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ABSTRACT
Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow,
dense streams of cold gas that penetrate through the hot medium encompassed by a stable
shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the
heating and dissipation rate of the streams and their fragmentation and possible breakup, in
order to understand how galaxies are fed, and how this affects their star formation rate and
morphology. We present here the first step, where we analyse the linear Kelvin–Helmholtz
instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a
hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By
analytically solving the linear dispersion relation, we find a transition from a dominance of the
familiar rapidly growing surface modes in the subsonic regime to more slowly growing body
modes in the supersonic regime. The system is parametrized by three parameters: the density
contrast between stream and medium, the Mach number of stream velocity with respect to
the medium and the stream width with respect to the halo virial radius. A realistic choice for
these parameters places the streams near the mode transition, with the KHI exponential-growth
time in the range 0.01–10 virial crossing times for a perturbation wavelength comparable to the
stream width. We confirm our analytic predictions with idealized hydrodynamical simulations.
Our linear estimates thus indicate that KHI may be effective in the evolution of streams before
they reach the galaxy. More definite conclusions await the extension of the analysis to the
non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well,
self-gravity and magnetic fields.
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1 IN T RO D U C T I O N

According to the standard � cold dark matter model of cosmol-
ogy, the most massive haloes at any epoch lie at the nodes of the
cosmic web, and are penetrated by cosmic filaments of dark matter
(e.g. Bond, Kofman & Pogosyan 1996; Springel et al. 2005; Dekel
et al. 2009). These represent high-sigma peaks in the density fluc-
tuation field, much more massive than the Press–Schechter mass,
M∗, of typical haloes at that time (Press & Schechter 1974). At
redshift z = 1–4, when star formation is at its peak and most of
the mass is assembled into galaxies (Madau, Pozzetti & Dickin-
son 1998; Hopkins & Beacom 2006; Madau & Dickinson 2014),
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such haloes have virial masses of Mv ∼ 1012 M� and above, larger
than the critical mass for shock heating Mshock � 1012 M� (Birn-
boim & Dekel 2003; Dekel & Birnboim 2006). They thus contain
hot gas at the virial temperature, Tv ∼ 106 K. However, for such
high-sigma peaks, the filaments that feed the halo are significantly
narrower than the virial radius, and the gas residing in them is much
denser than the halo gas. Therefore, the radiative cooling time of
the stream gas is shorter than the local compression time, prevent-
ing the formation of a stable virial shock within the streams. The
streams are thus expected to remain cold, with temperatures of Ts

� 104 K, allowing them to penetrate efficiently through the hot halo
circumgalactic medium (CGM) on to the central galaxy (Dekel &
Birnboim 2006).

The above theoretical picture is supported by cosmological sim-
ulations (Kereš et al. 2005; Ocvirk, Pichon & Teyssier 2008; Dekel
et al. 2009; Ceverino, Dekel & Bournaud 2010; Faucher-Giguère,
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Kereš & Ma 2011; van de Voort et al. 2011). In these simulations,
cold streams with widths of a few to 10 per cent of the virial radius
penetrate deep into the halo. This gas supply allows the high star
formation rates (SFRs) of ∼20−200 M� yr−1 observed in massive
star-forming galaxies (SFGs) with baryonic masses of ∼1011 M�
at z ∼ 2 (Förster Schreiber et al. 2006; Genzel et al. 2006, 2008;
Elmegreen et al. 2007; Stark et al. 2008). These high SFR values are
only a factor of �2 lower than the accretion rate at the virial radius,
implying that at least half the gas mass flux brought into the halo
by the streams must reach the central galaxy (Dekel et al. 2009),
irrespective of what happens to the stream structure and thermal
properties along the way. The streams also play a key role in the
buildup of angular momentum in disc galaxies (Kimm et al. 2011;
Pichon et al. 2011; Stewart et al. 2011, 2013; Codis et al. 2012;
Danovich et al. 2012, 2015).

Cosmological simulations indicate that the streams maintain
roughly constant inflow velocities as they travel from the outer
halo to the central galaxy (Dekel et al. 2009; Goerdt & Ceverino
2015). The constant velocity, as opposed to the expected gravita-
tional acceleration, indicates energy loss into radiation which may
be observed as Lyman α cooling emission (Dijkstra & Loeb 2009;
Faucher-Giguère et al. 2010; Goerdt et al. 2010), though the dissipa-
tion process has not been explored yet. Based on radiative transfer
models, the total luminosity and the spatial structure of the emit-
ted radiation appear similar to Lyman α ‘blobs’ observed at z > 2
(Steidel et al. 2000; Matsuda et al. 2006, 2011). The models find
that roughly half the radiation comes from the dissipation of grav-
itational energy while the other half is due to heating from the UV
background (Goerdt et al. 2010, though see also Faucher-Giguère
et al. 2010 who found somewhat lower luminosities in their simula-
tions). Radiative transfer models also show that a central quasar can
power the emission by supplying seed photons which scatter inelas-
tically within the filaments, producing Lyman α cooling emission
that extends to several hundred kpc and appears similar to observed
structures (Cantalupo et al. 2014). Recent observations using the
MUSE integral-field instrument suggest that such extended Ly-
man α emitting nebulae are ubiquitous around the brightest quasars
at z ∼ 3.5 (Borisova et al. 2016). In addition to emission, the cold
streams consisting of mostly neutral hydrogen should also be visible
in absorption, and can account for observed Lyman-limit systems
and damped Lyman α systems (Fumagalli et al. 2011; Goerdt et al.
2012; van de Voort et al. 2012). Observations using absorption fea-
tures along quasar sightlines to probe the CGM of massive SFGs
at z ∼ 1–2 reveal low-metallicity, coplanar, corotating accreting
material (Bouché et al. 2013, 2016; Prochaska, Lau & Hennawi
2014), providing further observational support for the cold-stream
paradigm. Strong Lyman α absorption has also been detected in the
CGM of massive sub-millimetre galaxies at z ∼ 2 (Fu et al. 2016).

Despite the growing evidence from simulations and observations
that cold streams are a fundamental part of galaxy formation at
high redshift, several important questions remain regarding their
evolution. How much of the stream energy is dissipated as they
travel through the CGM? What are the implications on the emitted
radiation and the mass inflow rate on to the galaxy? How do the
streams join the galaxy, in terms of coherency versus fragmenta-
tion/clumpiness, temperature and velocity? How does this affect the
growth of angular momentum and the SFR in the disc?

While there is some preliminary observational evidence for the
fragmentation of cold streams (Cantalupo et al. 2014), most attempts
to address these questions have used cosmological simulations.
Unfortunately, in current cosmological simulations, the resolution
within the streams is never better than a few hundred pc, and is often

of the order of a kpc, comparable to the stream width itself. They
thus cannot resolve the detailed physical processes associated with
stream instabilities necessary to properly address these questions.
Grid-based adaptive-mesh-refinement (AMR) codes show streams
that remain cold and coherent outside of ∼0.3Rv, inside of which
a messy interaction region is seen where the streams collide, frag-
ment and experience strong torques before settling on to the disc
(Ceverino et al. 2010; Danovich et al. 2015). These simulations ex-
hibit high gas mass accretion rates on to the central galaxy, roughly
half the virial accretion rate (Dekel et al. 2013). Simulations using
the moving mesh code AREPO (Springel 2010; Vogelsberger et al.
2012) suggest that the streams heat up at ∼0.25–0.5Rv, with most
of the accreted gas heating to roughly the virial temperature be-
fore falling on to the galaxy (Nelson et al. 2013). Nevertheless, the
mass inflow rate on to the central galaxy ends up very similar to
the virial accretion rate, likely because the dense stream gas in the
inner halo rapidly cools after heating. It is unclear whether this gas
is ever in hydrostatic equilibrium within the halo. The same study
argued that previous reports of streams remaining cold and coherent
in smoothed-particle-hydrodynamic (SPH) simulations were due to
numerical inaccuracies associated with the standard formulation of
SPH.

Since current cosmological simulations are far from being able to
properly resolve the streams, a more fundamental analytical and nu-
merical approach is warranted. The physical problem of the evolu-
tion of a supersonic, cold, dense, gas stream in a hot, dilute medium
has not been addressed thus far in the literature, even at its sim-
plest hydrodynamic level of Kelvin–Helmholtz instability (KHI).1

This is the first in a series of papers where we study this issue, in
the context of cold streams feeding massive galaxies at high red-
shift, using analytic models of increasing complexity together with
idealized simulations and concluding with full-scale cosmological
simulations with tailored mesh refinement in the streams.

In this paper, we take the first step and address KHI under fully
compressible conditions.2 We derive the dispersion relation for the
growth of linear instabilities in a confined planar slab and cylinder,
and ask whether such instabilities grow to non-linear amplitudes
in a virial crossing time. In a forthcoming paper (Padnos et al.,
in preparation), we will address in detail, analytically and using
idealized simulations, the non-linear evolution of these instabilities.
In future work, we will add one by one thermal conduction, cooling,
the external potential of the host halo, self-gravity and magnetic
fields. In the final phase, we will study cosmological simulations
with forced mesh refinement in the streams, to explore the effect
of stream instability on galaxy formation at the halo centre and the
effects of feedback on the streams.

This paper is organized as follows. In Section 2, we summarize
the derivation of the linear dispersion relation for compressible
KHI in different idealized geometries. Mathematical details of the
derivations are provided in several appendices, which may be of
interest to the mathematically inclined reader. In Section 3, we
use numerical simulations to test the analytic predictions of the
preceding section. In Section 4, we apply the analytic formalism

1 The problem of a hot jet travelling supersonically in a cold medium has
been studied, see references in Section 2.
2 We use ‘compressible’ to refer to flows with arbitrary Mach number,
supersonic (M > 1), transonic (M ∼ 1) or subsonic (M < 1). We use
‘incompressible’ to refer to the limit where M → 0, equivalent to taking the
sound speed c →∞. Since pressure and density are related through the sound
speed, dP ∝ c2dρ, the density is effectively constant in the incompressible
limit.
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to the case of cosmic cold streams and estimate the number of
e-foldings of growth experienced by initially small perturbations
within a virial crossing time. In Section 5, we speculate as to the
effects of additional physics not included in our analysis, presenting
an outline for future work. We discuss our results and summarize
our conclusions in Section 6.

2 C O M P R E S S I B L E K H I

In this section, we derive the dispersion relations for compressible
KHI in several different geometries. For simplicity and analytic
tractability, we begin by deriving the relation in planar geometry,
first discussing a ‘two-zone instability’, or a sheet, where two semi-
infinite fluids are separated by a single planar interface, and then a
‘three-zone instability’, or a slab, where one fluid is confined to a
planar slab of finite thickness and surrounded by a second (back-
ground) fluid from both sides. KHI in a slab is qualitatively different
than in a sheet due to the appearance of body modes, unstable pertur-
bations caused by waves reverberating back and forth between the
slab boundaries, that dominate the instability at high Mach numbers
(Section 2.3.4). We then derive the dispersion relation for a cylin-
drical stream, and show that the behaviour of linear perturbations
with wavelengths comparable to or smaller than the stream radius
is effectively identical to that of perturbations in a slab.

Several previous studies have addressed linear stability of as-
trophysical jets to KHI in both planar and cylindrical geometries,
both analytically and numerically (e.g. Ferrari, Trussoni & Zaninetti
1978; Birkinshaw 1984, 1990; Payne & Cohn 1985; Hardee 1987;
Hardee & Norman 1988; Norman & Hardee 1988; Bodo et al. 1994;
Perucho et al. 2004). These studies focus primarily on hot, dilute
jets travelling in cold, dense media. As we will see below, the main
difference between such a scenario and that studied here, of cold
streams in a hot medium, is the ratio of the stream sound-crossing
time to the KHI exponential-growth time. While this can be impor-
tant for the overall stability of the stream (see Section 4), it does not
fundamentally alter the linear dispersion relation, and our derivation
is similar to those presented in Payne & Cohn (1985, for the cylin-
der) and Hardee & Norman (1988, for the slab). However, there
are certain differences in our approaches and conclusions which we
highlight in the text, and we find our analysis to be more complete,
addressing a sheet, a slab and a cylinder in a self-contained and
consistent way.

2.1 General KHI in planar coordinates

We begin with the basic equations of hydrodynamics, which rep-
resent conservation of mass (the continuity equation), momentum
(the Euler equation) and energy:

∂ρ

∂t
+ (v · ∇) ρ + ρ∇ · v = 0, (1)

ρ

[
∂v

∂t
+ (v · ∇) v

]
+ ∇P = 0, (2)

∂P

∂t
+ (v · ∇) P − c2

[
∂ρ

∂t
+ (v · ∇) ρ

]
= 0. (3)

Above, ρ is the fluid’s density, v its velocity and P the pressure in
the fluid. We assume an ideal equation of state, so c = (γ P/ρ)1/2

is the sound speed, where γ is the adiabatic index of the fluid,
γ = (∂ lnP/∂ lnρ)s.

We consider a time-independent flow in the ẑ direction, where
the flow velocity and the fluid density are arbitrary functions of x
(in Cartesian coordinates):

ρ0(x, y, z) = ρ0(x), v0(x, y, z) = v0(x)ẑ. (4)

In this case, with no external forces, equation (2) dictates that the
pressure is uniform, P0(x, y, z) = P0. On top of this equilibrium flow,
we impose small perturbations in the fluid variables, ρ = ρ0 + ρ1,
v = v0ẑ + u and P = P0 + P1, where the perturbation in each
variable f obeys f1 
 f0. To study the growth of instabilities, we
decompose each of the perturbed quantities into Fourier modes of
the form

f1(x, y, z, t) = f1(x)ei(kyy+kzz−ωt). (5)

In other words, the perturbations are travelling waves in the yz plane
with wave vector k = kyŷ + kzẑ and frequency ω and an arbitrary
x dependence.

By inserting these perturbations into equations (1)–(3) and lin-
earizing, we can derive algebraic relations between the x-dependent
amplitudes of the pressure perturbation and its derivatives with
respect to x to those of all other perturbations.3 Using the conven-
tions ∂f /∂x = f ′, kz = k cos(ϕ), ky = k sin(ϕ) and vk = v0 · k̂ =
v0 cos(ϕ), we obtain

ρ1 = − 1

k2
(
vk − ω

k

)2

[
P ′′

1 − 2v′
k

vk − ω
k

P ′
1 − k2P1

]
, (6)

uz = − cos(ϕ)

ρ0

(
vk − ω

k

)
[

v′
k

k2 cos2(ϕ)
(
vk − ω

k

)P ′
1 + P1

]
, (7)

uy = − sin(ϕ)

ρ0

(
vk − ω

k

)P1, (8)

ux = i

ρ0k
(
vk − ω

k

)P ′
1. (9)

Note that in equations (6)–(9) all fluid variables are functions of
x. In addition, we are left with a second-order ordinary differential
equation (ODE) for P1(x):

P ′′
1 −

[
2v′

k

vk − ω
k

+ ρ ′
0

ρ0

]
P ′

1 − k2

[
1 −

(
vk − ω

k

c

)2
]

P1 = 0. (10)

Equation (10) is an eigenvalue equation. Given profiles along x for
the unperturbed density and velocity and boundary conditions for
P1, solutions exist only for certain combinations of ω and k, which
define the dispersion relation, ω(k). Since equation (10) depends
only on the component of the velocity parallel to the perturbation
wave vector, vk, with no explicit dependence on the propagation
angle ϕ, we restrict our analysis to perturbations where ky = 0 so
that vk = v0.

2.1.1 Temporal versus spatial stability analysis

There are in general two types of stability analyses, temporal and
spatial. In the former, the wavenumber k is real while the frequency
ω is complex. Physically, this represents seeding the entire system
with a spatially oscillating perturbation and studying its temporal

3 We could have chosen any of the five perturbed variables and expressed
the other four in terms of it. However, the pressure is a convenient choice
because it must always be continuous, while the other variables can in
principle have discontinuities.
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growth. In the latter, ω is real while k is complex. This represents
seeding a temporally oscillating perturbation at the stream origin
and studying its downstream spatial growth. This distinction is par-
ticularly important when performing numerical simulations, as they
change the required boundary and initial conditions. Studies of the
stability of jets whose source has intrinsic variability (such as an
AGN or a gamma-ray burst) often employ spatial stability analy-
ses. However, the cosmic web streams we are studying do not have
a well-defined variable source outside the halo, but rather experi-
ence perturbations from the halo throughout their extent. Therefore,
we perform a temporal stability analysis, envisioning a stationary
stream suffering some perturbation across its extent, and asking
how much the perturbation will grow in a virial crossing time.

2.2 The planar sheet

We first consider the classic case of two fluids separated at x = 0.
For consistency with later sections when we discuss a confined
stream with finite thickness in a background, we label the two
fluids with subscripts ‘b’ and ‘s’, for x > 0 and x < 0, respectively.
We assume each fluid to have initially uniform density and velocity.
This problem is often referred to as the ‘vortex sheet’ and was first
addressed for two compressible fluids by Landau (1944). In this
case, the second term in equation (10) vanishes for all x �= 0. The
equation must be solved separately in the regions x > 0 and x < 0,
subject to the boundary conditions that the pressure perturbation
vanishes at infinity and is continuous across the boundary at x = 0.
The solution is

P1 =
{

Ae−qbx x > 0

Aeqsx x < 0
, (11)

where A is a constant of integration that depends on the initial
conditions, and we have defined the generalized wavenumbers qb

and qs by

qb,s = k

[
1 −

(
ω − kvb,s

kcb,s

)2
]1/2

. (12)

Since ω is in general complex, qb, s is the square root of a complex
number, forcing us to choose a branch cut in the complex plane. We
have chosen to define Re(qb, s) > 0, which ensures that the amplitude
of perturbations decays exponentially away from the interface be-
tween the two fluids. These are therefore known as ‘surface modes’.
A somewhat technical discussion of the meaning and justification
of this branch cut can be found in Appendix A.

To proceed, we require a fourth boundary condition. This is
achieved by realizing that the velocity perpendicular to the interface
between the fluids causes a spatial displacement in the interface po-
sition, from x = 0 to h, and this displacement must be the same when
approaching the interface from either side. This is often called ‘the
Landau condition’. Expanding h in the same Fourier modes as the
other perturbed quantities, this results in the first-order equation

ux |x=0 = ∂h

∂t
+ (v · ∇) h = ik

(
v0|x=0 − ω

k

)
h. (13)

Inserting equations (9) and (11) into (13) from both sides of the
interface and then dividing out h yields the dispersion relation

(ω − kvb)2

(ω − kvs)
2 = − ρs

ρb

qb

qs
. (14)

In the incompressible limit, the speed of sound goes to infinity in
both media, and therefore from equation (12) qb, s → k. In this

limit, equation (14) reduces to the familiar form of the classical
Kelvin–Helmholtz dispersion relation (e.g. Chandrasekhar 1961)

ω± = ρbvb + ρsvs

ρb + ρs
k ± i

√
ρsρb|vs − vb|

ρb + ρs
k. (15)

Since the growth rate cannot depend on the frame of reference, we
analyse the general case in the frame where the background is static,
vb = 0, and the stream is moving with velocity vs = v. Furthermore,
we define unitless variables

	 ≡ ω

kV
, δ ≡ ρs

ρb
, Mb,s ≡ V

cb,s
. (16)

Here, 	 is the phase velocity in units of the stream velocity, δ is
the density contrast between the stream and the background and
Mb, s are the Mach number of the stream velocity with respect to the
background and the stream itself, respectively. Since pressure equi-
librium is assumed, Ms = √

δMb. In this notation, the dispersion
relation for the incompressible sheet, equation (15), becomes

	± = δ

1 + δ
± i

δ1/2

1 + δ
. (17)

By further defining

Z ≡ −1

δ

(
	

	 − 1

)2 (
1 − δM2

b (	 − 1)2

1 − M2
b 	 2

)1/2

, (18)

the dispersion relation for the compressible sheet, equation (14),
becomes

Z = 1, (19)

an algebraic equation for the unknown 	 . We learn from the equa-
tion that 	 depends only on δ and Mb, with no dependence on k.
This implies that ω ∝ Vk, which could have been predicted from
dimensional analysis, since the only length-scale in the problem is
the perturbation wavelength.

By squaring both sides of equation (19), inserting equation (18)
and rearranging, we get a sixth-degree polynomial equation in 	

that can be factored as the product of a quadratic with a quartic[
δ (	 − 1)2 − 	 2

] · [
δ (	 − 1)2

(
M2

b 	 2 − 1
) − 	 2

] = 0.

(20)

A detailed analysis of this equation is presented in Appendix B. We
summarize the main points below. The two roots of the quadratic
part and two of the four roots of the quartic part are always real, and
do not solve equation (19). Rather they are solutions to the equation
Z = −1, arising from the fact that we squared equation (19). At
low Mach numbers, the two remaining roots of the quartic part are
complex conjugates, representing a growing unstable mode and a
decaying mode. Both of these are indeed solutions to equation (19),
with Z = 1. Equation (19) thus admits only two solutions, a growing
and a decaying mode, as in the incompressible limit (equation 17).
However, above a critical Mach number, these two complex roots
become real as well (while still solving Z = 1), and the dispersion
relation admits only stable solutions. For Mb � 1, the solutions
converge to

	∞ = M−1
b , 1 − M−1

s , (21)

which represent waves with phase velocities ω/k = cb, v − cs.
The critical Mach number for stability is given by

Mcrit = (
1 + δ−1/3

)3/2
. (22)
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Figure 1. Growth rate for unstable modes of the sheet as a function of
the Mach number, Mb, and the density contrast, δ. Colour represents the
imaginary part of 	 = ω/(kV). The black region at high Mach numbers
shows the stable zone where linear perturbations do not grow. The white
dash–dotted line shows the analytic expression for Mcrit, the critical Mach
number above which the sheet is stable, given by equation (22).

This generalizes the result of Landau (1944), who showed that for
identical fluids, with δ = 1, the flow is stable above Mcrit = √

8 �
2.83. For δ = 10 and 100, Mcrit ∼ 1.77 and 1.34, respectively.

The analytic expression for the growing mode solution as a func-
tion of Mb and δ can be found by finding the roots of the quartic
polynomial in equation (20) and picking the complex root with the
positive imaginary part. However, the full expression is very long
and intractable. We show the growth rate of the instability, Im(	 ),
as a function of Mb and δ in Fig. 1. As Mb → 0, the growth rate
converges to the solution for an incompressible sheet (equation 17).
For fixed δ, raising Mb from 0 to a relatively small value causes
the growth rate to become larger, meaning the system becomes
more unstable. However, raising Mb further to larger values causes
the growth rate to decline, until it reaches zero at Mcrit, shown by
the white curve.

Some intuition as to why the sheet becomes stable to linear
perturbations at high Mach numbers can be gained by considering
what happens when the initially flat interface is perturbed with a
sinusoidal displacement. Upstream of each ‘crest’, the fluids are set
to collide, creating a high-pressure area, while downstream the fluids
are set to separate, creating a low-pressure area (see Fig. 2). The
flow that develops in response to this pressure perturbation tends to
increase the perturbation amplitude. The typical time-scale for this
process to occur is the sonic time across a perturbation wavelength,
λ/c. However, if the flow is sufficiently fast with a high Mach
number, this becomes very long compared to the relevant time-scale
for the steady state flow, λ/v. In this case, the fluid upstream does
not have time to react to the displacement of the interface, colliding
with the crests rather than flowing around them and suppressing the
instability.

By inserting the growing mode solution into equation (12) and
then into equation (11), we obtain the spatial form of the pressure
perturbation. This is shown in Fig. 2 for the case Mb = 1.0 and
δ = 100. We have normalized the perturbation by its maximum
amplitude A, so that it is unity at x = 0. For reference, we also show
the expected form of the perturbed interface, with an amplitude
h = 0.025λ, where λ is the perturbation wavelength. The pressure
perturbation decays rapidly with distance from the interface because

Figure 2. Pressure perturbation in a sheet with Mb = 1.0 and δ = 100,
from equation (11), with the dense fluid on the bottom. The white line
represents the perturbation in the interface height, which has an amplitude
of h = 0.025λ. This is a surface mode, which decays exponentially with
distance from the interface, because qb, s are nearly real. The wave penetrates
deeper into the fluid with lower density, and the angle of wave propagation
breaks at the interface between the fluids.

qb, s are nearly real. This is a general feature of surface modes. The
differences in penetration depth and propagation angle between the
two fluids are caused by differences in the real and imaginary parts
of q respectively between the two fluids. In the language of acoustic
waves, this is caused by a change in the acoustic impedance of the
two fluids.

2.3 The planar slab

We now consider a three-zone problem, which we refer to as the
slab. The slab is confined to the region |x| < Rs and is infinite
in the y and z directions. We refer to the fluid at |x| > Rs as the
background, and assume it to be the same fluid on either side of
the slab. As before, we assume each unperturbed medium to have
uniform density and velocity. Following the same procedure as in
Section 2.2, we solve equation (10) in each region subject to the
boundary conditions that P1 vanishes at infinity and is continuous
across both slab interfaces. The result is

P1 =

⎧⎪⎨
⎪⎩

A e−qb(x−Rs) x > Rs

A sinh(qs[x+Rs])−D sinh(qs[x−Rs])
sinh(2qsRs) |x| < Rs

D eqb(x+Rs) x < −Rs

, (23)

where A and D are two constants of integration.
By applying the Landau condition (equation 13) at the interfaces,

x = ±Rs, we learn that they are not independent. A self-consistent
solution where both A and D are non-zero requires A = ±D, which
in turn gives a relationship between the displacement of the two
interfaces from equilibrium hRs = ∓h−Rs . The case A = D, hRs =
−h−Rs corresponds to a symmetric perturbation of the pressure
and is called the pinch mode, hereafter P-mode. The other case
corresponds to an antisymmetric perturbation of the pressure and
is called the sinusoidal mode, hereafter S-mode. These are shown
schematically in Fig. 3.
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3926 N. Mandelker et al.

Figure 3. Schematic representation of the two instability modes in the
planar slab. The left-hand panel represents the antisymmetric S-mode while
the right-hand panel represents the symmetric P-mode.

Inserting these two solutions into equation (23) gives for the
pressure perturbation within the slab

P1,s(x) = A
S (qsx)

S (qsRs)
, (24)

where S(x) = sinh(x) or cosh(x) for S-modes or P-modes, respec-
tively. The corresponding dispersion relations are

(ω − kvb)2

(ω − kvs)
2 = − ρs

ρb

qb

qs
T (qsRs), (25)

where T(x) = tanh(x) or coth(x) for S-modes or P-modes, respec-
tively.

To simplify equation (25), we again move into the frame where
the background is static and the slab velocity is vs = v, and rewrite
the equation in unitless form, using equation (16) and

K = kRs. (26)

The result is

Z = T
([

1 − δM2
b (	 − 1)2

]0.5
K

)
, (27)

where Z is defined in equation (18). This should be compared to the
dispersion relation for the sheet, Z = 1.

The dispersion relations for S- and P-modes can be written as
a single equation by inverting equation (27) and writing K as a
function of 	 ,

K = 0.5
[
1 − δM2

b (	 − 1)2
]−0.5

(α + iβ) (28a)

α = ln (|1 + Z|) − ln (|1 − Z|) (28b)

β = arg (1 + Z) − arg (1 − Z) + nπ, (28c)

where n is any whole number, odd for P-modes and even for S-
modes, and arg(1 ± Z) is between −π and π due to our chosen
branch cut (see Appendix A).

Equations (25), (27) and (28) can be used interchangeably as
the dispersion relation for the compressible slab. From equations
(28), we learn that the slab solutions exhibit a qualitatively different
behaviour than the sheet, for two reasons. First, in the sheet, 	

was independent of k which resulted in the scaling ω ∝ k. On the
other hand, in the slab, 	 depends explicitly on K. This is due to
the additional length-scale in the problem, the slab width, and will
lead to a non-trivial dependence of the growth rate on wavenum-
ber. Secondly, while equation (14) admitted only one solution for
the growing mode ω(k), in slab geometry there can be an infinite
number of modes for a fixed wavenumber k, each corresponding to

a different value of n in equations (28), arising from the periodicity
of tanh for complex arguments. We will discuss this in detail in the
following sections, where we begin by examining various limits of
the dispersion relation.

2.3.1 Incompressible limit

In the incompressible limit, when in equation (12) qb, s → k, the
slab dispersion relation, equation (25), reduces to

ω± = ρbvb + T (K)ρsvs

ρb + T (K)ρs
k ± i

√
T (K)ρsρb|vs − vb|

ρb + T (K)ρs
k. (29)

It is straightforward to see that this converges to equation (15) for
short wavelengths, K � 1. In practice, convergence is achieved
for wavelengths λ � 3Rs. At long wavelengths, K 
 1, both modes
have ω ∝ k1.5, meaning that the growth rate for the slab decays more
rapidly than for the sheet as k → 0. The dashed lines in Fig. 4 show
the growth rates (Im(ω), left) and oscillation frequencies (Re(ω),
right) as a function of K for the incompressible slab with δ = 100,
in comparison to the compressible slab discussed below.

2.3.2 Long-wavelength limit

In the long-wavelength limit, as K → 0, we show in Appendix C
that qb, s → 0 as well. Therefore, tanh(qsRs) � 1/coth(qsRs) �
qsRs. This can be used to simplify equation (27) and expand 	

in a power series in K. The result is that both S- and P-modes are
unstable at long wavelengths for any Mb and δ. For this reason, the
long-wavelength modes are referred to as fundamental modes. To
leading order in K, the dispersion relations for the S- and P-modes
are (see Appendix C for the derivation)

	S, f � δK ± i(δK)1/2 (S), (30a)

	P, f � 1 ± iδ−1/2(1 − M2
b )−1/4K1/2 (P). (30b)

As K → 0, the fundamental S- and P-modes approach 	 = 0
and 1, respectively, which result in (1 + Z)/(1 − Z) = 1 and −1.
These modes thus correspond to n = 0 and −1 in equation (28).

It is instructive to compare these solutions to the long-wavelength
limit of the incompressible slab (equation 29). To leading order in
K, the fundamental S-mode is identical to the incompressible case.
Corrections dependent on Mach number are all higher order in K.
On the other hand, the growth rate of the fundamental P-mode is
multiplied by a factor4 (1 − M2

b )−1/4 compared to the incompress-
ible case. For Mb 
 1, the compressible growth rate is enhanced
by a factor ∼(1 + 0.25M2

b ), while for Mb � 1 it is suppressed by a
factor ∼√

2Mb. Thus, for sufficiently high Mach numbers, the in-
stability is suppressed, in qualitative similarity to the compressible
sheet.

2.3.3 Short-wavelength limit

At short wavelengths, K � 1, the slab solution converges to the
sheet solution, but it does so in different ways depending on the
Mach number. We summarize the main points below, providing
more details in Appendix D. We begin by searching for solu-
tions to equations (28) where K → ∞ and the right-hand side of

4 In the special case of Mb = 1, the fundamental P-mode has a slightly
different form, where Im(ω) ∝ k7/5. See Appendix C for details.
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Kelvin–Helmholtz instability in cold flows 3927

Figure 4. Numerical solution to the slab dispersion relation, equation (27), for Mb = 1.5 and δ = 100. For this choice of Mb and δ, the sheet is stable (Fig. 1),
while the slab is unstable through body modes. The left-hand panel shows the growth rate, ωI , normalized by the inverse of the sound-crossing time in the
slab, t−1

sc = cs/(2Rs), i.e. the ratio of the sound-crossing time to the Kelvin–Helmholtz time. The right-hand panel shows the oscillation frequency of the wave,
ωR , normalized by t−1

sc . The solid black and beige lines show the fundamental (compressible) S- and P-modes, respectively, while the dashed lines show the
corresponding solutions for the incompressible slab (equation 29). The coloured lines show the n = 1–40 modes (n = 1 in green, n = 2 in blue, and so on,
with even/odd n representing S/P-modes, respectively). At long wavelengths, the two fundamental modes are similar to their incompressible counterparts.
However, at K � 1, the growth rates for the fundamental modes decay while the incompressible modes diverge as ωI ∝ k. Modes with n ≥ 1 are excited at
finite wavenumbers that scale linearly with n, reach a maximum growth rate at resonance and then decay at large K. The vertical dotted lines mark, from left to
right, wavelengths of λ = 2Rs, Rs and 0.5Rs, where the dominant modes are n = 2, 4 and 9, respectively. The ridge line connecting the maximal growth rates
of each mode diverges logarithmically, and is well fitted by ωI, 3 from equation (36), shown by the thick dash–dotted line. As each mode stabilizes, its phase
velocity converges to ωR /k = v − cs (right-hand panel).

equation (28a) is real, since K is real by definition in the temporal
stability analysis we are performing.

At low Mach numbers, Mb 
 1, when the sheet is unstable, we
have Im(qs) 
 Re(qs), and the solution is given by Z = 1, which
is the dispersion relation for the sheet (equation 18). These are
surface modes, decaying exponentially with depth in the slab. It is
unsurprising that such modes resemble the sheet, since in the limit
λ 
 Rs we expect the perturbations not to be affected by the slab
geometry.

At high Mach numbers, Mb > Mcrit, when the sheet is stable,
we have Im(qs) > Re(qs), and the asymptotic solution is given by
1 − δM2

b (1 − 	 )2 = 0. This leads to 	 = 1 − M−1
s = 	∞, which

is the high Mach number (stable) limit of the growing mode in the
sheet (equation 21). Physically, modes with Im(qs) � Re(qs) are
body modes, which traverse the width of the slab without decaying,
and bring the two interfaces into causal contact. As 	 → 	∞,
Z goes to zero (equation 18), so equations (28) can be expanded
to derive an expression for the asymptotic transverse wavenumber
within the slab

qsRs = [
1 − δM2

b (	 − 1)2
]1/2

K � i
(n + 2)π

2
. (31)

Note that there is an extra 2π here compared to equations (28),
because as K is increased from 0 to ∞, (1 + Z)/(1 − Z) completes a
full revolution about the origin in the complex plane, while its argu-
ment is defined in the range (−π, π; Appendix F). These represent
standing waves within the slab, with wavelengths λ⊥ = 4Rs/(n + 2).
So the nth mode has n + 1 nodes across the slab width of 2Rs, which
can be seen qualitatively in Fig. 5. The slab acts as a waveguide for

these modes, each of which has phase velocity ω/k = v − cs. This
is a qualitatively new phenomenon compared to the sheet. In Sec-
tion 2.3.4, we show that each of these modes is unstable at finite
wavelengths, and characterize the instability. Therefore, while each
individual mode (each individual n) converges to the vortex sheet
solution at short wavelengths for all Mach numbers, the appearance
of higher order unstable modes at shorter and shorter wavelengths
renders the slab unstable at all Mach numbers, unlike the sheet
which is stable at high Mb.

2.3.4 Unstable body modes

At long wavelengths, solutions to the dispersion relation (equa-
tions 28) exist only for n = −1, 0. In the incompressible limit,
Mb 
 1, these are the only two solutions at any wavelength. How-
ever, at high Mach numbers, there are an infinite number of body
mode solutions at short wavelengths. The questions we need to
address are when do these modes appear, whether they are unsta-
ble and what their growth rate is. These are answered in detail in
Appendices E to H, and we summarize the main results below.

From equations (18) and (28), we see that when 	 = 0 the
wavenumber of the nth mode is Kn,0 = nπ/(2

√
M2

s − 1). Since K
must be real, such solutions are only possible for n ≥ 1 if Ms > 1.
This was incorrectly identified by previous authors (e.g. Payne &
Cohn 1985; Hardee & Norman 1988) as the condition for un-
stable body modes. However, for every n ≥ 1, the solution (	 ,
K) = (0, Kn, 0) is stable, meaning that solutions to the dispersion
relation with K � Kn, 0 have real 	 . A necessary and sufficient
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3928 N. Mandelker et al.

Figure 5. Pressure perturbation in a slab with Mb = 1.5 and δ = 100 normalized by its maximal value at the interfaces, A (equation 23), for the first six
unstable modes. The longitudinal wavelength of the perturbation (along z) is equal to the slab diameter, λ = 2Rs, and the amplitude of fluid displacement at the
interfaces is h = 0.025λ, which is shown by the white curves. The top row shows the first three P-modes: n = −1 (the fundamental mode, left), n = 1 (centre)
and n = 3 (right). The bottom row shows the first three S-modes: n = 0 (the fundamental mode, left), n = 2 (centre) and n = 4 (right). All unstable modes
for this case are body modes, which penetrate to large depths in both the slab and the background. The number of transverse nodes within the slab (along x) is
(n + 1), creating a more complex standing wave pattern as n increases.

condition for body modes to be unstable is not Ms > 1, but rather
(Appendix E)

Mtot = V

cs + cb
=

√
δ

1 + √
δ
Mb > 1. (32)

If Mtot < 1, only the fundamental modes with n = −1, 0 are unstable,
and these modes are surface modes.5

When Mtot > 1, the smallest unstable wavenumber (correspond-
ing to the longest unstable wavelength, and hereafter referred to as
marginal stability) for the nth body mode is well approximated by
(Appendix F)

Kn � nπ

2
√

δ(Mb − 1)2 − 1
. (33)

Defining κ ≡ K − Kn, the growth rate of the nth body mode near
marginal stability scales as (Appendix G)

Im(	n) ∝ δ1/4M2
b n−3/2κ1/2. (34)

This growth rate diverges strongly with Mach number, which is
in contrast to the fundamental modes. Recall that near marginal
stability at K = 0, the growth rate of the fundamental S-mode

5 Note that when δ 
 1, which was the regime studied by Payne & Cohn
(1985) and Hardee & Norman (1988), Mtot ∼ Ms.

was independent of Mb, while the growth rate of the fundamental
P-mode scaled as M

−1/2
b (equations 30).

Since the growth rate of each mode goes to zero as K → ∞
(Section 2.3.3), it must reach a maximum at some intermediate K,
hereafter the mode resonance. The resonant wavenumber is well
approximated by (Appendix H)

Kn, res � nπ

2Mtot
. (35)

At a given wavelength, the effective growth rate of the slab is deter-
mined by the mode with the largest growth rate at that wavelength
(see Fig. 4). This growth rate, ωI = Im(ω), can be written as the
limit of an infinite sequence of functions (Appendix H)

ωI, 1 = t−1
sc ln

(
4Mtot

√
δ

1 + √
δ
K

)
(36a)

ωI, j = ωI, 1 − t−1
sc ln

(
tscωI, j−1

)
, (36b)

where ωI = limj→∞ ωI, j and

tsc = 2Rs/cs (37)

is the slab sound-crossing time. In practice, the sequence converges
by j = 3 even for relatively low values of K (Fig. H2). In the
asymptotic limit K → ∞, ωI ∝ ln(K). Hence, the effective growth
rate for KHI in a compressible slab diverges logarithmically with
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Kelvin–Helmholtz instability in cold flows 3929

wavenumber. In contrast, the growth rate for an incompressible
sheet or slab diverges linearly with wavenumber, ωI ∝ k, while the
compressible sheet becomes stable at high Mach numbers, ωI =
0. The scaling of ωI ∝ ln(k) for the effective growth rate of the
compressible slab is in some sense a compromise between these two
extremes, though recall that each individual mode does stabilize as
k → ∞ (Section 2.3.3).

At resonance, qb � qs (Appendix H). This means that the pene-
tration depth of the perturbation, �b, s = 1/Re(qb, s), is comparable
in both the background and the slab. Furthermore, the propagation
angle of the perturbation wave with respect to the normal to slab,
given by cot(θb, s) = Im(qb, s)/k, is the same in both media (see
Fig. 5, panels marked n = 1 and n = 2). At resonance, we have
sin(θb,s) � M−1

tot , commonly referred to as the Mach angle.
The physical origin of body modes in a slab can be under-

stood in the following way. When a perturbation is excited, the
two interfaces between the slab and the background initially behave
as independent sheets, only coming into causal contact once a slab
sound-crossing time has elapsed. At high Mach numbers, surface
modes are stable and the perturbation does not grow in amplitude,
but rather results in acoustic waves propagating between the two
interfaces, being reflected off of and transmitted through them. The
pressure perturbation within the slab (equation 24) can be written as
the sum of an incident and a reflected wave, with wavenumber qs,
while the pressure perturbation in the background can be thought
of as a transmitted wave, with wavenumber qb. At certain critical
incident angles, there is constructive interference between waves
emanating from different points along the slab, assumed to have in-
finite extent. It can be shown that the acoustic impedances of the two
fluids are equal when qb = qs, which is roughly the case at the res-
onance of body modes (Appendix H). The equal impedances cause
the reflectance and transmission coefficients of the system to di-
verge, which causes the perturbation amplitude to grow. For further
details, see Payne & Cohn (1985) and Hardee & Norman (1988).
These authors estimated the resonant growth rates of body modes
(which they call reflected modes) by associating these singularities
in the reflectance and transmission coefficients with unstable solu-
tions to the dispersion relation, rather than deriving them directly
from the dispersion relation as we do.

2.3.5 Numerical solution

We here summarize, in Figs 4 and 5, all the features of unstable
body modes in the slab derived above. Fig. 4 shows a numerical
solution to the slab dispersion relation, equation (27), for δ = 100
and Mb = 1.5. We show as a function of wavenumber, K = kRs, the
growth rate of the perturbation, ωI = Im(ω) = t−1

KH (left), and the
oscillation frequency of the wave, ωR = Re(ω) = 2πt−1

period (right).
In both cases, we normalize the frequency by the inverse sound-
crossing time in the slab, t−1

sc . We show the two fundamental modes
(n = −1, 0) and the modes n = 1–40 (odd/even for P/S-modes). We
also show the solutions for the incompressible slab for comparison.
Note that for this choice of Mb and δ, the sheet is stable (Fig. 1),
while the slab is unstable due to body modes.

At long wavelengths, K 
 1, only the fundamental modes are
unstable, and their behaviour is similar to the corresponding in-
compressible solutions. Higher order unstable modes are gradually
excited at shorter and shorter wavelengths, according to equation
(33). Each mode reaches a maximal growth rate at a resonance
wavelength (equation 35), and these dominate over the fundamen-
tal modes at intermediate and short wavelengths. At short wave-

lengths, each mode stabilizes as 	 → 	∞ = 1 − M−1
s , so that

ω → (v − cs)k. However, the ridge line formed by the peak reso-
nant growth rates acts as an effective growth rate for the slab, which
is always unstable. The effective growth rate of this ridge line is
well fitted by ωI ∝ t−1

sc ln(K) (equation 36).
Fig. 5 shows the spatial structure of the pressure perturbation

in the xz plane, P1, for the first six unstable modes with δ = 100
and Mb = 1.5. The longitudinal perturbation wavelength is equal
to the slab diameter, λ = 2Rs, and the displacement amplitude
of the fluid interfaces is h = 0.025λ (shown in white). To compute
the transverse wavenumbers, qb, s, we insert the numerical solutions
to the dispersion relation (Fig. 4) into equation (12). The top row
shows the first three P-modes: n = −1 (the fundamental mode),
n = 1 and n = 3 from left to right. The bottom row shows the
first three S-modes: n = 0 (the fundamental mode), n = 2 and
n = 4 from left to right. Since sheet is stable for these values
of Mb and δ, surface modes such as shown in Fig. 2 are stable. All
unstable modes, including the fundamentals, are body modes, whose
exponential decay length in the transverse direction is comparable
to or larger than the slab width. The nth mode has n + 1 nodes across
the slab width, creating a more complex standing wave pattern as n
increases. For λ = 2Rs, the n = 1 and 2 modes are near resonance,
so the angle of wave propagation is nearly the same in the slab and
the background. For the other modes, the pattern breaks at the slab
interfaces.

2.4 The cylindrical stream

We now consider a flow with cylindrical, rather than planar symme-
try. Using the standard cylindrical coordinates, (r, ϕ, z), we assume
an equilibrium configuration where the density and flow velocity
depend only on r, the flow is in the ẑ direction and the pressure is con-
stant: ρ0(r), v0(r)ẑ, P0. By rewriting the hydrodynamic equations
(equations 1 to 3) in cylindrical coordinates, inserting perturbations
of the form f(r) exp[i(kz + mϕ − ωt)], where m is an integer, and
linearizing, we obtain analogous expressions to equations (6)– (9)
that relate the perturbations in density and velocity to the pressure
perturbation. We also obtain a second-order differential equation
for the pressure perturbation, analogous to equation (10):

P ′′
1 −

[
2v′

v − ω/k
+ ρ ′

0

ρ0
− 1

r

]
P ′

1

− k2

[
1 −

(
v − ω/k

c

)2

+
( m

kr

)2
]

P1 = 0, (38)

where f ′ = ∂f /∂r . This is identical to equation (10), except for
the geometrical terms 1/r and m/(kr).

We consider an infinitely long cylindrical stream of radius r = Rs,
centred on the z-axis, with density and velocity ρ = ρs and v = V ẑ.
The background, at r > Rs, has ρ = ρb and v = 0. Equation (38)
reduces to two modified Bessel equations, for r < Rs and r > Rs.
Using the boundary conditions that the pressure perturbation is finite
at r = 0 and r → ∞ and is continuous at r = Rs, we obtain the
solution

P1(r) =
⎧⎨
⎩

A Im(qsr)
Im(qsRs) r < Rs,

A Km(qbr)
Km(qbRs) r > Rs.

(39)

Im and Km are the mth-order modified Bessel functions of the first
and second kind, respectively, and A is a constant of integration. By
applying the Landau condition at the stream boundary, in analogy
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3930 N. Mandelker et al.

Figure 6. Schematic representation of the first six azimuthal modes for a
cylindrical stream, m = 0–5. Shown is a slice through the xy plane. The
dashed circle in each panel represents the unperturbed cylinder while the
solid curve represents the perturbed cylindrical surface. The m = 0, 1 modes
are analogous to the P,S-modes in the slab case, respectively.

with equation (13), we obtain the dispersion relation

Z = −
Im

(√
1 − δM2

b (	 − 1)2K
)

I ′
m

(√
1 − δM2

b (	 − 1)2K
) K′

m

(√
1 − M2

b 	 2K
)

Km

(√
1 − M2

b 	 2K
) .

(40)

Comparing equations (39) and (40) to the corresponding equa-
tions for the slab, equations (23) and (27), we see one qualitative
difference between the two configurations. While the slab admitted
only two symmetry modes, the symmetric P-modes and the anti-
symmetric S-modes (Fig. 3), the cylinder admits infinitely many
symmetry modes, represented by the index m. Through the Landau
condition, which introduces the perturbation to the cylinder surface,
we learn that m is the number of azimuthal nodes on this surface.
This is shown schematically in Fig. 6, where we show a slice through
the z = 0 plane for the first six symmetry modes, m = 0–5. The
m = 0 modes are axisymmetric pinch modes, analogous to the P-
modes in the slab. The m = 1 modes are antisymmetric helical
modes, analogous to S-modes in the slab. Modes with m > 1 are
fluting modes with no direct analogue in the slab, but as we shall see
they do not qualitatively change the growth of instabilities at short
wavelengths.

2.4.1 Long-wavelength behaviour

At long wavelengths, K → 0, we use the asymptotic form of the
modified Bessel functions for ξ 
 1 (Abramowitz & Stegun 1965)

Im(ξ ) �
{

1 − 0.25ξ 2 m = 0

(2mm!)−1 ξm m ≥ 1,
(41)

Km(ξ ) �
{

1.27 − ln(ξ ) m = 0

2m−1(m − 1)! ξ−m m ≥ 1.
(42)

Inserting these into equation (40) results in the leading-order dis-
persion relations

	 �

⎧⎪⎪⎨
⎪⎪⎩

1 + i 1√
2δ

K

√
ln

(
1√|M2
b −1|K

)
m = 0

δ
1+δ

+ i
√

δ
1+δ

m ≥ 1.

(43)

These modes are unstable at all wavenumbers and for all values
of δ and Mb. They thus represent the fundamental modes for the
cylinder. As in the slab, each symmetry mode has one fundamental
mode. Modes with m ≥ 1 all have the same growth rate which is
independent of Mach number, similar to the fundamental S-mode
in the slab (equation 30a). It is fascinating to note that this is exactly
the dispersion relation for the incompressible sheet (equation 15).
The fundamental m = 0 mode is suppressed at large Mach numbers
for a given K, qualitatively similar to the fundamental P-mode in
the slab (equation 30b).

2.4.2 Short-wavelength behaviour

At short wavelengths, when K � m + 1, we use the asymptotic form
of the modified Bessel functions for |ξ | � m + 1 (Abramowitz &
Stegun 1965)

Im(ξ ) ∝
⎧⎨
⎩

ξ−1/2 eξ Re(ξ ) > 0

|ξ |−1/2 cos
(|ξ | − (2m+1)π

4

)
ξ = i|ξ |

(44)

Km(ξ ) ∝ ξ−1/2 e−ξ . (45)

Note that these approximations become valid at shorter wavelengths
for larger m. Inserting these into equation (40), we obtain the asymp-
totic form of the dispersion relation6

Z �
⎧⎨
⎩

1 Re(qs) � Im(qs)

tanh
(
qsRs − i (2m−1)π

4

)
Re(qs) 
 Im(qs).

(46)

As for slab and sheet geometries, Re(qs) � Im(qs) at low Mach
numbers, when surface modes are unstable. In this case, the disper-
sion relations for the sheet, the slab and the cylinder all converge
to Z = 1. At higher Mach numbers when surface modes are stable,
Re(qs) 
 Im(qs), and the dispersion relation for the cylinder be-
comes very similar to that of the slab. Except for the extra −iπ/4
in the argument of the tanh, equation (46) with m = 0 and 1 cor-
responds exactly to equation (27) for P- and S-modes, respectively.
We conclude that for any given m, at short enough wavelengths,
λ 
 2πRs/(m + 1), shorter than any features on the cylinder sur-
face, we are not sensitive to the geometry (planar or cylindrical) and
the dispersion relation for the cylinder converges to that of the slab.

Given the similarity of equations (46) and (27) for the short-
wavelength behaviour of body modes, we can apply our anal-
ysis of the slab (Section 2.3.4 and Appendices E to H) to the
cylinder as well. It is straightforward to see that our results for
the marginally stable wavenumbers (equation 33), the resonant
wavenumbers (equation 35) and the asymptotic transverse wave-
length across the stream (equation 31) can all be applied to the
cylinder under the transformation nslab → 2ncyl + m − 1/2. As in
the slab case, the mode number n represents the number of nodes
of the perturbation along the stream width (Fig. 5). Most impor-
tantly, the effective growth rate of instabilities in the stream, given
by the maximal growth rate at each wavenumber (equations 36), is
the same in both the slab and the cylinder.

Fig. 7 shows a numerical solution to the cylindrical dispersion
relation, equation (40), for δ = 100 and Mb = 1.5. We show as a
function of wavenumber, K = kRs, the growth rate of the perturba-
tion, ωI = Im(ω) = t−1

KH normalized by the inverse sound-crossing

6 Using coth(ix) = −i cot(x) and tanh(x) = coth(x − iπ/2).
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Figure 7. Growth rates for the cylinder. Shown are numerical solutions to the cylinder dispersion relation, equation (40), for Mb = 1.5 and δ = 100, the same
case shown in Fig. 4 for the slab. The y-axis shows the growth rate, ωI , normalized by the inverse of the sound-crossing time in the stream, t−1

sc = cs/(2Rs), as
in the left-hand panel of Fig. 4. The x-axis shows the normalized wavenumber K = kRs. We show solutions for m = 0 (left), m = 1 (centre) and m = 5 (right).
Dashed black lines show the incompressible solutions. Solid black lines show the fundamental modes, n = 0 (one mode for each m). Solid red lines show the
n = 1–20 modes for each m. Surface modes, where ωI ∝ K , are unstable at wavenumbers K � m + 1 and the corresponding growth rates are very similar to
the incompressible case. At shorter wavelengths, body modes dominate the instability, and the effective growth rate due to the ridge line connecting the mode
resonances is very similar to the slab case, well fitted by ωI, 3 from equation (36) (thick dash–dotted line). Modes with m > 1 are expected to be stable for most
physical scenarios (see the text), so we expect body modes to dominate the instability for real streams.

time in the stream, t−1
sc . This can be directly compared to the corre-

sponding solution for the slab case, shown in the left-hand panel of
Fig. 4. The three panels address different azimuthal modes, m = 0,
1 and 5 as marked. For each m, we show the fundamental mode,
n = 0, and the modes n = 1–20, together with the corresponding
incompressible solution. At long wavelengths, K < m + 1, only
the fundamental modes are unstable, and their behaviour is sim-
ilar to the corresponding incompressible solutions. Higher order
unstable modes are gradually excited at shorter and shorter wave-
lengths, and their overall behaviour is similar to the slab case. Most
importantly, the effective growth rate for the cylinder at short wave-
lengths, defined by the ridge line of peak growth rates of each n ≥
1 mode, is well fitted by the same formula as for the slab, namely
ωI ∝ t−1

sc ln(K) (equation 36).

2.4.3 Surface modes versus body modes

In planar geometry, surface modes become stable when Mb > Mcrit

(equation 22), while body modes in the slab become unstable when
Mtot > 1 (equation 32). However, recall that the Mach number
was defined using only the component of the velocity parallel to
the perturbation wavevector, vk = v · k̂ (equation 10). On the sur-
face of the cylinder, the wavevector is k = kẑ + (m/R)ϕ̂, resulting
in vk = v[1 + (m/K)2]−1/2. Therefore, the effective value of Mb

which is relevant for determining whether surface modes are stable
is reduced by a factor [1 + (m/K)2]−1/2, which depends both on
the azimuthal wavenumber m and on the perturbation wavelength
through K. As a result, at a given wavenumber, surface modes will
be unstable for azimuthal modes m > K[(Mb/Mcrit)2 − 1]1/2. This
means that surface modes are formally always unstable for the cylin-
der, whatever the value of Mb, for large enough m. While this may
seem fundamentally different from the slab, it is actually very sim-
ilar. Recall that we limited our analysis in Sections 2.2 and 2.3 to
perturbations where k||v, so that vk = v. In principle, perturbations
in a slab can assume any angle ϕ with respect to the flow velocity,
and surface modes will be unstable so long as cos(ϕ) < Mcrit/Mb.

However, surface tension can stabilize modes with m ≥ 2, where
the stream surface is highly perturbed with many small-scale fea-

tures and the surface-to-volume ratio is high (see Fig. 6). Previous
studies have found that the inclusion of magnetic fields parallel
to the flow, which act as a form of surface tension, stabilizes sur-
face modes with m ≥ 2 (e.g. Ferrari, Trussoni & Zaninetti 1981;
Birkinshaw 1990). Furthermore, perturbations with m = 0–2 are
likely the dominant modes in cold streams in galactic haloes, plau-
sibly seeded by gravitational tidal interactions with satellite galaxies
located either inside or outside the streams. We will therefore fo-
cus hereafter on low-m modes, where body modes dominate the
instability for wavelengths λ � Rs.

3 SI MULATI ON R ESULTS

In this section, we use numerical simulations to study the growth
of perturbations due to KHI in the linear regime. Guided by Sec-
tion 2, we do this in two stages. First, we study the evolution of
eigenmode perturbations, whose initial spatial structure obeys the
linearized equations of hydrodynamics as derived in Section 2. This
corresponds to a pressure perturbation obeying equation (11) for a
sheet, equations (23) and (24) for a slab, or equation (38) for a
cylinder, together with perturbations in the density and velocity
obeying equations (6)–(9) in planar geometry, or the corresponding
equations in cylindrical geometry. In the second stage, we study the
evolution of arbitrary non-eigenmode perturbations.

3.1 Numerical method

We use the Eulerian code RAMSES (Teyssier 2002), with a piecewise-
linear reconstruction using the MonCen slope limiter (van Leer
1977) and an HLLC approximate Riemann solver (Toro, Spruce &
Speares 1994). Since perturbations with wavelengths λ � Rs in a
slab and a cylinder should behave similarly in the linear regime,
which is what interests us here, we limit our current analysis to
2D slab simulations. This allows us to achieve higher resolution
than would be possible in 3D simulations of cylindrical streams.
As highlighted below, the slab simulations also allow us to test our
predictions for the sheet.

MNRAS 463, 3921–3947 (2016)

 at T
he A

ustralian N
ational U

niversity on N
ovem

ber 27, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3932 N. Mandelker et al.

Table 1. The top five entries correspond to the eigenmode runs (Sec-
tion 3.2), the bottom three to the non-eigenmode runs (Section 3.3). For
each simulation, we list the values of δ, Mb and Mtot; whether it corresponds
to a surface (S) or body (B) mode; the mode number, n; the ratio of the
perturbation wavelength, λ, to the slab radius, Rs, the smoothing scale, σ

(equation 48), and the smallest cell size, �; and the KH time, tKH (equa-
tion 47), in units of the box sound-crossing time, Tbox. For eigenmodes, n
and tKH correspond to the seeded mode. For the non-eigenmode runs, they
correspond to the fastest growing mode for the given δ, Mb, λ and mode
symmetry (they are all symmetric P-modes).

Parameters of the simulations
δ Mb Mtot S/B n λ/Rs λ/σ λ/� tKH/Tbox

1 1.5 0.75 S 0 2 102 410 0.004
10 1.5 1.13 S 0 2 102 410 0.009
10 1.5 1.13 B 2 2 25 410 0.038
100 1.5 1.36 B 2 2 102 410 0.053
1 5.0 2.50 B 4 2 102 410 0.006

1 1.5 0.75 S −1 1 102 205 0.002
10 1.5 1.13 S −1 1 102 205 0.004
1 5.0 2.50 B 5 1 102 205 0.005

The simulation domain is a square of side L = 1, representing the
xz plane, extending from 0 to 1 in the z direction and from −0.5 to
0.5 in the x direction. The slab is centred at x = 0 with a radius of
Rs = 1/160, and extends the full domain in the z direction. We use
periodic boundary conditions at z = 0 and 1, and outflow boundary
conditions at x = ±0.5 (such that gas crossing the boundary is
lost from the simulation domain). The slab and the background are
both ideal gases with adiabatic index γ = 5/3 and initial uniform
pressure P0 = 1. The background, at |x| > Rs, is initialized with
density ρb = 1 and velocity vb, 0 = 0. The slab, at |x| < Rs, is
initialized with ρs = δ and vs, 0 = Mbcbẑ, where cb is the sound
speed in the background, (5/3)1/2 in simulation units. We simulate
several different combinations of δ and Mb (Table 1).

A characteristic time common to all our simulations is the sound-
crossing time in the background, Tbox = L/cb ∼ 0.775 in our simula-
tion units. The characteristic time for growth of perturbations in the
linear regime is the Kelvin–Helmholtz time, tKH. This is the inverse
of the imaginary part of the frequency, tKH = ω−1

I
= (kV 	I )

−1, and
can be expressed as

tKH = [
2Kδ1/2Mb 	I

]−1
tsc, (47)

with tsc = 2Rs/cs the sound-crossing time in the slab (equation 37).
We run each simulation for at least 5tKH with 20 outputs per tKH.
Our use of a thin slab with Rs 
 L ensures that tKH 
 Tbox in all
of our simulations (Table 1). The boundary conditions at x = ±0.5
are thus unimportant as the boundary and the slab are not in causal
contact at any point during the simulation.

In the setup described above, the density and velocity are discon-
tinuous at the slab boundaries, x = ±Rs. While this is the case we
solved analytically in Section 2, such a setup is problematic to sim-
ulate as it leads to numerical noise at the grid scale7 (e.g. Robertson
et al. 2010), causing artificial small-scale perturbations. Since
shorter wavelength perturbations grow faster, these can quickly
dominate over the seeded perturbation. Increasing the resolution
decreases the wavelengths of the numerical noise and increases its
growth rate, thus making the problem worse. To get around this, we

7 One source of noise comes from trying to capture a sinusoidal shape of the
slab boundary using a finite Cartesian grid, which leads to inaccuracies on
the grid scale.

smooth the density and velocity using a ramp function

f (x) = fb + 0.25(fs − fb)

×
[

1 + tanh

(
Rs − x

σ

)] [
1 + tanh

(
Rs + x

σ

)]
. (48)

This creates a finite shearing layer between the slab and the back-
ground, with a width of ∼3σ for 95 per cent convergence, which
suppresses the growth of perturbations with wavelengths compara-
ble to or smaller than the shearing layer (Robertson et al. 2010). In
order to effectively suppress the grid noise, we find that we require
σ > 2�, where � is the cell size.

While RAMSES has AMR capabilities, we instead use a statically
refined grid. The region |x| < 5Rs has the highest resolution, with
cell size �, and the cell size increases by a factor of 2 every 5Rs

in the x direction until a maximal cell size. In all our simulations,
� = 2−15 � Rs/205, and the maximal cell size was 2−9.

In order for our analytical solution of a sharp discontinuity to be
valid, the eigenmode structure must be well resolved. For surface
modes, this means resolving the exponential decay length of the per-
turbation. Since the perturbation decays more rapidly in the denser
fluid (Fig. 2), the eigenmode is resolved if σ 
 1/Re(qs), which for
δ ∼ 10–100 corresponds to σ 
 0.1–0.3 λ. Thus, properly resolv-
ing the eigenmodes while at the same time suppressing artificial
perturbations requires � < 0.5σ 
 0.1λ. In practice, we find that
our results are well converged for λ > 30σ > 60�. Body modes are
easier to resolve. The smallest length-scale we must resolve is the
transverse wavelength within the slab, 2π/Im(qs) ∼ 4Rs/(n + 2)
(equation 31). For λ � Rs, δ ∼ 10–100 and Mb � 2, typical of
cold streams in haloes (Section 4), the fastest growing mode has
n � 10 (equation 35), yielding the requirement σ 
 0.3 λ. Table 1
compares �, σ and λ for each simulation.

3.2 Eigenmode simulations

Eigenmodes are simultaneous perturbations of all the fluid variables
that self-consistently solve the linearized equations of hydrodynam-
ics. To find the true eigenmodes of the problem, we would have to
insert the smoothed density and velocity profiles given by equation
(48) into equation (10), solve the ODE to find the form of the pres-
sure perturbation, and then insert this into equations (6)–(9) to find
the corresponding perturbations in density and velocity. However,
there is no analytic solution to equation (10) with the profiles given
by equation (48), and this would not offer a direct test of the growth
rates derived in Section 2. Instead, we approximate the eigenmodes
of the smoothed profile as smoothed versions of the eigenmodes
corresponding to the ‘step-function’ profile. More precisely, we
take the pressure perturbation given by equations (23) and (24),
and insert this into equations (6)–(9) assuming constant density
and velocity within each region (slab and background) to find the
corresponding density and velocity perturbations. As these are also
discontinuous at x = ±Rs, we smooth them using equation (48) as
well. This approximation for the eigenmodes, and subsequently the
general discussion of a step-function slab, will be judged by how
well the simulations match the predicted evolution of eigenmodes,
namely that they grow exponentially in amplitude from t = 0 while
maintaining their spatial structure.

Based on the analysis in Section 2, there are three regimes of
instability for a slab, depending on the values of Mtot and δ. To see
this, it is useful to define

Mtot, crit ≡ Mcrit
δ1/2

1 + δ1/2
=

(
1 + δ1/3

)3/2

1 + δ1/2
, (49)
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where Mcrit is the critical value of Mb above which surface modes
become stable (equation 22). Mtot, crit is the corresponding critical
value of Mtot. It is straightforward to show that Mtot, crit > 1 for any
finite δ. The three regimes of instability are thus as follows.

(i) If Mtot < 1, then surface modes are unstable, while body modes
are stable. The only unstable modes are the two fundamental modes,
n = −1, 0.

(ii) If 1 < Mtot < Mtot, crit, then both surface modes and body
modes are unstable. The fundamental modes correspond to unstable
surface modes while modes with n ≥ 1 correspond to unstable body
modes.

(iii) If Mtot > Mtot, crit, then surface modes are stable while body
modes are unstable. All modes including the fundamentals corre-
spond to unstable body modes.

To explore the three regimes, we ran a total of five eigenmode
simulations. Relevant parameters of these simulations are listed in
Table 1. The case (δ, Mb) = (1, 1.5) represents the first regime where
only surface modes are unstable. The case (δ, Mb) = (10, 1.5) rep-
resents the second regime where both surface and body modes are
unstable, and we simulate one of each: the n = 0 surface mode
and the n = 2 body mode. The cases (δ, Mb) = (100, 1.5) and (δ,
Mb) = (1, 5.0) represent the third regime where only body modes
are unstable, and we simulate the n = 2 and 4 modes, respectively.8

Note that all simulated modes correspond to S-modes with even
mode number, n. We normalize all perturbation amplitudes by set-
ting A = 0.05 in equations (23) and (24) and set the perturbation
wavelength equal to the slab width, λ = 2Rs, yielding K = π.

The predicted complex frequency corresponding to each sim-
ulated mode, 	 , is found by numerically solving the dispersion
relation, equation (27). For surface modes, these are nearly identi-
cal to the corresponding values in the sheet given by equation (20).
The Kelvin–Helmholtz time, tKH, is then calculated using equa-
tion (47), and listed in Table 1. Each simulation was run until time
t = 5tKH, which corresponds to a different time for each mode.
Table 1 also shows the ratio of the wavelength to the smoothing
scale, σ , from equation (48). In most cases, we use relatively nar-
row smoothing, σ = λ/102, in order not to deviate too far from
the step-function slab. However, for the δ = 10 body mode, we
require a larger smoothing scale, σ = λ/25, to suppress artificial
surface modes which have much faster growth rates than the body
mode. This is less of an issue in the third regime where surface
modes are intrinsically stable.

In each snapshot, we estimate the perturbation amplitude by cal-
culating the average of |P1| = |P − P0| = |P − 1| in the high-
resolution region, |x| < 5Rs. We experimented with varying the
region within which we average the perturbation between |x| < Rs

and |x| < 5Rs, calculating the root-mean-squared value of P1 rather
than the averaged absolute value, and using the transverse velocity
or the displacement of the slab interface9 rather than the pressure
to estimate the perturbation amplitude. These variations change our
growth rates by less than ∼10 per cent.

Fig. 8 shows the perturbation amplitude as a function of time,
normalized by the respective value of tKH from Table 1, for the five
eigenmode simulations. The analytical prediction is that eigenmode
perturbations grow exponentially from time t = 0, their amplitude

8 The first of these two cases has Mb very close to Mcrit (see Fig. 1) while
the second is deep within the third regime.
9 This was calculated by using a passive scalar, called ‘colour’, to differen-
tiate the slab material from the background.

Figure 8. Growth rate of eigenmode perturbations in the numerical simula-
tions, represented by the five solid curves. The x-axis shows time normalized
by the respective KH time for each mode according to Table 1. Each simu-
lation was run for 5tKH, corresponding to a longer time for higher δ and for
body modes compared to surface modes. The y-axis shows the pressure per-
turbation amplitude normalized by its value at t = 0. The dashed line marks
the expected exponential growth. All simulations match the analytically pre-
dicted growth rate to within ∼20 per cent for a period of between ∼1.5 and
3tKH, after which the growth rate saturates due to non-linear effects.

scaling as exp(t/tKH), which is shown by the dashed line. All simu-
lated modes match the predicted growth rate to within ∼20 per cent
for a period of between 1.5 and 3tKH. The largest deviation occurs
for the case (δ, Mb) = (1, 5.0), where the measured growth rate is
∼20 per cent below the predicted value. This is presumably caused
by numerical diffusion, more severe for higher Mach number flows
(Robertson et al. 2010), as this mode has the highest value of Mtot by
nearly a factor of 2. For the (δ, Mb) = (100, 1.5) mode, the growth
rate increases sharply at t ∼ 1.5tKH. This is due to mixing of the
slab and the background which causes the effective density contrast
and Mach number to decrease slightly, rendering the configuration
unstable to artificial (numerical) surface modes, as the initial con-
figuration was already very close to the critical Mach number. In
the other three simulations, the growth rate is well behaved until
t ∼ 3tKH, at which point non-linear effects cause the amplitude to
saturate. A detailed study of the quasi-linear and non-linear phases
of the instability, including this saturation, will be the subject of a
forthcoming paper (Padnos et al., in preparation).

We have rerun all simulations with twice higher and twice lower
resolution while keeping σ/λ fixed, and found no noticeable effect
on the results. We also reran the simulations with the same resolution
while varying σ/� between 1 and 16. Larger values of σ result in
slower growth rates compared to the predicted values, especially for
surface modes where eigenmodes are harder to resolve (Section 3.1).
Smaller values of σ bring the simulated growth rates into better
agreement with the predictions at early times, but lead to artificial
noise dominating the perturbation amplitude and hence the growth
rate before the non-linear saturation of the initial seeded mode.

3.3 Non-eigenmode simulations

We now study the evolution of general perturbations, which are not
eigenmodes of the problem. We initialize pressure perturbations
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which are harmonic along the slab axis and decaying perpendicular
to it:

P1 = A cos(kz)

×
[

exp

(
− (x − Rs)2

2�2

)
+ exp

(
− (x + Rs)2

2�2

)]
, (50)

with A = 0.05 and � = 5σ . The precise value of �, the width of the
perturbation, is not important as long as it is larger than σ , the width
of the smoothing layer. We also tried initializing perturbations in
the transverse velocity component, and found no qualitative differ-
ence in our results. We prefer to focus here on the pressure pertur-
bations, because all simulations, eigenmode and non-eigenmode,
have initially uniform pressure in the entire domain, P0 = 1,
whereas the slab velocity and sound speed vary between different
simulations.

According to the analysis in Section 2, growing modes are eigen-
modes. However, eigenmodes do not span the full range of pertur-
bations, and an arbitrary initial perturbation cannot be decomposed
into a linear combination of eigenmodes. Each eigenmode contains
perturbations in all fluid variables whose amplitudes are linearly
related to one another, while different eigenmodes have different
transverse wavelengths. Thus, no linear combination of eigenmodes
can result in a perturbation in only one fluid variable (such as the
pressure) while leaving the others unperturbed. Before an arbitrary
initial perturbation in one of the fluid variables can begin to grow,
corresponding perturbations in the other variables will develop. The
resulting set of perturbations can be decomposed into a linear com-
bination of eigenmodes, both growing and decaying modes, and a
residual perturbation. The residual propagates as a sound wave away
from the slab boundary, the decaying eigenmodes decay away and
eventually the growing eigenmodes dominate. The minimal time-
scale over which the fluid can ‘arrange’ itself into eigenmodes is the
wavelength sound-crossing time within the hot medium, tλ = λ/cb.
At t > tλ, after eigenmodes have developed, their amplitudes will
begin to grow according to their corresponding growth rates until
the fastest growing mode will eventually dominate the instability.

An additional relevant time-scale is the slab sound-crossing time,
tsc. At t < tsc, the slab is not coherent, and information regarding a
perturbation on one edge will not have reached the opposite edge. In
our analysis of the dispersion relation for the slab (and the cylinder),
we implicitly assumed both boundaries to be in causal contact, so
these solutions can only be applied at t > tsc. At earlier times,
each boundary must behave as an independent sheet. In the regime
where surface modes are unstable, the slab and sheet are practically
identical anyway, and perturbations begin to grow at t � tλ. Body
modes, on the other hand, can only begin to grow once the slab
is coherent, at t � tsc > tλ. These are triggered by sound waves
reverberating between the slab boundaries, which is why they have
been referred to as reflected modes in the literature.

We simulated several configurations, with (δ, Mb) = (1, 1.5), (10,
1.5), (1, 5.0), similar to our eigenmode runs. Each configuration
was run once with a perturbation wavelength λ = 2π/k = 2Rs (as
in the eigenmode runs), and once with λ = Rs. We focus mainly
on the runs with λ = Rs, summarized in Table 1. There we list
the mode number and tKH of the fastest growing mode into which
the perturbation can decay given Mb, δ and λ/Rs (surface modes
for the first two and a body mode for the third). Since the pressure
perturbation we are initiating (equation 50) is symmetric, it can only
decay into P-modes.

Fig. 9 shows the perturbation amplitude as a function of time,
similar to Fig. 8. The time has been normalized by the tKH corre-

Figure 9. Growth rate of non-eigenmode perturbations in the simulations
with wavelengths λ = Rs, represented by the three solid curves. The x-axis
shows time normalized by the KH time of the predicted fastest growing
mode given Mb, δ and K, according to Table 1. For the two cases shown with
Mb = 1.5 (green and cyan curves), the fastest growing mode is a surface
mode, while for the case with Mb = 5 (red line) it is a body mode. The
y-axis shows the perturbation amplitude normalized by its value at t = 0,
marked by the dotted line. The slope of the dashed line marks the expected
exponential growth (the zero-point has been shifted for clarity). Squares
mark the wavelength sound-crossing time within the background, tλ = λ/cb,
after which eigenmodes develop and unstable surface modes begin to grow
exponentially. Stars mark the slab sound-crossing time, tsc = 2Rs/cs, after
which the two sides of the slab come into causal contact and unstable body
modes begin to grow exponentially.

sponding to the fastest growing mode (Table 1). As in Fig. 8, we
estimate the perturbation amplitude by the average of |P1|, though
we calculate the average in a smaller region, |x| < 2Rs, since the ini-
tial perturbations were localized on the slab boundaries. However,
our results are not strongly dependent on the size of this region, or
on whether we use pressure or transverse velocity to estimate the
amplitude. For each configuration, we have marked the correspond-
ing tλ with squares and tsc with stars. As expected, the two surface
modes begin to grow in amplitude at t ∼ tλ while the body mode
does not grow until t ∼ tsc. During the growth phase, the growth
rates match the predicted growth rate of the fastest growing mode
to within ∼20 per cent, similar to the eigenmode runs.

Fig. 10 shows the pressure perturbation for the (δ, Mb, λ) = (1,
5.0, 2Rs) simulation at t = 0 and at t ∼ 1.6tsc, shortly after the pertur-
bation begins to grow. For comparison, we show the analytic form
of the corresponding fastest growing P-mode, n = 5, normalized to
the same amplitude. The fastest growing mode can be found from
equation (35) with K = kRs = π and Mtot = 2.5. The resemblance
of the simulation result and the analytic prediction is striking, illus-
trating that the initial perturbation has evolved into eigenmodes and
the fastest growing mode, n = 5, dominates.

We also simulated the case (δ, Mb) = (100, 1.5). Despite surface
modes being formally stable for this configuration (Fig. 1), it lies
very close to the Mcrit boundary and small numerical errors seed
artificial surface modes. Due to the high density contrast, tsc � tλ
and these artificial modes dominate the instability before the body
mode has a chance to grow.
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Figure 10. Transition of a general initial perturbation into the fastest growing eigenmode. The left-hand and centre panels are taken from a simulation of a slab
with Mb = 5.0, δ = 1 and λ = 2Rs, showing the pressure perturbation, P1, at time t = 0 (left) and t ∼ 1.63tsc (centre), after the slab has become coherent. In both
panels, we list the time in units of the Kelvin–Helmholtz time of the fastest growing mode, tKH, the slab sound-crossing time, tsc, and the box sound-crossing
time, Tbox. The colour scale has been normalized by A, the maximal value of the perturbation on the slab interface at t = 0. The right-hand panel shows the
analytic form of the fastest growing mode, the n = 5 P-mode, with the amplitude normalized to unity at the slab interface. The resemblance of the simulated
perturbation to the analytic mode is striking.

4 L I N E A R STA B I L I T Y O F C O L D F L OW S IN
H OT H A L O E S

In this section, we evaluate the potential importance of KHI in
the evolution of cold streams that feed massive galaxies at high
redshift. This depends on the ratio of the total time a perturbation
can grow before the stream joins the central galaxy, tgrowth, to the
Kelvin–Helmholtz time, tKH. In the linear regime, the amplitude of
perturbations grows as exp(t/tKH), so the number of e-foldings in
the perturbation growth is

Ne folding ≡ tgrowth/tKH. (51)

If Ne folding = 1, 3 or 10, a small perturbation will grow to roughly
2.7, 20 or 2.2 × 104 times its initial amplitude. However, as we saw
in Section 3, the exponential growth does not continue indefinitely.
Once the perturbation becomes quasi-linear, the amplitude saturates
before continuing to grow linearly with time in a self-similar way
(Padnos et al., in preparation). For our purposes here, we loosely
refer to the cases where Ne folding � 3 as being quasi-linear and to the
cases where Ne folding � 10 as being non-linear. However, without
knowledge of the initial perturbation amplitudes, these thresholds
are somewhat arbitrary. All we can say is that if the perturbation
begins small, significant growth in the linear regime is a necessary
condition for significant growth overall.

We begin by evaluating tgrowth. For haloes of Mv ∼ 1012 M� at
z ∼ 2, the virial shock radius is roughly the halo virial radius, Rv (e.g.
Dekel & Birnboim 2006; Dekel et al. 2009), though we note that
in more massive clusters the shocked region can extend to several
times Rv (Zinger et al., in preparation). Cosmological simulations
indicate that the stream velocity is roughly constant during infall
(Dekel et al. 2009; Goerdt et al. 2010; Goerdt & Ceverino 2015),
comparable to the halo virial velocity,

V � Vv =
√

GMv

Rv
. (52)

The travel time of the stream through the shock-heated medium is
thus roughly the virial crossing time

tinfall � tv = Rv/Vv. (53)

In the Einstein de-Sitter (EdS) regime, valid at z � 1, this is a
constant fraction of the cosmological time, tv � 0.14tHubble (e.g.
Dekel et al. 2013).

As we saw in Section 3, unstable surface modes begin to grow
after the initial perturbation has decayed into eigenmodes, roughly
at time tλ = λ/cb. We assume λ � Rs 
 Rv and cb ∼ vv (see
below), so tλ 
 tv and we can assume that surface modes begin to
grow instantaneously, tgrowth ∼ tv. On the other hand, unstable body
modes can only grow after the stream becomes coherent, at time tsc.
Since cs can be much slower than cb ∼ vv for a dense stream, tsc

can be a significant fraction of tv, and tgrowth ∼ tv − tsc. The relation
between tgrowth and tv thus depends on whether surface modes or
body modes dominate the instability.

Combining our estimate of tgrowth for surface/body modes with
equation (47) for tKH, we obtain for the number of e-folding times

Ne folding = 2Kδ1/2Mb

× max

[
	I, sheet

tv

tsc
, 	I, body

(
tv

tsc
− 1

)]
. (54)

This depends on four parameters: Mb, δ, tv/tsc and K = kRs. We
estimate each of these in turn below.

To estimate Mb for typical cold streams, we make the simplifying
assumption that the halo CGM is isothermal. The sound speed in
the halo is thus approximately

cb =
√

γKBTv

μmp
, (55)

where KB is the Boltzmann constant, Tv is the virial temperature,
μmp is the mean particle mass and γ = 5/3 is the adiabatic index
of the gas. The temperature can be found from virial equilibrium

3

2
KBTv � 1

2

GMvμmp

Rv
= 1

2
μmpV

2
v . (56)
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Figure 11. Linear growth of KHI in a virial crossing time, as the stream penetrates from the dark-matter halo virial radius to the central galaxy. Shown in
colour is the number of e-foldings of growth in the perturbation amplitude, in the linear regime, as a function of the stream parameters, δ and Mb. The different
panels are for different ratios of stream radius to virial radius and perturbation wavelength to stream radius, as listed at the top of each panel. When the sheet
is unstable, at Mb < Mcrit (equation 22), we used the growth rate for surface modes in the sheet (Fig. 1) and allowed the perturbations to grow for a full virial
crossing time, tv = Rv/vv. When the sheet is stable, at Mb > Mcrit, we used the effective resonant growth rate in the slab/cylinder (equations 36 and Fig. 4).
In this regime, perturbations begin to grow only after a stream sound-crossing time has elapsed, so they only grow for a time (tv − tsc). The figure shows that
realistic values for the stream parameters, Mb ∼ 0.75–2.25 and δ ∼ 10–100, put them near the phase transition between rapid growth of surface modes and slow
growth of body modes. While certain regions of parameter space are stable to linear KHI, with �3 e-foldings of growth, a wide range of allowed parameters
do result in quasi-linear or non-linear perturbations, with Ne foldings � 3 and 10, respectively.

Inserting equation (56) into equation (55) gives for the Mach number
of the stream relative to the background Mb � vv/cb � 1.34. In
practice, we assume values in the range Mb ∼ 0.75–2.25.

To estimate δ, we again make the simplifying assumption that
both the halo CGM and the stream are isothermal. The tempera-
ture in the halo is T = Tv (equation 56), which for a ∼1012 M�
halo is a few times 106 K. However, due to efficient cooling in the
high-density streams, they do not support a stable shock at the virial
radius (Dekel & Birnboim 2006), and their temperature is set by
the cooling curve for low-metallicity gas, at a few times 104 K. As-
suming pressure equilibrium between the streams and the hot CGM
at any given halo-centric radius, this leads to a density contrast of
δ ∼ 10–100, consistent with cosmological simulations (e.g. Ocvirk
et al. 2008; Dekel et al. 2009; Goerdt et al. 2010).

The ratio tv/tsc can be related to the ratio of the stream width to
the virial radius,

tsc/tv = Mb 2Rs/Rv. (57)

A narrower stream has a shorter sound-crossing time, leading to
more rapid growth of body modes. Based on cosmological simula-
tions, the cold streams we are discussing have characteristic widths
of roughly 2Rs/Rv ∼ 0.01–0.1.10

The final ingredient is the ratio of the perturbation wavelength to
the stream width, λ/(2Rs). Since shorter wavelengths grow faster
for both surface and body modes, the instability will be dominated
by the shortest wavelengths that can grow. In the idealized problem
we studied in Section 2, perturbations with arbitrarily small wave-
lengths can be excited and their growth rate diverges. However, in
a realistic stream, there is a finite transition layer at the interface
between the stream and the background, similar to the smooth-

10 In realistic haloes, both the stream and the background become denser at
smaller radii, making the stream of a conical rather than cylindrical shape.
This is discussed further in Section 5.

ing layer introduced in our simulations (Section 3). Perturbations
with wavelengths comparable to or smaller than this layer will be
damped. The width of this layer is determined by processes such
as thermal conduction and viscosity which are not incorporated in
cosmological simulations. This is crudely addressed in Section 5,
while a more rigorous study will be the topic of future work. For our
purposes, we crudely consider a range of λ/(2Rs) ∼ 0.1–1, corre-
sponding to wavenumbers K ∼ 3–30. As we have seen, the growth
rate scales linearly with wavenumber for surface modes, ωI ∝ K ,
but only logarithmically for body modes, ωI ∝ ln(K).

Fig. 11 shows Ne folding as a function of Mb and δ for different val-
ues of Rs/Rv and λ/Rs. We show a wide stream with 2Rs = 0.1Rv

and a stream 10 times narrower. We show a long-wavelength per-
turbation, λ = 2Rs, and one 10 times smaller. When surface modes
dominate the instability, we calculate the growth rates, 	I , from
the sheet dispersion relation (equation 20). These are practically
identical to the growth rates of surface modes in the slab calculated
numerically from equation (27). When body modes dominate the
instability, we use the approximation for the fastest growing mode
in a slab or a cylinder given by equations (36).

The allowed range for the stream parameters places them near
the transition between surface modes and body modes. When sur-
face modes dominate, the stream is highly unstable to KHI in a
virial time, and even very small perturbations will become highly
non-linear. However, only a very minor change in velocity pushes
the stream into the region where body modes dominate and the
growth rate is much slower. Wide streams are marginally unstable,
with Ne folding < 3. However, narrow streams can be highly unstable
even in this regime, with Ne folding � 30. Furthermore, recall that if
m > 1 in a cylinder, the effective Mach number for determining
whether surface modes are still unstable is Mb[1 + (m/K)2]−1/2

(Section 2.4.3). Thus, for high-m modes, unstable surface modes
will occupy a larger region of the parameter space, making Fig. 11
only a lower limit on Ne folding. However, as stated in Section 2.4.3,
modes with m > 1 are likely to be suppressed in realistic streams,
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making our estimates of Ne folding reasonable. Overall, we estimate
that for the relevant range of parameters, Ne folding ∼ 0.1–100, indi-
cating that KHI can in principle be important for the evolution of
cold streams.

5 A D D I T I O NA L P H Y S I C S

While the analysis presented here has been thorough and accu-
rate, with interesting new understanding of the body modes in the
compressible regime, it has also been very simplistic. We have
only studied the linear regime of adiabatic, purely hydrodynamic
instabilities. This is an important first step, which allowed us to
obtain a definitive result. However, as it stands, further, more de-
tailed analysis is necessary. In a forthcoming paper (Padnos et al.,
in preparation), we will present a detailed study of the non-linear
evolution of idealized KHI, without cooling or gravity. Since we
have seen that streams can find themselves in the non-linear regime
for a wide range of plausible parameters, this is necessary to com-
plete our study of the effect of KHI in the evolution of cold streams.
Additionally, we are planning a series of papers in which we will
account for additional physical processes one by one, both analyti-
cally as in this work and numerically. Our ultimate goal is to build
a comprehensive understanding of the evolution of cold streams,
from the bottom up. Below, we outline the additional processes that
we intend to address in future work, and their possible effects.

(i) Cooling. The importance of cooling in the linear regime of
KHI depends on the relation between tKH and the cooling times in
the hot and cold media, th and tc, respectively. We will always have
tc < th. In the case of cold streams in hot haloes, the cooling time
in the hot halo is longer than the virial time, tv < th, which is what
allows the presence of a stable virial shock to begin with. Since
we are only interested in the cases where tKH � tv, we ignore the
case th < tKH.11 If tKH < tc < th, then cooling should not make any
difference in the linear evolution of KHI. However, if tc < tKH < th,
then the cold gas returns to an equilibrium temperature fast com-
pared to the hydrodynamic growth time-scale. This is exactly as if
the gas were isothermal, and thus all of our analysis stays the same,
except that γ = 1 in the cold medium while γ = 5/3 in the hot
medium. While our analysis implicitly assumed that both media
had the same value of γ , this should only affect the ratio of sound
speeds and it seems unlikely that this change will dramatically al-
ter our results for the linear evolution. In the non-linear regime,
cooling can enhance the instability by introducing thermal instabil-
ities in addition to hydrodynamic ones. Once KHI sets in, regions
of the stream will become denser and shocks may develop. The
cooling rate in these overdense regions may increase causing them
to become even denser and creating a runaway process. However,
cooling can also weaken the non-linear evolution of the instability.
If the instability is dominated by surface modes, then the non-linear
evolution occurs via a shearing layer that forms between the hot
and cold media, where the two fluids mix. If the cooling time in
the cold stream is shorter than the sound-crossing time, this region
will be confined close to the stream boundary and will not consume
the stream interior. This effect has been seen in simulations of cold
gas clouds surrounded by a hotter confining medium within the
interstellar medium (Vietri, Ferrara & Miniati 1997).

11 This could come up in certain physical circumstances, e.g. near an X-ray
source that is capable of keeping the hot gas hot.

(ii) Thermal conduction. This can suppress the growth of short-
wavelength perturbations, by forming a finite transition region be-
tween the stream and the background, similar to the smoothing
region in our simulations. Thermal conduction can be treated as a
diffusive heat flow with a diffusion coefficient D(T, ρ) = κ(T)/(ρcv),
where cv is the specific heat capacity and κ(T) is the thermal con-
ductivity. Using Spitzer (1956) to evaluate κ(T) under the simpli-
fying assumption that both fluids are pure hydrogen, we obtain
D ∼ 6 × 1028 cm2 s−1 T

5/2
6 n−1

4 , where T6 is the gas temperature in
units of 106 K and n4 is the gas density in units of 10−4 cm−3.12 The
characteristic time for diffusion to ‘smear out’ features with a char-
acteristic length-scale L is tdif ∼ L2/D. To estimate the effect this will
have on the growth of surface modes, we compare tdif over the per-
turbation wavelength, L = λ, to the e-folding time for perturbation
growth, tKH, as surface modes begin to grow immediately (Sec-
tion 4). For short wavelengths, λ < λc = D/(2πMbcb	I ), we have
tdif < tKH and we thus expect the instability to be suppressed. For
δ ∼ 100 and Mb ∼ 1, we have 	I ∼ 0.15 (Fig. 1). For a virial temper-
ature of Tv � 106 K, we have cb ∼ 1.2 × 107 cm s−1, and the critical
wavelength becomes λc ∼ 1.7 kpc T

5/2
6 n−1

4 . In the cold streams,
we estimate T6 ∼ 0.01 and n4 ∼ 100, yielding λc ∼ 1.7 × 10−4 pc.
For the shock-heated halo gas, we have T6 ∼ n4 ∼ 1, yielding
λc ∼ 1.7 kpc, comparable to the stream radius. However, in the hot
gas, the effective diffusion coefficient is likely to be reduced from
the Spitzer (1956) estimate, since the maximum rate of conductive
energy transport cannot exceed ∼veKBT, where ve is the electron
thermal velocity, i.e. conduction cannot move thermal energy any
faster than a population of free-streaming electrons. This can de-
crease the critical wavelength by at least an order of magnitude.
Regarding body modes, since these are triggered by sound waves
reverberating within the stream, the relevant time-scale is the stream
sound-crossing time. Comparing tsc to tdif with L = 2Rs, T6 ∼ 0.01
and n4 ∼ 100, we find that heat conduction can suppress the ex-
citement of unstable body modes only if the stream radius is Rs �
0.1 pc. While more accurate conclusions await the explicit inclu-
sion of heat conduction in the analysis of KHI, it seems that in cold
streams only wavelengths much smaller than the stream width will
be suppressed.

(iii) External gravity. We refer here to the underlying gravita-
tional potential of the dark-matter halo, which will create a density
gradient, and hence a pressure gradient in the background gas halo.
As the external pressure increases towards smaller radii, the stream
will become narrower towards the halo centre, assuming a conical
rather than cylindrical shape. However, we expect our linear analy-
sis as presented in Section 2 to remain valid for perturbations with
wavelengths smaller than the length-scale over which the stream
radius changes by order unity. If we make the simplifying assump-
tions that the halo is an isothermal sphere, with ρb(r) ∝ r−2 and
Tb(r) = const, and that the background and stream are in pressure
equilibrium locally at each radius r, then the stream is also isother-
mal and hence cs is constant. Therefore, the conical shape causes
the stream sound-crossing time to decrease towards the halo centre
leading to more rapid growth of instabilities, as tKH ∝ tsc ∝ Rs. Local
pressure equilibrium and the isothermality of the stream imply that
the density profile within the stream scales as ρs(r) ∝ r−2, which
in turn implies that the stream width scales as Rs ∝ r, i.e. a perfect
cone with constant opening angle. If the stream velocity is roughly

12 Similarly, viscosity acts as diffusion in momentum space, but the corre-
sponding diffusion coefficient is ∼100 times smaller than for heat conduc-
tion (Spitzer 1956).

MNRAS 463, 3921–3947 (2016)

 at T
he A

ustralian N
ational U

niversity on N
ovem

ber 27, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3938 N. Mandelker et al.

constant during infall, as indicated by cosmological simulations,
this implies that tKH(r) ∝ Rs(r) ∝ r ∝ tinfall(r). So at every radius,
the number of e-foldings a perturbation can grow from its current
state before the stream reaches the galaxy is constant. Integrated
over the lifetime of the stream, this can lead to significantly more
growth than predicted in Section 4. In future work, we will address
the dispersion relation of KHI in a conical stream, and perform
simulations of streams in an external spherical potential.

(iv) Self-gravity. Self-gravity within the stream will have two
effects. First, it will result in gradients in density, pressure and per-
haps velocity within the stream, as a function of distance from the
stream axis. While these gradients will be much weaker than those
in the transition zone between the stream and the background, it
may still alter the growth rates of perturbations in an appreciable
way. Secondly, self-gravity may enhance stream instability by caus-
ing overdense regions within the stream to become gravitationally
unstable. It is worth noting that a crude estimate of the Jeans scale
in the stream is λJ ∼ 2 kpc c10n

−1/2
0.1 , where c10 is the sound speed in

units of 10 km s−1, and n0.1 is the gas density in units of 0.1 cm−3.
For T ∼ 104 and n ∼ 0.1, relevant in the streams near the galaxy,
the Jeans length is comparable to the stream width, and could be-
come smaller due to overdensities caused by hydrodynamical and
thermal instabilities. We may also witness a fragmentation into sub-
filaments, similar to the multi-scale filamentary structure observed
in Galactic molecular clouds.

(v) Magnetic fields. While the intra-cluster medium (ICM) is
known to be mildly magnetized (Churazov et al. 2008), little is
known about the magnetization state of gas in galactic haloes.
Dubois & Teyssier (2010) argued that initial magnetic fields in the
ICM originate from winds outflowing from dwarf galaxies, whose
IGM contain magnetic fields well below 1 μG in amplitude. This
indicated that the ratio of thermal to magnetic pressure (the plasma
β parameter) is ∼50–103. Furthermore, we expect this to be only
an upper limit on the magnetization of the filament gas, which is
in general more ‘pristine’ and has not been affected as much by
galactic processes. However, some measurements indicate mag-
netic fields as high as 0.3 μG in cosmic filaments feeding galaxy
clusters (Bagchi et al. 2002). The KH stability of mildly magnetized
gas can be altered from its pure hydrodynamic analogue in three
ways. The first is the modifications to the equation of state of the
gas, though for a sub-dominant component, this effect is expected
to be small. The second effect is surface tension that could possibly
arise from the shearing of magnetized gas at the boundaries of the
instability. The shearing layer is comprised of gas that has been en-
trained from the filament gas and from the ambient halo, and could
be magnetized even when the filament gas is completely unmagne-
tized, if the halo is not. Through magnetic draping, the magnetic
field lines at the shear layer will become aligned with the flow di-
rection, and the amplitude of the magnetic fields there will increase.
This process will stabilize the boundary and could strongly affect
the results in the linear phases of the instability. We leave for future
work a more robust comparison of the growth rate of magnetic fields
in the shear layers compared to the growth rate of the instability and
their dependence on the initial hydrodynamic perturbation and ini-
tial magnetic fields. The third aspect of magnetic fields is its effect
on conduction perpendicular to the shearing layer and magnetic
draping that is expected there, which could drastically reduce the
coefficients of thermal conductivity and viscosity discussed above.

(vi) Galaxy formation. Even after accounting for all the effects
mentioned above, the analysis will still be idealized. In order to
address the stability of realistic cold streams feeding galaxies from
the cosmic web, we must account for the presence of additional

merging galaxies within the streams, interaction between several
streams within the same halo, interaction between streams and
feedback induced outflows from the central galaxy, and possible
star formation and feedback within the streams themselves. The
best way to account for all these effects is with a fully cosmological
simulation. In parallel to the methodical work outlined above, we
are experimenting with running cosmological zoom-in simulations
using RAMSES, with refinement based on gradients in density and
velocity, rather than the density-based quasi-Lagrangian strategy
typically used (Roca-Fabrega et al., in preparation). This will al-
low us to resolve the streams better than any existing cosmological
simulation. As described in Section 3.1, to properly resolve the in-
stabilities in cold streams, the cell size must be at least ∼60 times
smaller than the perturbation wavelength. For λ ∼ Rs ∼ 1 kpc, this
corresponds to a resolution of �15 pc within the cold streams, which
will be challenging to achieve. Such simulations will also allow us
to gauge the effect of initially large instabilities on the streams, such
as caused by the collision of a stream with a satellite galaxy in the
halo. An idealized study of such a collision suggests that while the
stream is initially destroyed, it reforms within �0.3 virial crossing
times (Wang et al. 2014), after which our linear analysis is again
relevant.

6 SU M M A RY A N D C O N C L U S I O N S

We have presented a detailed analysis of linear KHI for fully com-
pressible fluids in three different geometries: a sheet, a slab and a
cylindrical stream, confirming our analytical predictions using nu-
merical simulations with RAMSES. We then applied our results to the
problem of cold streams that feed massive SFGs at high redshift,
showing that KHI can be important in their evolution. For a large
region of allowed parameters, the number of e-foldings of growth
experienced by a linear perturbation is between 10 and 100. How-
ever, the estimated range of parameters overlaps the phase transition
between rapidly growing surface modes and more slowly growing
body modes. As a result, perturbations may still remain linear by
the time the stream reaches the central galaxy, with less than one
e-folding of growth in a virial crossing time. The linear analysis
of KHI in the adiabatic limit thus indicates that it can be relevant
for the evolution of cold streams, but it cannot definitely assess its
importance. Our main results can be summarized as follows.

(i) For a sheet, KHI is suppressed at high Mach numbers,
Mb > Mcrit = (1 + δ−1/3)3/2, with Mb = v/cb the fluid velocity
normalized by the sound speed in the hot medium, and δ = ρs/ρb

the density contrast between the fluids. At lower Mach numbers,
the growth rate for instabilities scales linearly with the wavenumber,
ωI ∝ k, and the perturbations themselves decay exponentially with
distance from the interface between the fluids.

(ii) At low Mach numbers, when the sheet is unstable, surface
modes dominate the instability in a slab, which behaves similarly
to a sheet for wavelengths comparable to or shorter than the slab
width.

(iii) At high Mach numbers, Mtot = v/(cb + cs) > 1, the slab
remains unstable despite surface modes having stabilized due to the
appearance of body modes at shorter and shorter wavelengths. These
modes are triggered by waves being reflected off the slab bound-
aries and are qualitatively different than the surface modes present
at low Mach numbers. They penetrate the width of the slab, and
resemble standing waves propagating through a waveguide. There
is an infinite set of these body modes, characterized by a mode
number, n = 1, 2, 3, . . . , representing the number of nodes in the
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transverse direction. Each mode becomes unstable at a finite wave-
length, its growth rate increases towards a maximum at a resonant
wavelength and then decays to zero as λ → 0. The effective growth
rate of instabilities in the slab is given by the sequence of resonant
growth rates for each mode. This is inversely proportional to the slab
sound-crossing time and scales logarithmically with wavenumber,
ωI ∝ t−1

sc ln(kRs).
(iv) The only qualitative difference between a slab and a cylinder

is that a cylinder has an infinite sequence of symmetry modes,
characterized by an azimuthal mode number m, while a slab only
has two symmetry modes: symmetric P-modes and antisymmetric
S-modes. However, at wavelengths comparable to or shorter than
the stream width, the growth rates of instabilities in cylindrical
geometry are very similar to those in a slab. The slab is thus a good
approximation to the cylinder at short wavelengths.

(v) Simulations of the linear regime of KHI in a slab geometry
reproduce the analytic results. When the slab is perturbed with an
eigenmode of the problem, so that the initial conditions are self-
consistent with the linearized hydrodynamic equations, the growth
rate matches the analytic prediction for both surface modes and body
modes. When the slab is perturbed by an arbitrary, non-eigenmode
perturbation, this must decay into eigenmodes before it can begin to
grow. For surface modes, this process lasts for a wavelength sound-
crossing time in the hot medium, tλ = λ/cb. For body modes, we
must wait until the stream becomes coherent, after a stream sound-
crossing time, tsc = 2Rs/cs. Once the initial perturbation has decayed
into eigenmodes, the fastest growing mode for the given δ, Mb and
λ/Rs dominates the instability.

(vi) The allowed range of parameters for cold streams in massive
galaxies at high z is near the transition between surface modes and
body modes. Thus, even minor variations in the stream parameters
within their realistic ranges can have large effects on the growth
rate of instabilities. For a realistic range of stream parameters, the
number of e-foldings of growth within a virial crossing time can
range from roughly 0.1 to 100. This implies that KHI could in
principle have an important role in the evolution of cold streams,
and a study of the non-linear phases of the instability and the effects
of additional physical processes is well motivated.

(vii) When non-linear effects become important, the perturbation
amplitude saturates at first, before continuing to grow linearly with
time via the mergers of vortices. In an upcoming paper (Padnos
et al., in preparation), we will address this process in detail, both
analytically and using simulations.

(viii) Rough, order-of-magnitude estimates suggest that heat con-
duction and magnetic fields should not drastically alter the linear
analysis presented here. On the other hand, the gravitational poten-
tial of the halo may enhance the instability by causing the stream
to become narrower closer to the halo centre, decreasing the sound-
crossing time and thus increasing the growth rate of KHI. Cooling
is unlikely to drastically affect the linear evolution, but can have
significant effects in the non-linear regime. In future work, we will
address all these effects one by one in more detail, while in parallel
we will study the effects of galaxy formation on cold streams using
cosmological simulations with tailored refinement in the streams.
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Bouché N. et al., 2016, ApJ, 820, 121
Cantalupo S., Arrigoni-Battaia F., Prochaska J. X., Hennawi J. F., Madau P.,

2014, Nature, 506, 63
Ceverino D., Dekel A., Bournaud F., 2010, MNRAS, 404, 2151
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability.

Clarendon, Oxford
Churazov E., Forman W., Vikhlinin A., Tremaine S., Gerhard O., Jones C.,

2008, MNRAS, 388, 1062
Codis S., Pichon C., Devriendt J., Slyz A., Pogosyan D., Dubois Y., Sousbie

T., 2012, MNRAS, 427, 3320
Danovich M., Dekel A., Hahn O., Teyssier R., 2012, MNRAS, 422,

1732
Danovich M., Dekel A., Hahn O., Ceverino D., Primack J., 2015, MNRAS,

449, 2087
Dekel A., Birnboim Y., 2006, MNRAS, 368, 2
Dekel A. et al., 2009, Nature, 457, 451
Dekel A., Zolotov A., Tweed D., Cacciato M., Ceverino D., Primack J. R.,

2013, MNRAS, 435, 999
Dijkstra M., Loeb A., 2009, MNRAS, 400, 1109
Dubois Y., Teyssier R., 2010, A&A, 523, A72
Elmegreen D. M., Elmegreen B. G., Ravindranath S., Coe D. A., 2007, ApJ,

658, 763
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Vogelsberger M., Sijacki D., Kereš D., Springel V., Hernquist L., 2012,

MNRAS, 425, 3024
Wang L., Zhu W., Feng L.-L., Macciò A. V., Chang J., Kang X., 2014,
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A P P E N D I X A : B R A N C H C U T S O F T H E
S O L U T I O N S

Since the generalized wavenumbers qb, s (equation 12) are given by
the square root of a complex number, we must define a branch cut
in the complex plane. As mentioned in Section 2.2, we have chosen
to have Re(qb, s) ≥ 0. This is equivalent to defining arguments of
complex numbers between −π and π. If the argument of q2

b,s is
2α ∈ (−π, π), then the argument of qb, s is α ∈ (−π/2, π/2) and
we have Re(qb, s) > 0. This ensures that the amplitude of the pertur-
bation decays, rather than grows, away from the interface between
the fluids. However, in order to understand how waves generated
by the instability propagate away from the interface, we must also
determine the sign of Im(qb, s). We limit our discussion here to for-
ward travelling growing modes, i.e. modes with k, Re(ω), Im(ω) > 0.

We define R exp(iθ ) ≡ (ω − kv)/c. If Re(ω) < kv, then π/2 <

θ < π and q2 = (k2 − R2cos(2θ )) − i(R2sin(2θ )) has a positive
imaginary part. Therefore, if the argument of q is α, we have 0 <

2α < π ⇒ 0 < α < π/2, which gives Im(q) > 0. On the other
hand, if Re(ω) > kv, similar arguments yield −π/2 < α < 0, so
that Im(q) < 0.

In all cases presented in the text, we assumed that vb = 0 and
vs = v, and found 0 < Re(ω) < kV. This means that Im(qb) < 0 and
Im(qs) > 0.

A P P E N D I X B : SO LV I N G T H E D I S P E R S I O N
R E L AT I O N O F T H E C O M P R E S S I B L E S H E E T

In this appendix, we examine the six solutions to equation (20) and
explain why only two of them are solutions to the dispersion relation
of the compressible sheet (equation 19).

The two solutions to the quadratic part of the equation are
	 2 = δ(1 − 	 )2. Both of these result in qb = qs and in Z = −1.
Therefore, neither of these are solutions to the dispersion relation,
but only come about because equation (19) was squared.

Attempting to find tractable analytic expressions for the four solu-
tions to the quartic part of equation (20) was unsuccessful. However,
analytic insight can still be gained by examining its discriminant.
Given the general quartic equation

f (x) = ax4 + bx3 + cx2 + dx + e, (B1)

the discriminant is given by

�0 = 256a3e3 − 192a2bde2 − 128a2c2e2

+ 144a2cd2e − 27a2d4 + 144ab2ce2 − 6ab2d2e

− 80abc2de + 18abcd3 + 16ac4e − 4ac3d2

− 27b4e2 + 18b3cde − 4b3d3 − 4b2c3e + b2c2d2. (B2)

When �0 < 0, the quartic has two real roots and two complex
conjugate roots (Rees 1922). For the quartic part of equation (20),
we have

�0 = 16M2
b δ−4 · [δ3M6

b − 3δ2(1 + δ)M4
b

+ 3δ(δ2 − 7δ + 1)M2
b − (δ + 1)3]

. (B3)

It is straightforward to show that �0 < 0 if and only if Mb < Mcrit,
where Mcrit is given by equation (22). Since the solution must con-
verge to that of the incompressible sheet (equation 17) for Mb 
 1,
and since this admits only two complex conjugate solutions, we
deduce that the two real solutions to the quartic part of equation
(20) at Mb < Mcrit are not solutions to the dispersion relation, Z = 1.
Rather they must also be solutions to Z = −1, similar to the two
solutions to the quadratic part. We discuss this further below.

For Mb > Mcrit, we obtain �0 > 0 and the nature of roots depends
on the signs of two additional parameters,

�1 = 8ac − 3b2, (B4)

�2 = 64a3e − 16a2c2 + 16ab2c − 16a2bd − 3b4. (B5)

If both �1 < 0 and �2 < 0 when �0 > 0, then all four roots are
real and distinct. Otherwise the four roots are two pairs of complex
conjugates (Rees 1922). For the quartic part of equation (20), we
have

�1 = −4M2
b

(
2 + δ(2 + M2

b )
)

δ2
< 0, (B6)

�2 = −16M2
b (1 + δ)(1 + δ + 2δM2

b )

δ4
< 0. (B7)

Since �1 and �2 are always negative, all four roots are real when
Mb > Mcrit, and the sheet is stable.

When Mb � 1, asymptotic solutions can be found for the quartic
part of equation (20),

	 � ± 1

Mb
, 1 ± 1

Ms
, (B8)

where Ms = δ1/2Mb. Note that all four of these solutions result in
qb and qs that are purely imaginary.
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Figure B1. Real solutions to the quartic part of equation (20). We show Re(	 ) as a function of Mb, for three different values of δ, as marked in the panels.
Solid lines show numerical solutions. At low Mach numbers, two of the solutions are complex conjugates and therefore have the same real part, shown by
the black solid line at low Mach numbers. These are the unstable growing and decaying mode, and the imaginary part is shown in Fig. 1. This line bifurcates
into the solid black and red lines at the critical Mach number, Mcrit from equation (22), above which the system becomes stable and these modes become
independent travelling waves. The other four lines are stable travelling waves, which are not actually solutions to the dispersion relation Z = 1. The four dashed
lines show the asymptotic high Mach number solutions from equation (B8). The fit is excellent in the entire stable regime.

When 	 = −M−1
b we have ω < 0 and when 	 = 1 + M−1

s we
have ω > kV. Therefore, following the discussion in Appendix A, qb

and qs will have the same sign, so qs/qb > 0 and Z < 0. Therefore,
these cannot be solutions to Z = 1, but must yield Z = −1. We
conclude that these are the high Mach number limits of the two roots
that were real even for Mb < Mcrit, which we already determined
were not true solutions to the dispersion relation. The other two
solutions, 	 = M−1

b , 1 − M−1
s , both result in 0 < ω < kV and

therefore qs/qb < 0 and Z > 0, meaning that Z = 1. Thus, these are
the high Mach number limits of the true solutions to the dispersion
relation.

In Fig. B1, we show numerical solutions to the quartic part of
equation (20) as a function of Mach number, Mb, for different values
of the density contrast, δ. For the two complex conjugates at low
Mach numbers, representing the growing and decaying unstable
modes, we show only the real part which is the same for both
solutions (the complex part is shown in Fig. 1). At Mb > Mcrit, these
modes stabilize and become two independent travelling waves. This
can be seen as the bifurcation point between the red and black
lines in the figure. The other two solutions are always real, and
can be thought of as a forward travelling wave with 	 > 0 and a
backward travelling wave with 	 < 0. However, as discussed above,
these are not solutions to the dispersion relation. At high Mach
numbers, the four solutions to the quartic are well approximated
by the asymptotic expressions in equation (B8), shown with dashed
lines. These represent stable sound waves with phase velocities
ω/k = v ± cs, ±cb.

A P P E N D I X C : L O N G - WAV E L E N G T H L I M I T O F
THE C OMPRESSIBLE SLAB

In this appendix, we derive the growth rate of the compressible
slab in the long-wavelength limit, where K 
 1. The first step is to
verify that in this limit, qsRs 
 1 as well, as this is what is needed
to simplify the dispersion relation in equation (27). We accomplish
this by showing that as k → 0, ω → 0 as well. Otherwise, if k = 0
and ω �= 0, equation (12) reduces to qb, s = ±iω/cb, s. On the one
hand, we are only interested in growing modes where Im(ω) > 0,

and on the other hand we require Re(qb, s) > 0. Therefore, we take
qb, s = −iω/cb, s. Inserting this into equation (25) yields

T

(
−i

ωRs

cs

)
= −δ−1/2. (C1)

Solving for ω results in

ω = cs

2Rs

[
−nπ + iln

(√
δ − 1√
δ + 1

)]
, (C2)

where n is any whole number, even for S-modes and odd for
P-modes. For any δ > 0, equation (C2) results in Im(ω) < 0, which
is in contradiction to our original assumption. We conclude that
there are no solutions with ω(k = 0) �= 0. Therefore, qb, s → 0 as
k → 0, and tanh(qsRs) � 1/coth(qsRs) � qsRs. Inserting this into
equation (27) yields

K = − 	 2

δ (	 − 1)2
(
1 − M2

b 	 2
)1/2 (S) (C3a)

K = − δ (	 − 1)2
(
1 − M2

b 	 2
)1/2

	 2
(
1 − δM2

b (	 − 1)2
) (P). (C3b)

S-modes. The solution to equation (C3a) for K = 0 is 	 0 = 0.
For K 
 1, the lowest order correction is 	 1 � ±iδ1/2K1/2. To find
the next-order correction, we insert 	 = 	 1 + 	 2 with 	 2 
	 1


 1. This results in 	 2 � δK, which is the leading-order term in
Re(	 ). Thus, at long wavelengths, S-modes are unstable with the
approximate dispersion relation

ωS, f � V

Rs

[
δK2 ± iδ1/2K3/2

]
. (C4)

P-modes. When K = 0, there are two solutions to equation (C3b):
	 0 = 1 and 	0 = M−1

b . In the vicinity of 	 0 = 1, the system is
unstable. Inserting 	 = 1 + 	 1 with 	 1 
 1 into equation (C3b)
yields 	1 � ±iK1/2δ−1/2(1 − M2

b )−1/4. So at long wavelengths, P-
modes are unstable with the approximate dispersion relation

ωP, f � V

Rs

[
K ± iδ−1/2(1 − M2

b )−1/4K3/2
]
. (C5)
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For the special case of Mb = 1, one gets instead 	
5/2
1 � (iK)/(

√
2δ)

and the dispersion relation becomes, to lowest order in K,

ωP, f � V

Rs

[
K ± (−2δ2)−1/5K7/5

]
. (C6)

When Mb �= 1, the second solution to equation (C3b), 	0 =
M−1

b , is stable. Inserting 	 = M−1
b (1 + 	1) with 	 1 
 1 into

equation (C3b) yields

	1 = −1

2

[
1 − 1

δ(Mb − 1)2

]2

K2. (C7)

A P P E N D I X D : SH O RT-WAV E L E N G T H L I M I T
OF THE C OMPRESSIBLE SLAB

In this appendix, we discuss in detail the short-wavelength limit of
the slab, where K � 1. There are two solutions to the dispersion
relation, equations (28), for K → ∞. These are Z = 1 and 1 −
δM2

b (	 − 1)2 = 0. However, care must be taken to ensure that K
remains real, which must be the case in the temporal analysis we
are discussing. By examining equations (28), we see that there are
two different regimes, depending on the parameter

γ ≡
Im

(√
1 − δM2

b (	 − 1)2
)

Re
(√

1 − δM2
b (	 − 1)2

) = Im(qs)

Re(qs)
. (D1)

If γ 
 1, then K will remain real as Z → 1; in other words,
the slab dispersion relation converges to that of the sheet at short
wavelengths, as expected. In this case, qs is very nearly real which
means that these solutions represent surface modes, similar to the
sheet. These decay exponentially with depth in the slab and pre-
vent the two surfaces from coming into causal contact. We exam-
ine the regime of validity of this solution in Fig. D1, where we
show the value of γ obtained for solutions to the sheet, i.e. Z = 1,
as a function of Mb and δ. We see that γ 
 1 only for low Mach
numbers, Mb 
 1. At Mb ∼ 1, we have γ � 1 and the slab will
deviate somewhat from the sheet solution of Z = 1 even at short
wavelengths. As Mb approaches Mcrit and the sheet becomes stable,

Figure D1. The value of γ = Im(qs)/Re(qs) for the sheet solution. When
γ 
 1, the dispersion relation of the slab converges to that of the sheet,
Z = 1, at short wavelengths. This happens only for low Mach numbers,
Mb 
 1. When γ > 1, which happens when the sheet is stable, the slab
converges to the solution 	 = 1 − M−1

s , which is the high Mach number
stable limit of the growing mode solution in the sheet.

qs becomes purely imaginary and thus γ > 1, so Z = 1 is not a valid
solution to the slab at short wavelengths.

When γ � 1, the short-wavelength limit of the slab is given by
1 − δM2

b (	 − 1)2 → 0. In this case, 	 → 	∞ ≡ 1 ± 1/Ms, which
as we saw is the high Mach number asymptotic value of the growing
mode solution in the sheet (equation B8). So either way, the slab
converges to the sheet at short wavelengths. This leads to Z 
 1,
which ensures that K is real in equations (28). Such solutions have qs

that is very nearly imaginary which means that they represent body
modes, which penetrate deep into the slab. In such a case, stable
waves emanate from the interfaces and do not decay. These waves
will be reflected off the slab boundaries, causing the two sides to
come into causal contact.

A P P E N D I X E : STA B I L I T Y A N D M A R G I NA L
STABI LI TY IN THE SLAB

In this appendix, we analytically find all stable solutions to the slab
dispersion relation, i.e. solution to equations (28) where both K and
	 are real. This is a preliminary step towards finding the marginally
stable points of the system. These are points in (	 , K) space where
both parameters are real, but in the vicinity of which one or both
of them become complex. In our temporal analysis, K is real by
definition, so a marginally stable point is a stable solution where
an infinitesimal change in K results in complex 	 , which must
correspond to an extremal point of the function K(	 ), where 	 is
real. To see this, consider a solution with 	 = 0, K(0), and imagine
increasing K (decreasing the wavelength λ). So long as K(	 ) is
monotonic, there is still a solution with real 	 , and therefore the
solution remains stable. But when K(	 ) reaches an extremal point,
decreasing the wavelength further requires extending 	 to the com-
plex plane, indicating an instability (Fig. E1, discussed below).

There are two main branches of stable solutions, depending on
whether qs is real or imaginary. We will address each of these
separately, as they define different families of solutions, for low and
high Mach numbers.

E1 qs ∈ R ⇒ 1 − δM2
b(1 − � )2 > 0

Such solutions represent surface waves that decay exponentially
within the slab, with a penetration depth of q−1

s . Such modes behave
similarly to the sheet at short wavelengths since the two sides of the
slab are not in contact with each other (Appendix D). For K to be
real, we require

K = Re(K) = ln (|1 + Z|) − ln (|1 − Z|)
2
√

1 − δM2
b (	 − 1)2

, (E1a)

Im(K) = arg(1 + Z) − arg(1 − Z) + nπ

2
√

1 − δM2
b (	 − 1)2

= 0. (E1b)

If qb ∈ R, then 1 − M2
b 	 2 ≥ 0 and Z = −|Z| is on the negative

real axis. If |Z| ≤ 1, then arg(1 + Z) = 0 and equation (E1b)
can be satisfied with n = 0. If |Z| > 1, then arg(1 + Z) = π and
equation (E1b) can be satisfied with n = −1. Either way, equation
(E1a) results in K ≤ 0. Physically, we require K = |k|Rs ≥ 0, so the
only relevant solutions in this case are those with K = 0. If n = 0,
then −1 ≤ Z ≤ 0, so K = 0 is only possible for Z = 0. Since we have
assumed here qs > 0, this in turn requires 	 = 0, which corresponds
to the fundamental S-mode (Appendix C). If n = −1, then Z < −1,
so K = 0 is only possible for Z = −∞. This in turn requires
	 = 1 (or M−1

b ), which corresponds to the fundamental P-mode
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Figure E1. The first 10 modes of equation (E3), for three different regimes of Mb. The left-hand panel represents low Mach numbers, Mb < 1 − 1/
√

δ, and
the middle panel represents intermediate Mach numbers, 1 − 1/

√
δ < Mb < 1 + 1/

√
δ. In both these cases, there are no marginally stable points and each

mode is stable at all wavelengths. The right-hand panel represents high Mach numbers, 1 + 1/
√

δ < Mb, where the flow is supersonic with respect to the sum
of the two sound speeds Mtot = v/(cb + cs) > 1. In this case, each K(	 ) curve has a maximum in the range 0 < 	 < M−1

b , marked with a dashed line. These
maxima, Kn, represent marginally stable points, since increasing K beyond Kn introduces an imaginary component to 	 and triggers an instability.

(Appendix C). Recall that at K = 0, the system is unstable for 	 = 0
and 1, but stable for 	 = M−1

b (Appendix C).
Note that our assumptions above, whereby qs > 0 and qb ≥ 0,

limit the range of 	 to 1 − M−1
s < 	 < 1 + M−1

s and −M−1
b ≤

	 ≤ M−1
b . The solutions 	 = 0, 1, M−1

b are only included in this
range at low Mach numbers: Ms < 1, Mb ≤ 1 and 1 − 1/

√
δ <

Mb < 1 + 1/
√

δ, respectively.
On the other hand, if qb ∈ I so that 1 − M2

b 	 2 < 0, then
qb = −i|qb| and Z = −i|Z| is on the negative imaginary axis. There-
fore, −π/2 ≤ arg(1 ± Z) ≤ π/2 and equation (E1b) can be satisfied
with n = 0 only if Z = 0, which would require 	 = 0, in contradic-
tion to the assumption that 1 − M2

b 	 2 < 0. A solution with n = −1
is possible if |Z| = ∞ so that (1 + Z)/(1 − Z) = −1. In this case,
provided Mb > 1, the solution is K = 0 and 	 = 1, corresponding
to the unstable fundamental (P) mode. The solution 	 = M−1

b is in
contradiction to the assumption that 1 − M2

b 	 2 < 0.

E2 qs ∈ I ⇒ 1 − δM2
b(1 − � )2 < 0

Such solutions represent waves that do not decay spatially within
the slab. They travel from one interface to the other and are reflected
off of and transmitted through the slab boundaries. These are body
modes or reflected modes. In this case, since the two sides of the
slab can interact with each other through the reflection of waves,
the slab will differ greatly from the sheet. In this regime qs = i|qs|
(Appendix A) and 	 must obey either 1 + M−1

s < 	 or 	 <

1 − M−1
s . For K to be real, we require

K = Re(K) = arg(1 + Z) − arg(1 − Z) + nπ

2
√

δM2
b (	 − 1)2 − 1

, (E2a)

Im(K) = − ln (|1 + Z|) − ln (|1 − Z|)
2
√

δM2
b (	 − 1)2 − 1

= 0. (E2b)

If qb ∈ I so that 1 − M2
b 	 2 < 0, then qb = −i|qb| (Appendix A)

and Z = +|Z| is on the positive real axis. Equation (E2b) can thus
only be satisfied if Z = 0, which requires 	 = 0, which is in
contradiction to the assumption that 1 − M2

b 	 2 < 0. We therefore
conclude that no such solution exists.

On the other hand, if qb ∈ R so that 1 − M2
b 	 2 ≥ 0, then

Z = −i|Z| is on the negative imaginary axis. In this case, 1 −
Z = 1 + Z̄ and equation (E2b) is always satisfied. Furthermore,
equation (E2a) can be rewritten as

K = −arctan(|Z|) + (n/2)π√
δM2

b (	 − 1)2 − 1
. (E3)

For n < 0, equation (E3) always results in
K < 0, which is not relevant for our discussion. For n = 0,
equation (E3) results in K ≤ 0 so the only relevant solution is
K = 0, which requires |Z| = 0, which in turn requires 	 = 0.
Provided Ms > 1, this corresponds to the fundamental S-mode.

For n ≥ 1, equation (E3) results in K ≥ 0 for all 	 . How-
ever, our assumptions of q2

s < 0 and q2
b ≥ 0 limit the range of

allowed 	 values to −M−1
b ≤ 	 ≤ M−1

b and either 1 + M−1
s < 	

or 	 < 1 − M−1
s . For the nth mode, 	 = 0 when K = Kn,0 =

nπ/(2
√

M2
s − 1), provided Ms > 1.

In Fig. E1, we show K as a function of (Mb	 ) from equation
(E3), for n = 1–10. The three panels are representative of three
different regimes of Mach number. The left-hand panel represents
low Mach numbers, Mb < 1 − 1/

√
δ, corresponding to flow ve-

locities of v < cb − cs. In this case, both branches of 	 are
accessible. K(	 ) increases monotonically from 	 = −M−1

b until
	 = 1 − M−1

s where K →∞. It then decreases monotonically from
	 = 1 + M−1

s , where again K → ∞, until 	 = M−1
b . The centre

panel represents intermediate Mach numbers, 1 − 1/
√

δ < Mb <

1 + 1/
√

δ, corresponding to flow velocities cb − cs < v < cb + cs.
In this case, only 	 < 1 − M−1

s is accessible, but the qualitative
behaviour of K(	 ) in this regime is the same as in the previous
case, shown in the left-hand panel. In both these cases, there are
no marginally stable points with K > 0. Solutions with n ≥ 1 are
stable at all wavelengths. Once the nth mode has been excited, at
K = Kn, 0, we can increase K (decrease the wavelength) continu-
ously, and there will always be a solution to the mode with real 	 .
Since we never require complex 	 , no instability is ever triggered.

The right-hand panel of Fig. E1 represents large Mach num-
bers, 1 + 1/

√
δ < Mb, corresponding to flow velocities which are

supersonic with respect to the sum of the two sound speeds:
v > cb + cs ⇒ Mtot > 1. In this case, the K(	 ) curve
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corresponding to each mode has exactly one maximum point in
the range 0 < 	 < M−1

b , as shown in the figure. We refer to these
maxima as Kn and 	 n. These are marginally stable points.

APPENDIX F: MARGINALLY STABLE POINTS
F O R LA R G E n

The marginally stable points are given by dK/d	 = 0 with K(	 )
given by equation (E3). This equation cannot be solved analytically
in general, but in this appendix we derive an analytical approxima-
tion for large n.

Based on the discussion in the previous appendix, when Mtot > 1,
equation (E3) is continuous in the range −M−1

b ≤ 	 ≤ M−1
b . Since

0 ≤ arctan(|Z|) ≤ π/2, for n � 1 equation (E3) can be approx-
imated as K � (nπ/2)(δM2

b (	 − 1)2 − 1)−1/2, which is a mono-
tonically increasing function of 	 . We conclude that for n > 1, 	 n

converges to M−1
b (see the right-hand panel of Fig. E1). When 	 =

M−1
b we get |Z| = ∞, so for 	n = M−1

b (1 − W), with 0 < W 
 1,
we have |Z| � 1 and arctan(|Z|) = π/2 − |Z|−1 + O(|Z|−3). To
leading order in W ,

|Z|−1 �
√

2δ(Mb − 1)2√
δ(Mb − 1)2 − 1

W1/2. (F1)

In order to find Kn, the maximum of equation (E3), we expand K
to the second leading order in W:

K � K0 + K1W1/2 + K2W, (F2a)

K0 = nπ

2
√

δ(Mb − 1)2 − 1
, (F2b)

K1 =
√

2δ(Mb − 1)2

δ(Mb − 1)2 − 1
, (F2c)

K2 = nπδ(Mb − 1)

2
(
δ(Mb − 1)2 − 1

)3/2 . (F2d)

It is now straightforward to find the maximum of equations (F2),
which approximates the marginally stable point of the nth mode

Wn � 2 (Mb − 1)2
[
δ (Mb − 1)2 − 1

]
n2π2

, (F3a)

Kn � nπ

2
√

δ(Mb − 1)2 − 1
. (F3b)

	 n thus converges to M−1
b as n−2 while Kn grows linearly with n.

To ensure 	n ≤ M−1
b , we require Wn ≥ 0. From equation (F3a),

this leads to

M−1
b + M−1

s ≤ 1 ⇒ v ≥ cb + cs. (F4)

This supports what was inferred from Fig. E1 in Appendix E, namely
that marginally stable points exist only for flows that are supersonic
with respect to the sum of the two sound speeds. All we assumed
in deriving equations (F3) was that K(	 ) from equation (E3) was
continuous for |	 | ≤ M−1

b , which requires only v ≥ cb − cs. Such
a flow is not necessarily supersonic at all, while the existence of
unstable modes with n ≥ 1 is a purely supersonic effect.

Our approximation for Wn is only valid if |Z|−1 
 π/2, with
|Z|−1 given in equation (F1). It is straightforward to verify that this
condition also guarantees Wn 
 1 in equation (F3a). The value of
n for which |Z|−1 � 1 is

n1 � δ (Mb − 1)3 . (F5)

We expect equations (F3) to converge for n � n1.
In Fig. F1, we compare equations (F3) to exact numerical so-

lutions for the maxima of equation (E3), for different values of
Mb and δ. The left-hand panel shows Kn and the right-hand panel
shows Wn. The approximation for Kn improves with increasing n
and increasing Mtot. For Mtot � 2, the error is less than 10 per cent
already for n � 2, while for lower Mtot this error is achieved for n �
10. On the other hand, the approximation for the marginally stable
frequency, equation (F3a), only converges for n > n1 as expected

Figure F1. Comparison of our analytic approximation for the marginally stable points from equations (F3), with the exact solution obtained by numerically
finding the maxima of equation (E3). The left-hand panel compares Kn and the right-hand panel compares Wn. Solid lines show the log of the ratio of the
analytic estimate to the numerical solution for different combinations of Mb and δ, corresponding to different values of Mtot. In all cases examined, there is
less than 10 per cent error in the approximation for Kn by n ∼ 10, and for Mtot � 2 this is the case already at n ∼ 2. On the other hand, the approximation for
Wn converges only for n > n1 (equation F5, dashed lines), which increases rapidly with Mtot. The curves with Mtot = 3.80 and 4.55 lie outside the bounds of
the panel, converging only at very high n.
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(equation F5). Unfortunately, for even moderately high Mach num-
bers and density contrasts, n1 can be quite high. For example, for
Mb = 5 and δ = 1, n1 � 65.

Modes with n ≥ 1 begin stable at K = Kn, 0, 	 = 0, pass
through marginal stability at K = Kn, 	 � M−1

b and end at K =
∞, 	∞ = 1 − M−1

s . As a result, |Z| begins near 0, reaches large
values |Z| � 1 and ends near 0 again. Therefore, (1 + Z)/(1 − Z)
goes from ∼1 to ∼−1 and back to ∼1, completing a full revolution
about the origin in the complex plane. This is the reason for the
extra 2π in equation (31) compared to equations (28).

A P P E N D I X G : G ROW T H R AT E S N E A R
MARGINAL STABILITY

Using our approximation for the behaviour of K(	 ) near marginal
stability (equations F2), we can derive the growth rate of the nth
mode. We assume K = Kn + κ and 	 = M−1

b (1 − Wn + ξ ), with
κ 
 Kn and |ξ | 
 Wn 
 1. By inserting this into equations (F2),
we obtain to leading order in κ

ξ � ±i

[
8M

3/2
b

[
δ (Mb − 1)2 − 1

]
√

2δ (Mb − 1)2
W3/2

n

]1/2

κ1/2. (G1)

This shows that the system is indeed unstable near Kn, and that this
instability has a growing mode. Using our approximation for Wn

from equation (F3a), equation (G1) becomes

ξ � ±i
8
√

(Mb − 1)
[
δ (Mb − 1)2 − 1

]5/4

√
δ [nπ]3/2

κ1/2. (G2)

The growth rate near marginal stability is

Im(ω) = kv Im(	 ) = kcb|ξ |. (G3)

ξ can be computed either from equation (G1) using the exact (nu-
merical) solution for Wn or from equation (G2) using our analytic
approximation, which we saw to be a good approximation for n > n1

(equation F5).
The analytic approximation for ξ is compared to numerical so-

lutions of the dispersion relation in Fig. G1, for different values
of δ and Mb. The coloured lines show the result of a full numeri-

cal solution to the dispersion relation (equation 27) for the modes
n = 1–40. The dashed black line is the analytic approximation. We
show ξ = Im(	 ), normalized by the n-dependent prefactor of κ1/2

in equation (G1), as a function of κ . When computing ξ and κ from
equation (G1), we used the numerical results for Wn and Kn, ob-
tained by finding the maximum of K(	 ) in equation (E3). Though
not fully analytic, this is still much easier to evaluate numerically
than a full solution to the dispersion relation, and is thus still use-
ful. In all cases examined, the scaling of ξ ∝ κ1/2 is captured at
κ � 0.1 for all n, even if the normalization has not yet converged.
The normalization converges rapidly as well for low Mach num-
bers (left-hand panel), though more slowly for high Mach numbers,
qualitatively similar to the convergence of equation (F3a) for Wn

(Fig. F1).
For high Mach numbers, Mb � 1, equation (G2) yields ξ ∝

δ3/4M3
b n−3/2 (for n > n1), while k � Kn ∝ δ−1/2M−1

b n. The growth
rate near marginal stability thus scales as

Im(ω) ∝ δ1/4M2
b n−1/2. (G4)

The scaling of M2
b is very different from the growth rate near

marginal stability for the fundamental modes. For the S-mode, this
is independent of Mb (equation C4), and for the P-mode it scales as
M

−1/2
b (equation C5).

APPENDI X H : FASTEST G ROWI NG MODE IN
T H E SL A B

For each mode, the growth rate is zero at marginal stability, grows
larger as K is increased and then goes to zero again at K → ∞
(Appendix D). Each mode thus has a maximal growth rate at some
intermediate K, hereafter the resonance of the mode. It is of partic-
ular interest to estimate this maximal growth rate, and how it scales
with mode number n, or alternatively with wavenumber K. This
will tell us which mode is dominant for perturbations of a particular
wavelength, and will give an estimate of the fastest growth rate. Be-
low, we derive an analytic approximation for the maximal growth
rate which is valid for very supersonic flows, Mtot = v/(cb + cs) � 1
(though in practice, it is a good approximation for Mtot � 1.5).

Figure G1. Comparison of our analytic estimate for the growth rate of modes with n ≥ 1 near marginal stability to a numerical solution of the dispersion
relation. The x-axis is κ = K − Kn, the wavenumber relative to marginal stability. The y-axis is ξ = Im(	 ), normalized by the n-dependent factor multiplying
κ1/2 in equation (G1). We used the exact value for Kn and Wn when computing κ and ξ , obtained by numerically finding the maximum of K(	 ) in equation
(E3). The black dashed line shows the analytic prediction and the coloured solid lines show numerical calculations of the first 40 modes, n = 1–40, increasing
from top to bottom. For all cases examined, the slope of ξ ∝ κ1/2 is reproduced at κ � 0.1. Increasing n or decreasing Mtot makes the slope a good fit at higher
κ as well, and improves the fit to the normalization of ξ . However, even at high Mtot, the normalization is well approximated by equation (G1) by n ∼ 5.
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We make two additional assumptions. The first is that 	 is suffi-
ciently far from both 0 and 1 at resonance, so that δMb(	 − 1)2 � 1
and Mb	

2 � 1. The second is that the growth rate at resonance
is much smaller than the angular frequency. In other words, if
ω = ωR + iωI , then ωI 
 ωR at resonance. We empirically show
these two assumptions to be valid by numerically solving the dis-
persion relation (see Fig. 4). However, they can both be justified
analytically as well. When Mtot � 1, 	 grows from � M−1

b ∼ 0
at marginal stability to 1 − M−1

s ∼ 1 as K → ∞. Since in both of
these limits the growth rate goes to zero, it is reasonable to assume
that resonance occurs far from these points, so that 	 is sufficiently
far from both 0 and 1. The second assumption can be justified by
realizing that while both 	R and 	I start very small at marginal
stability, 	R increases monotonically to an asymptotic value of ∼1,
while 	I flattens, reaches a maximum at resonance and then de-
cays to zero. It is therefore reasonable to assume that 	I 
 	R at
resonance, and therefore that ωI 
 ωR .

Using these assumptions, and the fact that in our chosen branch
cut Re(qb, s) > 0, Im(qb) < 0, Im(qs) > 0 (Appendix A), we have
qb =

√
1 − M2

b 	 2 � −iMb	 and qs =
√

1 − δM2
b (1 − 	 )2 �

i
√

δMb(1 − 	 ). Inserting this into equation (18) yields

Z � 	√
δ(1 − 	 )

. (H1)

Writing 	 = 	R + i	I and (1 + Z)/(1 − Z) = A eiθ , we obtain
from equation (28)

	R � 1 − θ + nπ

2
√

δMbK
, (H2a)

	I � 1

2
√

δMbK
ln (A) ⇒ ωI � cs

2Rs
ln (A) . (H2b)

We thus conclude that resonance occurs at the maximum of A. After
some algebra, it is straightforward to show from equation (H1) that

A2 =
∣∣∣∣1 + Z

1 − Z

∣∣∣∣
2

�
[
	R (

√
δ − 1) − √

δ
]2

+
[
	I (

√
δ − 1)

]2

[
	R (

√
δ + 1) − √

δ
]2

+
[
	I (

√
δ + 1)

]2 .

(H3)

Neglecting terms of order (	I/	R )2 
 1, the maximum of A
occurs when

	R, res �
√

δ√
δ + 1

= cb

cb + cs
, (H4a)

Ares � 2
√

δ

	I, res

(√
δ + 1

)2 . (H4b)

Neglecting terms of order 	I/	R , we have |qb| � |qs| at resonance.
This means that the perturbation penetrates the same depth into
the slab as into the background. It also means that the angle of
propagation relative to the normal to the slab, given by

cot
(
�b,s

) =
∣∣Im(qb,s)

∣∣
k

, (H5)

is the same within the slab and the background. At resonance, the
angle is

sin (�res) �
√

δ + 1√
δMb

= 1

Mtot
, (H6)

where in the last equality we have used M−1
tot = M−1

b + M−1
s . This

is commonly referred to as the Mach angle.

Inserting equation (H4b) into equation (H2b) gives an estimate
for the growth rate at resonance

tscωI, res + ln
(
tscωI, res

) � ln

(
4Mtot

√
δ

1 + √
δ
Kres

)
, (H7)

where tsc = 2Rs/cs is the sound-crossing time in the slab. The
solution to this equation can be expressed as an infinite sequence of
functions

tscωI, 1 = ln

(
4Mtot

√
δ

1 + √
δ
K

)
, (H8a)

tscωI, j = tscωI, 1 − ln
(
tscωI, j−1

)
. (H8b)

As K → ∞, the sequence converges to ωI, 1 and in practice, it
converges to ωI, 3 even for small K. The growth rate at resonance
diverges logarithmically with wavenumber, ωI ∝ ln(k). As shown
in Fig. 4, this is the effective growth rate for the slab, since at each
wavenumber the growth rate will be dominated by the mode closest
to resonance. This should be compared to the case of the incom-
pressible slab and the compressible/incompressible sheet. In the
incompressible cases, the system is always unstable and the growth
rate diverges linearly with wavenumber, ωI ∝ k. In the compress-
ible sheet, the same scaling applies at low Mach numbers, while
at high Mach numbers the system is stable, ωI = 0. The scaling of
ωI ∝ ln(k) for the effective growth rate in the compressible slab can
be seen as a ‘compromise’ between these two extremes, diverging
at short wavelengths, but only logarithmically. Also, recall that it
is only the effective growth rate, comprised of the fastest growing
modes at each wavelength, which diverges. Each individual mode
stabilizes as k → ∞, as discussed in Appendix D.

By inserting equation (H4a) into equation (H2a), we can es-
timate the wavenumber at resonance. Neglecting terms of order
θ = O(	I/	R )

Kres � nπ

2Mtot
. (H9)

The resonant wavenumber increases linearly with n, similar to the
marginally stable wavenumber (equation F3b). When Mtot � 1, Kres

is very nearly continuous.
Figs H1 and H2 compare our analytic approximations for the

resonant frequency and wavelength to numerical solutions of the
dispersion relation, for the first 40 modes, n = 1–40, for different
values of δ and Mb. The left-hand panel of Fig. H1 shows the res-
onant wavenumber, Kres (equation H9), the right-hand panel shows
the phase velocity at resonance, 	R, res (equation H4a) and Fig. H2
shows the growth rate at resonance, ωI, res (equation H8). In the
left-hand panel of Fig. H2, we focus on one example, Mb = 1.5
and δ = 100, and examine the convergence of the sequence given in
equation (H8), which is shown to converge by ωI, 3 . In the right-hand
panel, we compare ωI, 3 to numerical solutions for the same values
of Mb and δ as in Fig. H1.

The fit to 	R, res at resonance is good in all cases, with an error
of less than �10 per cent. On the other hand, the approximations
for Kres and ωI, res are quite poor at low Mach numbers, Mtot � 1.3,
but rapidly improve as Mtot is increased. The error in ωI, res reaches
�10 per cent for Mtot � 1.3, and for Kres a similar error is achieved
for Mtot � 2. This is expected, since the approximations we made are
strictly valid for very high Mach numbers only. We note that in the
cases where the approximation is particularly poor, Mb = 1.5, δ = 10
and Mb = 5.0, δ = 0.1, the sheet is still unstable since Mb < Mcrit, so
the slab instability is dominated by surface modes rather than body
modes.
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Figure H1. Comparison of our analytic estimate for the resonant wavenumber, Kres (equation H9, left), and the real part of the resonant phase velocity, 	R, res

(equation H4a, right), to a numerical solution of the dispersion relation. We compare the first 40 modes, n = 1–40, for the same values of Mb and δ as in Fig. F1.
The approximation for Kres is poor when Mtot � 1.3, but for Mtot � 2 the error is less than ∼10 per cent for n > 4. On the other hand, the approximation for
	R, res is very good even at low Mach numbers.

Figure H2. Analytic estimate versus numerical solutions for the fastest growing mode in the slab. Left: comparison of the growth rate at resonance, ωI, res ,
computed numerically for the first 40 modes (blue points) and calculated analytically using the first four terms in the sequence in equation (H8) (solid lines),
for Mb = 1.5 and δ = 100. The analytic series converges by ωI, 3 , though in this case it converges to a slightly lower value than the numerical solution. Right:
the ratio of ωI, 3 from equation (H8) to the numerical solution for the same values of Mb and δ as in Fig. H1. Note that the wavenumber corresponding to n = 40
is different in each case, which is why different curves end at different K values. The fit is quite poor for Mtot � 1.3, but for higher Mach numbers the error is
less than 10 per cent.
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