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ABSTRACT
We show that the turbulent gas in the star-forming regions of galaxies is unstable to wind
formation via momentum deposition by radiation pressure or other momentum sources like
supernova explosions, even if the system is below the average Eddington limit. This conclusion
follows from the fact that the critical momentum injection rate per unit mass for unbinding gas
from a self-gravitating system is proportional to the gas surface density and that a turbulent
medium presents a broad distribution of column densities to the sources. For an average
Eddington ratio of 〈�〉 � 0.1 and for turbulent Mach numbers � 30, we find that ∼1 per cent
of the gas is ejected per dynamical time-scale at velocities larger than the local escape velocity.
Because of the lognormal shape of the surface density distribution, the mass-loss rate is highly
sensitive to the average Eddington ratio, reaching ∼20–40 per cent of the gas mass per
dynamical time for 〈�〉 � 1. Using this model we find a large scatter in the mass-loading
factor for star-forming galaxies, ranging from ∼10−3–10, but with significant uncertainties.
Implications for the efficiency of star formation in giant molecular clouds are highlighted. For
radiation pressure feedback alone, we find an increasing star formation efficiency as a function
of initial gas surface density. Uncertainties are discussed.

Key words: galaxies: evolution – galaxies: formation – galaxies: starburst – galaxies: star
clusters: general.

1 IN T RO D U C T I O N

Momentum deposition in the interstellar medium (ISM) by radia-
tion pressure on dusty gas and/or supernovae has been discussed as
a mechanism for driving turbulence and launching winds in rapidly
star-forming galaxies (e.g. Harwit 1962; Scoville 2003; Murray,
Quataert & Thompson 2005; Thompson, Quataert & Murray 2005;
Murray, Ménard & Thompson 2011; Ostriker & Shetty 2011; Hop-
kins, Quataert & Murray 2012a,b; Shetty & Ostriker 2012; Zhang
& Thompson 2012; Faucher-Giguere, Quataert & Hopkins 2013),
and in disrupting the giant molecular clouds (GMCs) around form-
ing star clusters (e.g. O’dell, York & Henize 1967; Scoville et al.
2001; Krumholz & Matzner 2009; Fall, Krumholz & Matzner 2010;
Krumholz & Dekel 2010; Murray, Quataert & Thompson 2010;
Murray et al. 2011; Dekel & Krumholz 2013; Skinner & Ostriker
2015). Virtually all semi-analytic treatments to date calculate the dy-
namics by considering the interaction between a gaseous medium
with a specified set of mean properties. In these models, the be-
haviour of the system is primarily determined by 〈�〉, the average
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Eddington ratio that describes the balance between momentum in-
jection and gravity.

Thompson et al. (2005) compared predictions for radiation pres-
sure – plus supernova – supported interstellar media with obser-
vations of ultraluminous infrared galaxies (ULIRGs) and found
that the observed fluxes were close to the theoretical predictions on
� 200–300 pc scales in these extreme systems. Andrews & Thomp-
son (2011) compared the dusty Eddington limit with data for a
broad range of galaxies, including galaxy-averaged observations of
normal spirals and starbursts, individual sub-regions of resolved
galaxies in the local Universe, and ULIRGs at high redshift. They
showed that normal galaxies in general fall below 〈�〉 ∼ 1 and that
the Eddington limit presents an upper bound to the fluxes observed.
Andrews & Thompson (2011) also showed that inferences about
whether or not galaxies as a whole reach the Eddington limit are
hampered by uncertainties in the CO/HCN–H2 conversion factors
and dust-to-gas ratio (see also Faucher-Giguere et al. 2013), and
by time-dependent effects in big spirals where the majority of the
area is not star forming at a given time. They found that 〈�〉 gener-
ally decreased for higher average gas surface density galaxies and
(similarly) that 〈�〉 increases as a function of galactocentric radius
in galaxies, generically because the gas surface density falls. This
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behaviour follows from the fact that the ‘single-scattering Edding-
ton flux’ increases more rapidly with gas surface density than does
the observed bolometric flux from galaxies.1 Recent work by Coker,
Thompson & Martini (2013) on the wind of M82 also shows that
it is sub-Eddington on kpc scales along its minor axis, although its
super star clusters may reach or exceed 〈�〉 ∼ 1 on small scales
(Krumholz & Matzner 2009; Murray et al. 2010, 2011).

While this work has yielded useful insights, it has been limited to
examining the mean properties of star-forming systems. However,
the real ISM is far from uniform. An important outstanding question
is how momentum injection – whether deposited by radiation pres-
sure on dust, supernova explosions, or other processes – couples
to a supersonically turbulent ISM or GMC. Here, we highlight an
important piece of physics: over a broad range of parameters, the
Eddington luminosity per unit mass (LEdd/M; in the case of radiation
pressure) or the critical momentum input rate to expel gas (ṖEdd/M;
in the case of supernovae or stellar winds) is linearly proportional to
the surface density of gas � along any line of sight. For a medium
with average gas surface density 〈�〉, one might imagine that if the
actual luminosity L or momentum injection rate Ṗ is below 〈LEdd〉
or 〈ṖEdd〉 that no material is ejected. However, since the medium is
supersonically turbulent, the momentum sources ‘see’ a broad log-
normal probability distribution function (PDF) of surface densities
whose width is controlled by the Mach number of the turbulence.
At sufficiently low �, the medium will thus be super-Eddington.
Setting the �-dependent Eddington ratio to unity defines a critical
surface density �crit. The material in sightlines with � < �crit will
be accelerated to the local escape velocity (or above) in a local
dynamical time-scale (or less).

We develop this model here. We argue that the gas along sightlines
with � < �crit is ejected. The mechanism is generic in the sense that
any turbulent medium with momentum sources should be unstable
to some mass-loss. In practice, we show that because of the shape
of the surface density and mass PDFs the system needs to be within
about 1/10th of the Eddington limit for significant gas expulsion,
with the degree of mass loading determined by the Mach number
of the turbulence and the ratio �crit/〈�〉.

In the context of radiation pressure on dust, a handful of stud-
ies have previously considered the interaction between radiation
forces and a turbulent medium, and these have focused on the
highly optically-thick limit applicable to surface densities larger
than ∼104 M� pc−2 ∼0.5 g cm−2 ∼1023 cm−2, where the reradi-
ated far-infrared (FIR) emission might be trapped by the dusty gas.
These works include both semi-analytic calculations with model
turbulent column density PDFs (Murray et al. 2010; Hopkins,
Quataert & Murray 2011) and full numerical radiation hydrody-
namics (Krumholz & Thompson 2012, 2013; Davis et al. 2014b;
Skinner & Ostriker 2015) to assess whether the effective momen-
tum coupling optical depth is in fact as large as the average FIR
optical depth in a turbulent medium with lower column density
sightlines. The general result of these studies is that the actual mo-
mentum deposition is smaller than what one would guess for a
laminar, non-turbulent medium, though the extent of the deviation
is still uncertain. We note that in the FIR optically thick limit, Davis
et al. (2014b, their section 5.2) discussed the possibility that radi-
ation pressure might launch outflows from galaxies that are below

1 This is equivalent to the statement that observational determinations of the
star formation rate per unit area as a function of gas surface density generally
find that SFR/Area ∝ �x with x < 2 (e.g. x � 1.4; Kennicutt 1998). See
Section 3.1.

the average Eddington limit by having enhanced fluxes in lower
column density channels driven by the radiation Rayleigh–Taylor
instability. Similar numerical calculations applicable to the broad
column density regime where LEdd/M ∝ �, and where the effect
highlighted in this paper should apply, have yet to be undertaken in
the galaxy feedback context.

In the supernova context, Shetty & Ostriker (2012) and Martizzi,
Faucher-Giguère & Quataert (2015) have explored how the mo-
mentum deposition couples to and regulates the turbulent ISM, but
neither global outflows nor GMC disruption were the focus of their
work. Hopkins et al. (2012b) explored the development of winds in
full galaxy simulations with both radiation pressure and supernova
feedback, and in principle, if turbulence was well-resolved on the
scales of individual GMCs, we would expect the effect identified
here to be present in their calculations. However, in their simula-
tions it is difficult to disentangle the effects of supernovae, which
were treated with full hydrodynamics, from the effects of radia-
tion pressure, which were handled via sub-grid model analogous to
the semi-analytic treatments discussed above. Creasey, Theuns &
Bower (2013) follow the development of outflows in a supernova-
driven ISM with energy deposition and momentum. A structured
turbulent ISM was also part of the Cooper et al. (2008) calculation
of the superwind from M82. As we discuss in Section 3.3, the ram
pressure acceleration of low column density sightlines (� < �crit)
by either a hot wind produced by energy injection from supernovae
or the direct momentum injection can also be interpreted in terms
of an Eddington limit. The former point was recently explored by
Zhang et al. (2015).

In Section 2 we discuss the Eddington limit for momentum input
in a medium of given surface density. In Section 2.2 we compute the
PDF of area and mass for a vertically averaged supersonically tur-
bulent medium and calculate the interaction of momentum sources
with this medium. In Section 3 we provide a discussion of our re-
sults, with applications to the ISM of galaxies and GMCs, and other
momentum sources. Section 4 provides a brief conclusion.

2 T H E E D D I N G TO N L I M I T I N D R I V E N
S U P E R S O N I C T U R BU L E N C E

2.1 The single-scattering Eddington limit

We start by considering a spherical source of UV/optical luminosity
L and mass M surrounded by a turbulent dusty medium. Our argu-
ments can be generalized to a thin disc geometry or other momentum
sources. The medium surrounding the source has an area-averaged
gas surface density 〈�〉, but presents a distribution of surface den-
sities to the central source because it is turbulent. The equation of
motion for gas along any line of sight with surface density � that
is optically thick to the incoming emission but optically thin to the
reradiated FIR is

dv

dt
= −GM

r2
+ L

4πr2c

1

�
, (1)

which implies an Eddington luminosity of

LEdd

M
� 4πGc� � 130

L�
M�

�0.01, (2)

where �0.01 = �/0.01 g cm−2 and 0.01 g cm−1 � 50 M� pc−2 �
6 × 1021 cm−2. The Eddington ratio along the line of sight is then

�(�) = L

LEdd(�)
, (3)
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where we explicitly note the functional dependence of � on �. In
the case of an arbitrary momentum source Ṗ , one can substitute
L/c → Ṗ in the above. Recent work by Faucher-Giguere et al.
(2013) implies that the net momentum injection rate from super-
novae might be as much as ṖSNe ∼ 10L/c. We return to this issue in
Section 3.

In the context of radiation pressure, note that equation
(1) is valid over about 2.5 dex in �. For � � 1/κUV �
10−3κ−1

UV, 3f
−1
dg, MW g cm−2 – where κUV, 3 = κUV/103 cm2 g−1 is

a typical UV continuum dust opacity and fdg, MW is the dust-to-
gas ratio scaled to the Milky Way value – the medium becomes
optically thin to the incident UV radiation and 1/� should be
replaced by κUV in equation (1). Conversely, for � � 1/κIR �
0.2κ−1

IR, 0.7f
−1
dg, MW g cm−2, where κ IR is the Rosseland-mean opacity

(e.g. Semenov et al. 2003), the medium becomes optically thick to
the reradiated IR and 1/� should be replaced by κ IR in equation
(1). However, as discussed by many authors (see, e.g., Krumholz &
Matzner 2009; Murray et al. 2010; Krumholz & Thompson 2012,
2013; Davis et al. 2014b), it is unclear if the momentum coupling in
the optically thick limit translates into a momentum input as large
as τ IR = κ IR� in a turbulent medium. Here, we focus on the range
of parameters where the single-scattering limit applies and return to
a discussion of the IR optically thick and UV optically thin regimes
in Section 3.

If the turbulent dusty medium has an average gas surface density
〈�〉, the average Eddington luminosity is simply

〈LEdd〉 = 4πGMc〈�〉. (4)

From equation (2) we then see that for source luminosity L, there is
then a critical surface density below which � ≥ 1:

�crit

〈�〉 = L

〈LEdd〉 ≡ 〈�〉. (5)

All regions exposed to the central source with � < �crit will be
accelerated out of the local gravitational potential by momentum
deposition. Solving equation (1) we find the classic result that

v(r)

vesc(R0)
=

(
1 − R0

r

)
[�(�) − 1]1/2, (6)

where vesc = (2GM/R0)1/2, R0 is the initial radius of the medium,
and where we have assumed that � is constant with radius as the
cloud is accelerated. In this limit, for r � R0, v∞ � vesc(R0)(�
− 1)1/2 and the asymptotic velocity is tied to the escape velocity
from the central source. If the ejected medium instead expands as
it is accelerated so that the angle subtended by the cloud from the
source does not decrease as r−2, then the cloud may reach much
higher velocity (Thompson et al. 2015). In the context of radiation
pressure on dust, if the cloud subtends a constant solid angle as it
is accelerated, its asymptotic velocity is v∞ � (RUVL/(Mcloudc))1/2

if RUV � R0, where Mcloud is the mass of the cloud and RUV =
(κUVMcloud/4π)1/2 is the radius at which the cloud becomes optically
thin to the incident UV radiation. This assumes that the source L is
constant on the time-scale needed to reach RUV, which is unlikely
in the case of an intervening turbulent medium. We return to this
issue in Section 2.2.

Taking equation (6) at face value, the acceleration time on a scale
R0 is then

tacc(�) =
(

R3
0

2GM

)1/2

[�(�) − 1]−1/2 . (7)

2.2 Interaction with a turbulent medium

In a turbulent medium, the sources of luminosity see a broad distri-
bution of column densities along each line of sight, and the fraction
of mass that finds itself super-Eddington will depend on this dis-
tribution. A number of numerical experiments have found that, for
supersonic isothermal turbulence, the PDF of column densities is
well-approximated by a lognormal distribution (Ostriker, Stone &
Gammie 2001; Vázquez-Semadeni & Garcı́a 2001; Federrath et al.
2010)

p±(x) = 1

(2πσ 2
ln �)1/2

exp

[
− (x − x)2

2σ 2
ln �

]
, (8)

where x = ln (�/〈�〉). Conservation of mass requires that the mean
x and dispersion σ ln � be related by x = ∓σ 2

ln �/2. The quantity
p+(x) gives the areal PDF (i.e. the probability of measuring a cer-
tain column density if one chooses a line of sight passing through
a random position), while p−(x) gives the mass PDF (i.e. the prob-
ability of measuring a certain column density if one chooses a line
of sight passing through a random mass element).

The dispersion of the lognormal σ ln � is related to the Mach
number of the turbulence. For volume density, which is also well-
described by a lognormal, numerous authors have found that the
non-magnetized turbulence with mixed forcing produces a disper-
sion

σ 2
ln ρ ≈ ln(1 + M2/4) (9)

in the log density PDF, where M is the three-dimensional Mach
number of the turbulence (e.g. see the recent review by Krumholz
2014). The dispersion of the column density PDF is smaller due to
averaging over the line of sight, but the relationship has been subject
to significantly less exploration in numerical simulation than that
between M and the dispersion of the volume density PDF. To
estimate the dispersion of the column density PDF, we follow an
approach suggested by Brunt, Federrath & Price (2010a,b). They
consider a periodic box of size L, and show that the ratio of the
dispersions of column density, σ� , and volume density, σρ , are
related by

R ≡
(

σ�

σρ

)2

=
∑∞

kx ,ky=−∞ P (kx, ky, 0) − P (0, 0, 0)∑∞
kx ,ky ,kz=−∞ P (kx, ky, kz) − P (0, 0, 0)

, (10)

where P(kx, ky, kz) is the power spectral density of the density field
at point (kx, ky, kz) in Fourier space, and the wave vectors (kx, ky,
kz) are normalized such that kx = 1 corresponds to a mode with
wavelength λ = 2L, i.e. kx = 1 is the largest mode that will fit in
the box. Note that these are dispersions of the column and volume
densities themselves, not of their logarithms. For a lognormal PDF,
the dispersions of the density and its logarithm are related by

σ 2
ln ρ = ln(1 + σ 2

ρ ), (11)

and similarly for the column density. Combining the previous three
equations, we have

σ 2
ln � ≈ ln(1 + RM2/4). (12)

The value of R depends on the shape of the density power spectrum.
For homogenous isotropic turbulence P(kx, ky, kz) must depend
on k = (k2

x + k2
y + k2

z )1/2 alone, and several numerical studies have
found that the relationship is reasonably well-described by a power
law P(k) ∝ k−α with an index α that depends on the Mach number of
the turbulence, and varies form α ≈ 3.7 at near-transonic turbulence
to α ≈ 2.5 for M � 1 (Beresnyak, Lazarian & Cho 2005; Kim &
Ryu 2005; for a summary and references to further results, see
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Figure 1. Left: the areal column density probability distribution function [PDF; blue; p+(x)] and the mass column density PDF [red; p−(x)] as given in
equation (8), as a function of ex = �/〈�〉 for Mach numbers M = 10, 30, and 100. This plot shows that the areal (mass) PDF is peaked below (above) the
mean value of the column density, and that it broadens as M increases. Right: the integral of the areal (blue; ζ+) and mass (red; ζ−) PDFs from x = −∞ to
xcrit (equation 15), as given in equation (16), as a function of the average Eddington ratio exp (xcrit) = 〈�〉. This panel shows that for a system with 〈�〉 = 0.1
and M � 30 that � 10 per cent (ζ+ � 0.1) of the area and � 1 per cent (ζ− � 10−2) of the mass is super-Eddington.

the review by Krumholz 2014). Since most of the astrophysical
systems with which we are concerned have M � 1, we adopt α =
2.5 as our fiducial value. This power-law behaviour of P(k) must
stop at sufficiently high k for the dispersion to remain finite, and
the natural truncation scale is the sonic length scale, below which
the turbulence becomes subsonic and is thus no longer able to drive
density fluctuations (Krumholz & McKee 2005); in our normalized
wave vector units, this scale corresponds to k = M2. We therefore
adopt as an ansatz that

P (k) ∝
⎧⎨
⎩

0, k = 0
k−α, 1 ≤ k ≤ M2

0, k > M2
. (13)

With this ansatz, and approximating the sums in equation (10) by
integrals (appropriate for M � 1), we have

R = 1

2

(
3 − α

2 − α

) [
1 − M2(2−α)

1 − M2(3−α)

]
. (14)

By using this value of R in equation (12) we have completed the
specification of the PDF of � in terms of M.

Now we are in a position to ask how much mass and area is
contained in regions where � is small enough for the gas to be
super-Eddington. We define a critical value of x for this condition
to be satisfied as (see equation 5)

xcrit = ln[�crit/〈�〉]. (15)

Integrating p±(x) from x = −∞ to xcrit yields the total fraction of
the area and mass, respectively, of the medium with � < �g, crit:

ζ±(xcrit) =
∫ xcrit

−∞
p±(x) dx

= 1

2

[
1 ± erf

(±2xcrit + σ 2
ln �

2
√

2σln �

)]
. (16)

In the right-hand panel of Fig. 1 we plot ζ±(xcrit) for the area (blue)
and the mass (red), respectively, for M = 10, 30, and 100. For 〈�〉
� 0.1 and M = 30, we see that ζ− ∼ 10−2 and ζ+ ∼ 0.2, implying

that about 1 per cent of the mass and 20 per cent of the area of the
system would be super-Eddington.

An important question is whether the matter along a super-
Eddington line of sight can be accelerated before the turbulence
‘erases’ the local conditions. If the column density field fluctuates
in a time much less than the time to accelerate the matter, we expect
no material to be ejected. The relevant comparison is then the ratio
tacc(�)/tcross(λ), where tacc is given by equation (7) and tcross(λ) ∼
λ/δv(λ) is the crossing time of the turbulence with velocity δv(λ)
to cross a scale λ over which � obtains

tacc(�)

tcross(λ)
∼

(
δv(λ)

vesc(R0)

) (
R0

λ

)
1

[�(�) − 1]1/2
, (17)

where vesc(R0) = (2GM/R0)1/2. To our knowledge, the projected
persistence time of low column density structures in simulations of
highly supersonic turbulence has not been reported in the literature.
However, in the GMC context on the largest scales (λ ∼ R0), we
expect δv ∼ vesc, implying that tacc(�) < tcross(R0) if �(�) � few.
A similar conclusion is reached by considering a geometrically thin
disc with flux F and total surface density �tot on a scaleheight h.
We thus conclude that for �(�) larger than ∼2, the material should
be accelerated before turbulence erases the local conditions. In the
GMC context, the material is accelerated to the escape velocity,
whereas for a geometrically thin disc the super-Eddington matter
will be accelerated to a characteristic velocity of v2 ∼ πG�toth, the
vertical velocity dispersion of the gas.2

If the material with � < �crit is ejected, and if the surface density
of the ejected regions is constant as a function of radius in its first
dynamical time as it is accelerated, then the velocity distribution is
just

v(�)

vesc(R0)
�

(
�crit

�
− 1

)1/2

= [
e(xcrit−x) − 1

]1/2
. (18)

2 This follows from solving the one-dimensional planar momentum equation
for a column of gas being accelerated out of a thin disc (see equation 1), or
by equating ρv2/2 ∼ πG�2

tot in hydrostatic equilibrium and noting �tot =
2ρh.
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Figure 2. Velocity distribution v(�)/vesc(R0) (black lines) of ejected ma-
terial as a function of ex = �/〈�〉 = 〈�〉/� for 〈�〉 = 3 × 10−2, 0.01, 0.03,
0.1, 0.3, and 1 (lowest to highest). The red lines show 100ζ−(x) from Fig. 1
(right-hand panel) for M = 10, 30, and 100. See equation (18).

Fig. 2 shows v/vesc as a function of ex for a wide range of 〈�〉 from
3 × 10−2 to 1 (black solid lines, lowest to highest). The red lines
show the integral of the mass PDF times 100 (100ζ−(x)) from the
right-hand panel of Fig. 1. We see that only a very small amount of
mass can reach v/vesc � 1 in a single dynamical time on scale R0.
For example, taking 〈�〉 = 0.1, a fraction ∼10−2 (100ζ− � 1) of
the mass reaches v/vesc ∼ 1 for M = 100, but only � 10−3 reaches
v/vesc � 2 because of the very strong drop in ζ−(x). Taking 〈�〉 =
1, more than 0.02 of the gas mass reaches v/vesc � 2, whereas a
fraction 0.001 reaches v/vesc � 6.

3 D ISCUSSION

In Section 3.1 we first discuss the application of our results to
observed star-forming galaxies as a whole in the context of radiation
pressure. For nominal CO–H2 conversion factors these systems are
on average below the single-scattering Eddington limit (Andrews &
Thompson 2011). Because in a thin disc geometry we expect low-
column sightlines that are near the Eddington limit to be accelerated
to only of order of the vertical velocity dispersion of the gas (∼10–
50 km s−1 for most systems), the importance of radiation pressure
alone as a momentum injection mechanism is likely not dramatic for
most systems. Even so, some galaxies do have average Eddington
ratios closer to unity than others, and in all galaxies some gas will be
in low column density sightlines that are effectively strongly super-
Eddington. In addition, we find that our results depend sensitively on
both the CO–H2 conversion factor and the total momentum injection
rate, which may be contributed to by other momentum sources (see
Section 3.3).

The application to massive star-forming sub-regions within
galaxies is given in Section 3.2. Even z ∼ 0 galaxies may reach
the single-scattering radiation pressure Eddington limit (Krumholz
& Matzner 2009; Murray et al. 2010, 2011), driving shells vertically
out of the plane of galaxies at relatively high velocity (Fig. 2), and

our results indicate the star formation efficiency in GMCs may be
substantially modified by the interaction of radiation pressure with
the turbulent medium.

3.1 Application to galaxies

In a galactic disc with a continuous star formation rate per unit area
�̇∗, the flux produced by the newborn stars will be F ≈ ε�̇�c

2,
where ε � 7 × 10−4 is an initial mass function (IMF)-dependent
constant. This can be compared to the Eddington flux, which is

FEdd = 2πGcf −1
g �2

g , (19)

where �g is the gas surface density and fg is the gas mass fraction.
We therefore have

excrit = F

FEdd
=

(
εcfg

2πG

)
�̇∗
�2

g

. (20)

Loci of constant F/FEdd therefore correspond to relationships �̇∗ ∝
�2

g between galaxies’ star formation rate and gas content (at fixed
fg; see, e.g., Andrews & Thompson 2011). Conversely, for any
observed galaxy for which �g and �̇∗ are known, and for which fg

is known or measured, we can use equation (20) to infer xcrit and
thence ζ , the fraction of mass that is super-Eddington.

In Fig. 3 we show loci of constant F/FEdd assuming a constant
gas fraction of fg = 0.3 in the �g-�̇∗ plane overlaid with data for
a large collection of local and high-redshift star-forming galaxies
taken from the compilation of Krumholz (2014). For the assumed
fg, observed galaxies fall below F = FEdd, and most fall below F
= FEdd/10. There is a systematic trend whereby higher star for-
mation rate galaxies have lower values of F/FEdd, which is simply
a consequence of the fact that constant F/FEdd would require that
the star formation rate rise with gas surface density as �g ∝ �2

∗
(e.g. Thompson et al. 2005; Andrews & Thompson 2011), and the
observed relationship between gas content and star formation is
apparently not quite that steep.

In Fig. 4, we show the implications of these results for ζ , the
fraction of mass that is expected to be super-Eddington, and the
mass-loading rate. We parametrize the star formation rate per unit
area as

�̇� = εff�g/tff, (21)

where tff is the free-fall time at the average density of the star-
forming gas and εff is an efficiency factor. If we adopt as an ansatz
that the wind mass ejection rate is given roughly by

�̇wind = ζ (xcrit)�g/tff, (22)

this implies that the mass-loading factor

η ≡ �̇wind

�̇�

= ζ

εff
. (23)

Fig. 4 shows η for the galaxies in the sample of Fig. 3 with a
fiducial choice of εff = 0.01. Our values of ζ , which range from
∼10−4 to 10−1, coupled with our choice of εff on galactic scales,
imply mass-loading factors of ∼10−3 to 10. Fig. 4 suggests that the
direct single-scattering radiation pressure may be a major contrib-
utor to the mass loading on galactic scales for some galaxies with
mean surface densities � 100 M� pc−2. For galaxies with higher
surface densities, the effects of radiation pressure are systematically
smaller because the surface density does not rise with star forma-
tion rate quickly enough to keep F/FEdd from falling (Andrews &
Thompson 2011). Since ζ is exponentially sensitive to F/FEdd, even
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Figure 3. Locations of observed galaxies, together with theoretical curves,
in the �g-�̇∗ plane. Black lines show the locations for F = FEdd, F =
FEdd/10, and F = FEdd/100, as indicated; these curves were computed for fg
= 0.3, and their vertical position varies as f −1

g . Points indicate a compilation
of data on observed galaxies taken from Krumholz (2014). Original sources
for the data are as follows: Kennicutt (1998), Bouche et al. (2007), Daddi
et al. (2008, 2010a), Genzel et al. (2010), Tacconi et al. (2013), and Davis
et al. (2014a). Grey curves indicate a least-squares fit to this data set (solid),
the Kennicutt (1998) relation (dot–dashed), and fits by Narayanan et al.
(2012, dashed) and Faucher-Giguere et al. (2013, dot–dashed) to subsets of
the data shown, and using a variety of models for αCO (see also Ostriker &
Shetty 2011). Finally, the upper panel shows the results using the bimodal
αCO values recommended by Daddi et al. (2010b), while the bottom panel
uses the theoretical αCO value computed by Narayanan et al. (2012).

a modest fall translates to a dramatic reduction in the mass-loading
factor.3

Note that the choice of εff directly impacts the inferred mass-
loading factor η, and for this reason we explicitly label the ordinate
of Fig. 4 with the εff dependence. Since we assume radiation pres-
sure acts on local scales in individual star-forming regions, we adopt
a constant value for εff inferred from the free-fall time for the aver-
age of the star-forming molecular clouds on large scales (Krumholz
2014). We extend this to feedback within GMCs with varying εff

in Section 3.2. Note that our working definition of εff in Fig. 4 is

3 At high surface densities, the effects of large FIR optical depth and the
reprocessed radiation may increase the importance of radiation pressure in
dense starbursts or their FIR optically thick star-forming sub-regions, but
we do not focus on this regime. See Thompson et al. (2005), Andrews &
Thompson (2011), Murray et al. (2010), Krumholz & Thompson (2012,
2013), Davis et al. (2014b), and Skinner & Ostriker (2015).

Figure 4. Values of ζ , the fraction of the mass that is super-Eddington,
versus gas surface density �g. Data points are identical to those shown in
Fig. 3, and grey lines are for the same fits as in that figure: the best fit to the
full data set (solid), the Kennicutt (1998) relation (dot–dashed), and the fits
by Narayanan et al. (2012, dashed) and Faucher-Giguere et al. (2013, dot–
dashed). As in Fig. 3, in the upper panel the observed galaxies have surface
densities assigned using the Daddi et al. (2010b) bimodal αCO, while in
the lower panel surface densities are computed using the theoretical αCO

of Narayanan et al. (2012). All calculations are done for a Mach number
M = 30 and α = 2.5 for the slope of the density power spectrum in equation
(13). Different choices change the results quantitatively but not qualitatively.

different from the one used by Faucher-Giguere et al. (2013) who
evaluate the free-fall time at the average ISM density (typically sig-
nificantly lower than the average density of star-forming clouds) and
argue both that some galaxies have εff � 0.1, and that rather than
being constant, εff scales with gas fraction and circular velocity.

We caution that the results presented are also sensitive to the
choice of the factor αCO used to convert between observable CO
emission and surface density of molecular gas, particularly because
of the exponential dependence of ζ on F/FEdd. To illustrate this,
the top panels of Figs 3 and 4 show the data where we have in-
ferred gas surface densities using the values of αCO suggested by
Daddi et al. (2010b): αCO = 4.6 M� (Kkms−1pc−2)−1 for local
non-starburst galaxies, 3.6 M� (Kkms−1pc−2)−1 for high-z disc
galaxies, and 0.8 M� (Kkms−1pc−2)−1 for starburst galaxies. The
bottom panels show the exact same data but using the theoretical
calibration of αCO computed based on simulations and radiative
transfer post-processing by Narayanan et al. (2011, 2012): αCO =
min [6.3, 10.7〈WCO〉−0.32]/Z′0.65 (Kkms−1pc−2)−1, where 〈WCO〉 is
the observed CO line intensity in units of K km s−1, Z′ is the
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metallicity normalized to the Milky Way value, and we have used
Z′ = 1 for all galaxies.

The effect of using the theoretical αCO calibration on the location
of galaxies in the �g-�̇∗ plane is relatively modest, but it does
lead to a somewhat steeper rise in �̇∗ with �g. Formally, the linear
least-squares fit for the relation between �g and �̇∗ gives

log �̇∗ = 1.43 log �g − 3.77 (24)

for the Daddi et al. (2010b) αCO, and

log �̇∗ = 1.74 log �g − 4.46 (25)

for Narayanan et al. (2011, 2012); in these formulae the gas surface
densities are in units of M� pc−2 and the star formation rates are
in units of M� pc−2 Myr−1, and the fits have been performed
weighting all galaxies equally. Note that the slope of 1.74 we find
using the Narayanan et al. (2012) calibration is shallower than the
value of 1.95 found in the original Narayanan et al. (2012) paper.
This is due to the significantly expanded data set we make use of
here. Using a variable αCO, Ostriker & Shetty (2011) also found a
relatively steep correlation: log �̇∗ = 1.9 log �g − 5.05.

Although the change in slope between the two calibrations in
equations (24) and (25) is only about 0.3, this has the effect of
making ζ fall off much less dramatically with increasing �g using
the Narayanan et al. (2011, 2012) calibration rather than that from
Daddi et al. (2010b). The difference is not enough to render radiation
pressure significant in starbursts, but it is a reminder that a slope
of 2 in the log �̇∗- log �g relationship represents a critical value for
momentum feedback models (Thompson et al. 2005; Andrews &
Thompson 2011). Changes in the αCO calibration severe enough
to produce a star formation law with a slope of 2 appear unlikely
based on current observations or theoretical models, but given the
significant uncertainties can by no means be ruled out.

3.2 Application to giant molecular clouds

While the effects of radiation pressure alone may be fairly modest
at galactic scales, they are much more significant at the scales of
GMCs, which have much shallower potential wells than galaxies
and proportionately higher star formation rates per unit mass. Con-
sider a simple phenomenological model of a forming star cluster,
somewhat similar to the models previously considered by Murray
et al. (2010), Fall et al. (2010), and Dekel & Krumholz (2013): we
start with a spherical ball of gas with an initial mass Mg(0) and ra-
dius R(0), containing no stars. At time t = 0 star formation begins,
and thereafter occurs at a rate

Ṁ∗ = εff
Mg

tff
, (26)

where Mg and tff are the instantaneous values of the gas mass and
free-fall time.

The instantaneous stellar mass is M∗, and this stellar population
produced a luminosity L∗ = �M∗, where � = 1140 L� M−1� is the
light-to-mass ratio of a zero-age stellar population with a standard
IMF. Making the same ansatz as in the previous section, we estimate
that the light from the newborn stars drives a wind out of the system
with a mass flux

Ṁw = ζ (xcrit)Mg/tff, (27)

where in this spherical geometry

ln xcrit =
(

1 − fg

fg

)
�

4πGc�tot
. (28)

Figure 5. Final star formation efficiency ε∗ versus starting surface density
�0 for our simple model of radiatively driven mass-loss. The black solid
curve shows a fiducial set of parameters p = 0, M = 30, and εff = 0.01,
while the other curves show the results of varying one of these parameters.

Here fg = Mg/(Mg + M∗) is the instantaneous gas fraction, and
�tot is the total gas plus stellar surface density. This last term will
depend upon how the radius changes as star formation proceeds,
and choose to parametrize this with a power-law relationship, R ∝
[(M∗ + Mg)/Mg(0)]p, where p = 0 corresponds to the gas plus stellar
cloud maintaining a constant radius, p = 1/2 to constant surface
density, and p = 1/3 to constant volume density. Consequently, the
surface density �tot evolves as

�tot = �0

(
M∗ + Mg

Mg(0)

)1−2p

, (29)

where �0 = Mg(0)/πR(0)2.
Dividing equations (26) and (27), we have

dMw

dM∗
= η = ζ (xcrit)

εff
, (30)

which we can easily integrate to obtain Mw as a function of M∗,
where Mw is the mass ejected by winds up to the point where a
mass M∗ of stars has formed. The final star formation efficiency is
simply

ε∗ = M∗
Mg(0)

= M∗
M∗ + Mw

(31)

evaluated at the point where M∗ + Mw = Mg(0), i.e. at the point
where all the gas has been either converted to stars or lost to winds;
ε∗ is a function of the starting surface density �0, the Mach number
M of the turbulence, the index p describing how the radius changes
as star formation proceeds, and the star formation rate per free-fall
time εff. However, only the first of these matters to any substantial
degree. Fig. 5 shows ε∗ versus �0 for a range of choices for other
parameters. As the plot shows, a generic result is that star formation
efficiencies of ∼50 per cent are reached at surface densities of �0

≈ 1 g cm−2; this is consistent with the findings of Fall et al. (2010),
who used a much simpler model of mass-loss that considered only
explosive ejection of material and not steady winds as we have
here. The thin solid line labelled ‘instantaneous disruption’ assumes
that the medium must come to the average Eddington limit before
ejecting any mass and corresponds closely to the work of Murray
et al. (2010). At typical surface densities of galactic GMCs, ∼0.03 g
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cm−2 (Dobbs et al. 2014), the expected star formation efficiency is
∼10 per cent, consistent with the low values typically found for such
systems.

3.3 Other momentum injection sources

In the application to whole galaxies, it is worth highlighting the po-
tential importance of momentum injection by supernova explosions.
Thompson et al. (2005) investigated the importance of momentum
injection by supernovae in the ISM, and found them to be compa-
rable to radiation pressure at high gas densities based on the work
of Thornton et al. (1998). Recent reappraisals by Ostriker & Shetty
(2011) and Faucher-Giguere et al. (2013) show that the net momen-
tum input from supernovae can be as large as ṖSNe ∼ 10-20 × L/c,
with a weaker gas density dependence (see also Martizzi et al. 2015).
However, the calculation of the net momentum input to a turbulent
medium from supernovae is likely less straightforward in an ana-
lytic approach than radiation pressure because the momentum of
supernova explosions – the 10–20 enhancement relative to L/c – is
accumulated during the energy-conserving phase, as the remnants
sweep up mass. Individual parcels of gas with column density �

(as in Section 2.1) will see a highly intermittent momentum injec-
tion rate. More work is needed to understand how the momentum
injection rate from supernovae couples to the turbulent ISM (see,
e.g., Kim, Ostriker & Kim 2013). However, it is clear from the
normalization of ṖSNe that it may dominate momentum input in
galaxies and drive strong outflows: increasing the nominal momen-
tum injection rate into galaxies by a factor of 10–20 would lower
all of the black solid lines by the same factor in the left-hand pan-
els of Fig. 4, making all galaxies near-Eddington and dramatically
increasing their mass-loading rates (right-hand panels).

The ram pressure of a very hot thermal gas component, as in
the wind model of Chevalier & Clegg (1985), may also deposit
momentum in the medium. If the energy injection rate within
a radius R is parametrized as Ėhot = αĖSN, where ĖSN is the
energy injection rate of supernovae [∼1051 erg (100 yr)−1, per
M� yr−1 of star formation] and if the hot-gas mass outflow rate
is Ṁhot = β SFR, then the momentum injection rate for the hot gas
at the surface of the star-forming medium is Ṗhot � ṀhotVhot, where
Vhot(R) � (2Ėhot/Ṁhot)1/2. Comparing this to the momentum injec-
tion rate from radiation pressure in the single-scattering limit yields
Ṗhot/(L/c) � 3 (αβ)1/2 (7 × 10−4/ε). For order unity αβ, as is in-
ferred for the hot gas in the wind of M82 by Strickland & Heckman
(2009), this momentum source may dominate radiation pressure,
and, like ṖSNe, the contribution from Ṗhot could shift the Eddington
limit downwards in Fig. 4. Limits from X-ray observations indicate
that β � 1 for SFR � 10 M� yr−1 galaxies (Zhang et al. 2014), and
numerical calculations indicate that both α and β may be functions
of the gas surface density of galaxies (Creasey et al. 2013).

Other momentum injection sources include stellar winds and cos-
mic rays. The former is expected to be significantly less important
than supernovae in a time-averaged stellar population in galaxies
(Leitherer et al. 1999), but may well be important in the early-time
disruption of GMCs before any supernovae have occurred. Esti-
mates for the momentum input from cosmic rays indicate that they
may also dominate radiation pressure in normal galaxies and pos-
sibly starbursts, depending on the cosmic ray (CR) scattering mean
free path, the cosmic ray pion production rate, and – of specific
relevance for this work – how the CRs interact and dynamically
couple to low column density regions in a turbulent ISM (Ptuskin

et al. 1997; Jubelgas et al. 2008; Socrates, Davis & Ramirez-Ruiz
2008; Lacki et al. 2011; Hanasz et al. 2013).

4 C O N C L U S I O N S

The Eddington luminosity per unit mass for gas subject to a momen-
tum source is proportional to the column density of the medium.
Because turbulent media present a broad column density distri-
bution to the momentum sources, there a exists a critical column
density below which the medium is super-Eddington. Even systems
that are sub-Eddington will have super-Eddington sightlines.

We have developed this idea using a simple formalism and dis-
cussed some of the implications for observed galaxies (Fig. 4) and
the star formation efficiency, evolution, and disruption of GMCs
(Fig. 5). For average Eddington ratios of 0.1 and Mach numbers
greater than about 30, we expect ∼1 per cent of the mass of the
medium to be ejected per dynamical time-scale (Fig. 1) with a well-
defined velocity distribution (Fig. 2). This rate of mass ejection is
comparable to the star formation efficiency per free-fall time when
averaged on large scales and thus the instability we identify here
may be relevant for ejecting gas even when the system is signifi-
cantly below the average Eddington limit. An important uncertainty
in our model is whether or not the projected persistence time of low
column density structures in the tail of the column density PDF is
shorter than the dynamical time-scale. This comparison of time-
scales directly affects whether material is ejected (Section 2.2), and
should be investigated in multidimensional simulations.

We discuss a number of momentum sources in Section 3.3, but
focus our discussion on radiation pressure in the single-scattering
limit, which is likely most relevant for the early-time disruption
of GMCs. Fig. 3 shows the Eddington flux from normal galax-
ies and Fig. 4 shows an estimate of their mass-loading factors η

(equation 23). For galaxies with gas surface densities less than
∼100 M� pc−2, we find a large scatter in η from ∼10−3 to 10, in-
dicating that radiation pressure feedback alone may be important
for some galaxies. However, our results are highly sensitive to the
assumed gas fraction and αCO. On small scales, we compute the
star formation efficiency in GMCs of specified initial gas surface
density (Fig. 5).

The model is readily incorporated into sub-grid and semi-analytic
models of galaxies and/or GMC disruption. The addition of other
momentum sources like supernovae, hot winds, and cosmic rays in
such models remains the subject of future work, but the estimates of
Section 3.3 suggest that they may be significant in driving material in
low column density super-Eddington sightlines out of star-forming
galaxies and individual star-forming regions.
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