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ABSTRACT
Metal production in galaxies traces star formation, and is highly concentrated towards the
centres of galactic discs. This suggests that galaxies should have inhomogeneous metal dis-
tributions with strong radial gradients, but observations of present-day galaxies show only
shallow gradients with little azimuthal variation, implying the existence of a redistribution
mechanism. We study the role of gravitational instability-driven turbulence as a mixing mech-
anism by simulating an isolated galactic disc at high resolution, including metal fields treated
as passive scalars. Since any cylindrical field can be decomposed into a sum of Fourier–Bessel
basis functions, we set up initial metal fields characterized by these functions and study how
different modes mix. We find both shear and turbulence contribute to mixing, but the mix-
ing strongly depends on the symmetries of the mode. Non-axisymmetric modes have decay
times smaller than the galactic orbital period because shear winds them up to small spatial
scales, where they are erased by turbulence. The decay time-scales for axisymmetric modes
are much greater, though for all but the largest scale inhomogeneities the mixing time-scale is
still short enough to erase chemical inhomogeneities over cosmological times. These different
time-scales provide an explanation for why galaxies retain metallicity gradients while there is
almost no variation at a fixed radius. Moreover, the comparatively long time-scales required
for mixing axisymmetric modes may explain the greater diversity of metallicity gradients ob-
served in high redshift galaxies as compared to local ones: these systems have not yet reached
equilibrium between metal production and diffusion.

Key words: conduction – turbulence – galaxies: evolution – galaxies: kinematics and
dynamics.

1 IN T RO D U C T I O N

Understanding the dynamics of the flow of metals through and
around galaxies is a key problem in the study of galaxy forma-
tion. Metals trace the history of the gas flows in galaxies such as
the young Milky Way (Ivezić, Beers & Jurić 2012) and record the
buildup of stellar populations in their progenitors at high redshift
(Tremonti et al. 2004; Erb et al. 2006). Moreover, metals are not
just passive tracers. They change the chemical and radiative cool-
ing properties of the interstellar medium (ISM), altering how stars
form (Krumholz, McKee & Tumlinson 2009; Krumholz, Leroy &
McKee 2011; Glover & Clark 2012a,b; Krumholz 2012, 2013;
Krumholz & Dekel 2012).

It is possible to observe the spatial distribution of metals
in the Milky Way (Henry et al. 2010; Balser et al. 2011;
Luck & Lambert 2011; Yong, Carney & Friel 2012), in nearby

� E-mail: antoine.petit@ens.fr

galaxies (Vila-Costas & Edmunds 1992; Considere et al. 2000;
Pilyugin, Vı́lchez & Contini 2004; Kennicutt et al. 2011), and even
in the high redshift universe (Cresci et al. 2010; Jones et al. 2013).
The distribution differs from one galaxy to another in the local uni-
verse, but generally, a radial gradient of the order of −0.03 dex kpc−1

is observed; the negative sign means that metallicity decreases at
large radii. High redshift galaxies are far less regular, and show
patterns that vary from flat or slightly positive gradients to some
even steeper than in the local universe.

Metal production in a galaxy is continuously fed by the stellar
feedback (Phillipps & Edmunds 1991). Without large-scale mixing,
the density of metals should be directly proportional to the stellar
density. However, it has been observed that outer galaxy regions
have a metallicity that is significantly higher than one would ex-
pect if the only metals present were those produced by stars at the
same galactocentric radius, while the inner regions of galaxies have
metallicities much smaller than one would expect if all locally pro-
duced metals remained part of the disc (Bresolin et al. 2009; Werk
et al. 2011; Bresolin, Kennicutt & Ryan-Weber 2012). Moreover,
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galaxies show gas-phase metallicity inhomogeneities of at most a
few tenths of a dex at fixed galactocentric radius (Rosolowsky &
Simon 2008; Bresolin 2011; Sanders et al. 2012; Berg et al. 2013),
while star formation is far patchier. All of these observations imply
that metal transport must play an important role in determining the
metallicity distribution of galaxies.

Unfortunately, metal transport theories remain very primitive.
The main problem is that it is very difficult to run high-resolution
simulations of entire galaxies from redshift z � 1–2, when the
bulk of the stars in present-day discs formed, to the present
day. Simulations that do include explicit metal tracking over
cosmological times are generally forced by resolution limits to
adopt a temperature floor of ∼104 K, and are thus unable to
provide a realistic treatment of transport through the multiphase
ISM of a galactic disc (e.g. Wiersma et al. 2009; Brook et al.
2012; Few et al. 2012a,b; Pilkington et al. 2012a, 2012b; Minchev,
Chiappini & Martig 2013, 2014). The alternative is parametrized
1D models (e.g. Chiappini, Matteucci & Romano 2001; Spitoni
& Matteucci 2011; Forbes et al. 2013), but for these cases the
rate of metal transport is a free parameter, not a prediction of the
model.

In order to study mixing and transport within galactic discs,
the only solution is to do local studies. A large number of such
studies have been published focusing on the radial migration of
stars through a galactic disc (e.g. Brunetti, Chiappini & Pfenniger
2011; Bird, Kazantzidis & Weinberg 2012; Di Matteo et al. 2013;
Grand, Kawata & Cropper 2014, to name only a few), but much
less work has been done focusing on the gas. de Avillez & Mac
Low (2002) performed early studies of supernova-driven turbulent
mixing, and more recently Yang & Krumholz (2012) used shearing-
box simulations to show that turbulence driven by thermal instability
is very efficient at mixing metals. They also demonstrated that
the multiphase nature of the ISM has dramatic consequences for
the mixing of metals, implying that only simulations with enough
resolution to allow such a multiphase medium to form are likely to
produce reliable results. However, both de Avillez & Mac Low’s
and Yang & Krumholz’s studies were limited to small portions of
a galaxy, making it impossible to study transport at the galactic
scale, driven by geometrical effects and galaxy-scale processes like
spiral arms. Kubryk, Prantzos & Athanassoula (2013) simulated an
entire isolated disc galaxy to measure the effects of a bar on radial
mixing of gas and stars, and Kubryk, Prantzos & Athanassoula
(2015) used the results of this simulation to construct a semi-analytic
model of element mixing. However, these simulations suffered from
much the same resolution limitations as the cosmological ones,
in that they used a ∼104 K temperature floor and thus lacked a
multiphase ISM. The highest resolution study performed to date is
that of Grand, Kawata & Cropper (2015), who studied stellar and
gas migration in an isolated galaxy simulated at ∼150 pc resolution,
which is still not sufficient to capture the cold phase of the atomic
ISM.

Our goal in this paper is to study the transport of metals in a
global simulation of a large spiral galaxy, including the effects of
spiral structure and thermal and gravitational instability. To this
end, we simulate an isolated galaxy at 20 pc resolution, roughly an
order of magnitude higher in resolution than previous studies, and
with a cooling floor that is low enough to allow development of a
full multiphase atomic medium. In Section 2, we describe the setup
of our simulations, and how we treat the metal fields. Section 3
presents a quantitative analysis of mixing. In Section 4, we discuss
the astrophysical implications of our work. Finally, we summarize
in Section 5.

2 SI M U L AT I O N SE T U P

2.1 The isolated galaxy

To study the turbulent mixing, we simulate an isolated galaxy
using the Adaptive Mesh Refinement code ENZO (Bryan et al.
2014). ENZO includes fluid dynamics, gravity, sink particles, and
radiative cooling implemented with the cooling and chemistry li-
brary GRACKLE.1 We do not include magnetic fields since Yang &
Krumholz (2012) have shown that they have a very small effect
on the turbulent mixing on galactic scales. We model star forma-
tion such that, when the gas density in any cell reaches a threshold
density of 50 particles per cubic centimetre, there is a probability
equal to εSFmg,cell/Mmin that a part of its gas mass is transformed
into a star particle of Mmin that represents a star cluster. Here,
εSF = 0.01 is the star formation efficiency, mg,cell is the mass of
gas in the considered cell, and Mmin = 1000 M� is the mini-
mum mass of a star particle (Goldbaum et al., in preparation-a).
This simulation did not include supernova feedback, both in order
to limit the computation time and to provide a baseline for the ef-
fects of gravitational instability alone, without the extra turbulence
provided by supernovae. Simulations including supernovae are in
progress, and will be described in future work.

Our initial conditions follow the setup for isolated galaxies de-
fined by the AGORA project (Kim et al. 2014). Full details on the
simulation setup are given in Kim et al. (2014), Springel, Di Matteo
& Hernquist (2005), and Goldbaum et al. (in preparation-b) , so we
simply summarize here the most relevant properties. We start with
a dark matter halo taken from the AGORA project, with a circular
velocity of 240 km s−1. We initialize the baryons as a cylindrical
gas cloud with a mass Mg = 4.3 × 1010 M� in a gaseous halo with
the same mass. The gas fraction of the galaxy is 20 per cent. The
remaining mass is composed of star particles. The gas density in
the galaxy decreases exponentially both in radius and in height, i.e.
the original gas profile is

ρg(r, z) = ρg,0 exp

(
− r

Rg

)
exp

(
−|z|

hg

)
, (1)

where ρg,0 = 10−23 g cm−3 is the initial gas density in the centre of
the galaxy and hg = 343 pc and Rg = 3.43 kpc are the initial vertical
and radial scalelength. The gas density follows this profile until it
reaches the halo. The boundary between the halo and the galaxy is
determined by the condition

ρgTg = ρh,0Th, (2)

where ρh,0 = 10−30 g cm−3 is the density of the halo, Tg = 104 K
is the initial temperature of the disc, and Th = 106 K is the initial
temperature of the halo. The density and temperature within the
halo are uniform. The velocity in the disc is initially purely circular
and fits a flat rotation curve at large radius, giving an orbital period
torb = 175 Myr at 8 kpc. The velocity is equal to zero in the halo
initially.

We place the galaxy in a computational box formed by a 643

cube root grid with 10 levels of refinement by a factor of 2 per
level. The cell size on the finest level is dx10 = 20 pc, so we are
able to marginally resolve the scaleheight of the galaxy after the
gravitational collapse. The grids are refined on criteria of gas mass
in a cell, particle mass in a cell and Jeans length (Truelove et al.
1997). We resolve the Jeans length by at least 32 cells on all levels

1 https://grackle.readthedocs.org/
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Figure 1. Projection of the density of the inner turbulent region of the galaxy.

except the finest level; on the finest level we add artificial pressure
support to ensure that the Jeans length is always resolved by at least
four cells. We also refine at the beginning to ensure the accuracy of
the initial conditions (Goldbaum et al., in preparation-a).

To create a turbulent thin disc, we first run the simulation for
150 Myr. Over this time-scale the gas collapses into a thin disc
with a height of 200 pc, and a turbulent region in the centre with a
roughly 10 kpc radius appears. See Goldbaum et al. (in preparation-
a) for full details on the evolution of the galaxy during this time.
The density distribution of the inner region of the galaxy after this
150 Myr of evolution is displayed in Fig. 1.

2.2 The metal tracers

To study how the turbulence mixes metals in a galaxy, we take the
simulation as it stands after 150 Myr of evolution and add a set
of passive scalar fields, or ‘colours’. The initial conditions for a
realistic metal field depend on the full star formation and merger
history of a galaxy, and are obviously not available to us for our
artificial initial conditions. Even in a fully cosmological simulation
there might be very significant variations in metal distribution from
one galaxy to another. However, we can overcome this problem by
initializing the tracer with a very general pattern. If we consider a
field χ (r, θ ) defined on a disc that goes to zero (or any other constant,
since the offset does not change the mixing) at the edge, χ can be
decomposed in a sum of the product of Bessel and trigonometric
functions

χ (r, θ ) =
∞∑

n=1

∞∑
m=0

[
anmJ c

nm(r, θ ) + bnmJ s
nm(r, θ )

]
, (3)

where J c
nm and J s

nm are the Fourier–Bessel functions defined by

J c
nm(r, θ ) = Jm(znmr/R) cos(mθ ) (4)

J s
nm(r, θ ) = Jm(znmr/R) sin(mθ ), (5)

an,m and bn,m are coefficients defined by

anm = 〈χ |J c
nm(r, θ )〉

||J c
nm(r, θ )||2 (6)

bnm = 〈χ |J s
nm(r, θ )〉

||J s
nm(r, θ )||2 , (7)

R is the radius of the disc we are considering, znm is the nth positive
zero of Jm, and Jm is the mth Bessel function of the first kind. The
inner products appearing in the equation above are defined by

〈f |g〉 = (πR2)−1
∫

fg dA =
∫ 2π

0

∫ R

0

fg

πR2
r dr dθ. (8)

Note that the functions are J c
nm and J s

nm are orthogonal under this
inner product, i.e. 〈J c

nm|J c
n′m′ 〉 ∝ δnn′δmm′ and similarly for J s

nm.
Furthermore, recall that Jm(znmr/R, θ )cos (mθ ) and Jm(znmr/R, θ )
sin (mθ ) are eigenvalues for the Laplacian. Thus, we would expect
that, for a pure diffusion process, the evolution of any initial metal
field χ could be described simply as a decrease in amplitude of the
various Fourier–Bessel modes into which it can be decomposed,
with no transfer of power between them. In this respect using a
Fourier–Bessel decomposition is the natural extension to cylindri-
cal coordinates of the decomposition of a metal field into Fourier
modes for a shearing periodic box introduced by Yang & Krumholz
(2012).
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Given this analysis, to study mixing we take the state of the
simulation at 150 Myr and add 25 different colour fields with the
following initial conditions:

χnm(r, θ, z, t = 0) = Jm(znmr/R) cos(mθ ) = J c
nm(r, θ ), (9)

where R = 8 kpc is the radius of the turbulent area, n = 1, . . . ,
5 and m = 0, . . . , 4, and (r, θ, z) ∈ [0, R] × [0, 2π] × [−hg, hg];
χnm is set to zero outside of this cylinder. We only consider the
cosine terms because the fields represented by the sine terms are
identical up to a 90◦ rotation about the z-axis. Since the problem
is, in a statistical sense, invariant under such a transformation, the
modes represented by the sine terms should not mix any differently
than the ones represented by the cosine terms, and thus there is no
additional information gained by including them.

Once they are added, the colour fields are advected by the gas
motion as passive scalars. Numerically, we handle advection of
metal tracers in exactly the same manner as advection of mass.
Thus, if the hydrodynamic solver returns a mass flux FM across a
particular cell face, the flux of ‘metal mass’ in field n, m is simply
χnm,upwindFM, where χnm,upwind is the upwind value of the metal
field χnm, determined using the same PPM interpolation scheme
as for the hydrodynamic quantities. This scheme is conservative,
in the sense that hydrodynamic evolution leaves the total ‘metal
mass’ in the simulation domain,

∫
ρχnm dV, unchanged, even as the

colour field is advected between computational cells. When stars
form, we leave the colour concentration χnm in the star-forming cell
unchanged, which amounts to assuming that the metal concentration
in the stars is identical to that of the gas cells in which they form.
In principle we could then track the metal contents of the stars (e.g.
Feng & Krumholz 2014), but we have not done so here, because our
simulation does not run long enough for significant stellar migration
to occur, and it is not clear if our resolution of the N-body dynamics
of the stars is sufficient to follow stellar migration accurately in any
event.

We pause to make two final points regarding our numerical
method. Some previous simulations of metal transport in isolated
galaxies have used smoothed particle hydrodynamics (SPH) meth-
ods (e.g. Kubryk et al. 2013; Grand et al. 2015). These codes have an
advantage over our method in that, because they allow the authors
to track individual particles, it is possible to distinguish between
‘radial migration’ of gas, i.e. bulk radial transport of gas, and ‘mix-
ing’, i.e. homogenization of the metal distribution but without bulk
radial redistribution of mass. We cannot make this distinction, and
thus we will use the generic term mixing to refer to any process that
homogenizes the metal distribution.

On the other hand, our Eulerian method also offers a significant
advantage over SPH when it comes to simulation of metal transport.
SPH codes require a prescription for sub-grid scale turbulent mixing
in order to follow metal transport, because without such a model
SPH artificially suppresses mixing below the resolution scale (e.g.
Wadsley, Veeravalli & Couchman 2008; Greif et al. 2009). These
sub-grid models contain a number of free parameters, and their
accuracy has not been extensively calibrated. In contrast, our simu-
lations mix naturally at the grid scale, and do not require us to use
an explicit sub-grid mixing model.

3 A NA LY SIS: AXISYMMETRIC AND
N O N - A X I S Y M M E T R I C M O D E S

After inserting the colour fields as described above, we allow the
simulation to evolve for another 100 Myr. During this time each of
the passive scalar fields χnm evolves, and in this section we discuss

the nature of this time evolution. We have the available value of each
scalar field as a function of time and position, χnm(r, θ , z, t), but in
order to simplify the analysis we neglect their vertical structure and
only analyse their column density-weighted averages. Specifically,
we define

χnm(r, θ, t) =
∫

χnm(r, θ, z, t)ρ(r, θ, z, t) dz∫
ρ(r, θ, z, t) dz

, (10)

where ρ is the gas volume density, and from now on when we refer
to χnm we mean the vertically-integrated quantity. We perform the
integration, and all other analysis presented in this paper, using the
analysis tool yt (Turk et al. 2011). Since our simulations do not
include supernova feedback, the disc remains thin and there is no
gas expulsion on the vertical direction. For this reason, transport of
tracers along the vertical direction is negligible and the integration
over z does not significantly alter the results.

We quantify the evolution of the colour fields by computing
the projection of χnm(r, θ , t) on the different Fourier–Bessel basis
functions. The projection is done on a disc of radius R = 8 kpc
with the inner product defined in equation (8). We define these
projections by

P c
nm,n′m′ (t) = 〈χnm(t)|J c

n′m′ 〉 (11)

P s
nm,n′m′ (t) = 〈χnm(t)|J s

n′m′ 〉. (12)

The quantity P s,c
nm,n′m′ (t) indicates how much of the initial power

from the mode n, m has been transferred to the mode n′, m′ (or, for
n = n′ and m = m′, how much of the original power remains) at
time t. Note that, even if the metal field remained in a fixed pattern
and the galaxy rotated as a solid body, this rotation would exchange
power between the J c

nm and J s
nm. To remove this effect, rather than

considering P c
nm,n′,m′ and P s

nm,n′m′ separately, we instead compute
Pnm,n′m′ , where

P2
nm,n′m′ = (

P c
nm,n′m′

)2 + (
P s

nm,n′m′
)2

. (13)

This quantity is invariant under rotation, so if the galaxy rotated as
a solid body and the spread of the metal field were described simply
by a diffusion equation in the rotating frame, then we would have
Pnm,n′m′ (t) = δnn′δmm′f (t), with f (0) = 1 and f (t) strictly decreasing
with t for t > 0. In reality we shall see that this is not how the colour
fields evolve, but this case none the less provides a useful zeroth
order model against which our findings can be compared.

3.1 Axisymmetric metallicity variation

A realistic metallicity field will contain contributions from two
different types of modes: the axisymmetric ones, i.e. those with
m = 0, carry information on the average radial dependence, and the
non-axisymmetric ones, i.e. the m 
= 0 modes, which describe spiral
structure or other deviations from uniformity at fixed radius. Since
two-armed spirals are the most common type of non-axisymmetric
pattern in galaxies, we will focus on the case m = 2. We discuss the
m = 0 modes in this section, and the m = 2 ones in the subsequent
one.

Fig. 2 shows the vertically integrated colour fields χnm for m =
0, n = 1, 2 at t = t0 (the time when the colour fields are first added)
and t = t0 + 100 Myr. As a consequence of the choice of R, the gas
in which the tracers are deposited is fully turbulent. The original
pattern is slowly destroyed by the turbulence, and the destruction
looks faster for n = 2 than for n = 1.

MNRAS 449, 2588–2597 (2015)
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Figure 2. Snapshots at t0 (left) and t = t0 + 100 Myr (right) of the m = 0, n = 1 (top) and m = 0, n = 2 (bottom) colour fields χnm.

Confirming this visual impression, Fig. 3 shows the decrease of
Pnm,nm(t), the power remaining in the original mode, with time for
the axisymmetric modes n ∈ {1, . . . , 5}. We observe that the mode
m = 0, n = 1 remains almost completely stationary for the time-
scale we consider, while the other modes slightly decrease. The rate
at which the modes decrease is inversely correlated with n, which
is not surprising: higher n modes correspond to smaller spatial
scales, and we expect that turbulence should mix out smaller scale
inhomogeneities faster than larger scale ones. After 100 Myr, the
mode that has decreased the most, n = 5 has lost roughly 70 per cent
of its original power, but it is still in a linear phase.

Figure 3. Evolution over time of Pn0,n0(t), the fraction of the original
power remaining in each of the m = 0 modes (equation 13) for n varying
from 1 to 5.

We can next investigate how power is transferred between modes,
which is described by the quantity Pnm,n′m′ (t). In Fig. 4, we show
P20,n′m′ (t) at t = t0 + 100 Myr. Physically, this quantity shows
how the power that was originally in the n = 2, m = 0 mode
has been transferred to other modes over 100 Myr of evolution.
We can see from the figure that turbulent diffusion transfers power
to both higher n and higher m, and that it does so approximately
isotropically. This figure is also consistent with the result shown
in Fig. 3 that the mixing is slow for the n = 2, m = 0 mode.
The majority of the power remains in the original mode, and only
∼10 per cent of it has spread to other modes. Recall, however,
that, at the time illustrated in Fig. 4, the simulation has evolved
for only 100 Myr, which is less than a full orbital period of the
disc (at 8 kpc). It is therefore not surprising that only a relatively

Figure 4. Power transferred from n = 2, m = 0 to all modes, P20,n′m′ , for
n′ varying from 1 to 15 and m′ from 0 to 10 after 100 Myr of mixing.

MNRAS 449, 2588–2597 (2015)
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Figure 5. Same as Fig. 2, but now for the m = 2, n = 1 (top) and m = 2, n = 2 (bottom) colour fields.

small fraction of the total power has been transferred out of the
mode.

3.2 Non-axisymmetric metallicity variation

Star formation that is concentrated in spiral arms is likely to produce
non-axisymmetry in the metal field, and we therefore next consider
non-axisymmetric modes. Which mode dominates in a real galaxy
will likely depend on whether the spiral arms are grand design or
flocculent. For this example, we choose to focus on m = 2, the mode
that should dominate for a two-armed spiral. We present results
for all other m modes below. In Fig. 5, we show some snapshots
of the modes m = 2, n = 1, 2 at t0 and t0 + 100 Myr. We can
see that the mixing looks more efficient than in the axisymmetric
case. The pattern has been destroyed both by the turbulence and
the differential rotation. We will study in this part both of these
mechanisms.

In Fig. 6, we can see that, after a brief transient, Pnm,nm(t) de-
creases linearly with time before oscillating between 0 and 0.2 of
the original value for the higher values of n. The modes vanish much
faster than the axisymmetric ones. However, most of the reduction
in power is a result of transfer to other modes rather than outright
destruction. Indeed, if we compute the sum of the power remain-
ing over all the modes,

∑
n′,m′ P2

nm,n′m′ (t), which is equivalent to
computing the norm in the real space ||χnm(t)||2, we find that it
decreases by at most of the order of 20 per cent over the 100 Myr
of evolution.2 Fig. 7, which shows P12,n′m′ evaluated at t = t0 +
100 Myr, reveals where the power that is removed from the n = 1,

2 We can estimate the maximum values of n and m accessible to our simu-
lation from our resolution of 20 pc. Since the disc radius is 8 kpc, we have
roughly 400 cells per disc radius. If we assume that we need ∼10 cells per

Figure 6. Same as Fig. 3, but for the m = 2 rather than m = 0 modes.

m = 2 mode is transferred. We can see that most of the power is
still in modes with m = 2, while a smaller fraction has leaked into
m 
= 2 modes (about 20 per cent).

3.2.1 The shear

The main cause of the spread of the power in the m = 2 line shown in
Fig. 7 is the shear induced by the differential rotation. We illustrate
this point in Fig. 8, which shows the real-space reconstruction of

wavelength to resolve the mode, then we should be able to obtain reliable
estimates up to n and m values of ∼40.

MNRAS 449, 2588–2597 (2015)
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Figure 7. Same as Fig. 4, but for the n = 1, m = 2 modes.

Figure 8. Projection of χ12(t) after 100 Myr of mixing on the modes
m = 2, n = 1, . . . , 15 using P

c,s
12,n′m′ as defined in equation (14). It reproduces

the shear induced by the differential rotation of the galaxy.

the colour field that results from summing up only the m = 2 modes
in Fig. 7, i.e.

χsh
n2 (t) =

∑
n′

[
P c

n2,n′2(t)

||J c
n′2||2

J c
n′2 + P s

n2,n′2(t)

||J s
n′2||2

J s
n′2

]
. (14)

As is clear from Fig. 8, this procedure picks out the sheared pattern
created by the differential rotation. As first pointed out by Yang
& Krumholz (2012), this is a very important effect for diffusion.
As we have already seen when considering axisymmetric modes,
turbulence is much more efficient at mixing away inhomogeneities
on small physical scales (higher n and m) than on large ones. Since
the primary effect of differential rotation is to transport power to
higher m, even if the shear by itself does not mix efficiently, it
increases significantly the speed of the diffusion because the radial
pattern is not preserved by differential rotation.

3.2.2 The turbulent mixing

While the transport of power along the m = 2 row is caused by
differential rotation, the power driven to other modes is a manifes-
tation of the turbulence. To demonstrate this, in Fig. 9 we show the

Figure 9. Difference between the full colour field χ12(t = t0 + 100 Myr)
at time t0 + 100 Myr, as shown in the top-right panel of the Fig. 5, and
the partial reconstruction χ sh

12 defined by equation (14) and shown in Fig. 8.
Intuitively, this field shows the change in the colour field due to turbulence
rather than shear.

χ12(t) − χ sh
12(t) after 100 Myr. This quantity is simply the residual

that results when we subtract Fig. 8 from the upper-right panel of
Fig. 5. We can use the power associated with this residual field to
quantify the importance of turbulent mixing.

Let us consider the quantity

Tnm = 1 −

√√√√√√
∑
n′
P2

n′m,n′m∑
(n′,m′)

P2
nm,n′m′

. (15)

Intuitively, the numerator in the fraction is the total power in modes
with the same m as the original one, and thus represents the fraction
of the original power that is in the sheared field. The denominator
is simply the total power summed over all modes, and the ratio
is therefore the fraction of the original power that remains in a
coherent, shear-distorted pattern. One minus this quantity is the
fraction of the original power that has been transported or destroyed
by turbulence. Thus, one may intuitively think of the quantity Tnm

as the fraction of the original power that has been diffused by the
turbulence.3

We show Tnm for m = 2 in Fig. 10. In the case of m = 2,
n = 5, which has the highest dissipation rate for the modes we
are considering in this part, roughly 10 per cent of the power is
transferred to m 
= 2 modes. However, this is a lower limit on the
power dissipated by the turbulence, since turbulence as well as shear
can transfer power between m = 2 modes.

We can schematically summarize the joint effects of turbulence
and shear in Fig. 11. Turbulence is the only agent capable of truly
mixing the disc and wiping out inhomogeneities. However, it op-
erates fairly slowly for patters with large spatial scales. In com-
parison, for non-axisymmetric modes, m 
= 0, turbulence is greatly

3 While equation (15) formally involves a sum over all n′ and m′ up to
infinity, in practice we must of course terminate the computation at finite
values of n′ and m′. We choose to stop at n′ = 25 and m′ = 10 because the
sum seems to converge with these limits, as shown in the appendix.
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Figure 10. The power transferred from m = 2 to m 
= 2 modes by turbulence,
Tnm (equation 15), as a function of the time for m = 2 and n = 1, . . . , 5.

Figure 11. Schematic representation of the actions of the shear and the
turbulence on the spectrum of the metal field.

aided by shear. Shear transports power out of low n modes and into
higher n ones; physically, differential rotation transforms any non-
axisymmetric pattern into a tightly wound spiral on a time-scale
comparable to the orbital period. This works in conjunction with
the turbulence to greatly increase the rate of mixing, by moving
power out of low n modes where it is hard to dissipate and into high
n modes where dissipation is more rapid (Yang & Krumholz 2012).

3.3 Mixing time-scales

We saw in the previous two sections that some modes can be very
stable whereas others can be completely diffused on time-scales well
under an orbital period. We now make this analysis quantitative by
associating to the destruction of each mode a time-scale. Figs 3 and
6 show that the power remaining in the original mode, Pnm,nm, is
roughly constant during an initial transient, then undergoes a phase
where it decays roughly linearly with time, and finally stabilizes
and begins oscillating once the majority of the power is gone. This
oscillation is caused by the fact that the original mode is no longer
dominant and so the power from other modes can feed back into
the original one. Examining comparable plots for other values of
m, we find that these three phases are generic. It therefore seems
reasonable to estimate a decay time-scale for each mode n, m by
computing the slope Dmn in the linear phase. Dnm increases with n
and m (Figs 3 and 6), we can also notice that the slope is very small

Figure 12. The time-scale for metallicity inhomogeneities to decay, τ nm

(equation 16), as a function of n for m = 0, . . . , 4. On the right-hand side,
we normalize the time-scale to the galactic orbital period, torb = 175 Myr at
8 kpc. τ 10 is not plotted because the simulation time was too small to reach
the linear phase for this mode.

for the m = 0 modes. The time-scale is simply the inverse of this
slope, i.e.

τnm = D−1
nm. (16)

Fig. 12 shows τ nm versus n and m. We see that for the m = 0
modes these times are bigger than or similar to the galactic orbital
period torb = 175 Myr at 8 kpc, whereas for the non-axisymmetric
modes, all are smaller than the galactic orbital period, sometimes
by an order of magnitude.

4 A STRO PHYSI CAL I MPLI CATI ONS

This analysis of the destruction time-scale for metallicity inho-
mogeneities has strong astrophysical implications. First, we have
shown that a non-axisymmetric pattern in the metallicity field is
smoothed in less than a galactic orbital period. This implies that
non-axisymmetries in the metal field driven by spiral patterns, bar,
or similar phenomena in the star formation distribution will be sup-
pressed very rapidly. The underlying physical mechanism driving
this is that illustrated in Fig. 11 and discussed by Yang & Krumholz
(2012): for any non-axisymmetric mode, differential rotation winds
the metal pattern up into a tight spiral on orbital time-scales, and
this small-scale pattern is then easily destroyed by turbulence. This
mechanism likely explains why observed galaxy metallicity varia-
tions in the gas at fixed galactocentric radius are so small.

However, the axisymmetric patterns seems more stable, particu-
larly for n ≤ 2 where τ n0 is bigger than torb.4 The much larger dif-
fusion time-scale for the axisymmetric modes likely explains why
radial metallicity gradients in galaxies persist even as azimuthal
ones are wiped out. Moreover, the diffusion time is also related to
the time-scale required for the metal distribution in a galaxy to reach

4 τ 10 is at least bigger than τ 20 and probably bigger than several galactic
orbital periods.

MNRAS 449, 2588–2597 (2015)



2596 A. C. Petit et al.

equilibrium between star formation, which drives the metal distri-
bution away from homogeneity, and turbulent mixing, which drives
it towards homogeneity. Since the low n axisymmetric modes may
dominate the overall metallicity distribution, the relaxation time re-
quired for the metallicity to reach a steady state would be bigger
than several orbits. This might explain why metal gradients for high
redshift galaxies are far more varied than those in nearby galaxies.
Most z � 0 galaxies, including the Milky Way, experienced their last
major merger between z = 1–2, and thus have been in their present
configuration for ∼5–10 Gyr. This is a time-scale much larger than
their orbital period, suggesting that most present-day galaxies have
had time to reach equilibrium between metal production and diffu-
sion. On the other hand, high redshift galaxies are often at most a
few orbital periods old and are therefore still in a non-equilibrium
state. As a result, their metal gradients have not undergone signifi-
cant smoothing, and instead reflect the patchy distributions of star
formation within them without much smoothing.

Finally, we end this discussion with a caution. We have argued
that, because at present only isolated galaxy simulations can reach
the resolutions required to capture the multiphase ISM, such sim-
ulations are the only way to derive realistic rates of metal trans-
port. However, the limitation of this approach is that we have run
a closed box simulation without gas infall or external perturba-
tions. In a more realistic cosmological environment, the quantita-
tive mixing time-scales we have derived might be modified by the
processes we have been forced to omit. However, the differences
between axisymmetric and non-axisymmetric should be preserved
even in a cosmological context, since the main effect is purely
geometrical.

5 C O N C L U S I O N S

In this work, we simulate the diffusion of inhomogeneous metal
distributions in a galactic disc as a result of gravitational instability-
driven turbulence. To make our study as general as possible, we
note that, in cylindrical geometry, the metal field can always be
decomposed into Fourier–Bessel functions. We therefore study
how different Fourier–Bessel modes decay and mix as a result
of shear and turbulence. We find that the efficiency of mixing
strongly depends on whether one is considering an axisymmet-
ric or a non-axisymmetric inhomogeneity. In the former case, the
metal field is very stable, destruction of the original pattern re-
quires at least several orbital periods for large-scale modes, and
is caused only by turbulence. In the latter case, the original pat-
tern vanishes in less than a galactic orbital period. This differ-
ence in time-scale is due to the effects of shear. Shear acceler-
ates diffusion by winding up the inhomogeneities into tight spirals
on small spatial scales, effectively transporting power from large
to small scales in an orbital period. Once this transport is com-
plete, turbulence is then able to diffuse the small-scale power quite
rapidly.

This difference between modes in terms of dissipation time has
strong implications for our understanding of the observed distri-
butions of metals in galactic discs. In particular, the far greater
rapidity of mixing for non-axisymmetric modes than for axisym-
metric ones helps explain why galaxies show consistent radial gra-
dients in metallicity but little to no variation at fixed radius. The
long mixing time-scales we find for radial modes also suggest
that metal distributions in high-redshift galaxies are most likely
not yet in equilibrium between metal production and mixing. This
provides a likely explanation for the much greater diversity of
metallicity distributions seen at high redshift: these are more reflec-

tive of the patchy distribution of star formation in these galaxies,
while the comparatively uniform behaviour of low-z galaxies arises
from the balance between metal production and diffusion. Indeed
the most important modes are not only those with the longest dis-
sipation time-scales, but also the most fed ones by stellar metal
production. We leave consideration of that problem to future
work.
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A P P E N D I X A : C O N V E R G E N C E

For computational reasons, we must truncate the Fourier–Bessel
expansions we use in our analysis at finite values of n′ and m′. We
select as our limits n′ = 25 and m′ = 10, and in this appendix
we show that these limits are high enough to ensure convergence
when we reconstruct fields such as χ sh and quantities like Tnm that
depend on them. In Fig. A1, we plot the quantity T22 computed
using expansions truncated at various values for n and m. As shown
in the figure, this quantity is very well converged by the time we
reach n′ = 25, m′ = 10.

Figure A1. T22, computed using a sum truncated at the indicated values of
n′ and m′.

Another means to check the convergence is to compute the dif-
ference between the norm ||χnm||22 and the sum over the first terms
of P2

nm,n′m′ . Indeed, we have the equality:

∫
χ2dS =

∞∑
m=0,n=1

a2
nm||J c

nm||2 + b2
nm||J s

nm||2. (A1)

We compute the ratio of the sum over n = 25 and m = 10 and
||χ ||2 for the 25 colour fields studied after 100 Myr. It appears that
the fields lost less than 2 per cent for n = 1, m = 0, and less than
20 per cent for the highest n and m studied.
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