expect pre-SN feedback to already be
sculpting the region. In particular, ionizing radiation from young
stars can create an overpressured, expanding bubble, lowering the
density in which SNe occur. In addition, expansion of the H II

region will by itself add some momentum to the gas. Neither effect
is included in our model, and we would like to understand if this
significantly biases our results.

The ionizing luminosity of a cluster of mass Mcluster is Q = 1049.6

Mcluster/(103 M�) s−1 (Leitherer et al. 1999). These photons will
ionize a bubble of gas around the cluster, raising the temperature to
104 K. For density ρ < mH cm−3, this ionized region is not much
hotter than the background (which has a temperature only slightly
below 104 K, appropriate for warm neutral gas). This means the
ionized bubble will not be significantly overpressured compared to
the background, so it will not expand significantly. For clusters in
backgrounds of density ρ < mH cm−3, we therefore do not expect
pre-SN radiative feedback to affect our results.

For higher densities, the equilibrium temperature of the gas is
well below 104 K, so the 104 K ionized bubble is significantly over-
pressured compared to its surroundings. This will allow it to expand,
lowering the density in which SNe occur. For uniform density, and
neglecting the small range of parameter space where radiation pres-
sure effects will be significant (Krumholz & Matzner 2009), the H II

bubble radius rII will be governed by the classical Spitzer (1978)
solution4 (Krumholz 2017, chapter 7),

rII ≈ rS,0

(
7t

2
√

3tS,0

)4/7

, (31)

where rS, 0 is the Strömgren radius at the start of expansion, given
by5

rS,0 =
[

3Qμ2m2
H

4(1.1)παBρ2

]1/3

= 3.1Q
1/3
49 n

−2/3
2 T

0.272+0.007 ln TII,4
II,4 pc, (32)

and where Q49 = Q/1049 s−1, μ = 1.33, n2 = ρ/(μmH)/100 cm−3,
TII is the temperature of the ionized gas, TII, 4 = TII/104 K,
αB ≈ 2.54 × 10−13T

−0.8163−0.0208 ln TII,4
II,4 cm3 s−1 is the case B re-

combination coefficient (Draine 2011), tS, 0 = rS, 0/cII,

cII =
√

2.2
kBTII

μmH
= 12T

1/2
II,4 km s−1, (33)

4 This solution assumes t 
 tS, 0, otherwise expansion is expected to be
negligible. For the cluster masses considered, this assumption typically
fails for n < 1 cm−3, but we already expected minimal expansion in such
backgrounds.
5 Note that this and the following expressions assume that He is singly
ionized.

is the ionized gas sound speed. The corresponding density inside
the H II region is

ρII = ρ

(
r

rS,0

)−3/2

= ρ

(
7t

2
√

3tS,0

)−6/7

. (34)

The mass and velocity of the swept-up shell are

vII = 4

7

rII

t
(35)

Msh = 4

3
πr3

IIρ. (36)

We are interested in the properties of the H II region at a time of
≈4 Myr, when the first SN occurs; these are

rII = 27M
1/7
cluster,3n

−2/7
2

(
t

4 Myr

)4/7

T
0.402+0.003 ln TII,4

II,4 pc (37)

ρII

ρ
= 0.077M

2/7
cluster,3n

−4/7
2

(
t

4 Myr

)−6/7

T
−0.195+0.006 ln TII,4

II,4 (38)

pII = 7.7 × 105M
4/7
cluster,3n

−1/7
2

(
t

4 Myr

)−3/7

×T
1.41+0.02 ln TII,4

II,4 M� km s−1, (39)

where Mcluster, 3 = Mcluster/103 M� and pII is the momentum of the
shell. For the rest of this section, we assume TII, 4 = 1.

Based on these results, for Mcluster ≈ 100 M�, the extra mo-
mentum in the H II region (≈2 × 105 M� km s−1) is ∼50 per cent
smaller than that injected by SNe (≈3 × 105 M� km s−1), and the
fractional contribution drops fairly rapidly for more massive clus-
ters thanks to the sublinear scaling of pII with Mcluster (equation 39).
Thus, the extra momentum injected directly by the H II region is
mostly negligible.

The second effect, lowering the density of the medium into which
the SNe expand, matters if the region of lowered density encom-
passes where an SNR would otherwise experience significant cool-
ing: beyond the shell formation radius of the first SN (when the rem-
nant exits the Sedov phase). This radius is (Kim & Ostriker 2015,
their equation 8, assuming an energy budget of 1051 erg per
100 M� of stars)

rsh = 6.4M0.29
cluster,3n

−0.42
2 pc. (40)

Given the weak scaling of both rsh and rII with Mcluster and n, and
the lower coefficient for rsh, this means that the presence of an
H II region can at least potentially affect the evolution at densities
n � 1 cm−3.

To quantify the effect of this radiative feedback, we can use the
results of Walch & Naab (2015), who ran simulations with and
without pre-SN ionization for NSNe = 1 and ρ ≈ 100 mH cm−3.
They found that ionization led to a pre-SN bubble of density
ρ ≈ 10 mH cm−3, which resulted in a final momentum 50 per cent
higher than their simulation without ionization (runs ‘HCI’ and
‘HC’, respectively). This change in momentum can be explained
well by rescaling the results from the non-ionized run to the density
within the bubble of the ionized run [using the p ∝ ρ−1/7 scaling
of Cioffi et al. (1988)], with the added extra momentum injected
by the H II region directly. Thus, for single SNe, it appears that
the relevant density for a momentum feedback model is the ionized
bubble density rather than the background density.

Assuming that this conclusion can be extended to the case of mul-
tiple SNe, we can quantity the effects of pre-SN ionizing radiation
simply by combining the density scaling in equation (38) with our
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Figure 18. Comparison of simulations with just core-collapse SNe (marked
by a blue +), and simulations with core-collapse and Type Ia SNe (marked
by a red ×) for a set of simulations with Z = Z� and ρ = 1.33 ×
10−3 mH cm−3.

best-fitting density dependences, p ∝ ρ−0.06 in the few-SN regime
and p ∝ ρ0.14 in the superbubble regime. In the few-SN regime, this
implies an increase in the momentum yield per SN by a factor of

fII,few ≈ 1.17M−0.017
cluster,3n

0.034
2 . (41)

The corresponding effect in the superbubble regime is a decrease
in the momentum yield by a factor of

fII,many ≈ 0.70M0.040
cluster,3n

−0.080
2 . (42)

Thus, in general we expect that the effect of a pre-SN H II region
will be to alter the final momentum yield at the tens of per cent
level, with the sign of the effect depending on the whether we are
in the few-SN or the superbubble regime.

5.3.2 Type Ia SNe

We just discussed pre-SN alterations to our results – what about
changes after the core-collapse SNe occur? In particular, could
subsequent Type Ia SNe rejuvenate an old superbubble?

To test this, we rerun a subset of our highest and lowest density
simulations with Type Ia SNe added after all the core-collapse SNe
have occurred. We add 9.75 × 10−4 Type Ia SNe per M� of stars,
with the exact number sampled from a Poisson distribution; this rate
is taken from Kim et al. (2014), rescaled to a Kroupa (2002) IMF.
We draw Type Ia SN delay times from a t−1 distribution, beginning
at t = 40 Myr and extending to 100 Myr. This is not meant to be a
complete accounting of the full effect of Type Ia SNe; most Type
Ia SNe occur after much longer delays, and within 40–100 Myr the
delay time distribution is poorly constrained (Maoz, Mannucci &
Brandt 2012); this is simply to test the effects of SNe which might
occur while the bubble still exists.

We show results for the low- and high-density runs in Figs 18
and 19. For relatively short delay Type Ia SNe, we find that they
are consistent with our model if NSNe is increased accordingly
(NSNe = Ncore-collapse + NTypeIa). For long-delay SNe, we caution
against using our model; it is not guaranteed that both the progen-
itor will remain within the cluster and that the bubble will survive
much longer than 100 Myr.

5.3.3 Self-gravity

Previous studies of SNRs and superbubbles have differed in regard
to whether they include or exclude gravitational forces. For example,

Figure 19. Same as Fig. 18, except now for ρ = 1.33 × 102 mH cm−3

clusters.

Martizzi et al. (2015) and Kim & Ostriker (2015) do not include
gravity, while Thornton et al. (1998) and Walch & Naab (2015)
do include self-gravity. We chose not to include any gravitational
forces in our main simulations, and now we estimate what effect
that has on our results. In this section, we focus on the effects of the
self-gravity of the simulated gas, rather than external gravitational
forces.

First, it is useful to understand why we did not include gravity
in our simulations. This is partly a philosophical choice. The mo-
mentum budget we are attempting to compute is frequently used
as an input to models of feedback-regulated star formation or wind
generation. In such models, the feedback is compared to the force
of gravity either analytically or numerically. For this purpose, the
momentum budget in which we are interested is that before the ef-
fects of gravity are applied; to include gravity would be in effect to
double-count it, by inserting it once into the subgrid feedback model
and then a second time into the overall model. However, there is
also a practical reason that we omit gravity. Strictly speaking, the
self-gravitational potential of an infinite, uniform medium is unde-
fined. We could assume that an external potential dominates, but
only if it were spherically symmetric about the cluster, which rules
out many potentials of interest, like a galactic potential. Addition-
ally, including a gravitational force, especially self-gravity, would
cause our uniform background to collapse. This was not a problem
for Thornton et al. (1998), who simulated much less than a free-fall
time, but caused Walch & Naab (2015) to limit their simulations to
1 Myr in duration. Unfortunately, limiting the duration of our simu-
lations was not an option; we needed to simulate SNe over a period
of at least 30 Myr, much longer than a free-fall time for most of our
densities. Rather than artificially require a pressure gradient which
ensures equilibrium, we chose to exclude gravitational forces.

Still, gravity exists in real systems, so we should try to understand
its effect on our work. First, we will use analytic, simplified argu-
ments to predict the effects of self-gravity on our simulations. We
then use a simplified prescription to include self-gravity directly in
our numeric simulations. By comparing those results, we can begin
to understand the effects of self-gravity and the limitations of our
analytic model.

For an arbitrarily thin shell dominated by mass swept up from a
constant density background, the force of self-gravity is

Fgrav = GM2
shell

2R2
shell

= 8π2

9
Gρ2

0R
4
shell. (43)

When this inward force becomes greater than the force exerted
by the pressure of the hot bubble, the momentum will stop
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Figure 20. Comparison of simulations with no gravity (marked by a blue
+) and simulations with gravity applied to the remnant (marked by a red
×) for all of our simulations with Z = Z� and ρ = 1.33 × 10−3 mH cm−3.
We also include a simple post-processing prediction for the effect of self-
gravity, which truncates our without-gravity simulations if and when they
reach Rmax (equation 45).

increasing, ending the simulation (unless the bubble would have
already mixed into the ISM and the simulation is already com-
pleted). This competing force from the hot bubble gas is

Fgas ≈ 4πR2
shellPbubble = 3(γ − 1)

ER,int

Rshell
. (44)

These two forces become equal at a radius

Rmax =
(

27

8π2
(γ − 1)

ER,int

Gρ2
0

)1/5

(45)

≈ 1200

(
NSNe

1000

)1/5 (
ρ0

1.33 × mH cm−3

)−2/5

pc, (46)

where Rmax is the maximum radius the bubble could reach, having
assumed that all the injected energy is retained as internal energy
(ER, int = NSNe × 1051 erg). This provides a simple way to include
the effects of gravity via post-processing: using the Rmax determined
by equation (45), we can truncate a simulation at that radius using
the data in Table 2. If the bubble mixes into the ISM at a radius
smaller than Rmax, then gravity is assumed to have no effect.

We can also rerun a subset of simulations including gravity ex-
plicitly. To do this, we calculate the force of self-gravity and the
force due to a central point source of mass Mcluster, and use these
forces to compute the appropriate source terms for momentum and
energy. These source terms are then only applied to the shocked
gas (cells with r < Rshock, where Rshock is the radius of the overden-
sity furthest from the centre). By only applying gravity to shocked
gas, we are able to approximate our analytic approach (which only
considers gravity of the shell), and avoid the problem of our back-
ground collapsing. This effectively assumes that the background is
kept in equilibrium by a corresponding thermal or dynamic pressure
gradient. We could have explicitly included this pressure gradient
in our simulations, but chose not to, so that our with-gravity simu-
lations would better correspond to our without-gravity simulations.
A more sophisticated treatment of gravity using higher dimensional
simulations would be worthwhile.

In Fig. 20, we compare the results for simulations with and with-
out gravity, and the results of our post-processing model which
truncates the without-gravity simulations. We see that including
gravity in simulations can decrease the final momentum, and that
this decrease can be significant (compared to the uncertainties in our
without-gravity model), and as large as a factor of 2.3. We also see

that the post-processing truncation model typically overpredicts the
final momentum (underpredicting the effects of gravity), relative to
the simulations which incorporate gravity directly. This is expected;
our post-processing model assumes that all the SN energy remains
as thermal energy, but in our simulations some SN energy is con-
verted into kinetic energy, some into potential energy, and most is
radiated away. This causes simulations to stop at smaller radii than
predicted, leading to lower final momenta than the post-processing
model predicts.

We find that self-gravity can significantly change the final mo-
mentum, especially for clusters of many SNe, but that momentum
is nevertheless still enhanced by a factor of about 4 compared to the
single SN case.

5.3.4 Galactic environment

In Section 5.3.3, we investigated the effects of self-gravity, but in
some cases a galactic gravitational potential might play a larger role
in shaping the late-time dynamics of large bubbles. In this section,
we will estimate the effects of a galactic gravitational potential, as
well as the effects of rotational shear and disc breakout. For each
of these effects, we will use a post-processing correction similar
to that used in Section 5.3.3: calculate a radius or time where our
assumptions break down, and then use the data in Table 2 to truncate
the bubble evolution at that radius or time.

First, we consider the gravitational force perpendicular to a galac-
tic disc, produced by the galactic gravitational potential. The accel-
eration due to this force can be written as

g = z

rg

v2
c

rg
, (47)

where vc is the circular velocity at a galactocentric radius rg, and z
is the distance from the mid-plane. For simplicity, we will assume
that all of the mass of the shell is in a plane at height z = Rshock.
This results in a force

Fgrav = Mshell
Rshell

rg

v2
c

rg
. (48)

For a Milky Way-like galaxy with vc = 200 km s−1 and a cluster at
rg = 3 kpc, this gravitational force is equal to the force from the
bubble pressure when the shock is at a radius

Rmax =
(

9(γ − 1)

4π

1

ρ0

v2
c

r2
g

ER,int

)1/5

(49)

≈ 700

(
NSNe

1000

)1/5 (
ρ0

1.33 × mH cm−3

)1/5

×
(

vc

200 km s−1

)−2/5 (
rg

3 kpc

)2/5

pc. (50)

As with our self-gravity model, we create a model which truncates
our simulations if and when they reach this radius. In Fig. 21, we
compare the results of this galactic gravity model to a subset of
our simulations. Similar to the self-gravity results shown in Fig. 20,
galactic gravity has the largest effect for the largest clusters. We also
find that this galactic gravity model is able to reduce the momentum
by a greater factor than our self-gravity model; the self-gravity
model never reduced the momentum by more than a factor of 1.4,
whereas the galactic gravity model can reduce the momentum by
up to a factor of 3.3. As with self-gravity, however, we caution that
for many applications, the momentum budget of interest will be
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Figure 21. Comparison of simulations with no galactic gravity (marked by
a blue +) and our simple post-processing model of galactic gravity in a disc
for all of our simulations with Z = Z� and ρ = 1.33 × 10−3 mH cm−3.

Figure 22. Comparison of simulations with no disc breakout (marked by
a blue +) and our simple post-processing model of disc breakout for all of
our simulations with Z = Z� and ρ = 1.33 × 10−3 mH cm−3.

that excluding the effects of disc gravity, since if disc gravity is
included in the overall model, it should not be double-counted by
also including it in the subgrid feedback model.

Our disc gravity model is incomplete; among other things, it ig-
nores the density and pressure gradients which result from this grav-
itational potential. As a superbubble expands vertically, it will find
less dense and lower pressure gas; as it expands horizontally, it will
not experience such gradients in the background gas. This will break
the spherical symmetry of the bubble expansion, and can lead to
disc breakout where the bubble expansion becomes predominantly
vertical. When studying this phenomenon with hydrodynamic sim-
ulations, Mac Low, McCray & Norman (1989) found that spherical
symmetry is often broken and shell mixing instabilities are signif-
icant by the time the bubble has expanded 3–4 scaleheights in the
vertical direction. Applying this to a Milky Way-like galaxy, using
a thin-disc scaleheight of 100 pc, we can create a model which cuts
off the momentum growth when a bubble reaches Rmax = 400 pc.
The results of this model can be seen in Fig. 22. As with our previ-
ous models, the effect of this model is stronger for larger clusters,
but this model predicts effects which increase much more rapidly as
cluster size increases. While there is no significant effect on our 11-
SN simulation, it has the largest effect for the 1008-SN simulation
for all of the models we have tested, decreasing the momentum by a
factor of about 10. It is important to understand that this behaviour
is not a result of the total momentum decreasing for large bubbles.
It is simply that, for the largest clusters, the bubble expands to the

Figure 23. Comparison of simulations with no rotational shear (marked by
a blue +) and our simple post-processing model of rotational shear in a disc
for all of our simulations with Z = Z� and ρ = 1.33 × 10−3 mH cm−3.

breakout radius before a significant fraction of the SNe occur, and,
by assumption, these additional SNe then contribute no additional
momentum. This causes the average momentum per SN to fall,
because the extra SNe are counted in the denominator but not the
numerator of our average.

In addition to considering distortions caused by expansion per-
pendicular to the disc plane, we can also consider distortions due to
shear within the disc plane. Adopting a shear time-scale

tshear = 
−1
orb

rg

Rshell
(51)

for a disc orbital frequency 
orb = vc/rg, we can truncate our bubble
evolution when the bubble age (t − tfirstSN) exceeds the shear time.
Results can be seen in Fig. 23. Once again, only the largest clusters
are significantly affected, with the largest effect being a decrease of
a factor of 1.75 for the 1008-SN cluster.

Comparing these post-processing models, we find that all of the
galactic models (gravity, breakout, and shear) are predicted to have
larger effects than the self-gravity model, but these galactic models
introduce a number of free parameters which we have not explored
(disc circular velocity, galactocentric radius, and disc scaleheight).
It is important to remember that these models are only very rough
estimates. When investigating self-gravity, we found that directly
including self-gravity in simulations led to a much stronger effect
than predicted by our simple model. The same is likely true for these
galactic effects, which we cannot directly include in our simulations.
Still, even though every model was structured to decrease the final
momentum, we always saw that clustering can lead to an increased
momentum efficiency, compared to our single SN results. Moreover,
all of these corrections are relatively small for the most efficient
clusters, those producing ∼10 SNe (Mcluster ∼ 1000 M�).

Overall, this suggests that superbubble models are less cleanly
separable from galactic dynamics than single SNR models. Single,
isolated SNRs might only expand to 100 pc over 2 Myr, allowing
us to largely ignore effects like disc shear and galactic gravity.
As we have shown, these effects can play a significant role for
models of clustered SNe and superbubbles. Testing these effects
self-consistently goes beyond the capability of our 1D simulations,
but we have already gained some insight from our simplified post-
processing models. By design, all of these models lowered the final
momenta of our bubbles (by as much as a factor of 10, for the disc
breakout model applied to our largest bubble), but every model still
predicted that clustered SNe lead to enhanced momentum feedback
(for instance, our disc breakout model still predicts an average
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momentum per SN four times larger than the single SN value).
Both clustering of SNe and effects from the host galaxy seem to
play significant roles in the overall SN momentum budget; it would
be useful for higher dimensional simulations to explore these two
effects simultaneously in the future.

6 C O N C L U S I O N S

We perform several hundred 1D simulations to study the momen-
tum delivered to the ISM by clustered SN explosions over a wide
range of star cluster sizes, gas densities, and metallicities. Our sim-
ulations use a realistic IMF paired with realistic stellar lifetimes,
and we evolve them at very high numerical resolution until the
momentum of the expanding shell reaches a maximum. At the end
of our simulations, we find that our clusters typically retain 1–
10 per cent of the injected SN energy (similar to isolated SNe),
but clustered SNe produce significantly more momentum per SN
than isolated SNe, i.e. the momentum injected by a star cluster is
a superlinear function of the number of SNe which explode within
it. Clustering has the largest impact for 10–100 SNe, leading to an
order-of-magnitude increase in the momentum per SN. When inte-
grating over the observed cluster mass function, our findings suggest
that the mean SN momentum budget per mass of stars formed is
p/m∗ ≈ 1–2 × 104 km s−1, which is ∼0.5–1 dex higher than the
value of ≈3000 km s−1 most commonly adopted in the literature.

The increased momentum budget for SNe will have strong im-
plications for any simulation or analytic model which relies on
SN momentum injection. In galaxies where the overall star forma-
tion rate is high enough for clustering of SNe to be significant for
quenching star formation and producing galactic winds (i.e. per-
haps not in dwarfs, but almost certainly in more massive galaxies),
using our updated SN momentum budget may cause these mod-
els’ predicted star formation rates to decrease by the same factor
of ∼0.5–1 dex by which the SN momentum budget increases. This
may render the models inconsistent with the observed relationship
between gas and star formation rate, which will require changes in
other free parameters to bring the models back into agreement. The
implications for galactic wind launching are less clear, since the
increased SN momentum budget will be offset by overall lower star
formation rates.

To facilitate the implementation of our results in 3D numerical
simulations which include explicit SN momentum injection, we
provide a fitting formula for the momentum per SN as a function of
cluster size, ambient density, and metallicity. This formula is suit-
able for implementation in galaxy simulations capable of resolving
individual star clusters, typically ∼102–105 M�. We also provide
tabulated outputs from our simulations, for those who wish to cali-
brate subgrid models at a range of size scales. For lower resolution
simulations, we recommend the value of p/m∗ ≈ 1–2 × 104 km s−1

we obtain by integrating over the cluster mass function. Regardless
of resolution, it is clear that the existing body of simulations may
need to be revisited, and some of the strong assumptions which pre-
vious authors have adopted to make feedback more effective (e.g.
assuming efficient trapping of infrared radiation) may be relaxed.
Other numerical schemes, such as turning off radiative cooling for
an extended period of time (e.g. Stinson et al. 2006) or stochasti-
cally injecting thermal energy in order to delay cooling (e.g. Dalla
Vecchia & Schaye 2012), may prove to be closer to reality than had
previously been assumed.

Properly capturing the effect of clustering in a 1D simulation re-
quires very high numerical resolution to avoid overcooling through
numerical mixing. The resolution requirements may be less severe,

and the momentum injection rate lower, in higher dimensions where
instabilities may produce mixing at large physical scales. However,
the size scale and mixing rate due to instabilities likely depend
strongly on the properties of the host galaxy, the nature of the back-
ground into which the SNR is propagating, and the microphysical
details like magnetic fields and conduction near the contact discon-
tinuity. Since we are unable to directly include these effects in our
simulations, we create simple models to estimate the strengths of
some of these effects. While these models are able to decrease the
momentum of the most massive cluster by a factor of 10, lower mass
(more common) clusters are less affected. For each of our models,
the average momentum per SN remains greater than the fiducial,
unclustered value by a factor of 4, assuming a realistic cluster mass
distribution. But these are just simple estimates; no present sim-
ulation includes all these effects, and thus the correct momentum
budget for clustered SNe in multiple dimensions remains uncertain.
While the correct momentum budget may not be as high as ∼0.5–
1 dex greater than the commonly adopted single SN value (as we
find in one dimension), it is still likely greater than the single SN
value. There is clearly an urgent need for further study.
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A P P E N D I X A : C O D E V E R I F I C AT I O N

A1 Sedov verification

The mass and energy of each SN are injected into the innermost
zone, with all the energy injected as thermal energy. This is not a
realistic configuration; at no stage do we expect a uniformly mixed
sphere, of the order of 0.1 pc in radius, which is overpressured but
not yet expanding. Given these convenient but unphysical initial
conditions, we need to verify that our system will evolve into a
realistic configuration.

We can look at an early time snapshot of a single SN simulation
to verify that the system accurately relaxes into a physical config-
uration. At early times, cooling losses should still be negligible, so
we expect our system to be in the Sedov phase. Fig. A1 shows a
snapshot of our numerical results, compared with the analytic Se-
dov prediction. There is a noticeable overdensity at inner radii, but
this is to be expected: the analytic Sedov solution assumes no ejecta
mass, whereas our simulation includes ejecta mass. The extra ejecta
mass appears as an overdensity at inner radii. Excepting that, our
simulation is in good agreement with the Sedov prediction so we
consider our injection scheme valid.

A2 Thornton et al. verification

We also verified our code against the results of Thornton et al.
(1998), who measured the total energy from single SNe. We
ran single SN simulations at the same background conditions as
Thornton et al., fixing the SN ejecta mass to be 3 M� with an
ejecta metallicity equal to the background metallicity, and ex-
tracting results at the same time as Thornton et al. We com-
pare our simulations to the model provided by Thornton et al. in
Figs A2 and A3.

We judge that our residuals are comparable to the residuals
present in the data of Thornton et al., and we are not surprised
that there are discrepancies. We use different initial conditions: our
simulation injects all of the SN energy into the innermost zone as

Figure A1. Comparison of our numeric results (solid line) against the
analytic Sedov solution (dashed line) for a ρ = 1.33 × 10−3 mH cm−3,
Z = Z�, Mcluster = 102 M� (NSNe = 1) cluster, at t = 0.17 Myr.
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Figure A2. Verification that our code can reproduce the results of Thornton
et al. (1998), for total energy contained within the SNR (ER, tot) at the
completion time defined by Thornton et al. (1998).

thermal energy, while that of Thornton et al. spreads the energy
across 150 zones, and adds some of it as kinetic energy. We were
able to use different initial conditions because we used different hy-
drodynamic solvers: Thornton et al. use a finite-difference method
which cannot handle the strong shock which occurs by injecting
all the energy into one zone, while our finite-volume method is

Figure A3. Same as Fig. A2, but now with total energy as a function of
metallicity.

much more robust to these strong shock conditions. Finally, we use
a cooling package which differs from the cooling function used by
Thornton et al. All these differences lead us to expect the minor
discrepancies between our results and the results of Thornton et al.
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