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ABSTRACT
We develop a simple dynamical model for the evolution of gas in the centres of barred
spiral galaxies, using the Milky Way’s Central Molecular Zone (CMZ, i.e. the central few
hundred pc) as a case study. We show that, in the presence of a galactic bar, gas in a disc in the
central regions of a galaxy will be driven inwards by angular momentum transport induced by
acoustic instabilities within the bar’s inner Lindblad resonance. This transport process drives
turbulence within the gas that temporarily keeps it strongly gravitationally stable and prevents
the onset of rapid star formation. However, at some point the rotation curve must transition
from approximately flat to approximately solid body, and the resulting reduction in shear
reduces the transport rates and causes gas to build up, eventually producing a gravitationally
unstable region that is subject to rapid and violent star formation. For the observed rotation
curve of the Milky Way, the accumulation happens ∼100 pc from the centre of the Galaxy,
in good agreement with the observed location of gas clouds and young star clusters in the
CMZ. The characteristic time-scale for gas accumulation and star formation is of the order
of 10–20 Myr. We argue that similar phenomena should be ubiquitous in other barred spiral
galaxies.

Key words: stars: formation – ISM: kinematics and dynamics – Galaxy: centre – Galaxy:
evolution – galaxies: evolution.

1 IN T RO D U C T I O N

Star formation is one of the most important unsolved problems in
contemporary astrophysics, and one of the central uncertainties is
the extent to which the rate of star formation per unit mass of in-
terstellar gas is influenced by galactic-scale processes. (See Dobbs
et al. 2014; Krumholz 2014; Padoan et al. 2014, for recent re-
views.) On one hand, a number of observations appear to favour
a ‘bottom-up’ view in which star formation is a purely local pro-
cess that does not depend on galactic characteristics. These include
the apparent insensitivity of the star formation rates in galaxies
to galactic parameters such as Toomre (1964) Q (e.g. Leroy et al.
2008, 2013) or to the presence and structure of spiral arms (Willett
et al. 2015), the minimal variation in molecular gas depletion time
(tdep ≡ Mgas/SFR) measured on ∼kpc scales in nearby galaxies
(e.g. Bigiel et al. 2008; Schruba et al. 2011; Leroy et al. 2013),
and the fact that all star-forming systems, on scales from individual
clouds to entire starburst galaxies, appear to turn their mass into
stars at a nearly constant rate per gas free-fall time (Krumholz &

�E-mail: mkrumhol@ucsc.edu

Tan 2007; Krumholz, Dekel & McKee 2012), possibly with a small
secondary variation based on the Mach number of the turbulence
(Federrath 2013). In this view, the global rate of star formation in
galaxies is mostly a matter of adding up individual star-forming
clouds, whose behaviour is independent of their galactic environ-
ment. Models based on this premise have been advanced by a num-
ber of authors (e.g. Krumholz & McKee 2005; Krumholz, McKee
& Tumlinson 2009; Lada et al. 2012; Renaud, Kraljic & Bournaud
2012; Federrath 2013; Krumholz 2013; Salim, Federrath & Kewley
2015).

On the other hand, there is a broad class of theoretical models
which predict that galaxies’ star formation rates should explicitly de-
pend on galactic structure, at least in some galaxies (e.g. Thompson,
Quataert & Murray 2005; Ostriker, McKee & Leroy 2010; Hopkins,
Quataert & Murray 2011; Ostriker & Shetty 2011; Shetty & Ostriker
2012; Faucher-Giguère, Quataert & Hopkins 2013), and a number
of recent observations using higher resolution data have pointed
to a somewhat greater role for galactic dynamics. These include
observations showing that the properties of molecular clouds vary
systematically with environment both between and within galax-
ies (e.g. Hughes et al. 2013; Colombo et al. 2014), and evidence
that the star formation rate per unit molecular mass measured on
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small scales is not independent of the large-scale rate of shear
in a galactic disc (Meidt et al. 2013; Suwannajak, Tan & Leroy
2014).

A particularly promising avenue for exploring the role of galaxy-
scale dynamics in regulating star formation is to study the centres
of galaxies. These are the regions where shear and similar effects
arising from the shape of the galactic potential should have their
largest effects (e.g. Kruijssen et al. 2014; Kruijssen, Dale & Long-
more 2015). It is also the location where other environmental ef-
fects, such as high external pressures (e.g. Rathborne et al. 2014b)
and high X-ray and cosmic ray fluxes (e.g. Meijerink & Spaans
2005; Papadopoulos 2010; Meijerink et al. 2011; Clark et al. 2013;
Kruijssen et al. 2014), should be at their strongest. Indeed, galac-
tic centres show a number of interesting deviations from the star
formation behaviour seen at larger galactic radii. Some galaxies
show enhanced star formation per unit molecular mass in their nu-
clei, others depressed rates of star formation (Saintonge et al. 2012;
Leroy et al. 2013; Longmore et al. 2013a). Galactic Centre molec-
ular clouds show systematic differences in their properties from
disc clouds (e.g. Kruijssen & Longmore 2013; Bally et al. 2014;
Rathborne et al. 2014b, 2015; Leroy et al. 2015).

The best-studied of galactic centres is the Central Molecular
Zone (CMZ) of the Milky Way, which exhibits a number of in-
teresting features. Much of the dense gas in this region appears to
be collected into a stream, or a partially filled ring, of molecular
material ∼100 pc from the Galactic Centre (Molinari et al. 2011;
Kruijssen et al. 2015). Within this ring are a series of clouds whose
star-forming activity ranges from far smaller than one would expect
based on their mass and density (e.g. G0.253+0.016, also known
as ‘The Brick’; Longmore et al. 2012; Kauffmann, Pillai & Zhang
2013; Rathborne et al. 2014a; Mills et al. 2015) to some of the most
actively star-forming sites in the Local Group (Sgr A, Sgr B2, and
Sgr C; Yusef-Zadeh et al. 2008, 2009). These clouds may well rep-
resent an evolutionary sequence (Longmore et al. 2013b; Kruijssen
et al. 2015). There is also significant evidence that star formation
in the CMZ is episodic. Hints at previous starbursts include the
presence of large off-plane bubbles visible in radio (Sofue & Handa
1984), infrared (Bland-Hawthorn & Cohen 2003), and gamma-rays
(Su, Slatyer & Finkbeiner 2010), along with direct counts of young
stellar objects (Yusef-Zadeh et al. 2009).

In this paper, we propose a simple model for the global dynam-
ics and star formation behaviour of gas in the Milky Way’s CMZ,
and by extension the central regions of other barred spiral galaxies.
Qualitatively, our model is that gas is channelled through the disc
of the Milky Way, along the Galactic bar, and into the CMZ. Once
there, it settles into a disc that is subject to acoustic instabilities
driven by the bar. These instabilities drive both turbulence and an-
gular momentum transport in the gas, simultaneously causing it to
flow inwards and increase in velocity dispersion. As a result, the
gas is extremely turbulent, and its large velocity dispersion renders
it highly stable against gravitational collapse or star formation (typ-
ically Q ∼ 100, as we show below). However, near the radius where
the rotation curve of the Galaxy turns over from flat to solid body,
the resulting reduction in shear suppresses transport and turbulent
driving, leading gas to accumulate rather than moving further in-
wards. This accumulation eventually builds up a ring of material
which goes gravitationally unstable and begins vigorous star for-
mation. If feedback from this burst of star formation is sufficiently
strong, the ring will be disrupted, and the cycle will begin again.

Our plan for the remainder of this paper is as follows. In Section 2,
we introduce our physical model for the gas in the CMZ, and in
Section 3, we describe how we simulate the evolution of this model.

In Section 4, we present the results of our simulations, and we
discuss the implications of those results in Section 5. We summarize
and conclude in Section 6.

2 MO D EL

Our goal in this section is to develop a quantitative model cor-
responding to the qualitative scenario described in the previous
section. We will model the gas near a Galactic Centre as an axisym-
metric thin disc subject to non-axisymmetric perturbations, within
which mass and angular momentum are transported via instabilities
and energy is lost due to the dissipation of supersonic turbulence.
We will simulate this system using the VADER code of Krumholz &
Forbes (2015). In the remainder of this section we detail the physical
ingredients to our model, and in the following one we describe the
numerical setup we use to simulate it. Our simulations will focus
on the case of the Milky Way CMZ, since it is the system for which
we have the best measurements of the small-scale rotation curve.

2.1 The galactic potential and the inner Lindblad resonance

The first step in this modelling is to derive the potential in which
the gas orbits. To do so, we make use of two data sets for the Milky
Way’s CMZ. Our primary data set, which we use for all numerical
calculations, is the enclosed mass Mr versus galactocentric radius
r measured by Launhardt, Zylka & Mezger (2002) at r = 0.63–
488 pc, which we use to derive a rotation speed vφ = √

GMr/r .
Our secondary data set, which we will not use for numerical com-
putations but that we include here because the Launhardt et al.
(2002) data do not go out far enough to reach the inner Lind-
blad resonance (ILR; e.g. Binney & Tremaine 1987), is the rotation
curve compiled by Bhattacharjee, Chaudhury & Kundu (2014) from
r = 190–1.9 × 105 pc.1 We can interpolate these tabulated data to
generate a rotation curve vφ versus r, but this requires some care.
The dynamical evolution of gas in this potential depends not just on
the rotation curve but on its gradient,

β ≡ d ln vφ

d ln r
. (1)

This quantity is important because the dimensionless rate of shear is
1 − β. For this reason we interpolate using basis splines (B-splines),
following the method of Gans & Gill (1984), as implemented in the
VADER code by Krumholz & Forbes (2015). The B-spline fit ensures
continuity of some number of derivatives. For the Launhardt et al.
(2002) data set we use 6th order B-splines with 15 breakpoints,
while for the Bhattacharjee et al. (2014) data set, since it contains
fewer data points within 6 kpc (where we truncate the fit), we use
third-order B-splines with six breakpoints. The top panel of Fig. 1
shows the data and our fits to them. We see that there is some
tension between the two data sets, but that there is rough qualitative
agreement in the range of radii where they overlap. The figure also
illustrates why the B-spline fit is critical: a simple linear fit produces
rates of shear with unphysical sharp features.

The lower panel of Fig. 1 shows, for our fits to both data sets,
the frequency � − κ/2, where � = vφ/r is the angular veloc-
ity of the orbit and κ = √

2(1 + β)� is the epicyclic frequency.
For comparison, the black dashed line shows the pattern speed

1 Bhattacharjee et al. (2014) provide three possible fits, corresponding to
three choices for the imperfectly known Galactocentric radius of the Solar
Circle. We use their data set corresponding to 8.0 kpc for this value, but the
results are qualitatively identical for other choices.
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Rings and starbursts near galactic centres 741

Figure 1. Rotation curve for the inner Galaxy. Top panel: rotation speed vφ

versus Galactocentric radius r using the data set of Launhardt et al. (2002,
blue circles and thick solid line) and of Bhattacharjee et al. (2014, green
squares and thin solid line). For the vφ versus r plots, the points indicate the
observational estimate, while the lines are B-spline fits to the data (see text
for details). The dashed blue line shows the dimensionless shear 1 − β =
1 − dln vφ/dln r derived from the B-spline fit to the Launhardt et al. data;
for comparison, the dotted blue line shows 1 − β computed using a simple
linear fit. Bottom panel: angular frequencies versus radius. Solid lines show
�0 − κ/2, where �0 is the orbital frequency and κ is the epicyclic frequency,
for the fits to the Launhardt et al. (thick blue line) and Bhattacharjee et al.
(thin green line) data sets. The thin black dashed line shows the pattern speed
of the Galactic bar; the intersection of this line with �0 − κ/2 is location
of the ILR.

�bar ≈ 0.06 Myr−1 of the Galactic bar (Debattista, Gerhard &
Sevenster 2002; Wang et al. 2012; Antoja et al. 2014); the point
where � − κ/2 = �bar marks the location of the ILR. We see that
the ILR is located at ∼1 kpc. The entire region we model will be
within this radius.

Finally, note that, on top of this cylindrically symmetric potential,
there is an additional non-axisymmetric component to the potential
due the presence of a bar. We incorporate this effect into our model
below by considering how the presence of a non-axisymmetric per-
turbation affects this disc, and so we defer any further considering
of the bar’s effects for the moment.

2.2 Gas evolution

We approximate that gas in the CMZ orbits in an azimuthally
symmetric thin disc, which is characterized by a surface density
�, a non-thermal velocity dispersion σ nt, and a thermal veloc-
ity dispersion σ th. Both � and σ nt are functions of r, but we set
σ th = 0.5 km s−1 independent of position. This is the sound speed

of fully molecular gas at a temperature of 70 K, in the middle of the
kinetic temperature range for CMZ gas that Ao et al. (2013, also
see Ginsburg et al. 2015) derive by analysing H2CO line emission.
The exact choice will have little effect on our results in any event,
because observations show, and the model we describe below also
predicts, that σ nt � σ th almost everywhere in the disc.

The gas evolves following the standard equations of mass and en-
ergy conservation for such a disc (e.g. Krumholz & Burkert 2010),

∂

∂t
� + 1

r

∂

∂r
(rvr�) = 0 (2)

∂

∂t
E + 1

r

∂

∂r
[rvr (E + P )] − 1

r

∂

∂r

(
r

vφT
2πr2

)
= Ėrad, (3)

where E = �
[
ψ + v2

φ/2 + (3/2)
(
σ 2

nt + σ 2
th

)]
is the total energy of

the gas per unit area, ψ is the gravitational potential, Ėrad is the rate
of energy gain or loss due to radiative effects, P = �

(
σ 2

nt + σ 2
th

)
is

the total vertically integrated pressure, vr is the radial velocity, and
T is the turbulent torque. The latter two quantities are related via
angular momentum conservation,

vr = ∂T /∂r

2πr�vφ(1 + β)
. (4)

We parametrize the viscosity though the Shakura & Sunyaev (1973)
α-disc model, including the generalization proposed by Shu (1992):

T = −2πr2αP (1 − β) , (5)

where α is a dimensionless number characterizing the strength of
angular momentum transport. We defer a discussion of the choice
of α to the next section.

It is worth pausing to remark on the physical processes that are
responsible for controlling the turbulence in the gas that are captured
in equation (3), since these will be crucial to understanding our
results. The non-thermal velocity dispersion σ nt is a component of
the total energy per unit mass E/�. Since all the other components
depend on quantities that are fixed at each radius (ψ , vφ , and σ th),
any change in the energy E at a given location is expressed as
a change σ nt. These changes can be driven by several processes,
each corresponding to a different term in equation (3). The easiest
to understand is the decay of supersonic turbulence via radiative
shocks, which is captured by the term Ėrad. This process causes σ nt

to decrease at every point in the disc.
The countervailing processes are represented by the terms on the

left-hand side of equation (3). The term −(1/r)(∂/∂r)(rvφT /2πr2)
describes the work done by torques. Physically, in our viscous
disc model angular momentum transport occurs because each
ring of material has a higher angular velocity than the ring
immediately outside it, and as the fluid elements move past
one another they exert torques. This torque does work, the ef-
fect of which is to transport energy outwards. Finally, the term
(1/r)(∂/∂r)[rvr(E + P )] combines advection of energy by bulk
motion of gas and work done by pressure forces. Since E � P
for a thin disc, advection is by far the more important of these
two processes. Advection tends to increase σ nt because, although
fluid elements retain constant specific energy E/� as they advect,
the gravitational potential ψ and rotation curve vφ are such that
ψ + v2

φ/2 decrease inwards. Thus the specific orbital plus gravi-
tational energy of a fluid element goes down as it is transported
inwards, and by energy conservation this leads the specific turbu-
lent energy (3/2)σ 2

nt to increase. Thus the velocity dispersion in our
disc is dictated by a competition between the decay of turbulence in
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radiative shocks, which decreases σ nt, and the combined effects of
turbulent torques and advection, which tend to increase it by trading
off gravitational potential energy against kinetic energy.

2.3 Energy dissipation processes

The next step in our model is to evaluate Ėrad. In the absence of any
forcing, the non-thermal velocity dispersion of the gas will decay
with time. Numerical simulations indicate that the time-scale for
turbulence to decay is of the order of the crossing time of the flow
(Stone, Ostriker & Gammie 1998; Mac Low 1999; Ostriker, Stone
& Gammie 2001; Lemaster & Stone 2009). In the context of a disc,
this time-scale should be computed relative to the gas scaleheight,
which we obtain using the model of Ostriker et al. (2010) for the
vertical gas structure. In this model, the scaleheight Hg of the gas is
implicitly given by

2πζdGρ∗�H 2
g + π

2
G�2Hg = P , (6)

where ρ∗ is the stellar (plus dark matter) mass density within a dis-
tance Hg of the gas mid-plane (assumed to vary negligibly, which
is true as long as the stellar scaleheight greatly exceeds Hg) and
ζ d ≈ 0.33 is a dimensionless constant, whose exact value depends
on the relative importance of gas self-gravity versus stellar gravity,
but whose value remains within 5 per cent of 0.33 in all cases. Intu-
itively, equation (6) simply asserts that, in hydrostatic balance, the
vertically-integrated pressure must balance the gravitational forces
attempting to compress the gas, which come from the gravitational
potential produced by stars and dark matter (the first term on the
left-hand side) and the self-gravity of the gas (the second term).

To obtain the stellar density, we note that, if the stellar mass
responsible for producing the rotation velocity vφ were arranged
spherically, we would have

ρ∗ = fshape(1 + 2β)
v2

φ

4πGr2
(7)

with fshape = 1. A flattened stellar distribution has fshape > 1. We do
not precisely know the full three-dimensional distribution of mass
at the Galactic Centre, but fshape can be constrained somewhat by
observations. Rodriguez-Fernandez & Combes (2008), based on
Two Micron All-Sky Survey star counts, and Molinari et al. (2011),
based on the shape of the 100 pc gas structure in the CMZ, both
estimate fshape ∼ 2. More recently, Kruijssen et al. (2015) fit the
potential based on the kinematics of gas in the CMZ,2 and obtained
fshape ≈ 2.5. We will adopt this value as our fiducial choice, but also
study how varying it affects our results.

Given a choice for fshape, at any point in the disc with known �,
P, and vφ , equation (6) is a quadratic with known coefficients that
we can solve to obtain Hg. We then set the energy dissipation rate
to

Ėrad = −η
�σ 2

nt

Hg/σnt
, (8)

where η is a constant of order unity, for which we take a fiducial
value of 1.5, calibrated from simulations (Stone et al. 1998). This
amounts to setting the rate of energy loss equal to the current kinetic
energy divided by one gas scaleheight crossing time.

2 Kruijssen et al. (2015) express their result in terms of the vertical shape of
the potential, expressed via the axial ratio of the equipotential surfaces q�

(Binney & Tremaine 1987, section 2.2.2). Their favoured value is equivalent
to fshape = 2.5.

2.4 Angular momentum transport processes

The final important element in our model is angular momentum
transport, as parametrized by the dimensionless value α. To estimate
this quantity, consider a disc of molecular gas in a barred galaxy,
such as that in the CMZ. The stellar bar will perturb the gas disc
with an m = 2 mode, and we wish to consider the stability of the
disc against these perturbations. Stability analyses such as this have
been performed by a large number of authors (e.g. Goldreich &
Lynden-Bell 1965; Lau & Bertin 1978; Toomre 1981; Bertin et al.
1989; Montenegro, Yuan & Elmegreen 1999). Bertin et al. (1989)
obtained the general dispersion relation for non-axisymmetric self-
gravitating thin discs, and Montenegro et al. (1999) pointed out that
it admits two classes of instability: gravitational instabilities, which
occur for axisymmetric perturbations and for non-axisymmetric
ones close to co-rotation, and acoustic instabilities, which arise
strictly for non-axisymmetric perturbations inside the ILR or outside
the outer Lindblad resonance (OLR). Acoustic instabilities are so
named because the destabilization is driven by pressure rather than
gravity; pressure causes the apocentres of perturbed gas orbits inside
the ILR to align, leading to a growing mode. Indeed, gravity acts as
a stabilizer rather than a destabilizer for acoustic instabilities, since
it ‘de-tunes’ the pressure-driven alignment.

Formally, the dispersion relation for waves in a self-gravitating
thin disc is (Montenegro et al. 1999, their equation 10)

Q2

4
= η̂ − 1 − ν2

η̂−2 + J 2/(1 − ν2)
, (9)

where ν = (ω − m�)/κ is the dimensionless frequency of the
perturbation, ω is the frequency, m is the azimuthal wavenumber
of the perturbation, and η̂ is a dimensionless inverse wavenumber,
which must be positive and real. The instability is controlled by the
two parameters Q and J, where

Q = κσ

πG�
(10)

is the usual Toomre (1964) parameter, and

J =
√

T1

kcrit
, (11)

with T1 = (1 − β)(2m�/κr)2 and kcrit = κ2/2πG�, is a dimen-
sionless measure of the strength of shear in the disc. Note that J = 0
for β = 1, corresponding to solid body rotation and thus zero shear.
The disc is unstable to the growth of perturbations with azimuthal
wavenumber m at a given combination of Q and J if there exists a
positive real value of η̂ such ν has a non-zero imaginary part.

Equation (9) can be solved for ν2 as

ν2 = 1 + 1

2

(
Q2

4η̂2
− 1

η̂
±

√
D

)
, (12)

with

D =
(

Q2

4η̂2
− 1

η̂

) (
Q2

4η̂2
− 1

η̂
− 4J 2η̂2

)
. (13)

However, be warned that this re-arrangement introduces some spu-
rious solutions, as is often the case with rational equations. None
the less, this re-arrangement is useful, because it clearly shows how
to analyse a disc to determine whether it is either gravitationally or
acoustically unstable.

The two regimes of instability correspond to different signs of
the discriminant D. The gravitational instability case arises when
D > 0, so ν2 is a real number, but ν2 < 0 so that ν is a pure imaginary.
In this case the transition from stability to instability occurs in the
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vicinity of ν = 0, which corresponds to unstable waves being close
to co-rotation with the disc (ω ≈ m�). For m = J = 0, corresponding
to axisymmetric perturbations, the dispersion relation (equation 9)
reduces to

ν2 = 1 + Q2

4η̂2
− 1

η̂
, (14)

which has a minimum of ν2 = 1 − Q−2 at η̂ = Q2/2. This minimum
is negative, indicating instability, if Q < 1, the usual Toomre (1964)
stability condition. For non-axisymmetric perturbations, m 	= 0, but
in real astrophysical systems we generally have J 
 1 (see Bertin
et al. 1989 for more discussion of this point), so this condition
is modified only slightly. Acoustic instability corresponds to the
regime where D is itself negative, and thus ν2 and ν both have non-
zero imaginary parts. In this case the real part of ν is either <−1
or >1, and thus in the portion of the disc that lies either inside the
ILR or outside the OLR with respect to the perturbation.

For practical numerical purposes, we can evaluate the suscepti-
bility of a disc with specified values of �, σ , and rotation curve
vφ to acoustic instability via the following procedure. First, we find
the value of η̂ that minimizes D; the global minimum of D, if it is
less than zero, corresponds to the fastest growing acoustic mode.
Local minima of D occur at values of η̂ that satisfy dD/dη̂ = 0, and
evaluating the derivative gives

16J 2η̂5 − 8η̂2 + 6Q2η̂ − Q4 = 0. (15)

We obtain the roots of this polynomial via standard numerical
techniques (Galassi et al. 2009), discard roots where Re(η̂) < 0
or Im(η̂) 	= 0 (since only positive real roots are physically allowed),
and check the remaining roots to see which one minimizes D. If D
is negative at its minimum, the region is acoustically unstable, and
we can obtain the growth rate of the most unstable mode simply by
plugging this minimum into equation (9) and finding which of the
four possible values of ν has the largest imaginary part.

Formally, we define the growth time of the fastest growing mode
as

tgrowth = 1

κ max[ Im(ν)]
, (16)

where in evaluating possible values of ν we consider both gravita-
tional and acoustic instabilities. To investigate the stability of the
Milky Way’s CMZ, we use the Launhardt et al. (2002) potential,
again treating the potential as cylindrically symmetric, and regard-
ing the much smaller non-axisymmetric component provided by the
bar as a perturbation. For this potential, we compute the stability
of the disc against both m = 0 gravitational instabilities and m = 2
acoustic perturbations driven by the Galactic bar, using a range of
sample values of � and σ . We show the results of this computation
in Fig. 2. We find that, for the parameter choices shown, which span
the plausible range based on observations, the disc is unstable to
acoustic modes at all radii; it is not unstable to gravitational modes
anywhere, although, as we will see below, it will naturally evolve
into a gravitationally unstable state. The growth times of the acoustic
modes are generally comparable to the orbital period, indicating that
the instability should grow efficiently. The exception is just inside
∼100 pc, where the rotation curve approaches solid body and the
shear diminishes (cf. Fig. 1). This will prove to be important below.

The presence of an instability will certainly produce turbulence
and angular momentum transport. Unfortunately, we cannot easily
compute the exact transport rate once the instability reaches full
non-linear saturation. However, it seems likely that they will be
high. Simulations of both pure gas discs and gas plus stellar discs

Figure 2. Growth time-scale tgrowth for the fastest growing acoustic insta-
bility mode at the Galactic Centre, normalized to the local orbital period
torb = 2π/�, as a function of Galactocentric radius r. The growth time-
scales shown have been computed for values of the surface density � = 10
and 100 M� pc−2 and velocity dispersion σ = 20 and 80 km s−1, inde-
pendent of position, and for m = 2 modes. The rotation curve used in the
computation is produced by B-spline interpolation of the Launhardt et al.
(2002) measurements following the procedure outlined in Section 2.1, as
shown by the thick blue solid line in the upper panel of Fig. 1.

show that gravitational instabilities tend to produce transport rates
corresponding to a dimensionless viscosity α ∼ 1 (e.g. Bournaud,
Elmegreen & Elmegreen 2007; Hopkins & Quataert 2010; Kratter
et al. 2010; Ceverino et al. 2015). Acoustic instabilities, unlike
gravitational ones, cannot self-stabilize by producing turbulence
and thus driving up the value of Q (e.g. Krumholz & Burkert 2010),
so the instability seems likely to be at least as strong. It is likely that
the growth of the instability is ultimately limited by the dissipation
of energy in spiral shocks.

Given the lack of a well-motivated estimate for the transport rate
due to acoustic instability, we choose to parametrize it by

α = min(α0e1−tgrowth/torb , 1) (17)

where torb = 2π/� is the local orbital period. The parameter α0

simply normalizes the rate of angular momentum transport at points
where the instability grows on a time-scale of a single orbital period,
while taking the minimum ensures that, even in the most unstable
regions, we do not exceed α = 1. We will adopt a fiducial value
α0 = 1, but consider below how varying this parameter might change
the results.

2.5 Summary of the model

We now have in place a fully specified model of the evolution of
gas in the Milky Way’s CMZ. The overall evolution is described by
equations (2) and (3), which specify mass and energy conservation.
These equations depend on the rotation curve vφ and potential φ,
the rate of energy dissipation Ėrad, and the dimensionless rate of
angular momentum transport α. For the rotation curve and poten-
tial, we use the B-spline fit to the Launhardt et al. (2002) rotation
curve shown in Fig. 1. For the rate of radiative energy loss we
use the value given by equation (8), which comes from our model
of turbulent dissipation. Finally, for angular momentum transport
we use our calculation of acoustic and gravitational instabilities,
as parametrized by equation (17). This set of equations, once we
choose values for the various parameters appearing in them, fully
specifies the problem.
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3 SI M U L AT I O N M E T H O D A N D S E T U P

We simulate the disc model described in the previous section using
the VADER code described by Krumholz & Forbes (2015).3 VADER

solves the equations using a fully implicit method that conserves
mass and energy to machine precision. We use VADER’s backwards-
Euler solver, because the Crank–Nicolson one produces undesirable
numerical oscillations. All our simulations use a computational grid
of 512 cells, spaced logarithmically from an inner edge at r = 10 pc
to an outer edge at r = 450 pc. Although the region inside the
ILR extends to ∼1 kpc, and the bar goes out even further, we
choose 450 pc for the outer edge because it is close to the outermost
point included in Launhardt et al. (2002)’s estimate of the Galactic
rotation curve, and thus avoids the need to interpolate between this
rotation curve and that of Bhattacharjee et al. (2014). We have
verified that choosing different values that are still of the order of
hundreds of pc does not qualitatively alter the results.

The equations describing the evolution of the disc require two
boundary conditions at each end, describing the rate at which mass
and enthalpy are advected into or out of the computational domain.
At the inner boundary, we prescribe our boundary by requiring that
the viscous torque go to zero. This implicitly sets the mass flux (see
Krumholz & Forbes 2015 for details), and forces it to be out of
the computational domain. We set the specific enthalpy at the inner
boundary equal to the initial specific enthalpy in the simulation (see
below), but this has no practical effect since no material ever enters
the computational domain at the inner edge.

The choice of outer boundary condition is less trivial. We choose
to specify the boundary condition as a fixed inward mass flux, but
we do not have good observational estimates of the rate at which
material is transported through the outer parts of the Milky Way’s
disc to enter the CMZ, or of the velocity dispersion of this material
as it arrives. Theoretical estimates suggest that the inward transport
rate through the disc should be of the order of Ṁin = 1 M� yr−1

(Krumholz & Burkert 2010; Cacciato, Dekel & Genel 2012; Forbes,
Krumholz & Burkert 2012; Forbes et al. 2014), and that, once gas
reaches the bar, it should be further transported inward along the
bar to be deposited in the CMZ (Binney et al. 1991; Kormendy &
Kennicutt 2004), where it settles into the disc-like structure that we
seek to model (Sormani, Binney & Magorrian 2015). We therefore
adopt Ṁin = 1 M� yr−1 as a fiducial value, but below we will
explore how robust our results are against variations in this choice.

Observations indicate that the velocity dispersion of the densest
molecular gas near the Galactic Centre is of the order of tens of
km s−1 (e.g. Walsh et al. 2011; Purcell et al. 2012, and table 1 of
Kruijssen et al. 20144). The velocity dispersion of somewhat lower
density gas is much less constrained, but observations elsewhere
in the Galaxy (Walsh, Myers & Burton 2004; André et al. 2007;
Kirk, Johnstone & Tafalla 2007; Rosolowsky et al. 2008), as well as
theoretical expectations (e.g. Padoan et al. 2001; Offner et al. 2008;
Offner, Hansen & Krumholz 2009), suggest that it should be larger.

3 We make one minor modification to the system as described: we adopt a
minimum viscosity α = 10−3. We do this both because very small values of α

cause difficulties in convergence that slow the calculations, and because we
expect α to be at least this large as a result of thermal and magnetorotational
instability (e.g. Piontek & Ostriker 2004, 2007), even in regions that are
acoustically and gravitationally stable. The value of the floor parameter
does not affect the results.

4 These authors generally report either the full width at half-maximum or
the 1D velocity dispersion, while our σ is the 3D velocity dispersion, which
is larger by a factor of

√
3.

Table 1. Parameter values for the fiducial case.

Parameter Value Meaning

α0 1.0 Dimensionless viscosity
Ṁin 1.0 M� yr−1 External accretion rate
σ in 40 km s−1 Incoming 3D velocity dispersion
fshape 2.5 Potential shape parameter
σ th 0.5 km s−1 Thermal velocity dispersion
η 1.5 Turbulence decay rate

We adopt σ in = 40 km s−1 as our fiducial velocity dispersion, but,
as with the mass inflow rate, we explore below how varying σ in

changes our results.
As initial conditions for our simulations, we choose to place a

small amount of material into the computational domain. Specif-
ically, we set the initial surface density to � = 1 M� pc−2 and
the initial velocity dispersion to σ = 40 km s−1 everywhere. The
results are quite insensitive to these values as long as the mass and
energy of the initial gas is small enough that the external inflow
rapidly swamps the mass and internal energy of the material that
was present at the beginning. For our fiducial parameter choices,
externally input material dominates after 0.6 Myr.

All the source code for the simulations described in this sec-
tion, and for the analysis presented in the subsequent sections, is
publicly available. The run and analysis scripts can be obtained
from https://bitbucket.org/krumholz/cmzdisk/ (hash f78e226), and
VADER code is available at https://bitbucket.org/krumholz/vader
(hash 5a96350).

4 R ESULTS

4.1 Fiducial case

We first use the numerical method described in the previous section
to simulate a fiducial case, for which the free parameters are as
shown in Table 1. Fig. 3 shows the results of this simulation over
50 Myr. Qualitatively, we see that mass enters the computational
domain from the outer edge and propagates inwards through the disc
as time passes. At early times the inflow rate is highest at the outer
edge of the disc (where it is forced by our boundary conditions to be
1 M� yr−1), and then decreases inwards. The velocity dispersion
rises as the gravitational potential energy of this incoming material
is converted into turbulent motion, at a rate that is initially too high
for the decay of turbulence to counter it. This increase in velocity
dispersion keeps Q high at radii above ∼100 pc. By ∼30 Myr of
evolution the disc outside ∼100 pc has settled into a steady state
whereby the inflow rate produced by acoustic instability is the same
at all radii, and the velocity dispersion is kept constant by a balance
between turbulent dissipation and the conversion of gravitational
to turbulent energy as mass accretes down the potential well. In
this equilibrium, Q remains of the order of 100, so that the gas is
extremely stable against collapse or star formation.

The results change qualitatively inside ∼100 pc, as the wave of
incoming material stops propagating inwards and instead piles up
in a ring. The inward mass flow rate also drops sharply as acoustic
instability shuts off. At later times gravitational instability takes
over, but this does not prevent a large pileup of gas. Within the
accumulating ring of material, the velocity dispersion begins to
drop, reaching the thermal floor value of 0.5 km s−1. As a result
the Q value in the ring begins to drop, first falling below unity at
some point within the disc roughly 10–15 Myr after the simulation
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Rings and starbursts near galactic centres 745

Figure 3. Results of the simulation with the fiducial parameters. From
top to bottom, the panels show the surface density �, velocity dispersion
σ , inward radial velocity −vr, instantaneous inflow rate Ṁin = −2πr�vr,
Toomre Q parameter, and instability growth time normalized to the orbital
time tgrowth/torb. In the top four panels, we show results at t = 0 (thin black
solid line), t = 10 Myr (thick blue solid line), t = 25 Myr (thick green dashed
line), and t = 50 Myr (thin red dashed line), as indicated in the legend. For
the instability growth time in the bottom panel, we show the value for the
fastest growing mode, with a solid line indicating that the fastest mode is
acoustic and a dashed line indicating that it is gravitational. Colours and line
thicknesses are as in the panels above.

Figure 4. Mass in the regions with Q < 1 and Q < 10 ( top panel, solid
blue and dashed green lines, respectively), and mass-weighted mean radius
of this mass (bottom panel) versus time in the fiducial simulation. The mean
radius is plotted only at times when the mass is non-zero.

starts. In Fig. 4, we show the total amounts of mass for which Q < 1
and Q < 10, and the mass-weighted mean radius of this gas, as a
function of time.5 By ∼50 Myr, several times 107 M� of material
has accumulated in the unstable region. Thus a mass comparable
to that of the observed ring-like stream in the CMZ (Molinari et al.
2011) can accumulate in an unstable region after a few tens of Myr.

We can understand the outcome of the simulations by examining
the rotation curve shown in Fig. 1. The region where the incoming
material stalls is precisely where the rotation curve turns over from
close to flat, as it is in the bulk of the Galaxy, to close to solid body,
as it is near the Galactic Centre. In this near-solid body region,
there is little shear, as shown by the dimensionless shear 1 − β.
This suppresses transport in two ways. First, since acoustic insta-
bilities are driven by the presence of shear, the approach to solid
body rotation weakens the acoustic instability and thus lowers α.
Secondly, recalling equation (5), we see that even for fixed α the

5 This computation is somewhat subtle, because the regions in which we
are interested are, at early times, just a few computational cells wide. To
suppress discreteness noise, we compute the mass in the unstable region
via the following procedure. We take the simulation output at each time
and compute Q on our computational grid. We then construct Akima (1970)
spline approximations to log r versus log � and log r versus log Q at each
time step. We use the splines to generate finer grids of 32 768 points, and
integrate the mass in the Q < 1 and Q < 10 regions on that higher resolution
grid. Note that the small oscillations seen in mass versus time shown for
Q < 1 in Fig. 4 are not a result of this procedure, and are robust against
changes in it. Instead, they are a real feature of the simulation. Oscillations
occur because as Q approaches unity, gravitational instability turns on as
a transport mechanism. This leads parts of the disc to undergo a cycle in
which regions where Q < 1 have active mass transport that raises the velocity
dispersion and drives Q above unity so that transport stops. At that point, the
turbulence begins to decay, so Q eventually drops back below unity, turning
on transport and starting the cycle again.
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Table 2. Variations in parameter values.

Parameter Values Meaning

α0 0.1, 0.5, 1.0, 2.0 Viscosity
Ṁin 10−0.5, 1, 100.5 M� yr−1 Accretion rate
σ in 20, 30, 40, 80 km s−1 Velocity dispersion
fshape 1.0, 2.0, 4.0 Potential shape

Note. Fiducial values are indicated in bold.

torque is reduced in low-shear regions. This is physically what we
should expect: for any plausible turbulent transport mechanism, the
rate of angular momentum transport should be proportional to the
rate of shear between adjacent rings. If there is no shear, transport
mechanisms will shut down.

A third, less obvious effect of the low-shear region in on the en-
ergy balance of the disc. Energy transport in the disc occurs through
two channels or roughly equal importance. Material advecting in-
wards converts potential energy into kinetic energy as it does so,
raising the local velocity dispersion, and torques within the disc
transport kinetic energy outwards from faster-moving material near
the centre to slower-moving material further out. Both of these pro-
cesses also tend to shut down in regions of low shear. As a result, the
rate at which the velocity dispersion of material is being driven up
by transport processes reaches a minimum in the near-solid body
region. Since the rate of turbulent dissipation does not diminish
there, this causes the local velocity dispersion to diminish, which in
turn reduces the rate of turbulent transport to diminish even further.

As a result of these runaway effects, the low-shear region acts
like a barrier that stops transport of material inwards and energy
outwards, leading to a buildup of a low velocity dispersion, high
surface density ring. The accumulation continues until gravitational
instability sets in, at which point it seems likely that star formation
will ensue and that star formation feedback will increase the velocity
dispersion and possibly eject material entirely. The time required
to accumulate enough mass to reach gravitational instability for the
fiducial parameters is ∼15 Myr.

4.2 Dependence on free parameters

We next investigate to what extent the results we have obtained for
the fiducial case are generic, and to what extent they depend on our
poorly known parameters. We summarize the parameters we vary,
and the values we try, in Table 2. We vary the parameters one at
a time, leaving all others fixed to the fiducial values indicated in
Table 1. In all cases we use the same initial conditions and compu-
tational grid, and run for 50 Myr. We do not vary the dissipation rate
coefficient η, partly because it is reasonably well calibrated from
simulations, and partly because it is redundant with fshape. We also
do not show the results of varying the thermal velocity dispersion
σ th, because for plausible values of this parameter its effects are
negligible.

We first vary α0, which controls the normalization for the rate
of angular momentum transport. Figs 5 and 6 show how the results
change as we vary α0 from its fiducial value of 1.0 in the range
0.1–2.0. We see that the results for all values of α0 ≥ 0.5 are
qualitatively the same as in the fiducial case. On the other hand, for
α0 = 0.1 we obtain a qualitatively different result. In this case, the
angular momentum transport provided by the acoustic instability is
insufficiently rapid to transfer mass inwards at the rate of 1 M� yr−1

at which it enters the computational domain. As a result, the gas
stagnates and collapses to form a gravitationally unstable ring at

Figure 5. Results of the simulations with all parameters set to their fiducial
values (Table 1) except α0, which varies as indicated in the legend. The
top row shows the surface density � and the bottom shows Q; the left-hand
column shows results at t = 15 Myr, and the right at t = 45 Myr. The fiducial
case is shown as the solid thick black line, in this and all subsequent figures
in this section.

Figure 6. Same as Fig. 4, except that we only show the mass and radius of
the material with Q < 1 (not Q < 10), and we show results for runs with
varying values of α0 as indicated in the legend. The line for α0 = 1 is the
same as in Fig. 4.

a radius of 350–400 pc rather than ∼100 pc as in the other cases.
Collapse is also significantly delayed relative to the fiducial case,
taking ∼30 Myr to evolve to a gravitationally unstable state rather
than ∼15 Myr.

We next try varying the inflow rate Ṁin, from 10−0.5–100.5

M� yr−1. Figs 7 and 8 show the results. Clearly varying the rate
at which matter enters the CMZ from larger radii in the disc af-
fects the overall time-scale of the evolution, but mostly in a way
such that the behaviour remains self-similar. A higher accretion
rate simply produces a larger overall surface density at fixed time,
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Rings and starbursts near galactic centres 747

Figure 7. Same as Fig. 5, but with all parameters set to their fiducial values
(Table 1) except Ṁin, which varies as indicated in the legend (in units of
M� yr−1).

Figure 8. Same as Fig. 6, but for runs with varying values of Ṁin as
indicated in the legend (in units of M� yr−1. The line for Ṁin = 1 is the
same as in Fig. 4.

and a proportionately larger mass in the gravitationally unstable
region, but the shape of surface density and Toomre Q versus ra-
dius are unchanged. Similarly, in all three cases the location of the
gravitationally unstable ring is roughly the same, and rate at which
the mass in the gravitationally unstable region grows eventually
asymptotes to match the rate at which matter enters the computa-
tional domain. The formation of an unstable region is clearly robust
against changes in the accretion rate.

Our third variation is in σ in, the velocity dispersion of the material
entering the computational domain. This affects the rate of transport
near the outer computational domain boundary, before the material
advects inwards far enough for its velocity dispersion to set by the
balance between transport and dissipation. Figs 9 and 10 show the

Figure 9. Same as Fig. 5, but with all parameters set to their fiducial values
(Table 1) except σ in, which varies as indicated in the legend.

Figure 10. Same as Fig. 6, but for runs with varying values of σ in as
indicated in the legend. The line for σ = 40 km s−1 is the same as in Fig. 4.

results of simulations using σ in = 20, 30, 40, and 80 km s−1, roughly
spanning the plausible observed range for CMZ material. The results
for 30, 40 and 80 km s−1 are clearly very similar qualitatively. For
20 km s−1, the results are similar at times before ∼20 Myr, but after
that point the low velocity dispersion of the material entering the
computational domain leads to lower rates of transport at large radii,
and this in turn causes mass to build up at large radii. Eventually the
gas builds up to form a second gravitationally unstable region near
∼400 pc, in addition to the first one formed at ∼100 pc. Exploration
of different values of σ in shows that this secondary unstable region
appears for values of σ in below roughly 20–25 km s−1.

Finally, we vary the parameter fshape that describes how flattened
the stellar potential is, and thus how large the gas scaleheight is at
fixed gas surface density and velocity dispersion. Since the turbulent
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Figure 11. Same as Fig. 5, but with all parameters set to their fiducial values
(Table 1) except fshape, which varies as indicated in the legend.

Figure 12. Same as Fig. 6, but for runs with varying values of fshape as
indicated in the legend. The line for fshape = 2 is the same as in Fig. 4.

dissipation time is set by the scaleheight crossing time, this choice
affects the rate at which the turbulence decays. Figs 11 and 12 show
the results of this experiment. Clearly the value of fshape changes
the precise location of the ring of gas buildup and gravitational
instability, but does not alter the qualitative result that such a ring
forms on time-scales of ∼10–20 Myr, or the default distribution of
the gas approaching that ring.

To summarize our findings: gas entering the CMZ tends to hang
up in its inward flow and develop a gravitationally unstable region at
∼100 pc, where the rotation curve has a region of minimal shear as
it approach solid body. This result is very robust against variations
in the mass accretion rate and the shape of the stellar potential. The
former only acts as a scaling parameter, while the latter changes the
precise location of the unstable region but not its general character-

istics. This tendency is also robust against increases in the velocity
dispersion of the incoming gas and the rate of angular momentum
transport produced by acoustic instabilities, and to some level of
decrease in these parameters as well. However, if the input velocity
dispersion is too low, or the rate of angular momentum transport
by acoustic instability too small, the gas collapses into gravitational
instability near the edge of our simulation domain, either instead of
or in addition to in the location of minimal shear at ∼100 pc. De-
spite this, we can be reasonably confident that, over a broad range
of parameters, buildup of an ∼100 pc unstable ring should occur on
time-scales of tens of Myr.

5 D I SCUSSI ON

5.1 Comparison to the structure of the galactic CMZ

The results presented in this paper show quantitatively how gravi-
tational collapse is inhibited within the ILR resonance of galactic
centres (and of the CMZ of the Milky Way in particular). This is
caused by efficient angular momentum transport in acoustic insta-
bilities, which maintains the turbulent velocity dispersion at a con-
sistently high level (σ = √

3σ1D > 40 km s−1). In Kruijssen et al.
(2014), it was proposed that the observed high turbulent pressure
(σ ∼ 40 km s−1 and P/k ∼ 108 K cm−3, see e.g. Bally et al. 1988)
and the correspondingly high Toomre stability parameter (Q ∼ 10)
of the CMZ gas are responsible for the fact that the star formation
rate in the CMZ is observed to be an order of magnitude lower than
expected from empirical scaling relations and star formation theory
(Longmore et al. 2013a). It remained an open question whether the
high turbulent pressure is driven by stellar feedback, the gas inflow
along the bar, or acoustic instabilities. In this paper, we find that
acoustic instabilities naturally lead to the observed, high velocity
dispersions. Our model therefore provides a key missing element in
explaining the currently low star formation rate in the CMZ.

Next to providing an accurate description of the gas in the CMZ
on large scales, our model also reproduces the presence of a grav-
itationally unstable, ring-like stream of gas (Molinari et al. 2011;
Kruijssen et al. 2015). As gas loses angular momentum and flows
towards the Galactic Centre, it accumulates at a radius of ∼100 pc,
where the shear has a local minimum. This reduces the angular
momentum transport rate and the driving of turbulence by acous-
tic instabilities. Consequently, the gas accumulates and the surface
density increases, until after 10–15 Myr a gravitational instabil-
ity develops. For the fiducial parameter set, the model predicts a
peak surface density of � > 103 M� pc−2 and a minimum Toomre
Q = 0.3–1.0 at t = 15 Myr, briefly after the gravitational instability
has set in. These numbers are in remarkable agreement with the
observed properties of the gas stream (cf. table 1 of Kruijssen et al.
2014).6

To make a more detailed comparison, we focus on the state of
our fiducial simulation at 17.5 Myr of evolution, which we com-
pare to the observed CMZ in Fig. 13; we select this time slice be-
cause it has depletion times in good agreement with those observed
in the present-day CMZ (see Section 5.2 for details). The figure

6 In our model, the typical values of � and Q within the gravitationally un-
stable radius interval are primarily set by Ṁ and σ in (see Section 4.2). For
good agreement with the observations, the model requires Ṁ ∼ 1 M� yr−1

and σin > 30 km s−1. The former is consistent with other theoretical con-
straints (e.g. Crocker 2012), whereas the latter of these is consistent with
the observed velocity dispersions mentioned above.
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Rings and starbursts near galactic centres 749

Figure 13. Column density map of the dense (n > several 103 cm−3) gas in the Galactic CMZ as traced by NH3(1, 1) (Walsh et al. 2011; Purcell et al. 2012),
with symbols indicating Sgr A∗ (green plus), star-forming clouds (red crosses; from left to right these are Sgr B2, Sgr B1, and Sgr C), and young stellar clusters
(blue diamonds; from left to right these are the Quintuplet and Arches clusters). The overlay provides several of our model predictions at t = 17.5 Myr in the
plane perpendicular to the line of sight at the distance of Sgr A∗. The dashed lines show the scaleheight profile predicted for all gas (i.e. not just the dense gas
shown here), whereas the scale bars indicate the time necessary for the gas at each longitude to reach the gravitationally unstable region (black line), in units
of Myr (top) as well as normalized to the local orbital time at each radius (bottom). As the gas is transported inwards, the remaining number of orbital times
decreases more slowly than the remaining absolute time, illustrating a decrease of transport rate. As a result, the entire migration process proceeds over several
orbital revolutions and the gas piles up just outside the gravitationally unstable region.

illustrates that the gravitationally unstable region matches the radii
where currently most of the dense gas, star-forming regions, and
young stellar clusters in the CMZ reside (e.g. Molinari et al. 2011;
Longmore et al. 2013b). In our model, this region covers a closed
circular ring by definition, because we assume axisymmetry on the
sub-kpc scales under consideration. However, the gas itself is ex-
pected to follow a possibly eccentric, stream-like structure within
this unstable radius interval, which must be open-ended due to the
extended nature of the stellar mass distribution. The radial range
across which the gravitational instability takes place in our param-
eter survey is 60 � R/pc � 120, which indeed matches the radii
covered by the eccentric orbital model for the CMZ gas stream by
Kruijssen et al. (2015).

At radii beyond the gravitationally unstable region (i.e.
150 < R/pc < 500 or 1◦ � |l| � 3.5◦ in projection), dense
clouds may exist, but in our model they have high veloc-
ity dispersions and are supervirial due to acoustic instabilities
(αvir ∼ Pturb/Pgrav = σ 2/πGHg� = 10–100). Therefore, their
global collapse is inhibited and the little star formation activity they
are expected to have will result from stochastic turbulent motion
(cf. Bania’s Clump, Bally et al. 2010). For the CMZ model pre-
sented here, star formation theories (e.g. Krumholz & McKee 2005;
Padoan, Haugbølle & Nordlund 2012; Federrath & Klessen 2012;
Hennebelle & Chabrier 2013) predict low star formation efficiencies
per free-fall time of εff ∼ 0.001 outside the gravitationally unsta-
ble region. This is particularly true if the turbulence is primarily
solenoidal (Federrath & Klessen 2012), as might be expected since
it is ultimately driven by shear.

As illustrated in Fig. 13, the high velocity dispersions result in
an increase of the gas scaleheight with radius. Depending on their
Galactic longitudes, it takes these highly turbulent clouds anywhere
between 2–15 Myr to migrate inwards to the gravitationally unsta-
ble region at R ∼ 100 pc (cf. the third panel of Fig. 3, which shows
inward radial velocities of −vr = 20–30 km s−1), corresponding to

∼2 full orbital revolutions. This estimate assumes that the clouds
all reside at the same distance – for non-zero displacements along
the line of sight, the migration time-scales are even longer. Direct-
infall models for the gas inflow on to the CMZ (e.g. those in which
the x1 and x2 orbits play a major role) predict much shorter migra-
tion time-scales of 0.5–5 Myr (e.g. Sofue 1995; Bally et al. 2010).
Comparing observed cloud properties as a function of longitude
with the expected evolutionary time-scales may therefore be a way
of discriminating between direct-infall models and the dynamical
evolution model presented here. Other tests of the model can be
performed by comparing the radial profiles of e.g. the gas surface
density and velocity dispersion from Fig. 3 to observed maps of the
CMZ.

As a result of the inward transport of the gas and the correspond-
ing increase of the gas pressure towards lower Galactic longitudes,
our model predicts that the dense gas fraction increases strongly to-
wards the Galactic Centre. To quantify this prediction, we consider
gas near the disc mid-plane, where the mean density is ρ = �/2Hg.
We then assume that the gas has a lognormal volume density prob-
ability distribution function (PDF) as expected for supersonically
turbulent, isothermal media (e.g. Vazquez-Semadeni 1994; Padoan,
Nordlund & Jones 1997; Krumholz & McKee 2005), and calculate
the mass fraction above a certain minimum density.7 The resulting
dense gas fractions are listed at four different Galactic longitudes
in Table 3. Interestingly, the dense gas fractions change only slowly
in the outer CMZ, where acoustic instabilities inhibit gravitational

7 The density PDF can be altered somewhat depending on the ratio
of solenoidal to compressive modes in the driving force (Federrath,
Klessen & Schmidt 2008), the strength of magnetic fields (Molina et al.
2012), and deviations from isothermality (Federrath & Banerjee 2015), but
for simplicity we perform this calculation using the results for an isothermal,
non-magnetic medium with mixed solenoidal-compressive driving.
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Table 3. Predicted dense gas fractions in the Galactic CMZ.

Longitude fdense, 4 fdense, 5 fdense, 6

(>104 cm−3) (>105 cm−3) (>106 cm−3)

|l| = 2◦–3◦ 0.03 0.003 0.0002
|l| ∼ 1.◦5 0.05 0.006 0.0005
|l| ∼ 1◦ 0.08 0.015 0.0015
|l| < 0.◦7 0.3–1.0 0.04–0.2 0.005–0.01

Notes. These values apply to our fiducial model (Fig. 3). While
the overall trend of increasing dense gas fractions towards lower
longitudes is a robust prediction of the model, the normaliza-
tion of that trend will depend on the adopted parameters (cf.
Section 4.2). As these parameters become better constrained by
new observations, so will the dense gas fractions provided here.

collapse. However, they increase rapidly as the gas becomes grav-
itationally unstable at |l| < 1◦. Designating all gas with densities
n > 104 cm−3 as ‘dense’, we find that the dense gas fraction in-
creases from a few per cent in the outer CMZ to nearly unity in the
100-pc ring (as was also found by Longmore et al. 2013a). These
fractions decrease strongly as the minimum density used to define
‘dense’ gas increases. Interferometric observations of high critical
density gas tracers using Atacama Large Millimetre Array (ALMA)
or the ongoing Submillimetre Array (SMA) Legacy Survey of the
CMZ (Keto et al. in preparation; Battersby et al. in preparation) are
ideally suited to test these predictions.

5.2 Time evolution of the galactic CMZ

It is important to reiterate that our model predicts an episodic cy-
cle for the gas content and star formation activity of galactic cen-
tres. The development of a gravitationally unstable region marks
the beginning of the end: once the gas collapses and forms stars,
the residual gas is expelled by feedback. The current gas mass
of the 100-pc stream in the CMZ is M ∼ 107 M�, with a den-
sity of n > 104 cm−3 and a correspondingly short free-fall time of
tff < 0.34 Myr, which is much shorter than the time required to grow
the current gas reservoir (tacc ∼ M/Ṁin ∼ 10 Myr for our fiducial
model). As a result, the gravitationally unstable gas reservoir is ex-
pected to be depleted by a combination of rapid star formation and
feedback, after which the accretion cycle described by our model
starts from the beginning.

Given the episodic nature of the system’s evolution, a more de-
tailed comparison between model and observations requires us to
assess at which point along the cycle the CMZ currently resides.
The present star formation rate in the CMZ is only ∼0.05 M� yr−1

(Longmore et al. 2013a; Koepferl et al. 2015) and the mass outflow
rate is estimated at ∼0.5 M� yr−1 (corresponding to a mass load-
ing factor of ηml ∼ 10, see e.g. Crocker 2012). The sum of both
(Ṁout ∼ 0.6 M� yr−1) is lower than our fiducial mass inflow rate of
Ṁin ∼ 1 M� yr−1, and also lower than the independent estimate by
Crocker (2012), who finds 2σ limits of 0.4 < Ṁin/M� yr−1 < 1.8.
It is therefore most probable that the gas mass in the CMZ is
presently increasing. This places the CMZ at the moment prior
to the starburst, but after the gravitational instability has started to
develop.

Comparing the current mass of the 100 pc gas stream
(M ∼ 107 M�) to the time evolution of the unstable mass in our fidu-
cial model (see Fig. 4), the CMZ appears to reside some t ∼ 20 Myr
after its last major starburst. However, this is an upper limit, as it
assumes that (1) the entire gas reservoir needed to be regrown out

Figure 14. Unstable wavelengths for the acoustic (shaded area) and grav-
itational (hashed area) instabilities in the fiducial model, with the fastest
growing mode colour-coded by the growth time-scale in units of the orbital
time (see colour bar). The top panel shows the radial profile prior to the on-
set of the gravitational instability at t = 10 Myr, whereas the bottom panel
shows the ‘current-day’ state at t = 17.5 Myr.

to R > 400 pc, and (2) that all of the mass in the gas stream is
already gravitationally unstable. In the more likely scenario that the
previous starburst did not clear out any of the gas beyond the unsta-
ble region, the evolution towards gravitational instability during the
first ∼10 Myr is skipped, because accretion can resume without de-
lay. The growth phase of the gravitational instability then remains,
resulting in a time interval of ∼10 Myr to accumulate the present-
day gas mass of the 100 pc stream. If the previous starburst did not
clear out all of the gas in the unstable region, this time interval will
be further reduced. We therefore conclude that the CMZ is currently
5–10 Myr post-starburst.8

The obvious next question to ask is when the CMZ will enter the
next starburst phase. To address this point, we consider our model at
t = 17.5 Myr, shortly after the initial formation of the gravitation-
ally unstable mass reservoir. If the properties of these gravitational
instabilities match those observed in the CMZ, their growth time-
scales provide insight in the CMZ’s immediate evolution. Fig. 14
shows the length-scale of the acoustic and gravitational instabili-
ties as well as the growth time-scale of the fastest growing mode
as a function of radius in the CMZ, at times t = {10, 17.5} Myr.
For the acoustic instabilities, the figure generalizes the initial result
from Fig. 2 to the evolved CMZ model, showing that the growth
time-scale of these instabilities is typically less than an orbital time

8 The main observational relics of this previous starburst are likely the 8-kpc
Fermi bubbles that extend from the CMZ (Su et al. 2010). In combination
with their spatial extent, the time since the starburst given here constrains the
outflow velocity of the bubbles to be vout = 800–1600 km s−1, which is re-
markably consistent with previous estimates from geometric considerations
(vout ∼ 1000 km s−1; Carretti et al. 2013).
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and that they develop rapidly enough to drive angular momentum
transport and turbulence.9

The development of the gravitational instabilities around
R ∼ 100 pc differs from the acoustic instabilities. Fig. 14 demon-
strates that the growth time-scale is initially longer than an orbital
time.10 As the instability develops, the growth time-scale decreases
substantially to tgrowth < torb, and two modes with different wave-
lengths dominate.

(i) At radii R = 80–100 pc, the instability length-scale is
λ ∼ 200 pc. This long-wavelength instability is expected to drive
large-scale asymmetries in the distribution of the gas in the CMZ,
as it covers a significant fraction of a circular orbit at these radii.
This matches the well-known observation that most of the gas in the
CMZ resides at positive Galactic longitudes (see Fig. 13 and Bally
et al. 2010).

(ii) At radii R = 70–80 pc, the fastest growing mode is a factor of
several shorter, with λ ∼ 30 pc. This short-wavelength instability
matches the estimated Jeans length in the 100-pc stream (∼30 pc,
Kruijssen et al. 2015), as well as the observed typical separation
length of the individual clouds condensing out of the stream and the
wavelength of line-of-sight velocity oscillations (Henshaw et al. in
preparation).

Given how well these instabilities match the observed density
fluctuations in the CMZ, their growth time-scales may be taken as
an indication of how rapidly the CMZ clouds can start their collapse
towards the next starburst phase.

Both of the above gravitationally unstable modes have
tgrowth < torb ∼ 3.7 Myr. Therefore, the extant condensations should
start collapsing within the next few Myr, and the precise time de-
lay till the next starburst within the gravitationally unstable region
will depend on the number of free-fall times needed to fundamen-
tally change the ratio between gas mass and star formation rate.
We use the observational estimate that star formation efficiencies
of εsf ∼ 0.1 are reached before a star formation event disperses the
residual gas (Lada & Lada 2003; Federrath & Klessen 2013). The
associated time-scale is tsf = tffεsf/εff, where εff is the star forma-
tion efficiency per free-fall time. In the Galactic disc, εff ∼ 0.01
(Krumholz & Tan 2007; Krumholz et al. 2012; Federrath 2013),

9 The characteristic length-scale of the instabilities is short, at λ < 0.01 pc.
However, it is important to recall that this wavelength characterizes the
radial size in the tight-winding approximation; that is, it is the characteristic
width of the m = 2 spiral features, and tells us nothing about the pitch angle
of the spiral, other than the fact that it must be small since the Montenegro
et al. (1999) dispersion relation is derived in the limit where it is. Moreover,
we emphasize that the fastest growing linear mode is not necessarily the
dominant one in the non-linear regime, and thus the dominant mode that we
would expect to observe. An obvious example is Rayleigh–Taylor instability,
for which the growth rate in the linear regime scales as λ1/2, so that small-
scale modes are fastest, but both simulations and experiments show that
long-wavelengths mode dominate in the non-linear regime (e.g. Dimonte
et al. 2004). In the absence of full simulations of the acoustic instability, we
cannot reach any strong conclusions about which modes will dominate in
real galaxies.
10 This supports the scenario put forward by Longmore et al. (2013b) and
Kruijssen et al. (2015) in which the collapse of clouds on the 100-pc stream
is triggered by a tidal compression during pericentre passage. Because the
gas on the stream initially requires several orbital revolutions to become
gravitationally unstable, the recurrent tidal perturbations at pericentre are
statistically likely to give the final nudge into collapse as the turbulent energy
is gradually dissipating.

but it is unclear if this holds in the CMZ as well.11 Using orbital
modelling, Kruijssen et al. (2015) estimate that the evolutionary
time difference between the ‘Brick’ (little star formation) to Sgr B2
(high star formation activity) is �t ∼ tff ∼ 0.4 Myr, whereas the
star formation efficiency in Sgr B2 is of the order a per cent (Bally
et al. 2010, assuming a few 100 M� per ultracompact H II region).
As a result, εff ∼ 0.01 in collapsing CMZ clouds too. Combining
the above numbers, we estimate that the next starburst in the gravi-
tationally unstable region will be reached in ∼5 Myr or 1–2 orbital
revolutions.

5.3 A cartoon model with star formation and feedback

We are now in a position to develop a toy model for the overall
behaviour of star formation in CMZs, both those of the Milky Way
and of similar galaxies, and how they evolve in the observational
plane of star formation rate surface density versus gas surface den-
sity. Our goal here is not to precisely reproduce the properties of
the Milky Way’s CMZ. Instead, it is to develop a simple cartoon
picture for how regions such as the CMZ evolve in time. To do so,
we must extend our model with a simple treatment of star formation
and feedback.

To this end, we modify our fiducial model by adding a term
−�̇∗ on the right-hand side of equation (2). We compute the star
formation rate as

�̇∗ = fclεff
�

tff
, (18)

where fcl is the fraction of gas in dense clouds, εff is the star forma-
tion rate per free-fall time in those clouds, tff is the free-fall time.
We compute these quantities as fcl = 1/2,

εff = 0.01e−αvir (19)

αvir = P/Hg

(π/2)G�2
(20)

tff =
√

3π

32Gρ
(21)

ρ = �

2Hg
. (22)

Physically, these expressions amount to saying that half the mass
at any given radius is in clouds as opposed to in a diffuse medium,
roughly consistent with observations of circumnuclear starbursts
(e.g. Rosolowsky & Blitz 2005). Within those clouds, star forma-
tion proceeds at the observed rate of ∼1 per cent of the mass per
free-fall time in virialized gas, again consistent with observations
(Krumholz & Tan 2007; Krumholz et al. 2012; Federrath 2013;
Salim et al. 2015), but that the star formation rate drops off expo-
nentially in supervirial gas (that with αvir > 1). Our definition of
the virial ratio is such that αvir → 1 when gas self-gravity domi-
nates over stellar gravity in equation (6), indicating that the gas is
self-gravitating.

11 When globally-averaged surface densities are adopted, the CMZ is consis-
tent with galactic star formation relations and models assuming εff ∼ 0.01
(Yusef-Zadeh et al. 2009; Longmore et al. 2013a; Kruijssen et al. 2014;
Salim et al. 2015), but this approach ignores persistent (and hence physical)
substructure. Therefore, it does not directly constrain the true value of εff in
the CMZ.
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When we re-run the fiducial case with this added term, the be-
haviour is qualitatively unchanged, except that rather than gas accu-
mulating indefinitely in the unstable region, the ring instead reaches
a steady state where rate of star formation in the ring balances the
rate of gas transport into it. This behaviour is quite insensitive to
the exact star formation recipe we adopt. In reality, such a steady
state is unlikely to be stable. The star formation rate surface den-
sity in the steady state is so high that the radiation flux reaches
∼10 per cent of the Eddington luminosity, at which point radiation
pressure alone should drive rapid mass-loss, even without the aid
of supernovae (Thompson & Krumholz 2014). To construct our toy
model, we therefore add an artificial truncation to the gas accu-
mulation and star formation. After 22.5 Myr of evolution (chosen
to be 5 Myr after the ‘current’ CMZ as discussed in Section 5.2),
when the star formation rate has reached ∼0.1 M� yr−1, we sim-
ply reduce the star formation rate linearly to zero, and the gas
surface density linearly to 10 per cent of its previous value, over
a time of 4 Myr, roughly the lifetime of a massive star, in every
computational cell for which Q < 3.12 We note that this time-scale
is selected to give a qualitative picture, and is not quantitatively
calculated.

With this quite crude cartoon model of feedback and gas ex-
pulsion, the overall evolution of the star formation rate, gas mass,
and depletion time is as shown in Fig. 15. In this plot we show
values computed both using all the material in the inner 250 pc,
and values computed only for the material within the ring from
80–90 pc ring where the gas surface density and star formation
peak. Our motivation for separating these two cases is that the for-
mer is roughly analogous to what would be observed in a survey
with ∼0.5 kpc resolution (e.g. HERACLES; Leroy et al. 2013),
targeting a galaxy > 1 Mpc away using PdBI or a similar instru-
ment; in our own Galaxy, it is roughly equivalent to considering
all the material with Galactic longitude |l| < 3◦. The latter is
roughly analogous to considering the material within |l| < 1◦ in
the Milky Way, or to the resolution that is possible in external
galaxies using ALMA. We also construct a realistic ‘observed’ star
formation rate by convolving the true star formation rate with the
time-dependent ionizing luminosity Q(H0, t) of a stellar population
that fully samples the initial mass function (IMF). This correction
is important because Galactic Centre star formation rates are usu-
ally measured with H α or similar ionization-based star formation
rate indicators, and these effectively average the star formation rate
over a time that is non-negligible compared to time-scales in the
model. We compute Q(H0, t) using the SLUG code (da Silva, Fu-
magalli & Krumholz 2012; Krumholz et al. 2015) using Geneva
non-rotating evolutionary tracks at Solar metallicity (Ekström et al.
2012).

What does this evolutionary cycle look like when plotted on the
usual star formation relations, which relate the star formation rate
per unit area to the gas surface density, or surface density normalized
by orbital time? To answer this question, we again consider observa-
tions with both ∼0.5 kpc and ∼10 pc resolution. For the former, we
take the area within a radius of 0.25 kpc (i.e. 0.2 kpc2) and consider
all the material within this radius (cf. Kruijssen et al. 2014), while
for the latter we use the area of an annulus from 80–90 pc, which
is where essentially all the star formation is located – this corre-
sponds to roughly the central 1◦ in Galactic longitude. For the orbital

12 To avoid discreteness noise, we use the same trick mentioned above,
whereby we interpolate Q and all other quantities on to a higher resolution
grid and apply this procedure to the interpolated data.

Figure 15. Star formation rate (top panel), total gas mass (middle panel),
and gas depletion time (tdep = Mgas/SFR, bottom panel) for our fiducial run
with star formation added. In all panels, quantities indicated by thin lines
show true, instantaneous values, while those indicated by thick lines show
values that would be inferred from observations using an ionization-sensitive
star formation rate indicator such as H α. Dashed lines show a run with no
gas removal, while solid lines show the results where we use our crude gas
expulsion model, whereby the star formation rate declines linearly to zero
over a 4 Myr time period starting at 22.5 Myr (see main text for details).
In the middle and bottom panels, the blue lines indicate values over the
inner 250 pc, as would be observed with ∼0.5 kpc resolution, while green
lines indicate values measured only in the ring between 80 and 90 pc from
the Galactic Centre, as could be observed with ∼10 pc resolution. We do
not include the green lines for 10 pc resolution in the upper panel because
they are essentially identical to the blue lines, since nearly all of the star
formation takes place within the ring.

time, we use the orbital time for our fiducial rotation curve evalu-
ated at the outer edge of the disc for the ∼0.5 kpc-resolution case,
and the orbital time evaluated at 90 pc for the ∼10 pc-resolution
case.

We must also choose when to start and stop the clock in order to
make this comparison. As noted above, our initial condition contains
an unrealistically small gas mass, since even a strong starburst in
the unstable region seems unlikely to expel material that is ∼400 pc
from a galactic centre. With this consideration in mind, we choose
our zero of time to be 14 Myr after the start of the fiducial run, which
marks the moment when a region with Q = 1 first appears. With
this choice, and using our crude model to represent star formation
feedback, gas accumulates for 8.5 Myr with a slowly increasing
star formation rate. After that point gas expulsion begins and star
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formation slows down. The expulsion process lasts until 12.5 Myr,
and thereafter the stellar population fades and the observed star
formation rate (which lags the true one) declines, until gas begins
re-accumulating and the cycle repeats. The full cycle in this cartoon
model requires 15–20 Myr.

Fig. 16 shows the cycle as it appears in the star formation rela-
tions. Clearly at either spatial resolution the variation of the CMZ’s
gas depletion time is dominated by the fluctuating star formation
rate. The gas mass within the entire CMZ is constant to within a
factor of 2–3. The mass inside the unstable ring varies more widely,
but the amount of variation is not well determined, since it depends
strongly on our assumptions about how much mass is expelled when
the ring begins a starburst. Despite this uncertainty, it seems likely
that the gas depletion time of the gravitationally unstable, inner
CMZ will vary by at least two orders of magnitude, while the deple-
tion time of the CMZ as a whole will show ∼1 dex variations. This
difference arises because on large scales, the independent, outer gas
reservoir is included in the depletion time measurement, which
stabilizes the small-scale fluctuations (Kruijssen & Longmore
2014).

Focusing on the left-hand panel of Fig. 16, and comparing the
behaviour in our toy model to the star formation relations observed
for entire galaxies (various lines in Fig. 16), we see that a CMZ
measured on ∼kpc scales spends roughly half its time with a star
formation rate below what would be expected based on its gas sur-
face density, and about half the time at a higher star formation rate.
The inner CMZ (i.e. the 100-pc stream) might seem to spend more
time above the mean star formation relation, but this is somewhat
misleading. The Bigiel et al. (2008) relation, marked by the red
dashed line in Fig. 16, represents a fit to disc galaxies with � < 102

M� pc−2, and does not describe the elevated star formation rates
of galaxies with higher surface densities. Compared to the star for-
mation relations observed at these higher surface densities, a CMZ
observed at 10 pc resolution also spends roughly half its time below
the mean star formation rate, and half its time above. For ∼0.5 kpc-
resolution observations, the scatter about the conventional star for-
mation relations is ∼1–1.5 dex, while at ∼10 pc resolution it is as
much as ∼2–2.5 dex, though the exact value depends on the details
of gas expulsion. The present-day CMZ of the Milky Way is in the
phase of its evolution when it lies below the mean star formation
relations.

The above comparison changes when dividing the gas surface
density by the orbital time (right-hand panel in Fig. 16). In that
case, the extremely short orbital time of a CMZ places it below all
star formation relations except during its starbursts. This holds for
both the inner CMZ and the entire CMZ. The division by the orbital
time therefore provides an efficient way of highlighting galactic
centres at a star formation minimum, irrespective of the spatial
resolution.

Finally, we note that in all four discussed cases (two spatial
scales in two panels of Fig. 16), the cycle-averaged CMZ agrees
with Daddi et al. (2010)’s observed star formation relations for
starburst galaxies to within a factor of 3. Without any signifi-
cant evolution of the rotation curve or the gas inflow rate (either
by secular processes or due to external perturbations), the CMZ
should continue to evolve through the cycle shown in Fig. 16. If
the conditions do change fundamentally, then this will affect the
time-scales of the different phases. The cycle is not expected to
shut off altogether, because there should always be a radius inter-
val where the rotation curve has a near-solid body part and gas
accumulates.

5.4 Predictions for the centres of external galaxies

The model presented here provides the first self-consistent theory
that quantitatively reproduces the main features of the CMZ of the
Milky Way. It is therefore desirable to make predictions that hold
for galactic centres of barred spiral galaxies in general.

In summary, our model consists of the following critical ingredi-
ents.

(i) The galaxy has an ILR to which gas is supplied by the bar
at sufficiently high velocity dispersions (σ 1D > 10–15 km s−1) to
drive angular momentum transport and thus prevent the gas inflow
from stalling.

(ii) For most of the radial range within the ILR, the rotation curve
is near-flat so that the shear is high (1 − β � 0.8).

(iii) As a result of points (i) and (ii), acoustic instabilities develop
in the gas after it enters the ILR. These instabilities drive efficient
angular momentum transport, leading to inflowing gas with high
turbulent pressures (P/k > 105 K cm−3), extreme gravitational sta-
bility (Q > 10), and a low star formation rate (tdep ∼ 10 Gyr).

(iv) Within the ILR, there is a radius where the rotation curve
transitions from near-flat to near-solid body, causing a minimum
in the shear (1 − β � 0.4). The angular momentum transport and
mass inflow both stall at this radius.

(v) At this radius, the inward mass flux is sufficient for the accu-
mulating gas to eventually exceed the stellar density (ρ > ρ�).

(vi) As a result of points (iv) and (v), gravitational instabilities
develop in the growing gas reservoir near the shear minimum. At
the high gas densities required by point (v), these instabilities drive
the gas into rapid free-fall (tff � 1 Myr), resulting in a starburst
(tdep � 0.1 Gyr).

These conditions are commonly satisfied in the centres of barred
spiral galaxies (e.g. Elmegreen, Elmegreen & Eberwein 2002; Jogee
et al. 2002; Martini et al. 2003; Jogee, Scoville & Kenney 2005;
Leroy et al. 2008; Sandstrom et al. 2010; Nesvadba et al. 2011;
Sani et al. 2012). As a result, the physical processes described in
this paper and the qualitative cycle of Fig. 16 (also see fig. 6 of
Kruijssen et al. 2014) should be common in other galactic centres.

While our model may apply qualitatively to other galaxies, it is
unclear if the quantitative predictions hold. Given the close rela-
tion between the Galactic rotation curve and the predictions of our
model, it is to be expected that the details of extragalactic rotation
curves lead to quantitatively different radial profiles of, e.g. the gas
surface density, velocity dispersion, and mass inflow rate. However,
the duty cycle from quiescence to starburst activity and back may
be relatively unaffected. The ILR of more massive galaxies may
reside at larger radii (which at first sight implies longer gas ac-
cretion time-scales), but the deeper gravitational potential and the
correspondingly increased gas pressures will accelerate the angu-
lar momentum transport by acoustic instabilities (which decreases
the gas accretion time-scale again). As a result, it is possible that
the duty cycle predicted for the CMZ (see Fig. 16) has a broader
application than perhaps naively expected. From an empirical per-
spective, it is therefore interesting to make a simple comparison to
the population statistics of other galactic centres.

A key result of the discussion in Section 5.3 is that the details
of the star formation cycle and its position relative to empirical
star formation relations depend on the spatial resolution (compare
the blue and green tetragons in Fig. 16). Low-resolution observa-
tions should find a smaller variation of the gas depletion time than
high-resolution observations. Leroy et al. (2013, fig. 13) find an
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Figure 16. Evolution of a CMZ in the planes of star formation surface density �SFR versus gas surface density � (left panel) and �SFR versus gas surface
density divided by orbital time �/torb. Blue lines show the system as it would be observed with ∼0.5 kpc resolution, while green lines show the system at
∼10 pc resolution (see text for details). Circles mark various critical points in the evolution: the start of gas accumulation at 0 Myr (corresponding to 14 Myr
of evolution in the fiducial run), the onset of gas expulsion at 8.5 Myr, the end of gas expulsion at 12.5 Myr, and complete fading of the ionizing flux from
the stellar population at ∼17 Myr. The stars, labelled ‘CMZ’, mark the rough point in this evolutionary cycle at which the Milky Way’s CMZ resides, and
corresponds to 3.5 Myr after time 0 in the cycle. Diamonds indicate the time-average over the full cycle. For comparison, we also show the star formation
relations of Kennicutt (1998, black dotted line), Bigiel et al. (2008, red dashed line), and Daddi et al. (2010, magenta dot–dashed line). For Kennicutt (1998),
we have multiplied the star formation rate in the original fit by 1.6 to adjust from Kennicutt’s adopted Salpeter (1955) IMF to a Chabrier (2005) one. For Daddi
et al. (2010), the two lines shown in the left-hand panel correspond to Daddi et al.’s separate fit to discs (lower line) and starbursts (upper line).

∼1 dex scatter of the gas depletion time in the central R < 0.5 kpc
of 30 nearby disc galaxies from the HERACLES survey. A similar
range is found for other galaxy samples (e.g. Sakamoto et al. 1999;
Jogee et al. 2005; Hsieh et al. 2011; Sani et al. 2012; Saintonge
et al. 2012; Fisher et al. 2013). In addition, the galactic centres in
the HERACLES sample exhibit an ∼0.3 dex decrease of the gas
depletion time relative to galactic discs (Leroy et al. 2013). Both
the observed scatter and deviation of the depletion time present a
remarkably good match to our predictions for the same area (|l| < 3◦

and 0.5 kpc resolution).
In view of the good agreement between our model and the galactic

centres in the HERACLES sample, we can make a prediction for
the relative frequency of quiescent, normal, and starbursting galactic
centres across the population of barred spiral galaxies. Of course,
this assumes that our CMZ model describes the duty cycle despite
obvious differences in rotation curves and other galaxy properties.
In turn, large observational samples of galactic centres can be used
to test this assumption.

We estimate the relative occurrence rates by using the time-scales
associated with each of the phases in the evolutionary cycle from
Section 5.3. For 0.5 kpc-resolution observations, we predict that
∼1/3 of all galaxies have a ‘normal’ gas depletion time-scale of
∼2 Gyr (the Bigiel et al. 2008 line in Fig. 16) within a factor of
2, whereas ∼2/3 have elevated star formation activity and shorter
gas depletion times; a small fraction have depressed star formation
rates. This is again consistent with the distribution of gas depletion
times found by Leroy et al. (2013). By contrast, for high-resolution
(∼10 pc) observations, we predict that the depletion times will al-

most always be shorter than the ∼2 Gyr found at larger galactic
radii, and that ∼1/2 of the time they will also lie above the star
formation relations of Kennicutt (1998) or Daddi et al. (2010) for
‘normal’ (i.e. non-starbursting) galaxies. This is a fundamentally
different distribution than at low resolution, and shows that upcom-
ing ALMA observations provide a unique opportunity to test our
predictions.

We reiterate one of the conclusions from Section 5.3, that dividing
the gas surface density by the orbital time (which is naturally short in
galactic centres) shifts galactic centres below the relation followed
by galaxy discs at any spatial resolution at almost all times (see
the right-hand panel of Fig. 16). Only in outburst do these star
formation relations approach the usual ones found at larger galactic
radii. This provides a way of highlighting galactic centres with low
star formation rates.

More direct tests of our model will be enabled by high-resolution
ALMA observations of nearby galactic centres. Such observations
provide the necessary input for our model (i.e. high-resolution rota-
tion curves) as well as the predicted observables (e.g. radial profiles
of the gas surface density, velocity dispersion, mass inflow rate,
dense gas fraction, etc.). Next to building up a statistically rep-
resentative sample of galactic centres, such observations have the
additional advantage that the centres of other barred spiral galaxies
may not be at the same phase of the evolutionary cycle as the Galac-
tic CMZ. That way, they provide the best opportunity to characterize
the relevant physics during all evolutionary phases and to derive an
accurate duty cycle for star formation activity in the centres of
barred spiral galaxies.
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5.5 Relation to previous and future theoretical work

We end this discussion by commenting on how the model we present
here relates to other theoretical work on the dynamics of gas in
galactic CMZs. There have been a number of previous hydrody-
namic simulations of such regions (e.g. Rodriguez-Fernandez &
Combes 2008; Baba, Saitoh & Wada 2010; Cole et al. 2014; Pettitt
et al. 2014; Sormani et al. 2015). Most of this work has been focused
either on explaining the observed kinematics of gas near the Galac-
tic centre, or on studying how a bar can drive mass inwards and
create circumnuclear structures. The picture that these simulations
present is that a bar, by creating self-intersecting x1 orbits, leads
the gas to shock and plunge inwards, whereupon it finds itself on
x2 orbits at distances of a few hundred pc from the Galactic centre.
This behaviour is roughly consistent with the predictions of analytic
models (Binney et al. 1991).

With the exception of Sormani et al. (2015), who reach 5 pc res-
olution, none of the previous works of which we are aware have
enough resolution to model the ∼100 pc size-scale structures on
which we focus here. Because they are focused on larger scales,
then tend to have resolutions of ∼50 pc at best.13 Sormani et al. find
that the gas on x1 orbits that shocks does subsequently settle into a
disc-like structure a few hundred pc in size, with the exact settling
radius in their simulations depending on their assumed gas equa-
tion of state. Given the relatively small wavelength of the acoustic
instability (cf. Fig. 14), they unfortunately cannot resolve it, but in
principle similar simulations at higher resolution should be able to
model the scenario that we propose here.

More broadly, future simulations would provide a valuable test of
the central assumption in our picture. We have assumed that, once
gas is transferred inwards to x2 orbits by shocks, we can approximate
its behaviour as an axisymmetric disc subject to perturbations from
the bar. This approach emphasizes the gaseous nature of the flow
in the inner parts of a galaxy. In contrast, many previous authors
have instead chosen to visualize the gas in this region as consisting
of effectively collisionless clouds moving on ballistic orbits (e.g.
Binney et al. 1991; Sofue 1995), which plunge into the central
black hole on an orbital time-scale. If this latter picture is closer
to the truth, then our disc-based picture is called into question.
While Sormani et al. (2015)’s simulation certainly does suggest
the formation of a disc-like structure, the question of how well gas
inside the x1 region can be approximated as a perturbed disc remains
unsettled.

6 C O N C L U S I O N

In this paper, we present the first global model for gas transport
and star formation in the centres of barred spiral galaxies, focusing
on the Milky Way’s CMZ as a paradigmatic example. The model is
based on a few simple ingredients. First, the rotation curves of galax-
ies, which are generally close to flat at large radii, must eventually
turn over and approach solid body near galactic centres, producing
a minimum in the local shear. In the CMZ, this minimum occurs
∼100 pc from the Galactic Centre. Secondly, gas that orbits in the
flat rotation curve part of the potential will be unstable due to acous-
tic instabilities pumped within the bar’s ILR. These instabilities will
transport angular momentum and cause mass to flow inwards, until

13 Rodriguez-Fernandez & Combes (2008) use a sticky-particle method
with an ∼5 pc collision radius, but the point still holds – because they
are not actually simulating hydrodynamics, their method is not capable of
representing an accretion disc.

the flow stagnates in the low-shear region where angular momentum
transport is suppressed. In our axisymmetric models this produces
a ring-like structure, though in a real galaxy the ring is likely to be
partially rather than completely filled. Thirdly, within the region of
rapid inflow, the velocity dispersion driven by the instability render
the gas highly supervirial, and thus unable to undergo collapse and
star formation. In contrast, the accumulating gas in the stagnation
region must eventually become self-gravitating and undergo vigor-
ous star formation, likely leading to a blowout that removes much of
the gas. The cycle will then begin again as new mass accumulates.

The scenario we propose, which is supported by numerical calcu-
lations of disc evolution performed with the VADER code (Krumholz
& Forbes 2015), naturally explains a wide range of observations for
both the Milky Way CMZ and other galactic centres. In the Milky
Way, our model naturally produces the observed ring-like stream of
gas at ∼100 pc from the Galactic Centre. This prediction requires
no fine-tuning, and follows simply from the observed shape of the
Galactic rotation curve. Secondly, our model naturally explains the
broad diversity of star formation rates seen in the centres of nearby
galaxies, some of which have gas depletion times comparable to
those found at larger galactocentric radii, and some of which show
significantly faster star formation. In our model, such diversity oc-
curs naturally as a result of the cycle of accumulation, starburst, gas
clearing, and fading that rapid transport produces. It thereby quan-
tifies and greatly expands the scenario of episodic star formation
proposed by Kruijssen et al. (2014).

In addition to explaining existing observations, this model makes
specific predictions for both the morphology and the quantitative
star formation behaviour of the centres of other galaxies when ob-
served at high resolution. While the requisite observations have
not yet been made, they are well within the reach of ALMA. A
programme to investigate the star formation behaviour of nearby
galactic centres at high resolution should therefore be a high pri-
ority in the coming ALMA cycles. Such observations would allow
us to observe galactic centres that are at very different phases of
the boom and bust cycle than our own relatively quiescent one. A
sufficiently large sample would even allow us to place statistical
constraints on the duration of the cycle. This in turn would provide
strong confirmation that, at least in the most extreme environments,
star formation is more than a purely local process that proceeds
independent of its galactic environment.
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