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ABSTRACT
The pressure exerted by massive stars’ radiation fields is an important mechanism regulating
their formation. Detailed simulation of massive star formation therefore requires an accurate
treatment of radiation. However, all published simulations have either used a diffusion ap-
proximation of limited validity; have only been able to simulate a single star fixed in space,
thereby suppressing potentially important instabilities; or did not provide adequate resolution
at locations where instabilities may develop. To remedy this, we have developed a new, highly
accurate radiation algorithm that properly treats the absorption of the direct radiation field
from stars and the re-emission and processing by interstellar dust. We use our new tool to
perform 3D radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores
with laminar and turbulent initial conditions and properly resolve regions where we expect
instabilities to grow. We find that mass is channelled to the stellar system via gravitational and
Rayleigh–Taylor (RT) instabilities, in agreement with previous results using stars capable of
moving, but in disagreement with methods where the star is held fixed or with simulations
that do not adequately resolve the development of RT instabilities. For laminar initial con-
ditions, proper treatment of the direct radiation field produces later onset of instability, but
does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately
resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial tur-
bulence seeds the instabilities. Our results suggest that RT features should be present around
accreting massive stars throughout their formation.
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1 IN T RO D U C T I O N

Massive stars live fast and die young. They are the major contrib-
utors to heavy element production in the Universe through their
explosive deaths enriching the interstellar medium (ISM). Massive
stars are rare, representing only ∼1 per cent of the stellar popula-
tion by number, yet they dominate the energy budget in the Milky
Way and other star-forming galaxies because of their strong radi-
ation fields, stellar winds, and supernova explosions. This stellar
feedback – the injection of energy and momentum by stars into the
ISM – limits their masses thereby affecting nuclear yields, slows
down nearby star formation, and affects galaxy evolution.

Recent studies suggest that the pressure exerted by massive stars’
radiation fields may be the dominant feedback mechanism during

�E-mail: alrosen@ucsc.edu

their formation (Krumholz et al. 2009; Kuiper et al. 2011, 2012;
Klassen et al. 2016). Massive stars have short Kelvin–Helmholtz
time-scales (the time required for a star to radiate away its gravita-
tional binding energy) and contract to the main sequence while they
are accreting (Palla & Stahler 1991, 1992; Behrend & Maeder 2001;
Hosokawa & Omukai 2009). Therefore, they attain their main-
sequence luminosities while they are still actively accreting and the
radiation pressure associated with their high luminosities can op-
pose gravity and halt accretion (Larson & Starrfield 1971; Yorke
1979; Wolfire & Cassinelli 1986, 1987; Yorke et al. 1995; Yorke &
Bodenheimer 1999).

The relative importance of the radiative force (frad) and the grav-
itational force (fgrav) can be described in terms of the Eddington
ratio, fedd = frad/fgrav, which simplifies to

fedd = 7.7 × 10−5
(
1 + ftrap

) (
L�

M�

)
�

(
�

1 g cm−2

)−1

, (1)
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where � is the surface density of the optically thick infalling ma-
terial and (L�/M�)� is the stellar light-to-mass ratio in solar units.
The factor (1 + ftrap) included in frad denotes the combined contri-
bution from the direct radiation pressure associated with the first
absorption of the stellar radiation field and the reprocessed ther-
mal, diffuse radiation pressure associated with the re-emission by
interstellar dust, respectively. Here, ftrap denotes the trapping factor
at which the radiation field is enhanced by the subsequent absorp-
tion and re-emission by interstellar dust. For spherically symmetric
accretion, equation (1) exceeds unity for stars with masses above
∼15–20 M� (Pollack et al. 1994; Krumholz et al. 2009). If accre-
tion on to the star were isotropic then stars with masses in excess of
this limit should not form, a problem commonly known as ‘the ra-
diation pressure barrier problem’. However, recent studies suggest
that massive stars with initial masses well in excess of 150 M� exist
and can have a dramatic impact on their environments (Crowther
et al. 2010, 2016).

Given the existence of massive stars, a number of solutions to
the radiation-pressure problem have been proposed in the litera-
ture. Nakano (1989) and Jijina & Adams (1996) present analytic
models suggesting that accretion through a disc could circumvent
the radiation pressure barrier, while McKee & Tan (2003) suggest
that high accretion rates could provide sufficient ram pressure even
in spherical symmetry. Krumholz, McKee & Klein (2005) showed
that escape of radiation through outflow channels could ease the
radiation-pressure problem. Numerical simulations within the last
several decades generally support these hypotheses. Most of these
simulations model the collapse of isolated, slowly rotating, and
initially laminar pre-stellar massive cores (Yorke & Bodenheimer
1999; Yorke & Sonnhalter 2002; Krumholz et al. 2009; Kuiper et al.
2011, 2012; Klassen et al. 2016). In these idealized simulations, the
radiation pressure barrier is circumvented by the formation of an
optically thick accretion disc that surrounds the massive star. With
this anisotropy, the radiative flux easily escapes along the polar
directions of the star, launching radiation-pressure-dominated bub-
bles both above and below the star. This ‘flashlight’ effect allows
material to be funnelled to the star by the accretion disc and grav-
itational instabilities present in the disc can enhance the accretion
rate on to the star (Yorke & Sonnhalter 2002; Krumholz et al. 2009;
Kuiper et al. 2011, 2012; Klassen et al. 2016).

Whether material is supplied to the star via disc accretion alone
has been heavily debated in the literature (Krumholz et al. 2009;
Kuiper et al. 2011, 2012; Klassen et al. 2016). Krumholz et al.
(2009) performed the first adaptive mesh refinement (AMR) 3D
radiation-hydrodynamic simulation of the formation of a massive
stellar system and found that the dense shells that surround the
radiation-pressure-dominated bubbles become radiative Rayleigh–
Taylor (RT) unstable. In this configuration, the dense shells that
surround the rarefied radiation-pressure-dominated bubbles develop
perturbations at the interface that grow exponentially, leading to ‘fin-
gers’ in the heavier fluid (the accreting gas) that sink into the lighter,
more buoyant fluid (represented by the radiation field; Jacquet &
Krumholz 2011). These RT ‘fingers’ can reach the star–disc system
if they are not pushed back by radiation pressure, and deliver a
significant amount of mass to the accretion disc that can then be
incorporated into the star.

The presence of these instabilities can allow stars to grow beyond
their Eddington limit but their development and growth is sensitive
to how the radiation pressure is treated. Krumholz et al. (2009)
only included the dust-reprocessed radiation pressure, which was
modelled with the grey flux-limited diffusion (FLD) approximation,
and assumed that the stellar radiation energy was deposited within

the vicinity of the star, which underestimated the true radiation
pressure. If the radiation pressure, especially the component of
the radiative force that is antiparallel to the gravitational force, is
underestimated then the gas is less likely to be pushed away by
radiation. Furthermore, an anisotropic radiation field can lead to
density perturbations in the dense shells of the radiation-pressure-
dominated bubbles that can then amplify and become RT unstable.
These instabilities can grow and deliver material to the star–disc
system.

To better represent the true radiation field in massive star forma-
tion simulations, Kuiper et al. (2010) developed a hybrid radiation
algorithm that included a multifrequency ray tracer, in which a se-
ries of rays travel radially away from the star and transfer energy and
momentum to the absorbing dust, coupled to grey FLD to model the
diffuse dust-reprocessed radiation field. With this method, Kuiper
et al. (2011, 2012) performed a series of 3D simulations of the
formation of massive stars from the collapse of laminar pre-stellar
cores on a non-adaptive spherical non-uniform grid with resolution
increasing logarithmically towards the centre. The authors find that
the star is fed through disc accretion only and that the radiation-
pressure-dominated bubbles do not become RT unstable. They con-
clude that inclusion of the direct radiation pressure is responsible
for maintaining stability of the expanding bubble shells.

The work of Krumholz et al. (2009) and Kuiper et al. (2011,
2012) both have their advantages and disadvantages. AMR simu-
lations with a general Cartesian geometry, such as the simulation
presented in Krumholz et al. (2009), can handle an arbitrary num-
ber of moving stars. The resulting gravitational interaction of the
massive star with its accretion disc can induce gravitational insta-
bilities leading to disc fragmentation. In addition, movement of the
massive star within the accretion disc can lead to shielding of the
stellar radiation field resulting in a greater asymmetry in the direct
radiation pressure, potentially seeding RT instabilities. One key ad-
vantage in AMR simulations, as compared to a non-adaptive grid,
is that instabilities that may develop in the dense bubble shells can
be resolved dynamically throughout the bubble evolution. In clas-
sical RT theory, the smallest perturbations grow fastest in the linear
regime and these perturbations can only grow if they are resolved.
The bubble shells in the work of Krumholz et al. (2009) are resolved
to the finest level, likely allowing for small RT instabilities to grow
large enough to deliver material to the star–disc system.

In contrast, the bubble shells in the work of Kuiper et al. (2011,
2012) are poorly resolved because they use a non-adaptive spher-
ical grid. Furthermore, the star is artificially held at the origin of
the grid, thereby suppressing potentially important instabilities that
could seed RT instabilities. However, these simulations included a
much better treatment of the radiation field by incorporating a mul-
tifrequency ray tracer to model the direct radiation field. In such
a geometry, ray tracing becomes trivial because the rays travel ra-
dially from the non-moving star, but this geometry cannot support
additional stars or disc asymmetries induced by stellar movement.
Hence, the next generation of massive star formation simulations
must include the advantages of both methods to better understand
how massive stars can overcome the Eddington limit by including
hybrid radiative transfer on adaptive grids.

The question of whether RT instability is important for massive
star formation has been muddied further by studies of radiation-
pressure-driven instabilities in the context of galactic winds.
Krumholz & Thompson (2012, 2013) study the ability of radiation
to drive galactic winds using the same FLD methods as Krumholz
et al. (2009), and find that RT instabilities arise and prevent the
onset of winds entirely. Rosdahl & Teyssier (2015) reach the same
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conclusion using an M1 closure to treat the radiation. Davis et al.
(2014), using a variable Eddington tensor method on a fixed grid,
and Tsang & Milosavljević (2015), using implicit Monte Carlo,
concur that RT instability occurs, but find that it does not prevent a
wind from being launched, contrary to the results of Krumholz &
Thompson (2012) and Rosdahl & Teyssier (2015). Moreover, none
of these calculations included a treatment of the direct radiation
field.

The conflicting results discussed thus far have motivated the im-
plementation of a new generation of hybrid radiation solvers in
AMR simulation codes. Both Klassen et al. (2014) and Rosen et al.
(2016) developed novel hybrid radiation schemes in the FLASH and
ORION AMR simulation codes, respectively. Both implementations
model the direct radiation field with a ray tracer while the diffuse
component is handled by an FLD solver, and can be used with an ar-
bitrary number of moving stars. The ray tracer employed in the Hy-
brid Adaptive Ray-Moment Method (HARM2) algorithm developed
by Rosen et al. (2016) uses the method of long characteristics, which
traces rays on a cell by cell basis thus providing maximum possible
accuracy. Their method is adaptive, in which rays are allowed to split
as they travel away from their source, greatly reducing the compu-
tational cost; and is capable of representing multifrequency stellar
irradiation (Abel & Wandelt 2002; Wise & Abel 2011; Rosen et al.
2016). The multifrequency treatment is ideal for stars since they
have colour temperatures much higher than the absorbing medium.
The ray tracer employed in Klassen et al. (2014) models only sin-
gle frequency irradiation and uses hybrid characteristics, which is a
combination of long characteristics within individual grids and short
characteristics between grids (i.e. in which only neighbouring grid
cells are used to interpolate incoming intensities; Rijkhorst et al.
2006). The method of short characteristics is typically faster but
more diffusive than long characteristics. Because of this limitation
the long characteristics method employed in Rosen et al. (2016) has
been highly optimized.

To revisit the problem of massive star formation and whether
or not mass is delivered to the star via RT instabilities, Klassen
et al. (2016) simulated the collapse of initially laminar pre-stellar
cores with the new hybrid radiation algorithm presented in Klassen
et al. (2014). Like the work of Kuiper et al. (2011, 2012), they
find that their radiation-pressure-dominated bubbles remain stable
and that the massive star is fed by disc accretion alone. However,
the authors employ poor refinement criteria in their simulations,
which results in the bubble shells being poorly resolved, potentially
suppressing RT instabilities that are not resolved. To address this,
we perform similar simulations of the collapse of a laminar massive
pre-stellar core in which we choose to resolve the bubble shells, like
that of Krumholz et al. (2009), and use the HARM2 hybrid radiation
algorithm to determine if RT instabilities are a real effect or if the
direct radiation pressure inhibits their growth. As we will show,
the development of RT instabilities is resolution dependent and
therefore we find that authors can arrive at conflicting results if the
bubble shells are not properly refined.

The simulations discussed thus far were highly idealized. To date,
only the collapse of initially laminar massive pre-stellar cores have
been studied numerically with a detailed treatment of the direct and
diffuse radiation fields, yet observations of star-forming regions
show that star-forming cores are turbulent (Tatematsu et al. 2008;
Sánchez-Monge et al. 2013). In such a configuration, the initial
turbulence should act as seeds for RT instabilities. Furthermore, the
asymmetric gas distribution in turbulent cores can yield low-density
channels where radiation can easily escape, even in the absence of
channels cut by outflows.

The purpose of this paper is to study how radiation pressure
affects the formation of massive stars via direct numerical simula-
tion. For this work, we use the new highly accurate HARM2 algorithm
described in Rosen et al. (2016), which treats the direct radiation
field from stars and the indirect radiation field associated with the
re-emission and processing by interstellar dust. In this work, we
simulate the collapse of both initially laminar and turbulent pre-
stellar cores to determine how massive stars attain their mass. For
the laminar cores, we also examine how resolution and treatment
of radiation pressure can affect the onset of RT instabilities. We
simulate the collapse of an initially turbulent core to model a more
realistic setup of how massive stars form to show that RT instabil-
ities are a common occurrence in their formation. The simulations
presented in this work are still highly idealized since we do not
include magnetic fields or outflows. This paper is organized as
follows: we describe our numerical methodology and simulation
design in Section 2, we present and discuss our results in Sections 3
and 4, respectively, and conclude in Section 5.

2 N U M E R I C A L M E T H O D

In this paper, we simulate the collapse of isolated laminar and tur-
bulent massive pre-stellar cores with the ORION AMR code. ORION in-
cludes (Klein 1999), radiative transfer (Howell & Greenough 2003;
Krumholz et al. 2007; Shestakov & Offner 2008; Rosen et al. 2016),
self-gravity (Truelove et al. 1998), accreting sink particles (Truelove
et al. 1997; Krumholz, McKee & Klein 2004), a protostellar evolu-
tion model used to represent the sink particles as radiating protostars
(Offner et al. 2009), protostellar outflows (Cunningham et al. 2011),
and magnetic fields (Li et al. 2012). In order to treat both the direct
(stellar) and indirect (dust-reprocessed) radiation fields, we use the
multifrequency HARM2 described in Rosen et al. (2016), which com-
bines direct solution of the frequency-dependent radiative transfer
equation along long characteristics launched from stars to treat the
direct stellar radiation field with a grey FLD method to treat the radi-
ation field produced by thermal emission from dust (Krumholz et al.
2007). We describe the equations solved by our code in Section 2.1,
our stellar radiation feedback prescription in Section 2.2, the initial
and boundary conditions for our simulations in Section 2.3, and our
refinement criteria and sink creation requirements in Section 2.4.

2.1 Evolution equations

ORION uses a Cartesian adaptive grid in which every cell has a
state vector of conserved quantities (ρ, ρv, ρe, ER). Here, ρ is the
density, ρv is the momentum density, ρe is the total internal plus
kinetic gas energy density, and ER is the radiation energy density
in the rest frame of the computational domain. In addition to the
fluid, ORION contains Lagrangian radiating sink particles that accrete
from the gas and interact with it via gravity and radiation. The star
particles, indexed by subscript i, are characterized by their position
xi , momentum pi , mass Mi, and luminosity Li, as determined by
the protostellar evolution model described in McKee & Tan (2003)
and Offner et al. (2009). They accrete mass, momentum, and energy
from the computational grid at rates Ṁi , ṗi , and ε̇i ; the distribution
of these quantities over cells in the computational grid is described
by a weighting kernel W (x − xi), which is non-zero only within
four computational zones of each particle. Both the value of Ṁi and
ṗi and the weighting kernel function are determined via the sink
particle algorithm of Krumholz et al. (2004). Each star particle also
produces a direct radiation field that injects energy and momentum
into the gas at a rate per unit volume ṗrad,i and ε̇rad,i ; we defer
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discussion of how these two quantities are computed to Section 2.2.
With these quantities the equations governing the evolution of the
radiation-hydrodynamic fluid-particle system are

∂ρ

∂t
= −∇ · (ρv) −

∑
i

ṀiW (x − xi) (2)

∂ (ρv)

∂t
= −∇ · (ρvv ) − ∇P − ρ∇φ − λ∇ER

+
∑

i

[
ṗrad,i − ṗiW (x − xi)

]
(3)

∂ (ρe)

∂t
= −∇ · [(ρe + P )v] − ρv · ∇φ − κ0Pρ(4πB − cER)

+ λ

(
2

κ0P

κ0R
− 1

)
v · ∇ER −

(
ρ

mp

)2

	(Tg)

+
∑

i

[
ε̇rad,i − ε̇iW (x − xi)

]
(4)

∂ER

∂t
= ∇ ·

(
cλ

κ0Rρ
∇ER

)
+ κ0Pρ (4πB − cER)

−λ

(
2

κ0P

κ0R

− 1

)
v · ∇ER − ∇ ·

(
3 − R2

2
vER

)

+
(

ρ

mp

)2

	(Tg). (5)

Equations (2)–(5) describe conservation of gas mass, gas momen-
tum, gas total energy, and radiation total energy. They include
terms describing the exchange of these quantities with the star
particles, and exchange of energy between radiation and gas. The
gas–radiation exchange terms are written in a mixed-frame formu-
lation that allows conservation of total energy to machine precision
(Mihalas & Klein 1982; Krumholz et al. 2007). We assume an ideal
equation of state so that the gas pressure is

P = ρkBT

μmH
= (γ − 1) ρeT, (6)

where T is the gas temperature, μ is the mean molecular weight, γ

is the ratio of specific heats, and eT is the thermal energy of the gas
per unit mass. We take μ = 2.33 and γ = 5/3 that is appropriate
for molecular gas of solar composition at temperatures too low to
excite the rotational levels of H2; in practice the exact value of γ

matters little for our computation, because the gas temperature is
set almost entirely by radiative effects, with minimal influence from
adiabatic compression or expansion. The fluid is a mixture of gas
and dust, and at the high densities that we are concerned with the
dust will be thermally coupled to the gas, allowing us to assume
that the dust temperature is the same as the gas temperature.

In addition to updating fluid quantities, at each time step we also
update the properties of the star particles. These change according
to

dMi

dt
= Ṁ (7)

dxi

dt
= pi

Mi
(8)

d pi

dt
= −Mi∇φ + ṗi , (9)

where φ is the gravitational potential that obeys the Poisson equation
including contributions from both the fluid and star particles:

∇2φ = 4πG

[
ρ +

∑
i

Miδ(x − xi)

]
. (10)

Our sink particle algorithm destroys information within four fine-
level cells around each star particle (i.e. the particle’s accretion
radius) and thus we are unable to properly determine if two sink
particles will merge when they approach within one accretion radius
of one another (i.e. 80 au). In light of this limitation, we employ
the following merging criteria: when two star particles pass within
one accretion radius of each other, we merge them together if the
smaller particle has a mass less than 0.05 M� (Myers et al. 2013).
This threshold corresponds to the largest plausible mass at which
second collapse occurs for the protostar (Masunaga, Miyama &
Inutsuka 1998; Masunaga & Inutsuka 2000). At masses lower than
this value, the protostar represents a hydrostatic core that is several
au in size and will likely be accreted by the more massive star.
Larger mass protostars will have collapsed down to sizes of roughly
several R� and will unlikely merge with the nearby protostar.

Finally, the radiation-specific quantities are the blackbody func-
tion B = caRT 4/(4π), the comoving frame specific Planck- and
Rosseland-mean opacities κ0P and κ0R, a dimensionless number
λ called the flux limiter, and the Eddington factor R2. The last
two quantities appear in equation (5) and originate from the FLD
approximation, which assumes that the radiative flux in the comov-
ing frame is related to the gradient of the radiation energy density
(Fick’s law)

F = − cλ

κ0R
∇ER. (11)

ORION adopts the Levermore & Pomraning (1981) approximation
for λ and R2 as given by

λ = 1

R

(
coth R − 1

R

)
(12)

R = |∇Er|
κ0RρER

(13)

R2 = λ + λ2R2. (14)

The flux limiter, λ, has the advantage that in an optically thick
medium λ → 1/3, thereby giving F → − [(c/3κ0R) ∇Er], the
correct value for diffusion. In an optically thin medium λ →
(κ0RER/|∇ER|) nR, where nR is a unit-vector that is antiparallel to
∇ER, yielding F → cERnR for the free-streaming limit (Krumholz
et al. 2007).

2.2 Treatment of stellar radiation

In star-forming environments, radiation from stars will be absorbed
by the dusty gas and deposit momentum and energy (e.g. see
equations 3–5). The dust, which is highly coupled to the gas, will re-
emit thermal radiation at infrared wavelengths and transfer energy
and momentum to the gas via collisions. At the high densities with
which we are concerned, thermal coupling is strong enough that we
can safely assume that the gas and dust are at the same temperature.
In order to properly model this, we must know the magnitude and
direction of the intervening stellar radiation field. With this in mind,
we use the new HARM2 algorithm described in Rosen et al. (2016)
to treat the first absorption of the (direct) stellar radiation field from
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Figure 1. Specific frequency-dependent dust opacities (per gram of dust)
from Weingartner & Draine (2001) for their Rv = 5.5 extinction curve (teal
line) with blackbody weighted binned opacities (pink diamonds) overplotted
for 10 frequency bins used in the simulations presented in this work.

stars and subsequent re-emission of radiation from the fluid. HARM2

is a new hybrid radiative transfer tool developed for adaptive grids
that employs an adaptive long-characteristics ray-tracing method,
first introduced by Abel & Wandelt (2002) and extended to adaptive
grids by Wise & Abel (2011), to model the radiative flux from point
sources. It is coupled to a moment method, in our case FLD (e.g.
see Section 2.1), which models the re-processed diffuse radiation
field intrinsic to the fluid. In short, HARM2 is used to model both the
direct and indirect radiation pressure in numerical simulations.

The method of long characteristics solves the radiative transfer
equation along specific rays on a cell by cell basis that originate
from the point source. This method provides the best possible accu-
racy for the radiative flux for point sources that represent stars be-
cause it is less diffusive than short and hybrid characteristic methods
(Rijkhorst et al. 2006; Klassen et al. 2014). HARM2 has the advantage
that it can be used to model any number of moving point sources,
handles multifrequency radiation, and is highly parallelizable as
compared to previous long-characteristic methods developed for
adaptive grids (Wise & Abel 2011). We choose to represent the
luminosities of stars by a spectrum of frequency-dependent lumi-
nosities rather than a bolometric luminosity, L�, because the colour
temperatures of stars are much higher than the temperature of the
absorbing medium. In what follows, we briefly summarize the basic
components of HARM2, and refer the reader to Rosen et al. (2016)
for a full description of the algorithm.

We describe the deposition of energy and momentum to the fluid
from the radiation field of a single star but the generalization to
multiple point sources is trivial. Each star has a specific luminosity
Lν, and bolometric luminosity given by L� = ∫ ∞

0 Lνdν. We dis-
cretize the stellar spectrum in frequency into Nν frequency bins,
with the jth bin covering a range in frequency (ν j−1/2, ν j+1/2). The
luminosity of the point source integrated over the jth frequency
bin is L�,j = ∫ νj+1/2

νj−1/2
Lν dν where

∑
L�,j = L�. We choose Nν = 10

for the simulations presented in this paper because this number of
frequency bins does not significantly increase the cost of the adap-
tive ray trace (e.g. see fig. 9 of Rosen et al. 2016) and provides an
adequate frequency sampling of Lν . The frequency bins were hand-
chosen to align with important features of the dust opacity curve as
shown in Fig. 1.

We use the frequency-dependent stellar atmosphere profiles from
Lejeune, Cuisinier & Buser (1997) to model the stellar spectrum

of stars that form in our simulations. These profiles provide the
frequency-dependent radiative flux of stars on a grid of values in
log g and Teff space, where g is the star’s surface gravity and Teff

is the star’s surface temperature, both of which are supplied by the
subgrid protostellar model in ORION (Offner et al. 2009). At each
ray-tracing step, we compute log g and Teff for each star and in-
terpolate between the frequency-dependent stellar atmosphere pro-
files that match most closely to the star’s properties. The accre-
tion of material on to the star will also contribute an accretion
luminosity

Lacc = frad
GM�Ṁ�

R�

, (15)

and we model the accretion luminosity, Lacc,ν , as a black-

body with temperature Tacc = (
Lacc/(4πR2

�σ )
)1/4

such that Lacc =∫ ∞
0 Lacc,νdν. The resulting luminosity from the star and accretion

is Ltot = ∑Nν

j=0(L�,j + Lacc,j). The quantity frad is the fraction of the
gravitational potential energy of the accretion flow that is converted
to radiation rather than being used to drive a wind or advected into
the stellar interior; we adopt frad = 3/4, following the standard treat-
ment in Offner et al. (2009) and this value is reasonably consistent
with x-wind models of the launching of stellar outflows (Ostriker
& Shu 1995).

We wish to solve the time-independent radiative transfer equa-
tion

n∇I (ν, n) = −κ(n, ν)ρI (n, ν) + η(n, ν)ρ (16)

along specific rays that originate from point sources and transverse
the computational domain in the radial direction to model the ab-
sorption of the direct radiation field from stars. Here, I (n, ν) is
the specific intensity of the stellar radiation field at frequency ν in
direction n and κ(n, ν) and η(n, ν) are the direction and frequency-
dependent specific absorption and emission coefficients. We set
η(n, ν) to zero because the direct radiation field has zero emis-
sivity except at the location of stars. We also neglect the effects
of scattering because absorption is the dominant transfer mecha-
nism in these simulations. Finally, we note that we can neglect the
time dependence of the radiative transfer equation because the light
crossing time of a ray (tlc) will be much shorter than the opacity
variation time-scale (i.e. tlc � κ/(dκ/dt)) for the scales and time
steps considered in our simulations.

We discretize the transfer equation in angle on a series of rays
originating at the star and travelling radially outward. Each ray is
characterized by a direction n and solid angle �ray that it subtends.
Multiplying both sides of equation (16) by 4πr2/�ray, yields an
integrated form of the transfer equation

∂Lray,j

∂r
= −κjρLray,j , (17)

where Lray,j(r) is the luminosity for the jth frequency bin at a distance
r from the point source and κ j is the specific absorption opacity for
the jth frequency bin. This equation is subject to the boundary
condition Lray,j (0) = Ltot,j/Npix, where Npix = 4π/�ray. In order
to reduce cost we initially sample the radiation field for each star
with 3072 rays and adaptively split each ray into four subrays when
the following condition is satisfied

�cell

�ray
< �c, (18)

where �cell = (�x/r)2 is the solid angle subtended by a cell of linear
size �x at a distance r from the point source. The quantity �c is the
minimum number of rays required to go through each cell, which
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we set to 3 in our simulations. This refinement criterion ensures that
the cells that interact with rays are adequately resolved.

Our choice for κ j depends on whether the primary absorber is
dust or molecular gas. Dust is the primary absorber for gas tem-
peratures below Tsub = 1500 K (i.e. the temperature at which dust
sublimes; Semenov et al. 2003) while molecular hydrogen is the pri-
mary absorber for gas temperatures within Tsub ≤ T < TH II where
TH II ≈ 104 K is the temperature at which we expect hydrogen to
become fully ionized, and thus to have the usual Thompson opac-
ity for electron scattering. If the primary absorber is dust, we use
the frequency-dependent dust opacities from Weingartner & Draine
(2001, their Rv = 5.5 extinction curve) [e.g. see Fig. 1] and assume
a constant dust-to-gas ratio of Mdust/Mgas = 0.01. If it is molecular
hydrogen, we set the molecular gas opacity to 0.01 cm2 g−1, and if
T ≥ TH II, we set the opacity to zero. The last of these is a numerical
convenience, because we have not implemented scattering or pho-
toionization chemistry, and because the regions in our computation
with T > TH II will contain so little mass they will be optically thin
to the direct radiation field. We assume a dust-to-gas ratio of 0.01.

We solve equation (17) by discretizing it along the line segments
defined by the intersection of the ray with the cells of the compu-
tational mesh, considering only the most highly spatially resolved
data at any given position. Specifically, when a ray with luminosity
Lray,j passes through a cell along a segment of length dl, the opti-
cal depth of the segment is τ j = κ jρ dl where ρ is the dust (gas)
density when the primary absorber is dust (molecular gas); and the
luminosity of the ray decreases by an amount

dLray,j = Lray,j

(
1 − e−τj

)
. (19)

Here, we compute dl following the method of Wise & Abel (2011)
as the ray transverses a cell. In the process, the cell absorbs an
amount of energy and momentum at a rate

ε̇rad, ray =
Nν∑
j=1

dLray,j (20)

ṗrad, ray =
Nν∑
j=1

dLray,j

c
n. (21)

The total energy and momentum absorption rates for each cell,
ε̇rad and ṗrad, that are supplied to equations (2) and (4), are sim-
ply the sum of ε̇rad, ray and ṗrad,ray over all rays from all stars that
pass through it, respectively. We terminate a ray when Lray,j(r)
< 0.001Lray,j(0), i.e. when 99.9 per cent of the energy originally
assigned to that ray has been absorbed, if it exits the computa-
tional domain, or has left the collapsing core. The last deletion
criterion significantly reduces the cost of the ray-tracing step if
rays leave the core because the ambient medium will not absorb
any energy or momentum from the rays, and deleting rays after
they have travelled at least 10 cells in the ambient medium with-
out encountering core material therefore saves the need to con-
tinue following them through the remainder of the computational
volume.

2.3 Initial and boundary conditions

Our initial setup for all runs is as follows. We begin with an iso-
lated sphere of molecular gas and dust with mass Mc = 150 M�,
radius Rc = 0.1 pc, temperature Tc = 20 K, and density pro-
file ρ ∝ r−kρ with kρ = 1.5. The resulting surface density, � =
Mc/(πR2

c ) = 1 g cm−2, is consistent with typical values observed

in Galactic massive star-forming regions (McKee & Tan 2003;
Swift 2009; Sánchez-Monge et al. 2013; Tan et al. 2014). The
resulting mean density of the core is ρ̄ = 2.4 × 10−18 g cm−3

(1.2 × 106 H nuclei cm−3) and the characteristic free-fall collapse
time-scale is

tff =
√

3π

32 Gρ̄
≈ 42.6 kyr. (22)

Our choice of kρ = 1.5 for the core density profile is in agreement
with observations of star-forming regions at the ∼1 pc clump scale
(Caselli & Myers 1995; Mueller et al. 2002; Beuther et al. 2007)
and the ∼0.1 pc scale (Zhang et al. 2009; Longmore et al. 2011;
Butler & Tan 2012; Stutz & Gould 2016), which typically have kρ

values within the range of 1.5–2.0.
Each core is placed at the centre of a 0.4 pc box that is filled with

a hot, diffuse ambient medium with a density equal to 1 per cent
of the core edge material and a temperature of 2000 K so that the
core is in thermal pressure equilibrium with its surroundings. We
set the opacity of the ambient medium to zero so that the ambient
gas is unable to cool. The base resolution for each run is 1283

and we allow for five levels of factors of 2 in refinement giving
a maximum resolution of 40963 cells on the finest level (�xmin =
20 au). We initially fill the entire domain with a blackbody radiation
field equal to E0 = 1.21 × 10−9 erg cm−3 corresponding to a 20 K
blackbody.

We consider two classes of initial condition: laminar cores and
turbulent cores. For the laminar core we impose initial solid-body
rotation at a rate such that the rotational energy of the core is
4 per cent of its gravitational binding energy (i.e. Erot/|Egrav| =
0.04). Our choice follows from the work of Goodman et al. (1993),
which found that dense cores have values of Erot/|Egrav| within
∼0.01–0.09 with a typical value of 0.02 where the authors assumed
the cores followed a uniform density profile. For the case of cores
that follow a ρ ∝ r−3/2 density profile, like the cores simulated in
this work, these values are reduced by a factor of 2. We do not
impose a net rotation for the turbulent core run and instead give
the gas an initial weakly turbulent velocity field with a non-thermal
1D velocity dispersion σ1D = 0.4 km s−1 corresponding to a virial
ratio αvir ≈ 5σ 2

1DRc/GMc = 0.12 and we allow the turbulence in
the core to decay freely, ensuring the core will undergo immediate
collapse. The velocity power-spectrum imposed follows a Burger’s
turbulence spectrum, P(k) ∝ k−2, as is expected for supersonic tur-
bulence (Padoan & Nordlund 1999; Boldyrev 2002; Offner et al.
2009). We include modes between kmin = 1 and kmax = 256 and our
turbulence mixture is chosen to be a mix of 2/3 solenoidal and 1/3
compressive modes, which is the natural mixture for a 3D fluid (Fed-
errath et al. 2010a). Although the turbulence should decay freely as
the core is assembled, physical processes such as converging flows
and accretion on to the core as it is assembled could sustain the tur-
bulence as the core grows in mass (Schneider et al. 2010; Matzner
& Jumper 2015).

Our boundary conditions for the radiation, gravity, and hydrody-
namic solvers are as follows. For each radiation update, we impose
Marshak boundary conditions that bathe the simulation volume
with radiation from a 20 K blackbody but allow radiation gener-
ated within the simulation volume to escape freely (Krumholz et al.
2009; Cunningham et al. 2011; Myers et al. 2013). We set the grav-
itational potential, φ, to zero at all boundaries when solving equa-
tion (10) (Myers et al. 2013). Although this choice of boundary
conditions for the gravitational potential can lead to square arte-
facts near the boundaries, we do not expect this choice to make any
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significant difference since the collapsing core is far removed from
the boundaries. Finally, we impose outflow boundary conditions
for the hydrodynamic update, meaning that we set the gradients of
the hydrodynamic quantities (ρ, ρv, ρe) to be zero at the domain
when advancing the hyperbolic subsystem of equations (Cunning-
ham et al. 2011; Myers et al. 2013).

We conduct four simulations. The first, which we call
LamRT+FLD (where RT denotes that this simulation includes ray
tracing), follows the collapse of a laminar pre-stellar core with
the setup described above and includes our HARM2 hybrid radi-
ation scheme to model the direct (with an adaptive ray-tracing
scheme) and indirect radiation pressure (with FLD). Our second
run, namedLamFLD, is identical toLamRT+FLD except that it only
includes the FLD approximation for the indirect radiation field and
assumes that the stellar radiation energy is deposited close to the star.
In this run, we set the terms ε̇rad and ṗrad to zero and add the source
term

∑
i L�,iW (x − xi), where L�,i is the combined accretion and

stellar luminosity for star i, to equation (5). This term simply adds
the radiation energy injected by stars to the radiation energy density
over the window kernel W (x − xi), which extends to a radius of
four fine-level cells around each sink particle. We include this run
to compare how the choice of the treatment of the radiation field
can affect our results. The third run, named LamRT+FLD_LR, is a
repeat of run LamRT+FLD but with a factor of 2 worse resolution
(�xmin = 40 au rather than 20 au), and with significantly less strin-
gent refinement criteria, as discussed in the next section. We include
this run to determine how the results depend on the resolution. Our
final run, which is called TurbRT+FLD, aims to be a better repre-
sentation of massive star formation because star-forming cores are
turbulent, and this run follows the collapse of a turbulent pre-stellar
core with the properties described above and includes our hybrid
radiative transfer treatment. The initial numerical conditions for our
simulations are summarized in Table 1.

2.4 Refinement criteria and sink creation

The major advantage of AMR codes over fixed codes is that the
user can adaptively refine on areas of interest. This is advantageous
in astrophysical simulations, especially star formation simulations,
which have large dynamic range but within which only certain
regions of the domain require high resolution (e.g. high-density re-
gions in a molecular cloud that can undergo gravitational collapse
to form stars). As the simulation evolves, the AMR algorithm auto-
matically adds and removes finer grids based on certain refinement
criteria set by the user.

For each simulation, we begin with a base grid with volume
(0.4 pc)3 discretized by 1283 cells and allow for five levels of
refinement. This choice leads to a maximum resolution of 20 au
on the finest level. As the simulation evolves, we continuously flag
cells for refinement so that we can resolve areas in which stars
may form or where instabilities may develop, such as gravitational
and RT instabilities. In all simulations presented in this paper, we
flag cells for refinement if they meet one or more of the following
criteria.

(i) We refine any cell on the base level (i.e. level 0) that has a
density equal to or greater than the core’s edge density. This ensures
that the entire pre-stellar core is refined to level 1 at the start of the
simulation.

(ii) We refine any cell where the density in the cell exceeds the
Jeans density given by

ρmax,J = πJ 2
maxc

2
s

G�x2
l

(23)

where cs = √
kBT /(μmH) is the isothermal sound speed, �xl is the

cell size on level l, and Jmax is the maximum allowed number of
Jeans lengths per cell (Truelove et al. 1997). Throughout this work,
we take Jmax = 1/8.

Table 1. Simulation parameters.

Run LamFLD LamRT+FLD LamRT+FLD_LR TurbRT+FLD
Physical parameter

Cloud mass (M�) Mc 150 150 150 150
Cloud radius (pc) Rc 0.1 0.1 0.1 0.1
Surface density (g cm−2) � 1 1 1 1
Temperature (K) Tc 20 20 20 20
Mean density (10−18 g cm−3) ρ̄cl 2.4 2.4 2.4 2.4
Mean free-fall time (kyr) tff 42.6 42.6 42.6 42.6
Power-law index kρ 1.5 1.5 1.5 1.5
Rotational energy ratio Erot/|Egrav| 0.04 0.04 0.04 –
Velocity dispersion (km s−1) σ 1D – – – 0.4

Numerical parameter

Rad. Trans. Scheme FLD HARM2 HARM2 HARM2

Domain length (pc) Lbox 0.4 0.4 0.4 0.4
Base grid cells N0 1283 1283 1283 1283

Maximum level lmax 5 5 4 5
Minimum cell size (au) �xlmax 20 20 40 20
Jeans length refinement Jmax 0.125 0.125 0.125 0.125
ER gradient refinement ER/�x 0.15 0.15 – 0.15

Simulation outcome

Simulation time (tff) 0.87 0.70 0.70 0.87
Massive star mass (M�) 44.07 40.40 48.47 61.63
Number of sinksa 13 30 6 4

Note. aFinal number of sinks with masses greater than 0.01 M�.
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(iii) We refine any cell that is located within at least eight cells
of a sink particle.

(iv) We refine any cell within which the radiation energy density
gradient exceeds

|∇ER| > 0.15
ER

�xl
, (24)

i.e. where the radiation energy density changes by more than
15 per cent over the size of a single cell. This criterion is critical to
ensure that potentially unstable interfaces are adequately resolved,
and will become critical in our discussion later. Indeed, at late times
in our simulations, this criterion is responsible for refining more of
the computational domain than any other one. We do not enforce
this criterion for run LamRT+FLD_LR because this run aims to
see how the development of RT instabilities depends on simulation
resolution.

This procedure is repeated recursively on all levels after every
two level updates. A sink particle can only be created when the
Jeans density is violated on the finest level. When we check this
criterion on the finest level, we set Jmax = 1/4 in equation (23)
following the artificial fragmentation tests of Truelove et al. (1997).
If a cell is flagged on the finest level because it exceeds the Jeans
density, we place a sink particle in that cell whose mass is the excess
matter in that cell. The new sink particle will evolve according to
the equations in Section 2.1.

2.5 Overall algorithm

We solve the equations described in Section 2.1 with the astrophysi-
cal AMR code ORION in a number of steps that we summarize below.
First, we solve the equations of hydrodynamics using a Godunov-
type scheme with the HLLD approximate Riemann solver (Klein
1999; Miyoshi & Kusano 2005). Next, we incorporate self-gravity
following the methods of Truelove et al. (1998) and Klein (1999) by
solving the Poisson equation (equation 10) with an iterative multi-
grid scheme provided by the Chombo AMR Library (Adams et al.
2015). In the third step, we apply the HARM2 radiative transfer algo-
rithm described in Rosen et al. (2016). The HARM2 update algorithm
first applies an adaptive ray-tracing step for all star particles that
belong to the computational domain to inject the stellar radiation
energy and momenta (equations 20–21) from stars to the absorb-
ing fluid and then performs the FLD step to evolve the radiation
energy density and compute the radiation specific terms in equa-
tions (3)–(5) (Rosen et al. 2016). The FLD step uses an operator
split approach that first solves the radiation pressure, work, and
advection terms explicitly, and then implicitly updates the gas and
radiation energy densities for terms that involve diffusion and the
emission/absorption of radiation (Krumholz et al. 2007). The im-
plicit solve update is handled by the iterative process described in
Shestakov & Offner (2008) that uses pseudo-transient continuation
to reduce the number of iterations. Finally, we update the sink par-
ticle states with equations (7)–(9) by computing their interactions
with the fluid.

3 R ESULTS

In this section, we describe the results from our simulations pre-
sented in Section 2.3 and summarized in Table 1. In Section 3.1,
we first discuss our results for our laminar core run LamRT+FLD,
which includes our new hybrid radiation transfer scheme. We then
compare this simulation to run LamFLD, which only includes the

radiation pressure associated with the diffuse dust-reprocessed ra-
diation field. We defer discussion of our comparison low-resolution
run, LamRT+FLD_LR to Section 4.1. Next in Section 3.2, we dis-
cuss our results from run TurbRT+FLD, which simulates the col-
lapse of an initially turbulent core with our HARM2 algorithm. All
simulations presented here were run on the NASA supercomputer
Pleiades located at NASA Ames or the Hyades supercomputer lo-
cated at UC Santa Cruz. We run each simulation to the point where
the time step either becomes too short to be practical (as in the case
of run LamFLD) or until the point that the simulation takes too long
to evolve because the majority of the bubble shells are refined to
the finest level, severely increasing the computational cost of the
simulation (as in runs LamRT+FLD and TurbRT+FLD). We use
the YT package (Turk et al. 2011) to produce all the figures and
quantitative analysis shown below.

3.1 Collapse of laminar pre-stellar cores

Here, we present the results of run LamRT+FLD. At the end of this
simulation, the most massive star has a mass of 40.40 M�. We ran
the simulation for a time of t = 0.70 tff.

3.1.1 Evolution of radiation-pressure-dominated bubbles

We show a series of density slices at various times for run
LamRT+FLD in Fig. 2. We find that a radiation-pressure-dominated
bubble begins to expand in the polar direction above the star, but
not below, when the star has reached a mass of ∼14.5 M� at time
t = 0.34 tff (not shown). A radiation-pressure-dominated bubble
only begins to expand below the star when it reaches a mass
of ∼22.3 M� at time t = 0.43 tff (not shown). As the radiation-
pressure-dominated bubbles continue to expand small-scale RT in-
stabilities begin to develop in the dense shells, but their growth is
slow initially. This is likely due to the fact that the radiation pressure
is able to push back on these instabilities, inhibiting their non-linear
growth when the shell is optically thick to the direct stellar radi-
ation field. For example, the absorption of the high-energy stellar
radiation field is not fully resolved because the minimum optical
depth through a 20 au cell (the resolution on the finest level) is
of order unity, where we have assumed that the shell density is
ρ ∼ 10−16 cm−3 and the dust opacity to the high-energy radiation
is κUV ∼ 104 cm2 g−1 (e.g. see Fig. 1).

When the primary star has a mass of ∼26.3 M� at time t =
0.48 tff, the right side of the disc becomes flared and material is
blown off the accretion disc by the direct radiation pressure. This
injection of material into the upper bubble leads to an asymmetric
absorption of the direct radiation field. This asymmetry and the
resulting shielding of the direct radiation field causes RT instabilities
to grow faster on the right side of the bubble shell while suppressing
the non-linear growth of RT instabilities on the left side. Our results
demonstrate that the seeding of RT instabilities and their resulting
non-linear growth is a direct result of the asymmetric absorption
of the energy and momentum from the direct radiation field across
the bubble shell. Regions that feel a weaker radiative force are thus
more likely to allow RT instabilities to grow non-linearly, leading
to asymmetries in the bubble shells. These instabilities continue
to grow as the simulation evolves. Once these unstable regions
grow, large enough gas is able to collapse directly on to the star–
disc system if the material becomes sub-Eddington, delivering mass
to the accreting protostar. We first see this behaviour begin when
the star reaches ∼30 M� at time t = 0.51 tff. At this time, RT
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Figure 2. A series of density slice plots along the yz-plane (edge-on views) showing the time evolution for our LamRT+FLD simulation. Each row corresponds
to a specific snapshot, where each panel is a zoom in of the previous panel by a factor of 2 from (40 000 au)2 down to (5000 au)2. The centre of each panel
corresponds to the centre of the computational domain; stars with masses greater than 0.1 M� are overplotted. The stars are colour coded by mass with the
most massive being largest in size. The time of the simulation and mass of the most massive star are given in the top-left corner of the first and second panels
of each row, respectively.

instabilities that develop on the right side of the bubble shell become
sub-Eddington and grow large enough that the right edge of the shell
deposits material on to the disc.

As the simulation progresses RT instabilities continue to develop
across the top and bottom shells at an accelerating rate. This is a
result of the star’s movement in the disc, which causes the disc to
shadow the direct radiation field (see Section 3.1.2) and is also due
to the increasing surface density of the bubble shells as the core
collapses. The bottom shell goes unstable and begins to collapse
when the star is ∼34.3 M� at time t = 0.57 tff and this material
reaches the disc at time t = 0.62 tff. Material from the collapsed
left side of the bottom bubble shell continues to deliver mass to the
star–disc system until the star has reached a mass of ∼38.6 M� at
time t = 0.66 tff. At this point, the direct radiation pressure causes
the left side of the bottom bubble to expand again.

At the end of the simulation, we see that regions of the top and
bottom bubbles are collapsing towards the star (bottom panel of
Fig. 2). To demonstrate this, we show the velocity (left-hand panel)
and net acceleration of the gas due to radiative and gravitational
forces (right-hand panel) in Fig. 3 at the end of run LamRT+FLD.
This figure shows that the gas velocities in some of the dens-
est regions of the shell are in the direction of the star–disc sys-
tem even though the net acceleration along the majority of the
bubble shells tend to point away from the star. The regions that
experience a weaker net acceleration are more likely to go unstable
while the regions that feel a larger net force will expand away from
the star at a faster rate leading to more asymmetries in the bubble
shells. It is these regions that go unstable and grow non-linearly,
allowing material to continue to fall towards the star. This process
may ultimately supply mass to the star–disc system and be accreted

Figure 3. Density slices along the yz-plane with the velocity field (left-
hand panel) and net acceleration due to gravity and radiation (right-hand
panel) overplotted when the most massive star is 40.4 M� at t = 0.7 tff for
run LamRT+FLD. The region plotted is (8000 au)2 and the centre of each
panel corresponds to the centre of the computational domain. The grey star
denotes the position of the most massive star.

on to the star. Fig. 4 shows that the majority of the bubble shells
have become RT unstable.

Run LamRT+FLD also shows that throughout the collapse of the
laminar core and growth of the massive protostar, a considerable
amount of material is delivered from the edges of the radiation-
pressure-dominated bubbles to the accretion disc via RT instabil-
ities because these regions are shielded from the direct radiation
field. We find that shielding of the direct radiation field promotes
RT instabilities because the asymmetric absorption of the direct ra-
diation field, which causes the direct radiation force to vary over
the inner surface of the bubble shells, can lead to perturbations that
will then amplify and become RT unstable. This can be seen by
observing where the stellar radiation field is absorbed in the bubble
shells. The left-hand panel in Fig. 5 shows a zoomed-in density
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Figure 4. Volume rendering of a snapshot from run LamRT+FLDwhen the
star is 40.1 M� at time t = 0.69 tff that shows RT instabilities are common
throughout the radiation-pressure-dominated bubbles.

Figure 5. Same as Fig. 3, but now the vectors show the acceleration due to
the direct (left-hand panel) and diffuse (right-hand panel) radiation fields.

slice plot of the star at the end of the simulation along the yz-plane.
Vectors showing the direction and magnitude of the direct radiation
momentum deposition are overplotted. The right-hand panel shows
the acceleration from the diffuse dust-reprocessed radiation field.
Stellar radiation is able to stream freely along the polar directions
that are not shielded by the accretion disc and gas within the bub-
ble. In contrast, the accretion disc shields part of the radiation field
near the left and right sides of the star. Furthermore, the radiation
is shielded to a greater degree on the left side of the star because
the disc is flared. Indeed, Fig. 5 shows that the left side of the top
and bottom bubbles experience a greater degree of instability than
the right side of the bubbles suggesting that the growth and sub-
sequent collapse of these RT instabilities depends on the shielding
and resulting patchiness of the direct radiation field.

We find that throughout the simulation regions of the bubble
shells that are shielded by the accretion disc feel a weaker direct
radiative force and are more likely to go unstable and bring material
to the star–disc system. This can be seen in Fig. 6 that shows the
same snapshot with the acceleration vectors overplotted. In this
figure, the colour of each vector is the value for the Eddington ratio,
fedd = | f rad|/| f grav|, where we have included the contribution from
both the direct and dust-reprocessed radiation fields. Values of fedd

� 1 are subject to collapse. The bubble interiors have fedd � 1
because the bubble interiors are optically thin whereas regions of
the bubble shells that become unstable have fedd � 1. Our results
demonstrate that RT instabilities, along with disc accretion, deliver

Figure 6. Same as Fig. 3, but here arrows show the direction of the net
(gravitational plus radiative) acceleration. Vector colours show the Edding-
ton ratio, fedd = | f rad|/| f grav|, where f rad is the total radiative force due
to both the direct and diffuse components.

mass to the star, and that these instabilities become more important
as the system evolves.

3.1.2 Accretion disc evolution

Next, we examine the behaviour and growth of the accretion disc.
Fig. 7 shows a series of surface density plots along the plane perpen-
dicular to the core’s rotation axis (xy-plane) that show the growth
and evolution of the accretion disc around the massive star. The
top -left panel of Fig. 7 shows that a noticeable thick accretion
disc begins to form when the star reaches ∼25 M� (i.e. an ac-
cretion disc with a radius larger than the 80 au accretion zone
radius of the sink particle). The accretion disc continues to grow
in size as the core undergoes inside-out collapse because mate-
rial with a higher starting radius and thus a larger specific an-
gular momentum is circularized farther away from the star. As
the disc evolves, it develops spiral arms that become unstable and
fragment into companions. The first companion star forms at time
t = 0.51 tff when the primary star has a mass of ∼28.2 M�. The
combined interaction of the primary star, accretion disc, and com-
panions induces gravitational torques leading to even more compan-
ions. By the end of the run, the primary has a mass of ∼40.4 M�
and has 29 companion stars with masses greater than 0.01 M�. The
most massive companion is only 4.43 M�; 16 of the companion
stars have masses greater than 0.1 M�, but only four of these have
masses greater than 1 M�. Thus, at the end of run LamRT+FLD
we do not have a massive binary system, but rather a hierarchical
system consisting of a massive primary and a series of low-mass
companions. Fig. 8 shows the total growth in mass of the primary
star and its companions as a function of time (top panel).

3.1.3 Comparison to run LamFLD

To determine how the results depend on our treatment of the di-
rect radiation field, we perform run LamFLD, a comparison run
that does not include the direct radiation field and instead de-
posits the stellar radiation near the star. This method does not
properly model the momentum deposition by the stellar radiation
field and only includes grey dust opacities, which underestimates
the true optical depth associated with the stellar radiation field.
For example, the frequency-dependent dust opacities range from
∼10 to 1000 cm2 g−1 for molecular gas (i.e. assuming a dust-to-
gas fraction of 0.01) for the high-frequency stellar radiation (e.g.
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Figure 7. Surface density projections of the accretion disc in run LamRT+FLD showing the disc’s time evolution. Each panel represents a projection of the
accretion disc, with the most massive star at the centre of the panel, that is (3000 au)2 in size. The projection is taken over a height of 1000 au above and below
the massive star. Stars with masses greater than 0.01 M� are overplotted on all panels.

Figure 8. Stellar mass and accretion rates for runs LamRT+FLD and Lam-
FLD. Top panel: total mass in primary and companion stars as a function of
time for run LamRT+FLD (pink-solid and dot–dashed lines, respectively)
and run LamFLD (teal-dotted and dot–dashed lines, respectively). Bottom
panel: primary star accretion rate as a function of time for run LamRT+FLD
(pink-solid line) and run LamFLD (teal-dashed line).

see Fig. 1) while the Semenov et al. (2003) opacities used for the
FLD method in ORION range from ∼1 to 10 cm2 g−1 for molecular
gas at temperatures below T � 1500 K. Run LamFLD follows the
same initial conditions as run LamRT+FLD but does not include the
adaptive ray tracing from the HARM2 algorithm. Figs 9 and 10 show
the time evolution for run LamFLD, and are analogous to Figs 2 and
7 for run LamRT+FLD.

In run LamFLD, the radiation-pressure-dominated bubbles be-
gin to expand along the polar directions (both above and below
the star) when the star reaches ∼18 M� (not shown in Fig. 9),

whereas in run LamRT+FLD a radiation-pressure-driven bubble
began to expand above (below) the star when it reached a mass of
∼15 M� (∼22 M�). Similarly, Kuiper et al. (2012) also found that
their massive star formation simulation, which only included FLD,
launched radiation-driven bubbles earlier than their comparison run
that included both ray tracing and FLD. Comparison of Figs 2 and
9 also shows that the direct radiation pressure is more efficient at
evacuating material interior to the bubble walls while also causing
substantial RT instabilities to begin to develop later. This is also
demonstrated in the top panel of Fig. 11, which shows the volume-
weighted mass density as a function of radial distance of a 3D cone
above the centre of the computational domain. In run LamFLD, the
bottom bubble becomes unstable and collapses on to the disc when
the star has reached a mass of ∼23.7 M� while the bottom bubble
first becomes unstable in run LamRT+FLD and begins to collapse
when the star has a mass of ∼35 M�. This difference is due to
the fact that the direct radiation force falls off as r−2 so infalling
material will feel a greater force as it falls towards the star, caus-
ing the direct radiation to push the material back towards the shell;
whereas the diffuse radiation pressure is roughly constant in the
bubbles because it follows the radiation energy density. Therefore,
the diffuse radiation pressure is less likely to inhibit the non-linear
growth of RT instabilities allowing the shells to collapse earlier. As
the star becomes more luminous in both runs the bottom bubbles
re-expand. However, we find that, regardless of the radiation treat-
ment, the radiation-dominated bubbles eventually become unstable
and deliver mass to the star–disc system through RT instabilities.

In agreement with Kuiper et al. (2012), we also find that ne-
glecting the direct radiation field leads to underestimating the true
radiation force density. Fig. 12 shows volume-weighted projection
plots of the direct (top-left panel), diffuse (top-right panel), and total
radiation force densities (bottom-left panel) for a snapshot of run
LamRT+FLD when the primary star has a mass of 36.1 M�. The
bottom-right panel of Fig. 12 shows the total radiation force density
for run LamFLD at the same stellar mass for comparison. The top
two panels show that the radiation force density associated with the
direct radiation field is much greater than the diffuse component in
regions of the bubble shells where the direct component is absorbed
while comparison of the bottom two panels demonstrates that the
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Figure 9. Same as Fig. 2, but for run LamFLD.

Figure 10. Same as Fig. 7, but for run LamFLD.

radiation force density is greatly underestimated at the location of
the bubble shells where the direct radiation is absorbed. This is also
observed in the bottom panel of Fig. 11 which shows the volume-
weighted averaged direct, diffuse, and total radiation force densities
as a function of radius for a 3D cone above the centre of the com-
putational domain for the snapshots shown in Fig. 12. We also find
the integrated radiative force over a spherical volume with radius
7000 au around the primary star in run LamRT+FLD is a factor
of ∼2 larger than run LamFLD when the star is 36.1 M�. Thus,
we find that inclusion of the direct radiation field leads to a larger
total radiation force as expected but regions of the bubble shells still
become RT unstable regardless.

Although the development of RT instabilities is qualitatively the
same for runs LamRT+FLD and LamFLD, the structure of the ac-
cretion disc and the consequent creation of companions is not.
Comparison of Figs 7 and 10 shows that the accretion disc in run

LamFLD is more extended and has an overall lower surface den-
sity than in run LamRT+FLD. It also undergoes less fragmentation
resulting in fewer companions. For example, the primary star in
run LamFLD has eight companion stars with masses greater than
0.01 M� when the primary has a mass of 40.4 M�, whereas the
primary star in run LamRT+FLD has 29 companion stars when the
primary has a mass of 40.4 M�. Furthermore, the most massive
companion in run LamFLD is 11.28 M� when the primary has a
mass of 40.4 M�, a factor of ∼2.5 larger than the most massive
companion in run LamRT+FLD for the same primary stellar mass.

Fig. 8 shows the evolution of the primary and total companion
star mass for both runs (top panel) and accretion rate on to the
primary star (bottom panel). We find that although the number of
companion stars formed is different for each run, the total mass
contained in the companion stars is qualitatively similar when the
primary star has a mass of 40.4 M� (i.e. the final stellar mass in

MNRAS 463, 2553–2573 (2016)

 at T
he A

ustralian N
ational U

niversity on N
ovem

ber 27, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


How massive stars get their mass 2565

Figure 11. Volume-weighted averaged mass densities (top panel) and di-
rect, diffuse, and total radiation force densities (bottom panel) as a function
of radius for a 3D cone above the centre of the computational domain for runs
LamRT+FLD and LamFLD when the primary star has a mass of 36.1 M�.

Figure 12. Volume-weighted projection plots of the radiation force den-
sities along the yz-plane for the direct radiation field (top-left panel) and
diffuse radiation field (top-right panel) in run LamRT+FLD and total radia-
tion field in runs LamRT+FLD (lower-left panel) and LamFLD (lower-right
panel), respectively, when the star has a mass of 36.1 M�. Each projection
covers a depth of 500 au and area of (12 000 au)2. The centre of each panel
corresponds to the location of the most massive star.

run LamRT+FLD). The accretion rate on to the primary star in
each run is also qualitatively similar. Initially the accretion rate on
to the primary star is smooth for both simulations, but it becomes
chaotic once the disc becomes gravitationally unstable and forms
companion stars. This chaotic behaviour can be attributed to disc
gravitational instabilities and RT instabilities funnelling material
to the stars. Since run LamRT+FLD undergoes a greater degree
of disc fragmentation, we find that the total stellar mass in run
LamRT+FLD is larger than that of run LamFLD at t = 0.70 tff (the
final time in run LamRT+FLD). The total stellar mass at this time
is 55.80 and 49.68 M� for run LamRT+FLD and run LamFLD,
respectively.

The decrease in disc fragmentation in run LamFLD can be un-
derstood by looking at the temperature structure of the accretion
discs as shown in Fig. 13. Collapse can only occur in regions that
become Jeans unstable, and this instability depends on both the den-
sity and temperature of the gas. A hotter, lower density region is less
likely to fragment (e.g. see equation 23). Run LamFLD has a hotter
accretion disc because the radiation is deposited in the immediate
vicinity of the stars, and it subsequently diffuses through the disc,
heating up the gas as shown in the bottom-right panel of Fig. 12. In
contrast, the absorption of radiation for run LamRT+FLD is highly
dependent on the frequency-dependent optical depth of the cells that
the rays transverse. Once an evacuated region appears above and
below the disc, much of the stellar radiation energy is deposited in
the bubble walls at a considerable distance from the disc, allowing
the disc to remain cooler. Furthermore, the accretion rate on to the
stars depends on the disc temperature, Ṁ ∝ c3

s (Shu 1977). Thus,
the hotter gas in the accretion disc in run LamFLD produces more
massive companion stars, consistent with what we observe.

3.2 Collapse of turbulent pre-stellar cores

Next we describe our results for run TurbRT+FLD, which follows
the same initial conditions as run LamRT+FLD except that the
core is not initially placed in solid-body rotation and is instead
seeded with a weakly turbulent velocity profile with a 1D velocity
dispersion of σ1D = 0.4 km s−1. At the end of this simulation, the
most massive star has a mass of 61.63 M�. We ran the simulation
for a time of t = 0.87 tff.

3.2.1 Evolution of radiation-pressure-dominated bubbles

Fig. 14 shows density slices along the yz-plane for a series of snap-
shots from run TurbRT+FLD. The initial turbulence leads to a
clumpy and filamentary core density structure that begins to col-
lapse and forms a star. As the core continues to collapse, the star is
primarily fed by dense filaments and clumpy material. We first see
a radiation-pressure-dominated bubble begin to expand when the
star is ∼10 M� but it is quickly quenched by the dense, inflowing
material. Furthermore, these bubbles instantly go RT unstable and
deliver material to the star (i.e., within the 80 au accretion radius of
the sink particle). This can be seen within the radiation-pressure-
dominated bubble interiors shown in Fig. 14 because the size scale
of the density fluctuations within the bubbles is smaller than the
density perturbations in the initial turbulence surrounding the bub-
bles, thus suggesting that the interior bubble material has become
RT unstable. We find that the growth of a radiation-driven bubble is
continuously suppressed by the flux of the infalling filamentary and
RT unstable material until the star reaches a mass of ∼21.7 M� at
time t = 0.42 tff. At this time, the direct radiation pressure from the
accreting star is able to effectively push material away from the star.
However, material is not fully evacuated along the polar directions
of the star.

This quick onset of RT instabilities can be attributed to the initial
turbulence. The turbulent gas seeds the growth of these instabili-
ties. In addition, when the star is below ∼30 M� the star is moving
rapidly in the core because the accreting material carries momen-
tum. Fig. 15 shows that the stellar velocity decreases as the stellar
mass increases. The overall accretion flow on to the star is not spher-
ically symmetric and thus the asymmetrical momentum deposition
to the star by the accreting gas causes the star to move a signifi-
cant distance in the collapsing core, a property also observed in the
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Figure 13. Density-weighted mean projected temperature for the accretion discs formed in runs LamRT+FLD (top row) and LamFLD (bottom row),
respectively. Each panel is a projection that is (5000 au)2 in size and is projected over a height of 1000 au above and below the massive star. The most massive
star is at the centre of each panel, and stars with masses greater than 0.01 M� are overplotted.

Figure 14. Same as Fig. 2, but for run TurbRT+FLD. The centre of each panel corresponds to the position of the most massive star.

massive star formation simulations presented in Cunningham et al.
(2011). Throughout the simulation, the star travels a distance of
1968 au from its initial position. The combination of the movement
of the star, dense filaments accreting on to the star, and RT insta-
bilities delivering material to the star limit the growth and stability
of radiation-pressure-dominated bubbles around the star. When the
star has a mass greater than ∼30 M�, radiation pressure begins
to evacuate low-density material away from the star but dense fil-
aments and material that become RT unstable continue to fall on
to the star. This effect is demonstrated in Fig. 16 that shows den-
sity slices along the yz-plane for a series of snapshots from run
TurbRT+FLD with velocity vectors overplotted.

Low-density bubbles do not begin to appear until the star
has reached a mass of ∼35 M� at time t = 0.59 tff and these

bubbles are larger than those in run LamRT+FLD at a simi-
lar mass (∼4000 au versus ∼3000 au in run LamRT+FLD). At
this mass, the stellar luminosity is large enough to push away
the infalling material more effectively. The bubbles then become
episodic, expanding and collapsing as the ram pressure of the in-
flow rises and falls due to the turbulence. This behaviour con-
tinues throughout the rest of the simulation but the bubbles sur-
vive longer and expand as the stellar luminosity increases. At
the end of run TurbRT+FLD, when the star has a mass of
61.63 M� at time t = 0.87 tff, most of core has been evacuated
by radiation pressure along the polar directions of the star but
material is still being fed to the star along directions that are
perpendicular to the poles of the star (e.g. see bottom panel of
Fig. 14).
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How massive stars get their mass 2567

Figure 15. 3D position of the primary star in run TurbRT+FLD.

To understand this behaviour quantitatively, it is helpful to com-
pare the pressure of the stellar radiation field to the ram pressure
of the inflow. Consider a sphere 1000 au in radius centred on the
most massive star. To understand the force balance in the prob-
lem, we compute three mean pressures on this sphere: the direct
radiation pressure (including the accretion and stellar luminosities,
averaged over area), the area-weighted mean ram pressure, and the
mass-flux-weighted mean ram pressure for inflowing material. The
former quantity is defined as

Prad = L� + Lacc

4πr2c
(25)

and the latter two quantities are defined by

〈Pram〉 =
∫

ρv2
r w dA∫
w dA

, (26)

where vr is the radial velocity, and the weighting function w is unity
for the area-weighted average, and is ρvr for the mass-flux-weighted
average where we only include contributions from inflowing mate-
rial. We include the mass-flux-weighted mean ram pressure because
it is a better representation of the ram pressure of the material that
can be accreted on to the star. We plot these three quantities as a
function of time in Fig. 17. We see that the radiation pressure over-
whelms the area-averaged ram pressure by the time the star reaches
∼30 M�, but that the mass-flux-weighted mean ram pressure is
roughly an order of magnitude higher. Thus, even though the radia-
tion pressure is stronger than gas pressure when averaged over 4π sr,
turbulence causes the mass flow on to the star to be concentrated in
narrow filaments that have much greater ram pressure, and are much
harder to stop. It is not until the star reaches ∼50 M� that its radi-
ation pressure becomes comparable to the mass-flux-weighted ram

Figure 17. Comparison of the direct radiation pressure including contri-
butions from the stellar and accretion radiation fields (pink-solid line) and
the area-weighted and mass-weighted ram pressure (teal-dashed and purple-
dot–dashed lines, respectively) from inflowing material taken over a 1000 au
sphere surrounding the accreting primary star for run TurbRT+FLD. See
main text for full details on how these averages are defined.

pressure, and even then there are still periods when the ram pres-
sure rises and is sufficient to punch through the radiation and deliver
mass. This episodic rise in the ram pressure (which is mirrored in
the density field by the episodic collapse of the radiation-dominated
bubbles) is a direct result of RT instability, accelerated and seeded
by the pre-existing turbulence.

3.2.2 Accretion disc evolution

Fig. 18 shows the growth and evolution of the accretion disc that
forms around the massive star in run TurbRT+FLD. Our results
show that a thick accretion disc begins to form around the massive
star when it has reached a mass of ∼41 M� at time t = 0.65 tff

(i.e. an accretion disc with a radius larger than the 80 au accretion
zone radius of the sink particle). Up until this point, material is
primarily fed to the star through dense filaments and RT instabilities
whose infall is not suppressed by radiation pressure. Fig. 19 shows
the primary stellar mass and accretion rate on to the primary star
as a function of time. The accretion rate is relatively smooth up
until a time of t = 0.5 tff. After this time, when the star has a
mass of ∼28 M�, RT instabilities and dense filaments supply most
of the mass on to the star leading to a chaotic accretion flow on
to the star. However, when a thick accretion disc forms, at t ≈
0.65 tff, the accretion rate on to the star becomes much more chaotic
because gravitational instabilities in the disc funnel gas to the star
while dense filaments and RT unstable material are delivered to the
disc. The disc soon becomes unstable and begins to fragment when
the primary star has a mass of 57.62 M� at time t = 0.83 tff. At

Figure 16. Density slices along the yz-plane with velocity vectors overplotted for run TurbRT+FLD when the massive star is (from left to right) 23.82 M�
at t = 0.43 tff, 30.03 M� at t = 0.53 tff, 41.08 M� at t = 0.65 tff, and 61.63 M� at t = 0.87 tff, respectively. The region plotted is (10 000 au)2 with the most
massive star (overplotted grey star) located at the centre of each panel.
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Figure 18. Same as Fig. 7, but for run TurbRT+FLD.

Figure 19. Stellar mass (top panel) and accretion rate (bottom panel) for
the primary star in run TurbRT+FLD.

the end of run TurbRT+FLD, the primary star has three low-mass
companion stars with masses between 0.034 and 0.11 M�. Again
we form a hierarchical system consisting of a massive primary
and a series of much less massive mass companions similar to run
LamRT+FLD.

4 D ISCUSSION

The purpose of this work is to understand how mass is delivered
to massive stars during their formation. Primarily, we are inter-
ested in determining if the radiation-pressure-dominated bubbles
that expand away from the star become RT unstable and if these
instabilities contribute to disc accretion or direct accretion on to the
star. To determine how massive stars attain their mass, and com-
pare our work with previous 3D simulations of the formation of
massive stars, we developed a new highly parallel hybrid radiation

algorithm that models the direct radiation pressure from stars with
a multifrequency long-characteristics ray-tracing solve coupled to
(grey) FLD to model the re-emission and processing by interstellar
dust in the ORION radiation-hydrodynamics simulation code (Rosen
et al. 2016). With this new tool, we have performed the collapse of
initially laminar and turbulent massive star-forming cores.

Our results lead to two key differences from the simulations pre-
sented in Kuiper et al. (2011, 2012) and Klassen et al. (2016). The
first crucial difference, which we discuss in Section 4.1, is that
we find that the radiation-pressure-dominated bubbles that expand
around the accreting massive star become unstable and deliver mass
to the star–disc system for both initially laminar and turbulent cores.
The second difference we find, which we address in Section 4.2,
is that inclusion of direct radiation pressure leads to unstable ac-
cretion discs that fragment into a hierarchical system consisting of
a massive primary and a series of much less massive companions.
Finally, we also find if the pre-stellar core is initially turbulent the
growth of radiation-pressure-dominated bubbles are suppressed at
early times as compared to massive stars that form out of initially
laminar cores. For initially turbulent cores, we find that most of the
mass is supplied to the star via dense filaments and RT instabilities
rather than extended disc accretion. We discuss these differences in
Section 4.3.

4.1 Revisiting Rayleigh–Taylor instabilities

Kuiper et al. (2011, 2012) and Klassen et al. (2016) find that the
expanding radiation-pressure-dominated bubbles that form around
accreting massive stars are stable and the massive star is only fed by
disc accretion. They suggest that the bubbles that form in the simu-
lation presented in Krumholz et al. (2009) develop RT instabilities
because only the diffuse dust-reprocessed radiation field is mod-
elled and therefore the true radiation pressure is underestimated.
These authors conclude that inclusion of the direct radiation field
from the star leads to a larger radiation pressure resulting in stable
bubbles that are not subject to collapse. In contrast, we find that,
while an improved treatment of the direct radiation field does lead
to a larger radiation pressure it only delays the onset of substantial
RT instabilities that are capable of delivering mass to the star–disc
system in the case of a laminar core, it does not prevent them en-
tirely. At late times these instabilities grow non-linearly in regions
that are shielded from the direct radiation field and deposit material
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Table 2. Comparison of the initial laminar pre-stellar core conditions from
this work and previous numerical work.

Work Mc (M�) Rc (pc) kρ �c
a (g cm−2) RTI?b

This work 150 0.1 1.5 1 Yes
Klassen et al. (2016) 100, 200 0.1 1.5 0.67, 1.33 No
Kuiper et al. (2012) 100 0.1 1.5, 2 0.67 No
Kuiper et al. (2011) 120 0.2 2 0.2 No
Krumholz et al. (2009) 100 0.1 1.5 0.67 Yes

Notes. a�c ≡ Mc/πR2
c .

bRT instabilities present?
References – Krumholz et al. (2009); Kuiper et al. (2011, 2012); Klassen
et al. (2016).

to the star–disc system. This material can then be fed to the accret-
ing star. We would like to understand the origin of this difference
in results, though we caution that, in the light of our results for run
TurbRT+FLD, this discussion is somewhat academic. This run
shows that, in a realistic, turbulent core, the flow is ‘born’ RT un-
stable, in the sense illustrated by Fig. 17 – a configuration whereby
the angle-averaged radiation force is stronger than gravity and ram
pressure, but the majority of the mass flux arrives over a small solid
angle where the ram pressure force is stronger than the radiation
force.

Since Kuiper et al. (2011, 2012) and Klassen et al. (2016) hypoth-
esize that the absence of RT instability in their simulations was due
to the direct radiation force, we begin this investigation by exam-
ining when the presence of direct radiation pressure could possibly
make a difference to the outcome. We therefore investigate when the
gravitational force per unit area, fgrav(r) = GM��/r2, exceeds the
direct radiative force per unit area, frad,dir(r) = L�/(4πr2c). Here,
M� and L� are the mass and luminosity of the massive star, respec-
tively; and �(r) = ∫ r

0 ρ(r ′) dr ′ is the column density of a slab of
core material as seen by the star. The relative importance of direct
radiation force and gravity can be described in terms of the Edding-
ton ratio given in Section 1, where we now ignore the contribution
of the trapped diffuse radiation force, fedd,dir = frad,dir/fgrav, given by

fedd,dir = 7.7 × 10−5

(
L�

M�

)
�

(
�

1 g cm−2

)−1

. (27)

The notation (...)� denotes that L� and M� are in units of L� and
M�, respectively. A value of fedd,dir � 1 implies that direct radiation
pressure is dynamically dominant, while a value of fedd < 1 implies
that gravity dominates. In the latter regime, the force exerted by the
diffuse radiation field may still exceed the force of gravity, but in
such regions we expect RT instability to occur (Jacquet & Krumholz
2011). Locations where fedd,dir < 1 can therefore collapse and deliver
mass to the star–disc system.

We compute fedd,dir as a function of position within the ini-
tial pre-stellar cores modelled by Krumholz et al. (2009), Kuiper
et al. (2011), Kuiper et al. (2012), Klassen et al. (2016), and
this work (using the core properties listed in Table 2) for light-
to-mass ratios appropriate for zero-age main sequence stars with
masses M� = 35–45 M�, and plot the results in Fig. 20. For
the purposes of this computation, note that the core density pro-
file in all of these simulations is ρ(R) = ρedge(R/Rc)−kρ , where
ρedge = (3 − kρ)Mc/(4πR3

c ) for a pre-stellar core with mass Mc

and radius Rc. The resulting column density, as seen by the star
at a distance R, is �(R) = ρ0R

kρ
c R1−kρ /(kρ − 1). Of these simula-

tions, only those presented in Krumholz et al. (2009) and this work
find that the radiation-pressure-dominated bubble shells become RT

Figure 20. Eddington ratio associated with the direct radiation field (fedd,dir)
for the initial core properties listed in Table 2 as a function of radius within
the core. Shaded regions denote L�/M� values computed for a zero-age main
sequence star between 35 (bottom line) and 45 (top line) M� in mass. The
horizontal black-dashed line denotes where fedd,dir = 1.

unstable, and Fig. 20 makes it clear that at least part of this discrep-
ancy is simply a matter of initial conditions. We find that the cores
with kρ = 2 presented in Kuiper et al. (2011) and Kuiper et al. (2012)
have fedd,dir > 1 over a substantial portion of their radial extent, as a
result of the cores’ steeper density profile, and lower overall surface
density. As a result, direct radiation pressure alone, without any as-
sistance from the diffuse reprocessed radiation field, is sufficient to
expel material from the cores simulated by Kuiper et al. (2011), and
possibly also Kuiper et al. (2012). It is not surprising, given such
a setup, that RT instability does not develop – the diffuse radiation
field never matters, because direct radiation alone guarantees a net
positive radial acceleration.

While this simple argument explains why the cores simulated by
Kuiper et al. (2011) and perhaps Kuiper et al. (2012) never develop
RT instabilities, it does not explain the discrepancy between our re-
sults and those of Klassen et al. (2016), who have direct Eddington
ratios comparable to those in our simulation. One key difference be-
tween the work of those authors and the simulations we present here
is refinement of the bubble shell. Refining the bubble shell is crucial
for studying the growth of RT instabilities in massive star formation
simulations because the amplitude η of linear perturbations (which
is the relevant regime for the non-turbulent simulations) grows with
time as η(t) ∝ exp (ωt), where ω ∝ λ−1/2 and λ is the wavelength
of the perturbation (Jacquet & Krumholz 2011). Thus for radia-
tion RT instability, as for classical hydrodynamic RT instability,
the smallest perturbations grow fastest. However, perturbations can
only grow if they are resolved, and we warn that RT instabilities with
wavelengths smaller than the cell size on the finest level cannot be
resolved, thereby suppressing smaller scale perturbations that will
grow faster in the linear regime.

Based on this analysis, the lack of RT instability in the work of
Kuiper et al. (2012) and Klassen et al. (2016), and its presence in
our simulations, is likely a resolution effect. We can make this point
quantitatively as follows. In this work, and the work of Krumholz
et al. (2009), we adaptively refine on the Jeans length and loca-
tions where the gradient of the radiation energy density exceeds
15 per cent. Fig. 21 shows density and radiation energy density
slices, with the level 4 and 5 grids overplotted, at the time when
the star in run LamRT+FLD has a mass of 40.4 M� at time 0.7
tff. This figure shows that the radiation-pressure-dominated bubbles
are refined up to level 4 (40 au resolution) and that most of the
bubble shells have level 5 refinement (20 au resolution). The level 5
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Figure 21. Density and radiation energy density slices along the yz-plane
for run LamRT+FLD when the star has a mass of 40.4 M� at t = 0.7 tff.
Level 4 grids (40 au resolution – grey rectangles) and level 5 grids (20 au res-
olution – black rectangles) are overplotted. The region plotted is (12 000 au)2

and the centre of each panel corresponds to the primary star location.

refinement for the bubble shell is due to our radiation energy density
gradient refinement criterion, because this refinement condition is
triggered by the sharp gradient in the radiation energy density at
the shell location (i.e. where it transitions from optically thin to
optically thick material).

In contrast, Kuiper et al. (2012) use a non-adaptive spherical
grid that provides much higher resolution than we achieve near
the star, but that coarsens rapidly at large distances. The grid has
a resolution of 5.◦625 in the θ direction, which at a distance of
4000 au, roughly the sizes of our bubbles at the point where they
become unstable, corresponds to ≈400 au. Thus, their resolution is a
factor of ∼20 lower than ours, and the linear growth rate is a factor
of ≈4.5 lower. This may push the development of the instability
back to times longer than the time required for all the mass to be
accreted. The situation for Klassen et al. (2016) is similar. While
they do have adaptivity, they refine only on Jeans length and not
on gradients in the radiation energy density, and thus their bubble
walls are at much lower resolution than the peak they achieve. Visual
inspection of their published results (their Fig. 12) suggests that a
typical resolution in their bubble walls is 160 au, giving a growth
time ≈3 times longer than we have.

We can also test the resolution hypothesis directly. To do so,
we perform a low-resolution run, run LamRT+FLD_LR, which has
four levels of refinement (40 au maximum resolution) and only
refines on the Jeans length. Thus, run LamRT+FLD_LR uses the
same refinement criteria as Klassen et al. (2016). This reduction in
refinement criteria ensures that the shell will be poorly resolved.
Fig. 22 shows density slices along the yz-plane showing the evolu-
tion of the expanding radiation-dominated-pressure bubbles for run
LamRT+FLD_LR. Comparison of Fig. 22 with Fig. 2 demonstrates
that when the shell is poorly resolved RT instabilities are unlikely to
develop. In run LamRT+FLD, we found that RT instabilities began
to have noticeable growth when the star was ∼30 M�, whereas
the bubbles in run LamRT+FLD_LR remain stable until the star

has reached a mass of ∼37.5 M�, and even after this point the
instability is clearly less violent and delivers less mass than in the
higher resolution run. Clearly, resolution matters a great deal for
the development of RT instability.

The late-onset instability in our low-resolution run also points
to one more potentially important difference between our simu-
lations and those of Klassen et al. (2016). The instability in run
LamRT+FLD_LR first appears when the left side of the disc be-
comes flared and most of the direct radiation is absorbed by the
disc, shadowing the left side of the bubble. Shadowing of the direct
radiation field is clearly an important process. Our direct radiation
treatment uses the method of long characteristics which is more
accurate than the method of hybrid characteristics used in Klassen
et al. (2016). Far away from the source, as the rays cross many grids,
this method will not resolve sharp shadows as well as long charac-
teristics, and will likely underestimate the asymmetry in the direct
radiation field thus suppressing the development of RT instabilities.

4.2 Revisiting disc fragmentation

Most massive stars are found in multiple systems. Chini et al. (2012)
performed a spectroscopic study of massive stars and found that
>82 per cent of stars with masses greater than 16 M� belong to
close binary systems. Likewise, Sana et al. (2014) found that all
massive main-sequence stars in their sample are in tight binaries or
higher order multiples. Both authors conclude that this large binary
fraction originates from the formation process rather than direct
capture. In agreement with these observations, we formed multiple
systems in runs LamRT+FLD and TurbRT+FLD, where compan-
ions form from disc fragmentation. At the end of each run, we are
left with a hierarchical system consisting of a massive primary and
a series of low-mass companions. Contrary to our results, Klassen
et al. (2016) only form a single massive star in each of their simu-
lations while Krumholz et al. (2009) form a massive binary system.
We attribute these differences in stellar multiplicity to be due to the
different sink particle creation and merging algorithms employed.

The accretion discs formed in the work of Klassen et al. (2016)
become gravitationally unstable but do not fragment. This result
is likely attributed to their stricter sink particle creation algorithm
while our production of many low-mass companions may be due
to our more lenient algorithm. In this work, sink particles are cre-
ated following the algorithm described in Krumholz et al. (2004),
which allow sinks to form in regions that are Jeans unstable on the
finest level and are undergoing gravitational collapse. The sink par-
ticle algorithm employed in Klassen et al. (2016) includes these
requirements but also enforces additional criteria following the
work of Federrath et al. (2010b). These additional requirements
for sink particle creation are as follows: (1) the flow must be

Figure 22. Density slices along the yz-plane with velocity vectors overplotted for run LamRT+FLD_LRwhen the massive star is (from left to right) 24.70 M�
at t = 0.43 tff, 30.05 M� at t = 0.46 tff, 34.22 M� at t = 0.50 tff, and 40.34 M� at t = 0.57 tff, respectively. The region plotted is (8000 au)2 with the most
massive star (overplotted grey star) located at the centre of each panel.
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convergent, (2) the location at which a sink can form must be a
minimum for the gravitational potential, and (3) the total energy
within a control volume around the potential sink particle be neg-
ative (Egrav + Eth + Ekin < 0). These additional requirements are
essentially untested in the context of an unstable accretion disc, and
it is not clear if they help prevent artificial fragmentation, or if they
suppress the formation of fragments that would in fact form if the
simulation had been carried out at higher resolution.

In contrast to our hierarchical systems, Krumholz et al. (2009)
form a massive binary with a mass ratio of q = m2/m1 ≈ 0.7.
One key difference between the work of Krumholz et al. (2009)
and run LamRT+FLD presented in this work, besides the method
of radiative transfer used, is the criterion used for merging sink
particles. As described in Section 2.1, we allow two sink particles
to merge when the lower mass particle has a mass less than 0.05 M�.
Krumholz et al. (2009) use the same sink particle creation algorithm
as our work but allow particles to merge once two particles are
within an accretion radius (i.e. four cells) of one another regardless
of their mass. This lenient merging criteria allows for a series of
disc-borne companions to merge together to form a more massive
companion star, eventually resulting in a massive binary system.
Furthermore, as run LamFLD demonstrated, the disc properties are
highly dependent on the radiative transfer method employed. When
the direct radiation pressure is neglected, we are left with hotter
accretion discs that are less prone to fragmentation. The hotter gas
yields higher accretion rates on to the companion stars, leading to
larger masses.

Comparison of our results with previous work demonstrates that
the multiplicity and companion mass distribution produced in mas-
sive star formation simulations is highly sensitive on the simulation
resolution, radiative transfer, and algorithms used to create and
merge sink particles. Since the fragmentation and resulting system
multiplicity is sensitive to the numerics, we advise the reader that
the fragmentation produced in our idealized numerical simulations
and other simulations does not provide an adequate solution to the
multiplicity of observed massive stars. Future work must include
additional physics, such as magnetic fields and outflows, to further
understand the observed multiplicity of massive stellar systems.

4.3 Revisiting the flashlight effect

In agreement with previous work, we find that disc accretion sup-
plies most of the mass to the primary star in run LamRT+FLD.
The presence of an optically thick accretion disc shields the stellar
radiation field leading to the ‘flashlight’ effect in which the radia-
tive flux escapes along the polar axis and into the polar cavities,
launching radiation-pressure-dominated bubbles above and below
the star (Yorke & Sonnhalter 2002; Krumholz et al. 2009; Kuiper
et al. 2011, 2012; Klassen et al. 2016). As the bubbles expand, they
become unstable and deliver material to the star–disc system that
can then be accreted on to the star. The asymmetry induced by the
flashlight effect allows radiative flux to escape while mass from the
disc can be accreted on to the star.

In run TurbRT+FLD, however, we find that the flashlight effect
is less important and that the initial turbulence allows for asym-
metry in the radiation field. Instead of extended disc accretion, the
majority of the mass is delivered to the star by dense filaments and
RT instabilities that are not destroyed by radiation pressure. The
radiation freely escapes through low-density channels that are not
necessarily located along the polar directions of the primary star.
The rapid infall of dense material inhibits the growth and stability
of radiation-pressure-dominated bubbles at early times thus only al-

lowing the ‘flashlight’ effect to occur at late times when the star has
a larger luminosity. Therefore, we find that if the matter distribution
of the core is asymmetric to begin with then the flashlight effect
is not necessary for the formation of massive stars out of turbulent
cores. However, our simulations neglect the effect of bipolar stel-
lar outflows that have been shown to enhance the flashlight effect
(Cunningham et al. 2011; Kuiper, Yorke & Turner 2015).

For example, Cunningham et al. (2011) were the first to perform
3D radiation-hydrodynamic simulations of the collapse of initially
turbulent pre-stellar cores that included feedback from bipolar stel-
lar outflows and radiation, but they neglected the direct radiation
field. They found that inclusion of bipolar outflows from the mas-
sive protostar increases the ejection of ambient material along the
polar directions of the star, enhancing the flashlight effect. This
effect is enhanced because regions of the core that are expected
to experience a large net force by the outward radiation force lie
within the outflow cavity. The stellar outflows evacuate material
along the polar directions of the primary star. These outflow cav-
ities provide significant focusing of the radiative flux in the polar
directions, resulting in the radiative flux to escape while accretion
continues through regions of the infalling envelope uninhibited by
the radiative force.

5 C O N C L U S I O N S

In this paper, we have used our powerful new hybrid radiation trans-
fer tool, HARM2, in a suite of radiation-hydrodynamic simulations
that followed the collapse of initially laminar and turbulent massive
pre-stellar cores to study the formation of massive stars. HARM2 uses
a multifrequency adaptive long-characteristics ray-tracing scheme
to capture the first absorption of the direct radiation from stars by
the intervening interstellar dust and molecular gas, and FLD to
model the diffuse radiation field associated with the subsequent re-
emission by interstellar dust. Our method is highly optimized and
can run efficiently on hundreds of processors, works on adaptive
grids, can be coupled to any moment method, and can be used for
an arbitrary number of moving stars (Rosen et al. 2016).

The primary goal of our work is to determine how massive stars
attain their mass when radiation pressure is the only feedback mech-
anism considered (i.e. in the absence of magnetic fields, outflows,
and photoionization). Do massive stars obtain their mass through
disc accretion alone? Or do radiative RT instabilities that develop in
the radiation-pressure-dominated bubble shells, which are launched
by the stars’ intense radiation fields, deliver material directly via col-
lapse on to the stars or star–disc systems? Or is it a combination of
both of these processes?

For initially laminar cores, we find that the majority of mass
delivered to the massive star is due to disc accretion, but that RT in-
stabilities are responsible for bringing material on to the disc before
it is subsequently incorporated into the star. For initially weakly
turbulent cores, in contrast, we find that dense filaments and RT
unstable material supply most of the mass to the accreting massive
star directly, without mediation by an extended disc (i.e. an accre-
tion disc with a radius larger than the 80 au accretion zone radius
of the sink particle) for the run time considered. However, we find
that once an extended disc formed, disc accretion supplies mate-
rial to the primary star. Our results show that the radiation escapes
through low-density channels that are not necessarily located along
the polar directions of the star and that sustained radiation pressure
dominated bubbles do not appear until late times when a signifi-
cant accretion disc develops. For stronger turbulence at the level
seen in many massive cores, we would expect this effect could be
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enhanced. Our results suggest that the ‘flashlight’ effect that occurs
in our laminar runs, which allows the radiative flux to escape along
the polar directions of the star and material to be accreted on to the
star by an optically thick accretion disc, is not required for massive
stars that form from turbulent cores. Instead, the asymmetric den-
sity distribution allows the radiation to escape through the path(s)
of least resistance, allowing the dense infalling material to fall on
to the star regardless of its location.

Our results also demonstrate that RT instabilities are a natural
occurrence in the formation of massive stars regardless of whether
the star-forming core is initially turbulent or laminar. These in-
stabilities arise immediately for turbulent cores because the initial
turbulence seeds the instabilities. RT instabilities develop later for
laminar cores because the initially symmetric gas distribution must
be perturbed. These perturbations can then seed RT instabilities
that grow in time and can eventually deliver material to the star–
disc system. We find that the development of an accretion disc and
gravitational torques induced within the disc destroy the symmetry
of the gas distribution and seed the initial perturbations that lead to
RT instabilities in the bubble shells as first shown by Krumholz et al.
(2009). Our work suggests that the seeds for RT instabilities that
arise in initially laminar pre-stellar cores are asymmetries induced
by the shielding of the direct radiation field by the accretion disc
and the non-symmetric distribution of material within the bubbles.
These asymmetries arise from disc flaring, disc fragmentation, and
the gravitational interaction of the massive star with the accretion
disc and companions.

Previous work that simulated the collapse of initially laminar
cores concluded that the direct radiation field inhibited the growth
of RT instabilities (Kuiper et al. 2012; Klassen et al. 2016). Contrary
to their results, we find that inclusion of the direct radiation field only
suppresses the non-linear growth of these instabilities at early times.
As the asymmetry in the system grows, these instabilities can grow
non-linearly and become dense enough to overcome the radiation-
pressure barrier and deliver material to the star–disc system. We
argue instead that poor shell resolution is the likely culprit as to
why Kuiper et al. (2012) and Klassen et al. (2016) do not obtain
bubble shells that become RT unstable. We check this hypothesis
directly by conducting a resolution study where we intentionally
de-resolve the bubble shell to the point where our resolution is
comparable to that used in earlier work, and we show that doing
so both delays the onset of instability and reduces its intensity. We
further find in the work of Kuiper et al. (2012) that limitations
of their fixed grid approach with a star that is centrally fixed in a
spherical grid does not permit the movement of the star–disc system
that would naturally allow asymmetries to arise and lead to seeding
the RT instability.

We find that both turbulent and laminar cores lead to hierarchical
star systems that consist of a massive primary star and several
low-mass companions. We find that our multiplicity results are
sensitive to the physics included, radiative transfer treatment used,
and sink creation and merging criteria employed. Inclusion of the
direct radiation pressure leads to cooler discs that are prone to
greater fragmentation when compared to our comparison run that
neglected the direct radiation field and assumed that the stellar
radiation was immediately absorbed within the vicinity of the stars.
However, given the idealized nature of our simulations, we cannot
address the true multiplicity properties of massive stars.

Despite this limitation, our work settles a long-debated question
in massive star formation: how does radiation pressure limit the
masses of stars? We find that radiation pressure is still an impor-
tant feedback mechanism that must be considered in massive star

formation, but RT instabilities can overcome the radiation pressure
barrier, at least in the context of the idealized numerical experiments
performed thus far. However, there are still many other physical pro-
cesses at play that we neglect. These include collimated outflows,
fast stellar winds, and magnetic fields. Future work will include
these other feedback mechanisms to determine a more complete
picture of how massive stars form and how their associated feed-
back can limit stellar masses.
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Benoı̂t Commerçon, and Kaitlin Kratter for useful discussions about
the results of our work. ALR and MRK acknowledge support
from the National Aeronautics and Space Administration (NASA)
through Hubble Archival Research grant HST-AR-13265.02-A is-
sued by the Space Telescope Science Institute, which is operated
by the Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS 5-26555 and Chandra Theory Grant
Award Number TM5-16007X issued by the Chandra X-ray Obser-
vatory Center, which is operated by the Smithsonian Astrophysical
Observatory for and on behalf of NASA under contract NAS8-
03060. ALR acknowledges support from the NSF Graduate Re-
search Fellowship Programme and the AAUW American Fellow-
ship Programme. CFM and RIK acknowledge support from NASA
through ATP grant NNX13AB84G and the NSF through grant
AST-1211729. RIK acknowledges the US Department of Energy at
the Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. MRK, CFM, and RIK acknowledge support
from NASA TCAN grant NNX-14AB52G. MRK acknowledges
support from Australian Research Council grant DP160100695.
This research was undertaken with the assistance of resources from
the National Computational Infrastructure (NCI), which is sup-
ported by the Australian Government.

R E F E R E N C E S

Abel T., Wandelt B. D., 2002, MNRAS, 330, L53
Adams M. et al., 2015, Chombo Software Package for AMR Applications -

Design Document. Lawrence Berkeley National Laboratory Technical
Report LBNL-6616E

Behrend R., Maeder A., 2001, A&A, 373, 190
Beuther H., Leurini S., Schilke P., Wyrowski F., Menten K. M., Zhang Q.,

2007, A&A, 466, 1065
Boldyrev S., 2002, ApJ, 569, 841
Butler M. J., Tan J. C., 2012, ApJ, 754, 5
Caselli P., Myers P. C., 1995, ApJ, 446, 665
Chini R., Hoffmeister V. H., Nasseri A., Stahl O., Zinnecker H., 2012,

MNRAS, 424, 1925
Crowther P. A., Schnurr O., Hirschi R., Yusof N., Parker R. J., Goodwin S.

P., Kassim H. A., 2010, MNRAS, 408, 731
Crowther P. A. et al., 2016, MNRAS, 458, 624
Cunningham A. J., Klein R. I., Krumholz M. R., McKee C. F., 2011, ApJ,

740, 107
Davis S. W., Jiang Y.-F., Stone J. M., Murray N., 2014, ApJ, 796, 107
Federrath C., Roman-Duval J., Klessen R. S., Schmidt W., Mac Low M.-M.,

2010a, A&A, 512, A81
Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010b, ApJ, 713, 269
Goodman A. A., Benson P. J., Fuller G. A., Myers P. C., 1993, ApJ, 406,

528
Hosokawa T., Omukai K., 2009, ApJ, 691, 823
Howell L. H., Greenough J. A., 2003, J. Comput. Phys., 184, 53

MNRAS 463, 2553–2573 (2016)

 at T
he A

ustralian N
ational U

niversity on N
ovem

ber 27, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


How massive stars get their mass 2573

Jacquet E., Krumholz M. R., 2011, ApJ, 730, 116
Jijina J., Adams F. C., 1996, ApJ, 462, 874
Klassen M., Kuiper R., Pudritz R. E., Peters T., Banerjee R., Buntemeyer

L., 2014, ApJ, 797, 4
Klassen M., Pudritz R., Kuiper R., Peters T., Banerjee R., 2016, ApJ, 823,

28
Klein R. I., 1999, J. Comput. Appl. Math., 109, 123
Krumholz M. R., Thompson T. A., 2012, ApJ, 760, 155
Krumholz M. R., Thompson T. A., 2013, MNRAS, 434, 2329
Krumholz M. R., McKee C. F., Klein R. I., 2004, ApJ, 611, 399
Krumholz M. R., McKee C. F., Klein R. I., 2005, ApJ, 618, L33
Krumholz M. R., Klein R. I., McKee C. F., Bolstad J., 2007, ApJ, 667, 626
Krumholz M. R., Klein R. I., McKee C. F., Offner S. S. R., Cunningham A.

J., 2009, Science, 323, 754
Kuiper R., Klahr H., Dullemond C., Kley W., Henning T., 2010, A&A, 511,

A81
Kuiper R., Klahr H., Beuther H., Henning T., 2011, ApJ, 732, 20
Kuiper R., Klahr H., Beuther H., Henning T., 2012, A&A, 537, A122
Kuiper R., Yorke H. W., Turner N. J., 2015, ApJ, 800, 86
Larson R. B., Starrfield S., 1971, A&A, 13, 190
Lejeune T., Cuisinier F., Buser R., 1997, A&AS, 125, 229
Levermore C. D., Pomraning G. C., 1981, ApJ, 248, 321
Li P. S., Martin D. F., Klein R. I., McKee C. F., 2012, ApJ, 745, 139
Longmore S. N., Pillai T., Keto E., Zhang Q., Qiu K., 2011, ApJ, 726, 97
McKee C. F., Tan J. C., 2003, ApJ, 585, 850
Masunaga H., Inutsuka S.-i., 2000, ApJ, 531, 350
Masunaga H., Miyama S. M., Inutsuka S.-i., 1998, ApJ, 495, 346
Matzner C. D., Jumper P. H., 2015, ApJ, 815, 68
Mihalas D., Klein R. I., 1982, J. Comput. Phys., 46, 97
Miyoshi T., Kusano K., 2005, J. Comput. Phys., 208, 315
Mueller K. E., Shirley Y. L., Evans N. J., II, Jacobson H. R., 2002, ApJS,

143, 469
Myers A. T., McKee C. F., Cunningham A. J., Klein R. I., Krumholz M. R.,

2013, ApJ, 766, 97
Nakano T., 1989, ApJ, 345, 464
Offner S. S. R., Klein R. I., McKee C. F., Krumholz M. R., 2009, ApJ, 703,

131
Ostriker E. C., Shu F. H., 1995, ApJ, 447, 813
Padoan P., Nordlund Å., 1999, ApJ, 526, 279
Palla F., Stahler S. W., 1991, ApJ, 375, 288
Palla F., Stahler S. W., 1992, ApJ, 392, 667

Pollack J. B., Hollenbach D., Beckwith S., Simonelli D. P., Roush T., Fong
W., 1994, ApJ, 421, 615

Rijkhorst E.-J., Plewa T., Dubey A., Mellema G., 2006, A&A, 452, 907
Rosdahl J., Teyssier R., 2015, MNRAS, 449, 4380
Rosen A. L., Krumholz M. R., Oishi J. S., Lee A. T., Klein R. I., 2016,

J. Comput. Phys., preprint (arXiv:e-prints)
Sana H. et al., 2014, ApJS, 215, 15
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