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ABSTRACT
A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating
structures are created by turbulence-driven density fluctuations. Simple theories of isothermal
fragmentation successfully reproduce the core mass function (CMF) which has a very similar
shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal
turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that
is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-
gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In
this paper we show that, although an isothermal self-gravitating flow does produce a CMF with
a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves.
In addition, the cores that form undergo further fragmentation and after sufficient time forget
about their initial conditions, yielding a scale-free pure power-law distribution dN/dM ∝ M−2

for the stellar IMF. We show that this problem can be alleviated by introducing additional
physics that provides a termination scale for the cascade. Our candidate for such physics is
a simple model for stellar radiation feedback. Radiative heating, powered by accretion on to
forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that
is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and
that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff
equation of state for denser clouds but that do not explicitly include the effects of feedback do
not yield an invariant IMF.

Key words: turbulence – stars: formation – galaxies: evolution – galaxies: star formation –
cosmology: theory.

1 IN T RO D U C T I O N

New stars form in dense molecular clouds as self-gravitating sub-
regions collapse. Turbulent fragmentation is thought to be the main
driving force of this process: turbulence compresses the gas, creat-
ing local density fluctuations that may be large enough to become
self-gravitating. The appeal of this model comes from the fact that
supersonic turbulence naturally produces a power-law relationship
between velocity dispersion and size scale that is in good agree-
ment with observations of molecular clouds (Larson 1981; Bolatto
et al. 2008; Kritsuk, Lee & Norman 2013). A second advantage of a
turbulence-based model is its universality. The initial mass function
(IMF) of stars is observed to be close to universal (Bastian, Covey
& Meyer 2010; Offner et al. 2014), with a high-mass end that is well

�E-mail: guszejnov@caltech.edu

described by a power law with a slope of roughly M−2.35 (Salpeter
1955) and a turnover at a few tenths of a solar mass.1 The mass at
which this turnover occurs is robustly determined to be a few tenths
of a solar mass in all resolved stellar populations in the Milky Way
(e.g. fig. 2 of Offner et al. 2014) and in nearby galaxies (e.g. Geha
et al. 2013). Only a few resolved systems show even minor devi-
ations in the location of the peak, and even then only by a factor
of ∼2 (e.g. 0.6–0.8 M� in Taurus – Luhman et al. 2009). This lack
of variation is remarkable, given that the star-forming systems over
which it is measured span many orders of magnitude in mass and
density. Even in the most extreme environments, such as the cores
of giant elliptical galaxies, the IMF turnover mass differs from the

1 Due to the high uncertainty of measurements of brown dwarfs the func-
tional form of the turnover is not obvious from the data (Krumholz 2014;
Offner et al. 2014). The most common fits are either a broken power law
(Kroupa 2002) or a lognormal (Chabrier 2005).
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one found locally by at most a factor of a few (van Dokkum &
Conroy 2010; Cappellari et al. 2012; Geha et al. 2013). Such a uni-
versal distribution is most naturally explained by simple, universal
physics that is independent of galactic environment, and the physics
of turbulence is an obvious candidate.

There have been many attempts to formulate an analytic theory
for the IMF, and for its turnover in particular, based on turbu-
lence. Most are based on the random field approach first used in
cosmology by Press & Schechter (1974). This method was first
applied to explain the IMF by Padoan, Nordlund & Jones (1997)
and Padoan & Nordlund (2002), then made more rigorous by Hen-
nebelle & Chabrier (2008, 2009, 2013) and Hopkins (2012a). Us-
ing such a model Hopkins (2012b) calculated the mass function of
non-fragmented bound structures at a fixed time instant, a real life
equivalent of which would be the core mass function (CMF), as
opposed to the IMF. The observed CMFs of nearby star-forming
regions have functional forms similar to that of the IMF (Alves,
Lombardi & Lada 2007; Rathborne et al. 2009; Sadavoy et al.
2010), with a Salpeter-like power law at high masses and a turnover
at lower masses, though the existence and the exact location of the
CMF turnover are both quite uncertain due to issues of complete-
ness and confusion see Offner et al. (2014) and Krumholz (2014)
for more discussion. The CMF derived by Hopkins (2012b) shares
these features. The turnover mass in this model is set by the sonic
mass Msonic ∼ c2

s Rsonic/G that corresponds to the scale below which
self-gravitating structures are subsonic; a similar mass scale arises
in the Hennebelle and Chabrier model, and one can show that the
Hennebelle and Chabrier and Hopkins mass scales are in fact iden-
tical up to constants of order unity (Krumholz 2014). However, this
scale is not universal, as it depends on the initial conditions in the
star-forming cloud, which calls into question whether such a model
can truly explain the near-universality of the IMF.

The proposition that the IMF is determined by the CMF, which
in turn is set by the physics of isothermal gravito-turbulent frag-
mentation, has the appeal of simplicity. However, there remains
an obvious question: once a core forms, why should one assume
that it will collapse to form a single star, rather than fragment-
ing further? Simulations of isolated isothermal cores suggest ex-
actly the latter (fragmented) outcome (e.g. Goodwin, Whitworth
& Ward-Thompson 2004; Dobbs, Bonnell & Pringle 2006; Walch,
Whitworth & Girichidis 2012). In principle, the question of the
fate of isothermal cores should be resolvable by simulations. In
practice, however, this turns out to be a formidable technical chal-
lenge. Isothermal turbulence is scale-free (McKee, Li & Klein 2010;
Krumholz 2014), and thus it is not obvious what dynamic range is
required to obtain a converged numerical result. To date, no pub-
lished simulation of isothermal gravito-turbulent fragmentation has
demonstrated that the spectrum of point masses it produces is nu-
merically converged, and those few authors who have attempted
convergence studies (Martel, Evans & Shapiro 2006; Kratter et al.
2010) report non-convergence to the highest numerical resolutions
probed. One possible explanation, advanced by Krumholz (2014),
is that the characteristic structures created by isothermal turbu-
lence are not singular points but singular filaments. Simulations
produce filaments down to the smallest size scales they reach,
and then the sink particle algorithm they use to represent col-
lapsing regions breaks those filaments up into points at the grid
scale.

Given these problems with purely isothermal fragmentation, a
number of authors have proposed that the fragmentation cascade is
arrested when the gas begins to heat up, in which case the charac-
teristic stellar mass is determined by whatever physics causes the

deviation from isothermality. The most common approach to this
problem has been to adopt an equation of state (EOS) that ‘stiff-
ens’ (i.e. the temperature begins to rise) above some characteristic
density or surface density. Since superisothermal gas is resistant to
further fragmentation, one then identifies the IMF peak with the
Jeans mass at this ‘stiffening density’, on the basis that fragmen-
tation will be suppressed beyond that point (Whitworth, Boffin &
Francis 1998; Larson 2005).

Stiffening of the EOS can be caused by a diverse range of
processes, including the inability of radiative cooling to keep up
with adiabatic heating at a density n ∼ 1010 cm−3 (e.g. Masunaga,
Miyama & Inutsuka 1998) or a surface density �∼5000 M� pc−2

(e.g. Glover & Mac Low 2007), the onset of dust–gas coupling at a
density n ∼ 105 cm−3 (Larson 2005; Elmegreen, Klessen & Wilson
2008), or combinations of the above (e.g. Spaans & Silk 2000). Nu-
merical simulations based on these EOSs do find a converged mass
scale that can plausibly be identified as a characteristic mass for the
IMF (e.g. Bonnell, Clarke & Bate 2006; Bate 2009a). However, it
is not clear that the mass scale introduced by those models is actu-
ally universal (as opposed to set by initial conditions). Moreover, a
number of authors have pointed out that radiative feedback is likely
to be more important than any of these processes in setting the gas
temperature in an actively star-forming region, and that this process
is not well-described by an EOS (Krumholz 2006; Krumholz, Klein
& McKee 2007; Offner et al. 2009; Urban, Martel & Evans 2010).
Simulations of star cluster formation including radiative feedback
suggest that it is capable of producing an IMF peak that is numeri-
cally converged and relatively insensitive to changes in interstellar
conditions (Bate 2009b, 2012, 2014; Krumholz, Klein & McKee
2011, 2012; Myers et al. 2011).

While these developments are promising, the numerical expense
of large-scale simulations including radiative feedback means that
only a very small number of calculations have been performed.
Moreover, analytic models of fragmentation with radiative feed-
back have, up to this point, been quite simple (e.g. Krumholz &
McKee 2008; Krumholz et al. 2011), and have not been linked
to an analytic theory for the full IMF. Recently, Guszejnov &
Hopkins (2015a) introduced a new method for performing semi-
analytic calculations of turbulent fragmentation. Crucially, this
method retains spatial information about how gas fragments, mak-
ing it possible to include localized feedback mechanisms like
stellar radiative heating. These calculations are rapid, enabling
a much broader exploration of parameter space than can yet be
accomplished with full three-dimensional radiation-hydrodynamic
simulations.

In this paper, we combine the Guszejnov & Hopkins (2015a)
fragmentation model with the Krumholz (2011) model for stel-
lar radiative feedback (henceforth referred to as GH15 and K11,
respectively). We also explore alternative treatments of gas ther-
modynamics, including both isothermal and stiff EOS models. We
use these method to study the predicted IMF in a wide variety of
star-forming environments. The remainder of this paper is laid out
as follows. First, in Section 2, we introduce the semi-analytical
framework we use to test different models of star formation. In
Section 3.1, we show that isothermal turbulent fragmentation leads
to a scale-free IMF. In Section 3.2, we show that models with
a stiffened EOS are inherently sensitive to the initial conditions
so they cannot provide an invariant mass scale. In Section 3.3,
we provide a simple model for protostellar heating that leads to
an IMF with remarkably little sensitivity to initial conditions. Fi-
nally, in Section 4 we discuss the implications of our findings, and
conclude.
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2 MO D E L A N D M E T H O D O L O G Y

2.1 Model overview

In order to test the different models, we are using the semi-analytical
framework of GH15. This takes advantage of the fact that the den-
sity fluctuations in a highly turbulent medium locally obey approxi-
mately lognormal random field statistics, thereby avoiding the need
for computationally expensive hydrodynamical simulations while
still preserving spatial information (unlike analytical excursion set
models like Hopkins 2012b and Guszejnov & Hopkins 2015b).
The present version of the model only includes the bare essential
physics: turbulence (pumped by the collapse of the cloud), collapse
(at constant virial parameter, motivated by Robertson & Goldre-
ich 2012 and Murray et al. 2015), an EOS and a simple feedback
prescription.

The initial conditions of clouds are defined by their mass, the
sonic length (Rsonic, scale at which the turbulent velocity dispersion
is equal to the sound speed) and the sonic mass (Msonic), from which
other parameters (e.g. temperature, Mach number) can be derived.
For details about initial conditions see GH15 (a detailed step-by-
step guide to the model is provided in Appendix A).

Our simulations start from a giant molecular cloud (GMC) with
fully developed turbulence and follow its collapse. Every time a new
self-gravitating substructure appears (i.e. the cloud fragments) the
code is run recursively for each substructure. When a cloud reaches
the protostellar size scale (∼10−4 pc), it is considered to be fully
collapsed into a protostar and the simulation stops. This means that
the final output of the code is the protostellar system mass function
which we will assume to be identical to the IMF throughout this
paper. This assumption is not quite accurate, particularly in the
brown dwarf regime, as it neglects the production of brown dwarfs
via disc fragmentation. We also neglect the growth of stars by
Bondi–Hoyle accretion of gas that was not initially part of their
collapsing core, though this effect is likely negligible (Krumholz,
McKee & Klein 2005). The leftover unbound material is assumed
to escape. All the simulations we present here start from 104 M�
GMCs, as the results are completely insensitive to the size of the
parent cloud (for demonstration see GH15).

2.2 Equation of state models

In this paper, we consider a series of models that include increas-
ingly sophisticated treatments of gas thermodynamics. The sim-
plest, which correspond to the usual assumption in turbulent frag-
mentation models, is that the gas is isothermal, corresponding to an
adiabatic index γ = 1. The next level of complexity is simulations
with a non-constant γ . The simulation allows for arbitrary EOSs
which are taken into account as effective polytropes:

T (x, t + �t) = T (x, t)

(
ρ(x, t + �t)

ρ(x, t)

)γ (t)−1

, (1)

where γ (t) is the effective polytropic index at the time t. To explore
models in which the key physical process is a stiffening of the
EOS, we consider two possible formulations. Some authors have
proposed that stiffening occurs at a characteristic surface density
�crit, and we refer to models of this form as γ (�) EOSs. The
particular parametrization we explore in this work is similar to that
that proposed by Glover & Mac Low (2007), which is

γ (�) =
{

1.0 � < �crit

31/24 � > �crit
, (2)

where � = M/(4πR2) for a cloud of mass M and radius R.2 GH15
shows that using the standard value of �crit = 5000 M� pc−2 leads
to a turnover mass of ∼0.01 M�, much too low compared to the
observed IMF; indeed, the mass picked out by this choice is simply
the opacity limit for fragmentation (Rees 1976). For this reason,
we set �crit so that it is equal to critical surface density of the
protostellar heating model (�heat, see Section 3.3) in the standard
(T0 = 10 K) scenario. This means �crit ∼ 130 M� pc−2. Using a
higher surface density would only shift the turnover mass scale to
lower values, it would not affect its sensitivity to initial conditions
(see GH15 for results with such an EOS). In other words, we are
giving these models their ‘best chance’ to fit the data.

Another formulation we consider is one where the stiffening
occurs at a characteristic volume density ρcrit, which we refer to as
a γ (ρ) EOS. The form we adopt for this EOS is equivalent to the
one used by Bate (2009a):

γ (ρ) =
{

1.0 ρ < ρcrit

1.4 ρ > ρcrit
, (3)

where ρ = 3 M/4πR3. Once again we chose the critical value
so that it is convenient to compare with the other models so
we set ρcrit = 15 000 M�/pc−3 corresponding to nH2,crit ≈ 2.6 ×
105 cm−3.

For reference we also include a scenario with a more physically
motivated EOS based on the works of Masunaga & Inutsuka (2000)
and Glover & Mac Low 2007:

γphys(ρ) =

⎧⎪⎨
⎪⎩

0.8 ρ < ρcrit,1

1.0 ρcrit,1 < ρ < ρcrit,2

1.4 ρ > ρcrit,2

, (4)

where we set ρcrit,1 = 5000 M� pc−3 and ρcrit,2 = 5 × 108 M� pc−3

corresponding to nH2,crit,1 ≈ 105 cm−3 and nH2,crit,2 ≈ 1010 cm−3.
While these are only three of the EOSs that have been proposed in

the literature, they serve as representative examples of the outcomes
produced by such an approach.

2.3 Radiation feedback models

The final class of models we consider are those with a simple treat-
ment of protostellar radiative feedback. In these we assume that the
centre of self-gravitating clouds collapses first, forming a protostel-
lar seed, then the rest of the cloud collapses on to it. The energy of
the matter accreted by this seed is radiated within the optically thick
core. The temperature of the material depends on the accretion rate
on to the protostar (and thus the mass and dynamical time of the gas
around it), and on the energy yield per unit mass from accretion,
which we denote as �. The value of � is set by the protostellar
mass–radius relation, and K11 shows that it is determined primarily
by the effects of deuterium burning, which thermostats the cen-
tral temperatures of protostars. Because deuterium burning begins
when protostars are only a few ×10−2 M�, and, for low-mass pro-
tostars, continues for ∼10 Myr, it is the dominant factor in setting �

during the bulk of a molecular cloud’s star-forming history. Com-
paring with detailed protostellar evolution calculations, K11 finds
that � ≈ 2.5 × 1014 erg g−1 to better than half a dex accuracy for
all protostellar masses in the range 0.05–1 M�, and to better than a

2 Note that the value of 31/24 was chosen to allow the comparison of models
with protostellar heating and γ (�) EOSs (see Section 3.3). The choice of
this value has no effect on the sensitivity of the results to initial conditions.
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Table 1. Initial conditions of the different simulation runs presented in this paper. The actual input parameters of the code are the sonic mass Msonic and
length Rsonic, from which more physical parameters like initial temperature (T0), radius (R), Mach number (M0), surface density (�0) and number density
(nH2,0) can be derived. All runs were performed for a large statistical ensemble (∼500) of 104 M� GMCs.

Label Input parameters Derived parameters Thermodynamics
Msonic (M�) Rsonic (pc) T 0 (K) R0 (pc) M0 �0 (M�pc−2) nH2,0 (cm−3)

IsoTherm_T10 2.3 0.1 10 9.3 9.6 9.3 50 Isothermal
EOS�_T10 2.3 0.1 10 9.3 9.6 9.3 50 γ (�) EOS
EOS�_T20 4.6 0.1 20 6.5 8.1 18.6 150 γ (�) EOS
EOS�_T75 17.25 0.1 75 3.4 5.8 70.7 1100 γ (�) EOS

EOS�_hiMach 0.09 0.004 10 1.88 21.7 224 6200 γ (�) EOS
EOS�_ULIRG 0.42 0.0026 75 0.57 14.75 2480 2.3 × 105 γ (�) EOS

EOSρ_T10 2.3 0.1 10 9.3 9.6 9.3 50 γ (ρ) EOS
EOSρ_T20 4.6 0.1 20 6.5 8.1 18.6 150 γ (ρ) EOS
EOSρ_T75 17.25 0.1 75 3.4 5.8 70.7 1100 γ (ρ) EOS

EOSρ_hiMach 0.09 0.004 10 1.88 21.7 224 6200 γ (ρ) EOS
EOSρ_ULIRG 0.42 0.0026 75 0.57 14.75 2480 2.3 × 105 γ (ρ) EOS
EOSPhys_T10 2.3 0.1 10 9.3 9.6 9.3 50 γ phys(ρ) EOS
Heated_T10 2.3 0.1 10 9.3 9.6 9.3 50 Protostellar heating
Heated_T20 4.6 0.1 20 6.5 8.1 18.6 150 Protostellar heating
Heated_T75 17.25 0.1 75 3.4 5.8 70.7 1100 Protostellar heating

Heated_hiMach 0.09 0.004 10 1.88 21.7 224 6200 Protostellar heating
Heated_hiDens 0.46 0.01 20 2.08 14.4 183 5400 Protostellar heating
Heated_ULIRG 0.42 0.0026 75 0.57 14.8 2480 2.3 × 105 Protostellar heating

dex accuracy from 0.01–0.05 M�. We therefore adopt this value of
� throughout the remainder of this paper. Following K11, this heats
any core harbouring an accreting protostar up to a temperature

T 4
heat ≈ �

√
G

4πσSB

M3/2R−7/2. (5)

Crudely, this scaling reflects energy conservation as L =
4πR2σSBT 4

heat for the opaque cloud. Combined, internal heating
and the physical processes captured by the EOS models set the
temperature as

T 4 = T 4
EOS + T 4

heat, (6)

where TEOS is the temperature of the cloud if only EOS effects
are taken into account. Note that this is an extremely simplistic
treatment of protostellar heating, where each cloud is assumed to
have a protostar ‘seed’ at its centre which heats (uniformly) only its
own cloud. This heating is assumed to be ‘turned on’ as soon as the
cloud forms. However, since the temperature depends on � only to
the 1/4 power, even a factor of ∼10 error in its value, as can happen
for 0.01 M� protostars, corresponds to a relatively modest error in
T. For stars near the peak of the IMF, which we shall see this model
places at ∼0.3 M�, the error is even smaller.

To easily identify the results for different models and initial con-
ditions, we use the labels shown in Table 1. The T10 label refers to
initial conditions similar to MW GMCs, T20 and T75 have enhanced
temperatures as are typically found in regions of very active star for-
mation or in the Galactic centre, hiDens has enhanced temperature
and density, similar to a dense, massive star-forming region in the
MW, while Ultra Luminous Infrared Galaxy (ULIRG) runs have
the very high temperature and strong turbulence characteristic to
the clouds of ULIRGs. Finally, the hiMach model has an enhanced
Mach number but fixed temperature; we are unaware of a physical
analogue for this case, but we include it because it provides useful
insight into the physics of the model.

3 SO U R C E O F I N VA R I A N T M A S S S C A L E

One of the key features of the IMF is the turnover mass which
appears to be close to universal. In this section, we investigate dif-
ferent models of turbulent fragmentation – starting from the simplest
– to test whether they are capable of producing a nearly invariant
turnover mass, as demanded by the observations.

3.1 Failure of isothermal fragmentation

We first examine our isothermal case, IsoTherm_T10, the results
for which are shown in Fig. 1. As the Figure shows, the IMF we
obtain in the isothermal case is a pure power law, with no visible
turnover. Although not shown in Fig. 1, we obtain a similar scale-
free result for the IMF produced by purely isothermal fragmentation
independent of our choice of initial conditions. It is important to
note that, in the isothermal case, the CMF does have a turnover,
at the sonic mass Msonic ∼ c2

s Rsonic/G, which is set by the initial
conditions (see GH15). However, this does not result in an IMF
with a turnover.

This result might at first seem surprising, but we can understand
it through a simple analytic argument. In a number of analytical
studies (e.g. Hopkins 2012b), the IMF is inferred from the CMF by
shifting the mass scale by a factor of 1/3 (rule of thumb: ‘a third
of the bound mass ends up in the star’), which is not physically
correct, as cores undergo gravitational collapse which takes a finite
amount of time, allowing them to further fragment into a spectrum
of submasses (Guszejnov & Hopkins 2015b).

This means that a single initial core forms its own subcores
starting from different initial conditions, so the distribution of sub-
fragments (CMF of ‘second generation’ fragments) will have its
turnover at a different scale than the parent population. The col-
lapse of highly supersonic clouds is self-similar so every factor of
2 contraction takes about a dynamical time (see section 9.2 in Hop-
kins 2013b). This means that the cloud can fragment at any scale
thus there is the same ‘amount of fragmentation’ at each scale,

MNRAS 458, 673–680 (2016)
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Figure 1. The IMF in the case of purely isothermal EOS (model
IsoTherm_T10, solid black), a surface density dependent ‘stiff’
EOS (EOS�_T10, solid blue), a volume density dependent ‘stiff’
EOS (EOSρ_T10, solid green), a physically motivated ‘stiff’ EOS
(EOSPhys_T10, solid orange) and a protostellar heating (Heating_T10, solid
red) model. We compare these to the canonical IMFs of Kroupa (2002) and
Chabrier (2005). Isothermal collapse leads to a featureless power law close
to dN/dM ∝ M−2 while both protostellar heating and the EOS introduce
a turnover at lower masses while having close to canonical behaviour at
higher masses. Although the physically motivated EOS of equation (4) does
create a turnover, it is at such a low mass that the resulting IMF looks like a
power law in the stellar mass range.

producing an infinite fragmentation cascade.3 This explains why
numerical studies have been unable to get converged results, as
higher resolution leads to fragmentation on even smaller scales.

We will now attempt to illustrate the qualitative behaviour we
might expect from a self-similar fragmentation cascade, by calcu-
lating the IMF in a special case. First, let us assume that a self-
gravitating cloud has λ chance of collapsing without fragmentation
and forming a star. Because the process is self-similar, λ must be
independent of cloud mass. Let us further assume that when a cloud
of M mass fragments, the newly formed clouds have an average
mass of αM. For convenience let us further simplify the model by
assuming that a cloud either collapses to a star or breaks up into
fragments of α relative mass.

In this simplified model, calculating the mass budget is very
easy. The ith generation of fragmentation produces clouds of mass
Mi = αiM0, where M0 is the mass of the initial cloud. The total
mass of these clouds is M0(1 − λ)i, where the second factor is
simply the fraction of the mass not collapsed to stars yet in the
previous i − 1 generations. Since a fraction λ of these clouds will
collapse to stars without fragmenting further, the total mass of stars
of mass Mi is just fi = M0λ(1 − λ)i. As mentioned in Section 1,
the results from numerical simulations show a large degree of frag-
mentation, so we expect λ � 1. In this limit, fi ≈ M0λ(1 − iλ),

3 Note that to have finite mass in any mass bins the cascade cannot be
infinite, it has to be terminated at some finite scale by additional physics.
So our isothermal model still has two mass scales: (1) the outer scale set
by initial conditions (e.g. GMC mass); (2) the cascade termination scale.
If these scales are sufficiently far, a scale-free regime forms between them
(similar to the inertial range in turbulence). Assuming that the stellar mass
scale is much higher than the termination scale, the distribution in that range
must be close to the self-similar.

Figure 2. The IMF of the surface density dependent EOS model (EOS�)
for standard (EOS�_T10: T = 10 K, Rsonic = 0.1 pc), high temper-
ature (EOS�_T20: T = 20 K), extreme turbulence (EOS�_hiMach:
Rsonic = 0.0026 pc), extreme temperature (EOS�_T75: T = 75 K), and
ULIRG (EOS�_ULIRG: T = 75 K, Rsonic = 0.0026 pc) initial conditions
(see Table 1). There is a clear trend of increasing turnover mass with initial
temperature, consistent with our expectation that, for these EOS models, the
turnover should scale as Mcrit ∝ T 2

0 .

and fi will therefore be approximately constant for all i � 1/λ.
Since 1/λ 	 1, this means that fi is nearly constant over a very
large number of generations of fragmentation. Further recall that,
since the generations of fragments are separated logarithmically in
mass (i.e. log (Mi/Mi+1) = log α is constant), a constant value of
fi corresponds to constant mass per logarithmic interval in object
mass. In terms of number of objects per unit mass (as opposed to
per unit log mass), this is dN/dM ∝ M−2, which is close to what we
find. Our actual model is considerably more complex, in that clouds
can produce variable numbers of fragments with variable masses,
but this simple illustration captures the essence of the isothermal
result.

In summary: although isothermal models like Hopkins (2012b)
recover the CMF shape, they are unable to explain the shape of
the IMF. In the case of isothermal fragmentation, independent of
the form of the CMF, the IMF becomes a power law of M−2 as the
initial conditions are ‘forgotten’ during the fragmentation cascade.
This means that to produce an IMF that is not a pure power law, as
observed, an extra physical process is required that would stop the
cascade at a mass scale invariant to the initial conditions.

3.2 Can a universal mass scale come from the EOS?

One mechanism to imprint a mass scale on to the process of turbulent
fragmentation is to have the EOS deviate from isothermality, either
because the gas becomes optically thick to its own cooling radiation,
or due to a change in the cooling process such as the onset of grain–
gas coupling. We investigate this approach in our EOS models.

Fig. 2 shows the results of simulations using our γ (�) (surface
density dependent) EOS (EOS� models), for a variety of initial
conditions. We see that, with an appropriate choice of �crit, one can
obtain a stellar mass function that agrees reasonably well with the
observed IMF. However, one can do so only for a particular choice
of initial conditions. As shown in GH15, an EOS with stiffening sup-

presses fragmentation below mass scale Mcrit ∼ c4
s

�critG2 ∝ T 2/�crit,

MNRAS 458, 673–680 (2016)

 at T
he A

ustralian N
ational U

niversity on M
ay 3, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


678 D. Guszejnov, M. R. Krumholz and P. F. Hopkins

Figure 3. The IMF of the volume density dependent EOS model
(EOSρ)for standard (EOSρ_T10: T = 10 K, Rsonic = 0.1 pc), high tem-
perature (EOSρ_T20: T = 20 K), extreme turbulence (EOSρ_hiMach:
Rsonic = 0.0026 pc), extreme temperature (EOSρ_T75: T = 75 K), and
ULIRG (EOSρ_ULIRG: T = 75 K, Rsonic = 0.0026 pc) initial conditions
(see Table 1). There is a clear trend of increasing turnover mass with initial
temperature, consistent with Mcrit ∝ T

3/2
0 . Despite having stronger turbu-

lence EOSρ_ULIRG seems to produce more top heavy IMF than EOSρ_T75.
This occurs because in this model the initial density starts out very close to
the critical density.

which is clearly shown by the figure. Also, stronger turbulence
leads to more fragmentation and thus more brown dwarfs (see
EOS�_T75 and EOS�_ULIRG) in accordance with predictions
(e.g. Hopkins 2013c). At first EOS�_hiMach might seem to con-
tradict that as it has more large protostars than the standard case.
This, however, is caused by the interaction of the initial conditions
with the adopted EOS. In this scenario, the initial surface density
�init ∼ Msonic/

(
R2

sonic8π
) ∝ T /Rsonic is already above the stiffen-

ing transition surface density �crit. As a result, there is very little
fragmentation because the EOS is always ‘stiff’. It is also worth
noting that the EOS model always has a slow cutoff at low masses
despite the fact that protostellar disc fragmentation (a potential
source of brown dwarfs) is neglected, so it is likely to overproduce
brown dwarfs.

We have similarly tested an EOS that becomes stiff at a critical
volume density ρcrit (see equation 3). Fig. 3 shows that, as in the case
for the γ (�) models, the volume density dependent EOS is also very
sensitive to initial conditions. This can be easily understood using a
similar arguments as the ones used by GH15 in the γ (�) case: using
the collapse condition and size–mass relations (see section 2.2 in
GH15) one can find the size and mass of a self-gravitating fragment
whose density is ρcrit, which leads to the corresponding turnover
mass scale Mcrit ≈ MJeans(ρcrit) ∝ T

3/2
0 ρ

−1/2
crit (this is also shown by

Bate 2009b).
We have therefore shown that, while it is possible to choose

critical values �crit or ρcrit such that a stiffened EOS produces an
IMF peak that is qualitatively consistent with observations, such a
choice works for only one particular set of initial conditions (see
Figs 2–3). Substantially different initial temperatures necessitate
different choices to keep the IMF peak fixed, and there is no obvious
physical reason why the critical parameters should vary in such a
manner. Indeed, we remind readers that even the values we have
used for the standard MW case (T0 = 10 K) have been optimized to
fit the observations, and are not motivated by any plausible physical

Figure 4. The IMF of the protostellar heating model with standard (Heat-
ing_T10: T = 10 K, Rsonic = 0.1 pc), high temperature (Heating_T20:
T = 20 K), high density and temperature (Heating_hiDens: T = 20 K,
n = 5000 cm−3), extreme turbulence (Heating_hiMach: Rsonic = 0.0026 pc),
extreme temperature (Heating_T75: T = 75 K), and ULIRG (Heat-
ing_ULIRG: T = 75 K, Rsonic = 0.0026 pc) initial conditions (see Table 1).
The predicted IMF is remarkably invariant to initial conditions. The turnover
point does shift slightly to lower masses for both very strong turbulence and
high temperature (stronger turbulence makes fragmentation easier and a
higher initial temperature means that protostellar heating becomes domi-
nant at a smaller size scale).

model. Choosing the values of �crit or ρcrit that one would naturally
predict based on considerations of gas thermodynamics would make
the agreement with observations very poor even in the Milky Way-
like case (see EOSPhys_T10 in Fig. 1).

3.3 Effects of protostellar heating

Another proposed origin of a universal mass scale is stellar feed-
back, including protostellar heating, outflows, accretion, photoion-
ization heating and supernovae, none of which are scale-free pro-
cesses. Thus, they all have the capability to imprint a mass scale. In
this paper, we only concentrate on protostellar heating as it is the
earliest and strongest feedback mechanism during the evolution of
protostellar cores. Most of the other mechanisms act after the stars
form, which can therefore only alter the IMF of ‘second-generation’
stars.

Fig. 4 shows the results of our calculation including protostellar
heating. Similar to the EOS models, at very high masses the addi-
tional physics (protostellar heating) has no significant effect, and
thus the IMF looks similar to the isothermal result of M−2. The
isothermal fragmentation cascade is terminated around the charac-
teristic mass of the model, creating a ‘pile up’. Note that the current
model underproduces brown dwarfs as it neglects disc fragmenta-
tion, and more generally any fragmentation process that depends on
angular momentum. As the figure shows, inclusion of heating pro-
duces a peak that is consistent with the observed peak of the IMF,
and that is remarkably insensitive to changes in the star-forming
environment. The only changes in the position of the peak visible
in Fig. 4 are in the ULIRG and hiMach runs, where the peak is
shifted to lower masses by a factor of ∼2. The hiDens run, which
is set up to emulate a dense star forming region in the Milky Way,
is intermediate between these two cases and the normal Milky Way
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case, with a peak that is shifted by a tens of percent slightly relative
to T10. We emphasize that, unlike the γ (�) and γ (ρ) cases, where
we explicitly tuned model parameters to produce the correct peak
mass, the protostellar heating model is not tuned, and has no free pa-
rameters. Its only parameter is the value of �, which is determined
entirely by the physics of stellar structure and deuterium burning.
Thus both the location and the invariance of the IMF peak in this
model are independent predictions.

It is worth noting that this model does seem to produce too few
brown dwarfs and an excess of M dwarf stars. However, it also ne-
glects protostellar disc fragmentation and other ‘sources’ of brown
dwarfs, which would reduce the excess between 0.1–1 M� and en-
hance the number of objects at lower masses. Whether including
these processes leads to the correct proportion of brown dwarfs
remains an open question, though the radiation-hydrodynamic sim-
ulations of Bate (2009a, 2014) and Krumholz et al. (2012) suggest
this is in fact the case.

It is also instructive to compare the results of the protostellar
heating models to the EOS models, in order to understand why the
results are so different. We use a simple model that assumes the
cloud behaves ‘isothermally’ except for a global heating term. This
means that TEOS = T0 (from equation 6), which is the initial tem-
perature of the cloud (set by external heating like cosmic rays). At
first glance the protostellar heating model proposed above seems
very much like an opacity limit EOS model, as Theat ∝ M3/8R−7/8

≈ �3/8 so the collapse of the cloud is isothermal until a char-
acteristic �heat is reached, where Theat = T0. From that point on
T ≈ Theat which means that the temperature increases as if we had a
polytropic index of γ = 31/24 (see equation 2). Similar to the EOS
models we can find the characteristic fragment mass Mcrit where this
transition happens. Using the above relations, the collapse threshold
M
R

1
T

1
1+M2 = const. and assuming a subsonic fragment (M � 1)

we get McritT
1/4

0 = const., which means that there is remarkably
weak sensitivity to the initial temperature (K11 includes a more
rigorous derivation which yields Mcrit ∝ T

−1/18
0 ). Comparing Fig. 4

with Fig. 2 makes the difference this produces in the resulting IMF
abundantly clear, as the protostellar heating model is insensitive to
the initial conditions and provides a sharper cutoff at low masses.

4 C O N C L U S I O N S

The aim of this paper is to investigate what physical processes can
explain the origin of the IMF, and in particular the fact that the IMF
is not a power law, and that its characteristic mass scale is remark-
ably insensitive to variations in the star-forming environment. To
this end, we have considered three classes of models for gas ther-
modynamics: purely isothermal models, models with an EOS that
stiffens at a characteristic volume or surface density, and models
containing a simple analytic estimate for the effects of protostellar
heating.

We find that purely isothermal models categorically fail to re-
produce the IMF. Although the initial conditions do imprint a mass
scale (the sonic mass) which is apparent in the distribution of bound
structures (i.e. the CMF), due to the lack of mass scale in the equa-
tions of motion this scale is ‘forgotten’ during the fragmentation
cascade, leading to an M−2 power-law solution for the IMF (con-
sistent with the lack of convergence reported thus far in numerical
studies). This means that isothermal gravito-turbulent fragmenta-
tion cannot explain the existence or universality of the turnover
scale in the IMF. Some other physics is needed for that.

An often invoked expansion of the fragmentation model is to
have the clouds transition from an isothermal to a ‘stiff’ EOS when
they reach a critical surface or volume density and become thick to
their own cooling radiation. This does provide a mass scale for the
system, and by tuning the parameters of the model appropriately
one can reproduce the observed IMF turnover. However, we find
that this approach results in a mass scale that is extremely sensitive
to initial conditions (Mcrit[γ (�)] ∝ T2 and Mcrit[γ (ρ)] ∝ T3/2),
rendering these models unable to provide a universal mass scale
as is observed. Moreover, producing agreement with the observed
mass scale even for initial conditions similar to those found in solar
neighbourhood star-forming regions requires parameter choices that
are very far from what one would have estimated based on any first-
principles physical argument.

We argue instead that feedback physics can provide a mass scale
that is both in good agreement with observations and insensitive
to the conditions in the star-forming region. As an example, based
on K11, we have formulated a simple prescription for protostellar
heating. This alone of all the analytical models we consider is
able to provide a universal IMF turnover, despite large variations
in initial gas temperature, densities, Mach number, and masses of
star-forming clouds.

4.1 Caveats and future work

We close with a discussion of the limitations of our model, and how
we plan to improve it in future work. We utilize the semi-analytical
framework of GH15 which makes strong approximations. Moti-
vated by Robertson & Goldreich (2012), we assume collapse at
constant virial parameter as turbulence is pumped by gravity. While
this assumption has empirical support, it has not been rigorously
demonstrated (although simulations so far seem to confirm this, see
Murray et al. 2015). Furthermore, the simulation only follows the
evolution of self-gravitating structures until they reach the size scale
where angular momentum becomes important (which is not treated
in the current models), and, thus processes that act on the scales of
discs or smaller (e.g. disc fragmentation) are neglected. This could
have a significant effect on the low mass end of the resulting IMF.
Also, fragments are assumed to evolve independently, so mergers
and other interactions are neglected.4 Finally, the protostellar heat-
ing model assumes instantaneous, isotropic, steady state heating
and neglects other forms of feedback (e.g. outflows).

Some of these limitations will be easier to remove than others.
The assumption that collapse occurs at constant virial parameter
can be investigated by simulations, as can be the fragmentation
of discs, and in principle results from these calculations could be
incorporated into our model. Similarly, a number of authors have
proposed more complex models for the protostellar heating, includ-
ing the effects of fluctuations in time (e.g. Lomax et al. 2014) that
was found to have significant effect on the statistics of star forma-
tion (Stamatellos, Whitworth & Hubber 2012; Lomax et al. 2015),
and these could be included as well. Furthermore, it is possible to
include angular momentum (like in Hopkins 2012b) and interaction
between fragments with significant extension of the model. The

4 This is actually a fairly good assumption. The time-scale for two clouds of
R radius to merge in this framework is tmerger ∼ d/v, where d is the separation
between clouds and v is their relative velocity towards each other. It is easy
to show that tmerger/tfreefall ∼ √

d/R (1 + Rsonic/R) >
√

d/R. This means
that the time-scale for merging is only comparable to the freefall time if the
clouds initially form right next to each other (d ∼ 2R).
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entire framework can also be checked against radiation-
hydrodynamic simulations such as those of Krumholz et al. (2012)
or Myers et al. (2014).

In addition to these improvements in the model itself, an obvi-
ous next step is to identify predictions of the model that can be
compared with real data. We mention here two obvious, first order
predictions that we plan to investigate in future work. First, using
the output of cosmological simulations or semi-analytic models, we
can investigate the extent to which the small amount of variation we
do find in the protostellar heating model produces significant vari-
ations in the IMFs of elliptical galaxies over cosmological times.
These predictions can then be compared to observations (e.g. van
Dokkum & Conroy 2010; Cappellari et al. 2012). Secondly, because
our model retains spatial information, it makes predictions for the
clustering of stars as well as for their mass distribution. This too
can be checked against the spatial distribution of stars in nearby
star-forming regions, a test that has been performed before using
both analytic (Hopkins 2013a) and numerical (Hansen et al. 2012;
Myers et al. 2014) models. It should be noted, however, that with-
out accounting for protostellar disc fragmentation most results (e.g.
correlation function, binarity) will only be valid on scales larger
than the typical protostellar disc size.
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