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a b s t r a c t

The evolution of thin axisymmetric viscous accretion disks is a classic problem in astrophysics. While
models based on this simplified geometry provide only approximations to the true processes of
instability-driven mass and angular momentum transport, their simplicity makes them invaluable tools
for both semi-analyticmodeling and simulations of long-termevolutionwhere two- or three-dimensional
calculations are too computationally costly. Despite the utility of thesemodels, the only publicly-available
frameworks for simulating them are rather specialized and non-general. Here we describe a highly
flexible, general numerical method for simulating viscous thin disks with arbitrary rotation curves,
viscosities, boundary conditions, grid spacings, equations of state, and rates of gain or loss of mass (e.g.,
throughwinds) and energy (e.g., through radiation). Ourmethod is based on a conservative, finite-volume,
second-order accurate discretization of the equations, which we solve using an unconditionally-stable
implicit scheme. We implement Anderson acceleration to speed convergence of the scheme, and show
that this leads to factor of ∼5 speed gains over non-accelerated methods in realistic problems, though
the amount of speedup is highly problem-dependent. We have implemented our method in the new
code Viscous Accretion Disk Evolution Resource (VADER), which is freely available for download from
https://bitbucket.org/krumholz/vader/ under the terms of the GNU General Public License.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Accretion disks are ubiquitous in astrophysics, in fields rang-
ing from star and planet formation to high energy astrophysics to
galaxies, and an enormous amount of effort has been invested in
modeling them (e.g. Pringle, 1981). One approach to constructing
such models is to conduct full two- or three-dimensional simula-
tions, and thismethod offers the highest fidelity to the actual phys-
ical processes taking place in disks. However, such simulations are
impractically computationally expensive for phenomena that take
place over very large numbers of orbital timescales, or for disks
where the characteristic scales that must be resolved for the simu-
lation to converge are vastly smaller than the disk radial extent. For
example, a long-term two-dimensional simulation of a protoplan-
etary disk might cover several thousand orbits, but the timescale
over which planets form is millions of orbits. Quasi-periodic os-
cillations from disks around black holes, neutron stars, and white
dwarfs can take place over similarly large numbers of orbits. In
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galaxies, the number of orbits is relatively modest, but the charac-
teristic size scale of gravitational instability for the coldest phase of
the interstellar medium is ∼106 times smaller than the disk radial
extent. None of these problems are amenable to solution by two-
or three-dimensional simulations, at least not without extensive
use of sub-grid models to ease the resolution requirements.

In such cases, one-dimensional simulations in which the disk
is treated as vertically thin and axisymmetric are a standard mod-
eling tool. The general approach in such simulations is to approxi-
mate the turbulence responsible for transportingmass and angular
momentum through the disk as a viscosity, and to develop an an-
alytic or semi-analytic model for this transport mechanism. Cast
in this form, the evolution of a disk is described by a pair of one-
dimensional parabolic partial differential equations for the trans-
port of mass and energy; the form of these equations is analogous
to a diffusion equation in cylindrical coordinates. Depending on the
nature of the problem, these equations may have source or sink
terms, may have a wide range of boundary conditions, and may
have multiple sources of non-linearity.

Thus far in the astrophysical community most viscous disk
evolution codes have been single-purpose, intended for partic-
ular physical regimes and modeling physical processes relevant
to that regime. Thus for example there are codes intended for
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protoplanetary disks that include models for accretion onto the
disk during ongoing collapse (e.g. Hueso and Guillot, 2005; Visser
and Dullemond, 2010; Lyra et al., 2010; Horn et al., 2012; Benz
et al., 2014), galaxy disk codes containing prescriptions for star
formation (e.g. Forbes et al., 2012, 2014), and codes for simu-
lating accretion onto compact objects that include models for
magnetically-dominated coronae and have equations of state that
include the radiation pressure-dominated regime (e.g. Liu et al.,
2002; Mayer and Pringle, 2007; Cambier and Smith, 2013). While
these codes are specialized to their particular problems, they are
often solving very similar systems of equations, and thus there is
a great deal of replication of effort in every community developing
its own code.

This is particularly true because most of the codes are not
open source, and for the most part the authors have not published
detailed descriptions of their methodologies, forcing others to
invent or re-discover their own. The sole exceptions of which
we are aware are the GIDGET code for simulating galaxy disk
evolution (Forbes et al., 2012) and the α-disk code published
by Lyra et al. (2010) and Horn et al. (2012), based on the PENCIL
code (Brandenburg and Dobler, 2002). Neither GIDGET nor Lyra’s
code are suited for general use. For example, neither allows a
wide range of viscosities, equations of state, and rotation curves.
Ironically, this situation is in sharp contrast to the situation for
two-dimensional disk simulations, where there are a number of
open source codes that include viscosity and various other physical
processes. These include ZEUS-2D (Stone and Norman, 1992a,b;
Stone et al., 1992), VHD (McKinney and Gammie, 2002, 2013), and
PLUTO (Mignone et al., 2007). However, while it is possible to
run all these codes in either a one-dimensional or pseudo-one-
dimensional mode, they are all based on explicit schemes, which
limits their ability to simulate very long time scales.

The goal of this paper is to introduce a very general method for
computing the time evolution of viscous, thin, axisymmetric disks
in one dimension, using a method suitable for simulating disks
over many viscous evolution times at modest computational cost.
We embed this method in a code called Viscous Accretion Disk
Evolution Resource (VADER), which we have released under the
GNU General Public License. VADER is available for download from
https://bitbucket.org/krumholz/vader/. The code is highly flexible
and modular, and allows users to specify arbitrary rotation curves,
equations of state, prescriptions for the viscosity, grid geometries,
boundary conditions, and source terms for both mass and energy.
The equations are written in conservation form, and the resulting
algorithm conserves mass, momentum, angular momentum, and
energy to machine precision, as is highly desirable for simulations
of very long term evolution. We employ an implicit numerical
method that is unconditionally stable, allows very large time steps,
and is fast thanks to modern convergence acceleration techniques.
VADER is descended from GIDGET (Forbes et al., 2012, 2014) in a
very general sense, but it is designed to be muchmore flexible and
modular, while omitting many of the features (e.g., cosmological
accretion and the dynamics of collisionless stars) that are specific
to the problem of galaxy formation. It is implemented in C and
Python. The present version is written for single processors, but
we plan to develop a threaded version in the future once an open
source, threaded tridiagonal matrix solver becomes available.

The plan for the remaining part of this paper is as follows.
In Section 2 we introduce the underlying equations that VADER
solves, and describe our algorithm for solving them. In Section 3we
present a number of tests of the code’s accuracy and convergence
characteristics. Section 4 discusses the efficiency and performance
of the algorithm. Finally we summarize in Section 5.
2. Equations and simulation algorithm

2.1. Equations

The physical system that VADERmodels is a thin, axisymmetric
disk of material in a time-steady gravitational potential. We
consider such a disk centered at the origin and lying in the z = 0
plane of a cylindrical (r, φ, z) coordinate system. The equations of
continuity and total energy conservation for such a system,written
in conservation form, are (e.g., equations 1 and A13 of Krumholz
and Burkert 2010)

∂

∂t
Σ +

1
r
∂

∂r
(rvrΣ) = Σ̇src (1)

∂

∂t
E +

1
r
∂

∂r
[rvr (E + P)] −

1
r
∂

∂r


r
vφT

2πr2


= Ėsrc. (2)

HereΣ is the mass surface density in the disk,

E = Σ


v2φ

2
+ ψ


+ Eint ≡ Σψeff + Eint (3)

is the total energy per unit area, vφ is the rotation speed as a func-
tion of radius, ψ is the gravitational potential (which is related to
vφ by ∂ψ/∂r = v2φ/r), ψeff = ψ + v2φ/2 is the gravitational plus
orbital energy per unit mass, Eint is the internal energy per unit
area, P is the vertically-integrated pressure (


∞

−∞
p dz, where p is

the pressure), vr is the radial velocity, and T is the torque applied
by a ring of material at radius r to the adjacent ring at r + dr . The
source terms Σ̇src and Ėsrc represent changes in the local mass and
energy per unit area due to vertical transport of mass (e.g., accre-
tion from above, mass loss due to winds, or transformation of gas
into collisionless stars) or energy (e.g., radiative heating or cool-
ing). VADER allows very general equations of state; the vertically-
integrated pressure P may be an arbitrary function of r ,Σ , and Eint
(but not an explicit function of time).

The torque and radial velocity are related via angular momen-
tum conservation, which implies

vr =
1

2πrΣvφ(1 + β)

∂

∂r
T , (4)

whereβ = ∂ ln vφ/∂ ln r is the index of the rotation curve at radius
r . To proceed further we require a closure relation for the torque
T . For the purposes of this calculation we adopt the Shakura and
Sunyaev (1973) parameterization of this relation, slightlymodified
as proposed by Shu (1992). In this parameterization, the viscosity
is described by a dimensionless parameter α such that

T = −2πr2α(1 − β)P. (5)

Note that inclusion of the 1− β term is the modification proposed
by Shu (1992), and simply serves to ensure that the torque remains
proportional to the local rate of shear in a disk with constant α but
non-constant β . With this definition of α, the kinematic viscosity
is

ν = α


r
vφ


P
Σ


. (6)

The dimensionless viscosity α (as well as the source terms Σ̇src and
Ėsrc) can vary arbitrarily with position, time,Σ , and E.

Since these equations are derived in Krumholz and Burkert
(2010), we will not re-derive them here, but we will pause to
comment on the assumptions that underlie them, and the potential
limitations those assumptions imply. The system of equations is
appropriate for a slowly-evolving thin disk with negligible radial
pressure support. Specifically, we assume that (1) the scale height
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H ≪ r (thinness), (2) the radial velocity vr obeys vr ≪ vφ and
Σv2r ≪ Eint (slow evolution), and (3) Σ |v2φ/r − ∂ψ/∂r| ≪ Eint
(negligible radial pressure support). VADER is not appropriate for
disks that do not satisfy these assumptions.

2.2. Spatial discretization

To discretize the equation in space, consider a grid of N cells
with edges located at positions r−1/2, r1/2, r3/2, . . . , rN−1/2 and
centers at positions r0, r1, r2, . . . , rN−1. Most often the grid will
be uniformly-spaced in either the logarithm of r , in which case
ri =

√
ri−1/2ri+1/2 and ∆ ln ri+1/2 = ln(ri+1/ri) is constant, or in

r itself, so that ri = (ri−1/2 + ri+1/2)/2 and ∆ri+1/2 = ri+1 − ri is
constant. However, VADER allows arbitrary placement of the cell
edges, so long as the sequence ri+1/2 is strictly increasing with i.

Let Ai = π(r2i+1/2 − r2i−1/2) be the area of cell i. We will
similarly denote the rotation curve and its logarithmic derivative
evaluated at cell centers and edges by vφ,i, βi, vφ,i+1/2, and βi+1/2.
Integrating Eqs. (1) and (2) over the area of cell i, andmaking use of
the divergence theorem to evaluate terms involving the operator
(1/r)(∂/∂r)(r·) (which is simply the radial component of the
divergence operator written out in cylindrical coordinates) gives

∂

∂t
Σi +

FM,i+1/2 − FM,i−1/2

Ai
= Σ̇src,i (7)

∂

∂t
Ei +

FE,i+1/2 − FE,i−1/2

Ai
+

FT ,i+1/2 − FT ,i−1/2

Ai
= Ėsrc,i, (8)

where we have defined the surface densityΣi averaged over cell i
by

Σi =
1
Ai


Ai
Σ dA, (9)

and similarly for Ei, Σ̇src,i, and Ėsrc,i, and we have defined the fluxes
at cell edges by

FM,i+1/2 = (2πrvrΣ)r=ri+1/2 (10)

FE,i+1/2 = [2πrvr(E + P)]r=ri+1/2 (11)

FT ,i+1/2 =

2πrvφα(1 − β)P


r=ri+1/2

, (12)

and similarly for i − 1/2. The first two terms above represent the
advective fluxes of mass and enthalpy (including gravitational po-
tential energy in the enthalpy), respectively, while the third term is
the energy flux associatedwithwork done by one ring on its neigh-
bors through the viscous torque. Note that the fluxes as defined
here are total fluxes with units of mass or energy per time, rather
than flux densities with units of mass or energy per time per area.

For the purposes of numerical computation it is convenient to
replace the energy equation with one for the pressure. We let

Ei = Eint(r,Σi, Pi)+Σiψeff,i, (13)

where Eint(r,Σ, P) is the function giving the relationship be-
tween internal energy per unit area, surface density, and vertically-
integrated pressure. Note that, for an ideal gas, Eint is a function of
P alone, and if the disk is vertically-isothermal then it is given by
Eint = P/(γ−1), whereγ is the ratio of specific heats. However,we
retain the general case where γ can be an explicit function ofΣ , P ,
and r (but not time) to allow for more complex equations of state.
We do not, however, allow γ = 1 exactly, because in the truly
isothermal case the energy equation vanishes and the character of
the system to be solved changes fundamentally. We show below
that one can approximate isothermal behavior simply by setting
γ = 1+ϵ, where ϵ is a very small parameter, and thatwith this ap-
proach VADER has no difficulty recovering analytic solutions that
apply to truly isothermal disks.
Substituting this form for Ei in Eq. (8), applying the chain rule,
and using Eq. (7) to eliminate ∂Σi/∂t gives

∂

∂t
Pi +

FP,i+ − FP,i−
Ai

= (γi − 1)Ėint,src,i. (14)

Here

γ ≡ 1 +
∂P
∂Eint


r,Σ
, (15)

and the source term

Ėint,src ≡ Ėsrc −


ψeff + δ

P
Σ


Σ̇src, (16)

where

δ ≡
1

γ − 1
∂ ln P
∂ lnΣ


r,Eint

. (17)

For a vertically-isothermal ideal gas, δ = 0 because P does not
change as Σ is varied at fixed Eint. From the definition of Ėint,src
we can see that this term represents the time rate of change
of the internal energy due to external forcing (e.g., radiative
losses) evaluated at fixed Σ . For example, if a disk is both cooling
radiatively and losing mass to a wind, then Ėint,src includes the rate
of change of the internal energy due to radiation alone, but not
any change in the internal energy due to mass loss from the wind.
Finally,we have defined the left and right pressure fluxes in cell i by

FP,i− = (γi − 1)

×


FE,i−1/2 + FT ,i−1/2 −


ψeff,i + δi

Pi
Σi


FM,i−1/2


(18)

FP,i+ = (γi − 1)

×


FE,i+1/2 + FT ,i+1/2 −


ψeff,i + δi

Pi
Σi


FM,i+1/2


. (19)

Note that in general FP,i+ ≠ FP,(i+1)− . An important point to em-
phasize is that Eq. (14) is derived from the already-discretized en-
ergy Eq. (8). Thus, if γ and δ are known analytically, which is the
case for any simple equation of state, then a numerical implemen-
tation of Eq. (14) will conserve energy to machine precision. If γ
and δ must be obtained numerically, then the accuracy of conser-
vation would depend on the accuracy with which they are deter-
mined. In fact, aswe discuss below,when γ and δ are non-constant
we use a scheme that is not explicitly conservative in any event,
though in practical tests we find that the accuracy of energy con-
servation is within ∼1 digit of machine precision.

To proceed further, we now approximate the fluxes. The advec-
tive fluxes are proportional to vr , which in turn depends on the
partial derivative of the torque and thus of the pressure. We ap-
proximate this using centered differences evaluated at the cell
edges. Even if the actual distribution of cell positions is uniform
in neither linear or logarithmic radius, we require that a grid be
classified as log-like or linear-like. For a linear gridwe use the stan-
dard second-order accurate centered difference,while for logarith-
mic grids we rewrite the derivative ∂T /∂r as (1/r)∂T /∂ ln r and
use a centered difference to evaluate the derivative with respect to
ln r . This guarantees that the derivatives are second-order accurate
in either r or ln r for uniformly-spaced linear or logarithmic grids;
for non-uniform grids the derivatives are first-order accurate. This
choice gives a mass flux

FM,i+1/2 = −gi+1/2

αi+1(1 − βi+1)r2i+1Pi+1

−αi(1 − βi)r2i Pi

, (20)
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where for convenience we have defined the factor

gi+1/2 =
2π

vφ,i+1/2(1 + βi+1/2)

×


1/(ri+1/2∆ ln ri+1/2), (logarithmic grid)
1/∆ri+1/2, (linear grid) (21)

for logarithmic and linear grids, respectively. Using the same strat-
egy for the torque flux yields

FT ,i+1/2 = πri+1/2vφ,i+1/2(1 − βi+1/2) (αi+1Pi+1 + αiPi) . (22)

Finally, the enthalpy flux is

FE,i+1/2 = hi+1/2FM,i+1/2, (23)

where hi+1/2 = [(E + P)/Σ]i+1/2 is our estimate for the specific
enthalpy (including the gravitational potential energy) at the cell
edge. To estimate hi+1/2, we divide the enthalpy into an internal
part and a gravitational plus orbital part, i.e., we set

hi+1/2 =


Eint + P
Σ


i+1/2

+ ψeff,i+1/2 (24)

≡ hint,i+1/2 + ψeff,i+1/2. (25)

The gravitational plus orbital part ψeff,i+1/2 is known exactly from
the specification of the rotation curve, so no approximation is nec-
essary for it. To estimate hint,i+1/2, VADER uses a first-order upwind
scheme (Fletcher, 1991) to maintain stability:

hint,i+1/2 = FM,i+1/2+hint,i+1/2,L + FM,i+1/2−hint,i+1/2,R (26)

where

FM,i+1/2+ = max(FM,i+1/2, 0) (27)

FM,i+1/2− = min(FM,i+1/2, 0). (28)

The left and right internal enthalpies hint,i+1/2,L and hint,i+1/2,R rep-
resent the values on the left and right sides of the interface. VADER
can set these values using either piecewise constant, slope-limited
piecewise linear, or piecewise parabolic extrapolation, yielding
first-order accurate, second-order accurate, and third-order accu-
rate approximations, respectively. If hint,i = [(Eint + P)/Σ]i is the
internal enthalpy evaluated at the cell center, then piecewise con-
stant interpolation gives

hint,i+1/2,L = hint,i (29)

hint,i+1/2,R = hint,i+1. (30)

For piecewise linear, we set the unlimited values to

hint,i+1/2,L,nl = hint,i+1/2,R,nl

=


ln(ri+1/ri+1/2)hint,i + ln(ri+1/2/ri)hint,i+1


/∆ ln ri+1/2 (log)

(ri+1 − ri+1/2)hint,i + (ri+1/2 − ri)hint,i+1

/∆ri+1/2 (linear)

(31)

and then compute the normalized slope

SL =
hint,i+1/2,L,nl

hint,i
− 1 (32)

SR = 1 −
hint,i+1/2,R,nl

hint,i+1
. (33)

We then set the final interface values to

hint,i+1/2,L =


hint,i+1/2,L,nl, |SL| ≤ lim
[1 + sgn(SL)] hint,i, |SL| > lim (34)

hint,i+1/2,R =


hint,i+1/2,R,nl, |SR| ≤ lim
[1 − sgn(SR)] hint,i+1, |SR| > lim. (35)

We adopt a fiducial value lim = 0.1 for the limiting parameter,
which amounts to limiting the change in specific enthalpy to 10%
between a cell center and a cell edge. This limiter is similar in spirit
to the limited piecewise parabolic interpolation scheme of Colella
and Woodward (1984), in that it attempts to maintain continuity
in smooth regions while allowing discontinuities in non-smooth
ones. Note that for uniformly spaced grids, Eq. (31) reduces to a
simple average between the values of the two neighboring cells.
For piecewise parabolic interpolation, VADER constructs the left
and right states hint,i+1/2,L and hint,i+1/2,R from the cell-center val-
ues hint,i using the piecewise parabolic method (Colella andWood-
ward, 1984, section 1). The reconstruction uses either r or ln r as
the spatial coordinate, depending on whether the grid is classified
as linear or logarithmic. By default VADER uses piecewise linear
reconstruction, as testing shows that this generally offers the best
mix of accuracy and speed. This option is used for all the code tests
presented below except where otherwise noted.

With these approximations, the equations are fully discrete in
space, and all discrete approximations are second-order accurate
provided that the grid is uniform in either r or ln r .

2.3. Discretization in time and iterative solution method

2.3.1. Formulation of the discrete equations
Because T depends explicitly on P , the equations to be solved

are parabolic and have the form of a non-linear diffusion equation
with source and sink terms. To avoid a severe time step constraint
and ensure stability, it is therefore desirable to use an implicit dis-
cretization. LetΣ (n)

i , P (n)i represent the state of the system at time
tn. Wewish to know the stateΣ (n+1)

i , P (n+1)
i at time tn+1 = tn+∆t .

Let Θ be the time-centering parameter, such that Θ = 0 cor-
responds to a forwards Euler discretization, Θ = 1/2 to time-
centered discretization (Crank and Nicolson, 1996), and Θ = 1
to backwards Euler. (For a general discussion of the different time
centering choices, and whyΘ = 0 is a poor choice for problems of
this type, see Press et al. 1992, chapter 19.) The resulting system of
implicit equations is

Σ
(n+1)
i +Θ∆t


F (n+1)
M,i+1/2 − F (n+1)

M,i−1/2

Ai
− Σ̇

(n+1)
src,i



= Σ
(n)
i − (1 −Θ)∆t


F (n)M,i+1/2 − F (n)M,i−1/2

Ai
− Σ̇

(n)
src,i


(36)

P (n+1)
i +Θ∆t


F (n+1)
P,i+ − F (n+1)

P,i−

Ai
−


γ
(n+1)
i − 1


Ė(n+1)
int,src,i



= P (n)i − (1 −Θ)∆t


F (n)P,i+ − F (n)P,i−

Ai

−


γ
(n)
i − 1


Ė(n)int,src,i


, (37)

where superscript (n) or (n+1) indicateswhether a term is to be eval-
uated using at time tn using column density and pressureΣ (n)

i and
P (n)i , or at time tn+1 using column density and pressureΣ (n+1)

i and
P (n+1)
i .
The new time pressure fluxes F (n+1)

P,i+ and F (n+1)
P,i− depend on the

new specific enthalpy h(n+1)
i , which in turn depends on the new

internal energy E(n+1)
int,i . For a simple equation of state with con-

stant γ and δ = 0, we have Eint = P/(γ − 1), and it is simple
to close the system. The situation is also simple if the equation of
state P(r,Σ, Eint) can be inverted analytically to yield Eint(r,Σ, P).
However, there is no guarantee that such an analytic inversion is
possible, and performing the inversion numerically could be very
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computationally costly, since it must be done in every cell for ev-
ery cycle of the iterativemethodwedescribe below. For example, if
the total pressure contains significant contributions from both gas
and radiation pressure, then finding the internal energy Eint given a
surface density and pressure would require that we solve a quartic
equation. It is also possible that Eint(r,Σ, P)might not be a single-
valued function of P , in which case we would face the problem of
deciding which of several possible roots is the relevant one.

To avoid these problems, when γ and δ are not constant VADER
evolves the internal energy along with the column density and
pressure. The evolution of the internal energy is described by

∂Eint
∂t

=
1

γ − 1
∂P
∂t

+ δ
P
Σ

∂Σ

∂t
, (38)

which we discretize to

E(n+1)
int,i − E(n)int,i =


Θ

γ
(n+1)
i − 1

+
1 −Θ

γ
(n)
i − 1

 
P (n+1)
i − P (n)i



+


Θδ

(n+1)
i

P (n+1)
i

Σ
(n+1)
i

+ (1 −Θ)δ
(n)
i

P (n)i

Σ
(n)
i

 
Σ
(n+1)
i −Σ

(n)
i


. (39)

This becomes our third evolution equation. By evolving the internal
energy separately we sacrifice conservation of total energy to
machine precision. However, the error we make is only of order
the error introduced by the discretization of Eq. (38) into Eq. (39).
We show below that in a practical example the resulting error in
conservation is only marginally greater than machine precision.

For Θ = 0 the equations for the new time states are trivial,
but such an update scheme is generally unstable, or remains stable
only if one obeys a time step constraint that varies as the square of
the grid spacing, which would be prohibitively expensive in high-
resolution simulations that must run for many viscous evolution
times. For this reason, VADER supports bothΘ = 1/2 andΘ = 1.
The former choice is second-order accurate in time and the latter
is first-order accurate, and both choices are unconditionally sta-
ble. However,Θ = 1/2 is subject to spurious oscillations for suffi-
ciently large time steps, and thus in some circumstances it may be
preferable to useΘ = 1 despite its formally lower-order accuracy.

When Θ ≠ 0 Eqs. (36), (37), and (39) constitute a non-linear
system, because the terms F (n+1)

E,i−1/2 and F (n+1)
E,i+1/2 that enter F

(n+1)
P,i+ and

F (n+1)
P,i− involve products between P (n+1)

i+1 , P (n+1)
i , and P (n+1)

i−1 . If the di-
mensionless viscosity α, the source terms for mass Σ̇src or internal
energy Ėint,src, or the terms γ and δ describing the equation of state,
depend onΣ or P , that represents a second source of non-linearity.
Solution whenΘ ≠ 0 therefore requires an iterative approach.

2.3.2. Linearization and iteration scheme
There are numerous strategies available for solving systems

of coupled non-linear equations, and our choice of method is
dictated by a few considerations. The most common and familiar
methods of solving non-linear equations are Newton’smethod and
its higher-dimensional generalization such as Newton–Raphson
iteration. However, the simplest forms of these methods require
that wewill be able to compute the partial derivatives of the right-
hand sides of Eqs. (36), (37), and (39) with respect to Σ (n)

i , P (n)i ,
and E(n)int,i. Unfortunatelywe cannot assume that these are available,
because the functional forms of α, Σ̇src Ėint,src, γ , and δ are not
known a priori, and even if their dependence on P is known, this
dependence may be tabulated, or may itself be the result of a
non-trivial computation. In Section 3.3, we present an example
application where the latter is the case. Thus we cannot assume
that the derivatives of these terms are knownor easily computable.
While methods such as Jacobian-free Newton–Krylov (e.g. Knoll
and Keyes, 2004) might still be available, we instead prefer to cast
the problem in terms of fixed point iteration, because it is possible
to write the inner step of this iteration in a way that is particularly
simple and computationally-cheap to evaluate.

Fixed point iteration is a strategy for solving non-linear equa-
tions by recasting them as the problem of finding the fixed point
of a function (Burden and Faires, 2011, section 2.2). For example,
the problem of finding the vector of values xp that is a solution to
a non-linear system of equations f(x) = 0 is obviously equivalent
the problem of finding a fixed point of the function g(x) = x−f(x),
meaning that g(xp) = xp. The simplest strategy for finding a fixed
point is Picard iteration, whereby one guesses an initial value x0
and generates a new guess by setting x1 = g(x0). This procedure is
then repeated until the sequence of values xk converges to what-
ever tolerance is desired. One can show that, for a well-behaved
function and a starting guess x0 sufficiently close to the fixed point,
this procedure will indeed converge. Fixed point iteration is most
useful when one can make a clever choice for the iterated function
g(x). Note that one need not choose g(x) = x − f(x) at every step
of the iterative procedure; one only requires that, as the iteration
number k → ∞, g(x) approaches this value, or approaches any
other function that has a fixed point when f(x) = 0. This means
that we are free to replace f(x)with a linearized function fL(x) that
is computationally cheaper to evaluate than the true f(x), so long
as the linearized form approaches the true f(x) as k → ∞. This is
the strategy we will adopt below.

With that general discussion of fixed point iteration complete,
we apply themethod to our problem. LetΣ(n), P (n), and E(n)int be vec-
tors of column density and vertically-integrated pressure values in
every cell at the start of a time step, and let q(n) = (Σ(n), P (n), E(n)int )
be a combined vector describing the full state of the simulation at
time tn. We seek the vector of quantities q(n+1) that is the solution
to Eqs. (36), (37), and (39). We can write the formal solution as

q(n+1)
= F


q(n)


, (40)

where F is an operator that takes the old state q(n) as an argument
and returns the new state q(n+1).

Now consider a series of guesses q(k,∗) for the true solution
q(n+1). We wish to generate a sequence of iterates q(k,∗) such that
q(k,∗) → q(n+1) as k → ∞. To construct this sequence of iterates,
consider a linearized version of F , which we denote FL. The non-
linear pressure equation (37) can be written in matrix form as

MP (n+1)
= b (41)

where the right hand side vector b has elements

bi = P (n)i − (1 −Θ)∆t


F (n)P,i+ − F (n)P,i−

Ai
−


γ
(n)
i − 1


Ė(n)int,src,i



+Θ∆t

γ
(n+1)
i − 1


Ė(n+1)
int,src,i, (42)

and M is a tridiagonal matrix with elements

Mi,i+1 = Θ
∆t
Ai


γ
(n+1)
i − 1


α
(n+1)
i+1

gi+1/2r2i+1(1 − βi+1)


ψeff,i + δ

(n+1)
i

P (n+1)
i

Σ
(n+1)
i

− h(n+1)
i+1/2



+πri+1/2vφ,i+1/2(1 − βi+1/2)


(43)

Mi,i = 1 +Θ
∆t
Ai


γ
(n+1)
i − 1


α
(n+1)
i
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×


(1 − βi)r2i


gi+1/2


h(n+1)
i+1/2 − ψeff,i − δ

(n+1)
i

P (n+1)
i

Σ
(n+1)
i



+ gi−1/2


h(n+1)
i−1/2 − ψeff,i − δ

(n+1)
i

P (n+1)
i

Σ
(n+1)
i


+π


ri+1/2vφ,i+1/2(1 − βi+1/2)

− ri−1/2vφ,i−1/2(1 − βi−1/2)
 

(44)

Mi,i−1 = Θ
∆t
Ai


γ
(n+1)
i − 1


α
(n+1)
i−1

gi−1/2r2i−1(1 − βi−1)


ψeff,i + δ

(n+1)
i

P (n+1)
i

Σ
(n+1)
i

− h(n+1)
i−1/2



−πri−1/2vφ,i−1/2(1 − βi−1/2)


(45)

Mi,j = 0, ∀ |i − j| > 1. (46)

The equation is non-linear because M and b both depend on the
new quantities q(n+1), but we can construct a linearized version of
the equation by instead solving

MLP (Ď) = bL, (47)

where ML and bL differ from M and b in that all quantities that de-
pend on q(n+1) are replaced by identical terms evaluatedwith q(k,∗).
In other words, we evaluate all terms in the matrix and in the right
hand side vector using the previous guess at the column density
and vertically-integrated pressure. Eq. (47) is linear in P (Ď). More-
over, since ML is tridiagonal, it is a particularly simple linear sys-
tem, and can be solved with a number of operations that is linearly
proportional to the number of computational cells.1

To complete the specification of the linearized operator FL, we
linearize Eqs. (36) and (39) in an analogous manner, to

Σ
(Ď)
i = Σ

(n)
i − (1 −Θ)∆t


F (n)M,i+1/2 − F (n)M,i−1/2

Ai
− Σ̇

(n)
src,i



−Θ∆t


F (Ď∗)M,i+1/2 − F (Ď∗)M,i−1/2

Ai
− Σ̇

(Ď∗)
src,i


, (48)

E(Ď)int,i = E(n)int,i +


Θ

γ
(k,∗)
i − 1

+
1 −Θ

γ
(n)
i − 1

 
P (Ď)i − P (n)i



+


Θδ

(k,∗)
i

P (Ď)i

Σ
(Ď)
i

+ (1 −Θ)δ
(n)
i

P (n)i

Σ
(n)
i

 
Σ
(Ď)
i −Σ

(n)
i


. (49)

where

F (Ď∗)M,i+1/2 = −gi+1/2


α
(k,∗)
i+1 (1 − βi+1)r2i+1P

(Ď)
i+1

−α
(k,∗)
i (1 − βi)r2i P

(Ď)
i


, (50)

and similarly for F (Ď∗)M,i−1/2. The mass source function Σ̇ (Ď∗)
src is also

evaluated using the last set of iterates for the column density,
Σ(k,∗), and the newpressure,P (Ď), that results from solving Eq. (47).
All the quantities on the right hand sides of Eqs. (48) and (49) are
known, and so they can be evaluated explicitly.

1 VADER’s implementation uses the GNU Scientific Library implementation,
which is based on Cholesky decomposition (Press et al., 1992, chapter 2). See
http://www.gnu.org/software/gsl/.
Thus given a starting state q(n) and a guess q(k,∗) at the true
solution, we can generate a new state

q(Ď) = FL

q(k,∗), q(n)


(51)

by first solving Eq. (47) and then solving Eqs. (48) and (49). Since
the linearized operator FL reduces to F if the first argument q(k,∗) =

q(n+1), it is clear that if q(k,∗) is a fixed point of FL, i.e., if q(Ď) = q(k,∗),
then q(k,∗) is also a solution to the original non-linear equation (40).
Thus we have recast the problem of solving Eqs. (36), (37), and
(39) to the problem of finding a fixed point for the linear operator
FL. Recall that, if the equation of state is simple and γ and δ are
constant, then we omit Eq. (49) and do not evolve Eint,i.

2.3.3. Anderson acceleration
Our solution strategy can be improved further by using a con-

vergence accelerator. In the Picard iteration procedure described
in the previous section, one searches for the fixed point of a func-
tion g(x) by setting the next iterate equal to the value of the func-
tion evaluated on the previous one, i.e., by setting xk+1 = g(xk).
However, this process achieves only linear convergence, mean-
ing that, even when the guess xk is close to the true solution xp,
the rate at which the residuals rk =

xk − xp
 diminish obeys

limk→∞ rk+1/rk = µ, withµ a real number in the range (0, 1) (Bur-
den and Faires, 2011, chapter 10). That is, each iteration reduces the
residual by a constant factor. The goal of a convergence accelera-
tor is to increase the speed with which the residual diminishes. If
µ = 0, but limk→∞ rk+1/r

q
k = µ for some q > 1 and finite µ, then

the convergence is said to be super-linear, and the goal of a con-
vergence accelerator is to achieve super-linearity. A side benefit of
most convergence accelerators is to increase the radius of conver-
gence, meaning that the iteration procedure will still converge to
the solution xp even for starting guesses x0 far enough from the
true solution that convergence would not be achieved with Picard
iteration.

We choose Anderson acceleration (Anderson, 1965; Fang and
Saad, 2009; Walker and Ni, 2011) as our acceleration method.
The central idea of this method is that, rather than setting our
next iterate xk+1 = g(xk), we instead set it to a weighted aver-
age of the most recent iterate and M previous ones, i.e., xk+1 =M

j=0 ξjg(xk−j). The weighting coefficients are chosen such that,
if the function g(x) were linear (i.e., it had a constant Jacobian),
then the distance between xk+1 and the exact solution would be
minimized. This condition can be expressed as a linear equation
for the coefficients ξj, which can be solved using standard matrix
methods. In choosing coefficients ξj to give the exact solution if the
underlying problem were linear, Anderson acceleration functions
somewhat like Newton’s method, which can jump directly to the
solution in a single iteration when applied to a linear problem.2
While rigorous theoretical results regarding the convergence rate
of Anderson acceleration at finiteM have not been derived, practi-
cal tests show that the method achieves convergence rates com-
petitive with other Newton-like methods, which are generally
super-linear (Calef et al., 2013; Willert et al., 2014).

In the context of our problem, the Picard iteration method
amounts to setting q(0,∗) = q(n), and then setting all subsequent
iterates via

q(k+1,∗)
= q(Ď) = FL


q(k,∗), q(n)


. (52)

As noted above, this strategy converges only linearly, and has a
fairly small radius of convergence, which translates into a fairly

2 Formally, one can show that Anderson acceleration withM → ∞ is essentially
equivalent to the generalized minimum residual (GMRES, Saad and Schultz 1986)
method for solving non-linear equations (Walker and Ni, 2011).

http://www.gnu.org/software/gsl/
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restrictive value on the time step∆t . To use Anderson acceleration,
rather than setting the next iterate q(k+1,∗) equal to FL


q(k,∗), q(n)


,

we set it to

q(k+1,∗)
=

Mk
j=0

ξjFL

q(k−j,∗), q(n)


, (53)

where Mk = min(k,M), and the weight coefficients ξj are deter-
mined by minimizing the quantity

χ2
=


i

Mk
j=0


ξjRij

2 (54)

subject to the constraint


j ξj = 1, where

Rij ≡

FL

q(k−j,∗)
i , q(n)i


− q(k−j,∗)

i

FL

q(k−j,∗)
i , q(n)i

 (55)

is the vector of normalized residuals in every cell after iteration
k − j. Formally, this problem is equivalent to a constrained linear
least squares minimization of the overdetermined system

Rξ = 0, (56)

where ξ is the vector of ξj values, 0 is the 0 vector, and the con-
straint equation is 1 · ξ = 0, where 1 is the identity vector. This
problem can be solved by a number of standard techniques. Our
implementation in VADER uses QR decomposition (Press et al.,
1992, chapter 2).3

Regardless of whether we use Picard iteration or Anderson ac-
celeration to generate the sequence of iterates, we repeat the cal-
culation until the residual satisfies

max
Ri,0

 < tol, (57)

where themaximum is over all cells and all quantities in those cells
after the most recent iteration, and tol is a pre-specified tolerance;
VADER defaults to using tol = 10−6, and we adopt this value for all
the tests presented below unless noted otherwise.

2.4. Boundary conditions

For the system formed by the equations of mass conservation
Eq. (7) and pressure equations (14), we require as boundary condi-
tions the values of themass flux FM and the pressure flux FP (which
depends on FM and the torque and enthalpy fluxes FT and FE) at
the grid edge. Intuitively, we can think of these two conditions as
specifying the rate atwhichmass enters or exits the computational
domain, and the rate at which energy enters or exits the computa-
tional domain.

First consider the boundary condition on themass flux. The rate
at which mass enters or exits the domain, FM , can be specified in a
few ways. First, one may specify this quantity directly. However,
it is often more convenient to describe the mass flux in terms
of the torque. Since these two are linked via angular momentum
conservation Eq. (4), specifying the torque, or its gradient at the
domain boundary, is sufficient to specify the mass flux, and vice

3 At present our implementation is not optimal in that we perform a QR
decomposition of the residual matrix in every iteration. A faster approach would
be to perform the full decomposition only during the first iteration, and then use
QR factor updating techniques to recompute the QR factors directly as rows are
successively added to and deleted from the residual matrix (Daniel et al., 1976;
Reichel and Gragg, 1990). However, at present no open source implementation of
the necessary techniques is available, and constructing one is a non-trivial code
development task. Since the cost of the QR decomposition is only significant in
problems where the viscosity and source terms are trivial to compute, and these
models are generally very quick to run in any event, we have not implemented QR
factor updating at this time. Formore discussion of code performance, see Section 4.
versa. Thus for one of our boundary conditions we specify one of
three equivalent quantities: the mass flux across the grid edge,
the torque flux FT across the grid edge (i.e., the rate at which the
applied torque does work on the first computational zone), or the
torque in a ghost zone adjacent to the grid edge.

Formally, let i = −1 and i = N denote the indices of the ghost
cells at the inner and outer boundaries of our computational grid.
The quantities that we require in our update algorithm are α−1P−1
and αNPN , since it is the combination αP that appears in the def-
initions of the mass, torque, and enthalpy fluxes. Without loss of
generality we can set α−1 = α0 and αN = αN−1, since only the
combination αP matters. With this choice, we set P−1 and PN as
follows:

1. If the mass flux FM,−1/2 or FM,N−1/2 across the grid edge is
specified, then from Eq. (20) we have

P−1 =
(1 − β0)r20
(1 − β−1)r2−1

P0 +
FM,−1/2

g−1/2α−1(1 − β−1)r2−1
(58)

PN =
(1 − βN−1)r2N−1

(1 − βN)r2N
PN−1 −

FM,N−1/2

gN−1/2αN(1 − βN)r2N
(59)

where r−1 = e−∆ ln r r0 for a logarithmic grid, or r−1 = r0 − ∆r
for a linear one, and similarly for rN .

2. If the torque flux FT ,−1/2 or FT ,N−1/2 is specified, then from
Eq. (22) we have

P−1 = −P0 +
FT ,−1/2

πr−1/2vφ,−1/2(1 − β−1/2)α−1
(60)

PN = −PN−1 +
FT ,N−1/2

πrN−1/2vφ,N−1/2(1 − βN−1/2)αN
. (61)

3. If the torque T−1 or TN in the first ghost zone is specified, then
from Eq. (5) we have

P−1 = −
T−1

2πr2
−1(1 − β−1)α−1

(62)

PN = −
TN

2πr2N(1 − βN)αN
. (63)

It should be noted that the inner and outer boundary conditions
need not be specified in the same way, e.g., one can specify the
mass flux indirectly by giving the torque at the inner boundary,
and set the mass flux directly at the outer boundary.

Now consider the second boundary condition we require. Intu-
itively this is the rate of energy transport into and out of the do-
main, but since we are working in terms of a pressure equation,
it is more convenient to think in terms of the flux of enthalpy FE
into or out of the domain. From Eq. (23), this depends on both the
mass flux, and henceαP , and on the specific internal enthalpy hint.4
Thus we specify the final part of the boundary conditions by set-
ting hint,−1 and hint,N , the values of internal enthalpy in the ghost
cells. Intuitively, if we know themass flux into the domain from the
first boundary condition, and we have now specified the enthalpy
of the material that is being advected in, we can compute the rate
at which advection is bringing energy into the computational do-
main. The enthalpies we require can either be specified directly,
or specified in terms of the gradient of enthalpy across the grid
boundary. Note that if mass is always flowing off the grid at either
the inner or outer boundary, and if one adopts piecewise constant

4 The enthalpy flux FE also depends on the effective gravitational potential
ψeff,i across the grid boundary, but we will assume that this is known from the
specification of the rotation curve.
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interpolation, then the boundary value chosen for hint will not af-
fect the solution. Also note that, because we describe the boundary
condition by setting hint,−1 rather than by setting FE,−1/2 directly,
the boundary specification is independent of themethod chosen to
reconstruct the enthalpies at cell edges.

A final subtlety in choosing boundary conditions is that these
conditions must be applied to both the old and new times,
i.e., they must apply to both P (n) and P (n+1). The iterative solver
will ensure that this holds to the accuracy of the iterative solve
regardless, but by assigning appropriate values to the parts of the
right hand side vector b and matrix M that affect the ghost cells
(i.e., elements M−1,−1, M−1,0, MN,N−1, MN,N , b−1 and bN ) one can
enforce the boundary conditions to machine precision at both the
old and new times, and in the process speed convergence of the
iterative solution step. The boundary conditions take the form of a
relationship between the ghost cells and the adjacent real cells,5 as
specified by Eqs. (58)–(63), which can all be written in the form

P−1 = q−1P0 + p−1 (64)
PN = qNPN−1 + pN , (65)

with the constants q and p depending on how the boundary
condition is specified. For a given choice of q and p, the matrix and
vector elements required to enforce the boundary conditions are

M−1,−1 = MN,N = 1 (66)

M−1,0 = −q−1 (67)

MN,N−1 = −qN (68)

b−1 = p−1 (69)
bN = pN . (70)

2.5. Time step control

The final piece required to complete the update algorithm is
a recipe to choose the time step ∆t . Using either Θ = 1/2 or 1
the system is unconditionally stable, but accuracy requires that the
time step be chosen so that it is not too large. Moreover, if the time
step is too large, then calculationswithΘ = 1/2 are subject to spu-
rious oscillations.VADER controls the time step based on the rate of
change computed in the previous time step. If q(n−1) was the state
of the system at time tn−1, q(n) is the state at time tn, and∆tn−1 was
the previous time step, then the next time step∆tn = tn+1 − tn is
determined by

∆tn = C min
i=0,1,...,N−1

 q(n−1)
i

q(n)i − q(n−1)
i



∆tn−1 (71)

where the minimum is over all cells, and C is a dimensionless con-
stant for which we choose a fiducial value of 0.1. To initialize the
calculation, VADER takes a fake time step of size 10−4r−1/2/vφ,−1/2,
during which the code computes a new state and uses it to deter-
mine the time step, but does not actually update the state.

While the update algorithm is stable regardless of the choice of
time step, the same is not necessarily true for the iterative solution

5 In general it is also possible to have boundary conditions such that values in the
ghost cells depend on the values in real cells that are not immediately adjacent to
the ghost zones. In this case the best approach is to treat the boundary condition as
simply a specified value of P−1 or PN , without attempting to enforce this relationship
at both the old and new times by setting elements of M. Including these constraints
in M would render M no longer tridiagonal. Since this would increase the cost
of solving the linear system considerably, it is more efficient to include only the
relationship between the ghost cells and their nearest neighbors in M, and enforce
any other relationships between the ghost and real cells by iterating the system to
convergence.
procedure described in Section 2.3, which may not converge if
∆t is too large. The maximum time step for which convergence
occurs will in general depend on the boundary conditions and the
functional forms of α, γ , δ, Σ̇src, and Ėsrc. To ensure the stability of
the overall calculation, VADER allows a user-specified maximum
number of iterations used in the implicit solve. If convergence is
not reached within this number of iterations, or if the iteration
diverges entirely, VADER stops iterating and tries to advance again
with a factor of 2 smaller time step. This ratcheting is applied
recursively as necessary until convergence is achieved.

2.6. Implementation notes

We have implemented the algorithm described above in the
Viscous Accretion Disk Evolution Resource (VADER), and made the
codepublicly available fromhttps://bitbucket.org/krumholz/vader/
under the terms of the GNU Public License. The core code is written
in C, with templates provided for user-supplied implementations
of functions characterizing the inner and outer boundary condi-
tions, the dimensionless viscosity, the equation of state terms, and
the rates ofmass and energy gain or loss per unit area. Each of these
quantities can also be specified simply by a numerical value, so that
users who do not wish to use some particular aspect of the code
(e.g. the general equation of state) need not implement functions
describing it. VADER also provides routines to construct rotation
curves suitable for computational use from tabulated vφ(r) values;
see Appendix A for details.

In addition to the core C routines, VADER includes a set of
Python wrapper routines that allow simulations to be run from a
Python program. The Pythonwrappers provide high-level routines
for processing simulation input and outputs, and controlling exe-
cution.

The VADER repository includes an extensive User’s Guide that
fully documents all functions.

3. Accuracy and convergence tests

In this sectionwe present tests of the accuracy and convergence
characteristics of the code, comparing against a variety of analytic
solutions, and demonstrating a number of the code’s capabilities,
including linear and logarithmic grids, a range of rotation curves,
and arbitrary functional forms for energy gain and loss, boundary
conditions, and viscosity. The code required to run all the tests
described in this section is included in the VADER bitbucket
repository.

One subtlety that occurs in all these comparisons is treatment
of the boundary conditions. The true nature of the boundary
layers of accretion disks is subject to significant theoretical
uncertainty (e.g., Papaloizou and Stanley, 1986; Popham and
Narayan, 1992; Popham et al., 1993), but most known analytic
solutions for viscous disks generally prescribe boundary conditions
by specifying that the disk extends all the way from r = 0 to
r = ∞, and by demanding regularity as r → 0 and r → ∞. (For
an exception see Tanaka (2011), who derives analytic solutions for
disks with power law viscosities and finite inner radii.) For obvious
reasons in a numerical computation (and in nature) it is necessary
to truncate the disk at finite values of r , and thus some care is
required to match the boundary conditions used in the numerical
computation to those assumed in the analytic solutions. For most
reasonable choices of boundary condition, the choicewill affect the
results only in the vicinity of the boundaries, but for the purpose
of making quantitative comparisons one must be careful to match
boundary conditions between the analytic and numerical solutions
to ensure that differences caused by different boundary conditions
do not dominate the error budget.

https://bitbucket.org/krumholz/vader/
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Fig. 1. Comparison between the analytic solution for the self-similar evolution
of a viscous disk Eq. (73) and a VADER simulation. The upper panel shows the
normalized gas surface density Σ/Σ0 versus normalized radius r/R0 at several
times for the analytic solution (solid lines) and the simulation (circles; only every
eighth data point plotted to avoid confusion). The values plotted for t/ts = 1 are
the initial conditions in the simulation. The lower panel shows the absolute value
of the error, defined per Eq. (75). The red, green, and blue lines show the same
calculation as in the upper panel. The magenta line shows the result at t/ts = 4
using a backwards Euler method instead of a Crank–Nicolson one, while the cyan
line shows a result using a Crank–Nicolsonmethodbutwith a tighter error tolerance
of 10−10 instead of 10−6 in the iterative solution step. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

3.1. Self-similar disks

The first test is a comparison to the similarity solution derived
by Lynden-Bell and Pringle (1974). The solution is for Keplerian
rotation (β = −1/2) and a kinematic viscosity ν that varies with
radius as ν = ν0(r/R0), giving

α =


ν0vφ

R0


Σ

P
. (72)

Note that this choice of α renders the torque a function ofΣ only,
so that the transports of mass and energy are decoupled and the
rates of transport do not depend on P . With this rotation curve and
viscosity, the evolution equations admit a similarity solution

Σ = Σ0
e−x/T

xT 3/2
, (73)

where Σ0 = Ṁ0/(3πν0), x = r/R0, T = t/ts, ts = R2
0/3ν0, and

Ṁ0 is the mass accretion rate reaching the origin at time T = 1.
To check VADER’s ability to reproduce this solution, we simulate
a computational domain from r/R0 = 0.1 − 20, using a uniform
logarithmic grid. We initialize the grid using the analytic solution
at time T = 1, and specify the boundary conditions by setting
the torque in the ghost zones equal to the values for the similarity
solution,

T = −Ṁ0vφR0
x

T 3/2
e−x/T . (74)

The equation of state is a simple one, with γ = 1+10−6 and δ = 0,
and the initial value of P/Σ is set to a constant. The value of γ is
chosen so that P/Σ remains nearly constant.
Fig. 1 shows a comparison between the analytic solution and
the results of a VADER simulation performed with a resolution of
512 cells, piecewise-linear reconstruction, a tolerance C = 0.1
for the maximum change per time step, and Crank–Nicolson time
centering. We will discuss performance in more detail below, we
note that this entire calculation runs in 2–3 s on a single CPU. As
shown in the figure, the absolute value of the error, defined as

Error =
Σnumerical −Σanalytic

Σanalytic
, (75)

is generally of order 10−6
− 10−5, with a maximum of about

5 × 10−4 at time t/ts = 2. Note that a small amount of grid-
scale oscillation is visible in the error at small radii, although the
overall error is still ∼10−6. Oscillations of this sort are a common
feature of calculations using Crank–Nicolson time centering, and
can be eliminated by use of the backwards Euler method, at the
price of lower overall accuracy. The magenta line in Fig. 1 shows
an otherwise identical calculation using backwards Euler. The grid
noise in the Crank–Nicolson result can also be greatly reduced by
using a more stringent tolerance in the iterative solve. Using tol =

10−10 instead of the default value of 10−6, renders the oscillation
invisibly small. This is shown by the cyan line in Fig. 1.

To determine how the accuracy of the solution depends upon
spatial resolution, we repeat the calculation using Crank–Nicolson
time centering at a range of resolutions from N = 64 to 2048 in
factor of 2 steps. We use tol = 10−10 for this test to ensure that the
error is determined by the spatial resolution, and not the choice
of error tolerance in the iterative solver. Fig. 2 shows the absolute
value of the error versus position at a time t/ts = 2 for these
calculations, and Fig. 3 shows the L1 error in the solution at this
time versus resolution, where the L1 (Lebesgue) norm of the error
has its usual definition

L1 error =
1

πΣ0R2
0


i

Ai|Σnumerical,i −Σexact,i|. (76)

As expected, the error declines with resolution, with the L1 error
declining as N−2. A least-squares fit of the logarithm of the L1 error
versus the logarithm of resolution gives a slope of −2.0. This con-
firms that the code is second-order accurate in space, as expected.
We do not perform a similar test of the time accuracy, because the
actual simulation time step is not controlled by a single parameter.
It depends on the time step tolerance C , but also on the error toler-
ance tol used in the iterative solver, and on the maximum number
of iterations the solver is allowed to perform before giving up and
trying again with a reduced time step.

3.2. Singular ring test

The second test we present is a comparison of VADER to the
analytic solution for the evolution of an initially-singular ring
of material with constant kinematic viscosity (Pringle, 1981).
Consider a disk whose initial density distribution is concentrated
at a single radius r = R0, such that

Σ(r, t = 0) = m0
δ(r − R0)

2πR0
. (77)

The material orbits in a Keplerian potential, and has a constant
kinematic viscosity ν, corresponding to

α = ν


Σ

P

vφ
r


. (78)

As in the previous test problem, this choice of α renders the torque
a function of Σ only. With this choice of α, and subject to the
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Fig. 2. Same as the lower panel of Fig. 1, but now showing the absolute value of the
error versus position at time t/ts = 2 for a series of computations with different
numbers of cells N . All the calculations shown use Crank–Nicolson time centering
and iterative solver tolerance tol = 10−10 .

Fig. 3. L1 error Eq. (76) versus resolutionN at time t/ts = 2 for the self-similar disk
test results shown in Fig. 2 (blue lines and points). The black dashed line shows a
slope of −2 for comparison.

boundary conditions that Σ remain finite and T → 0 as r → 0,6
the system has the exact solution

Σexact = Σ0
1

x1/4τ
e−(1+x2)/τ I1/4(2x/τ), (79)

where x = r/R0, τ = t/ts,Σ0 = M0/πR2
0, and I1/4 is the modified

Bessel function of the first kind of order 1/4. Here ts = r20/12ν is
the characteristic viscous evolution time.

Due to the singular initial condition, this is a far more challeng-
ing test of the algorithm than the similarity solution discussed in
the previous section. To testVADER’s performance on this problem,
we simulate a disk on a uniform linear grid extending from 0.1R0−

2R0, initialized such that the cell containing the radius R0 has a col-
umn densityΣ = Σinit ≡ M0/A, where A is the area of the cell. All
other cells have column densitiesΣ = Σinit/χ withχ = 1010. The

6 Because the equations forΣ and P are decoupled, only twoboundary conditions
are required to specify the solution forΣ .
Fig. 4. Results of a simulation of an initially-singular ring test. The upper panel
shows the exact analytic solution (solid lines, Eq. (79)) and the numerical results
produced by VADER (circles; only every 64th point shown, for clarity) as a function
of position r/R0 at times t/t0 = 0.004, 0.008, 0.032, and 0.128. The lower panel
shows the absolute value of the error in the numerical result, defined as in Eq. (81).

initial vertically-integrated pressure is set so that P/Σ is constant,
and the simulation uses an equation of state with γ = 1 + 10−6,
δ = 0, but neither of these choices affects the evolution of the gas
surface density. We set the torques at the inner and outer bound-
aries equal to their analytic values (subject to the density floor),

T = −3πrνvφΣ, (80)

where Σ = max(Σexact,Σinit/χ). Note that the boundary torque
is therefore time-dependent. Fig. 4 shows the results of the test for
a simulationwith 4096 cells, which required 20–30 s of run time to
complete. As the plot shows, VADER reproduces the analytic result
very accurately. The error, defined to account for the effects of the
density floor as

Error =
Σnumerical −Σexact −Σinit/χ

Σexact +Σinit/χ
, (81)

is of order 10−3 at very early timeswhen the ring is poorly resolved,
and drops to ∼10−4 or less at late times.

3.3. Gravitational instability-dominated disks

The third test we present is against the analytic solution for
gravitational instability-dominated disks first derived in a special
case by Bertin and Lodato (1999), generalized by Krumholz and
Burkert (2010), and further generalized in the time-dependent
case following Forbes et al. (2012) and Forbes et al. (2014). This
test demonstrates VADER’s ability to handle amuchmore complex
problem than the previous two tests. In this problem the rotation
curve is not Keplerian, radiative cooling is an integral part of the
problem, and the viscosity is not given by a simple analytic formula
but instead is derived from an underlying set of equations to be
solved at each time step.

Consider a pure gas disk (i.e., one with no stellar component)
of surface density Σ , within which support against self-gravity
is dominated by a highly supersonic velocity dispersion σ , such
that the vertically-integrated pressure P = Σσ 2, γ = 5/3, and
δ = 0. The stability of the disk against axisymmetric gravitational
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instabilities is described by the Toomre (1964) Q parameter, Q =

κσ/πGΣ , where κ = [2(β+1)]1/2vφ/r is the epicyclic frequency.7
The turbulence in the disk decays following

Ėint,src = −ηΣσ 2 vφ

r
, (82)

where η = 3/2 corresponds to the full kinetic energy of the
turbulence being lost for every crossing time of the scale height.
This decay of turbulence is offset bymass accretion,which converts
orbital energy into turbulentmotion. Krumholz and Burkert (2010)
show that the rate of change of Q is related to the torque implicitly
via

τ ′′
+ h1τ

′
+ h0τ = H, (83)

where τ = T /[ṀRvφ(R)R] is the dimensionless torque, R is a
chosen scale radius, vφ(R) and ṀR are the rotation curve speed and
initial (inward) accretion rate at that radius, and the coefficients
appearing in the equation are

h0 = (β2
− 1)

u2

2x2s2
(84)

h1 = −
5(β + 1)xs′ + 2s(β + β2

+ xβ ′)

2(β + 1)sx
(85)

H =


(β + 1)3

2π2χ2


2πηu − 3

d lnQ
d ln T


su2

Qx
(86)

where x = r/R, u = vφ/vφ(R), s = σ/vφ(R), χ = GṀR/vφ(R)3,
T = t/torb, torb = 2πR/vφ(R), and primes indicate differentiation
with respect to x.

If d lnQ/d ln T = 0 for Q = 1, and β is constant, then the
combined system formed by Eq. (83) and the equations of mass
and energy conservation (1) and (2) admit a steady-state solution.
For a flat rotation curve, i.e., onewith vφ constant andβ = 0, this is

T = −rṀRvφ(R) (87)

Σ =
vφ

πGr


GṀR

η

1/3

(88)

σ =
1

√
2


GṀR

η

1/3

. (89)

If d lnQ/d ln T ≤ 0when Q > 1 (as is expected, since when Q > 1
there should be no gravitational instability to offset the decay of
turbulent motions) then this solution is an attractor, so that disks
that start in different configurations will approach this configura-
tion over a viscous transport time.

To study VADER’s ability to solve this problem, we perform a
series of tests. In all of these simulations we obtain the viscous
torque T and thus the dimensionless viscosity α required by
VADER by solving a discretized version of Eq. (83) on the grid with

d lnQ
d ln T

=
u
x
min(e−1/Q

− e−1, 0), (90)

so that the disk returns to Q = 1 on a timescale comparable to
the local orbital time. This particular functional form is not partic-
ularly physically motivated, and is chosen simply to ensure that
d lnQ/d ln T goes smoothly to 0 as Q → 1 from above. The bound-
ary conditions in Eq. (83) are that τ = −x at the inner bound-
ary and τ = −β − 1 at the outer boundary, consistent with the

7 Formally Toomre’s Q applies only to a disk where σ is the thermal velocity
dispersion, but a generalized Q applies to gas where the non-thermal velocity
dispersion is much greater than the sound speed (e.g., Elmegreen, 2011).
Fig. 5. Results of a simulation of the gravitational instability-dominated disk test.
The three panels show the gas surface density Σ normalized to the steady-state
value at R, the middle panel shows the velocity dispersion σ normalized to vφ , and
the bottom panel shows ToomreQ . The black dashed line shows the analytic steady
state solution Eqs. (88) and (89), the blue line shows the simulation initial condition,
and the green line shows the simulation after T = 4 outer orbits. Note that the blue
line is completely hidden by the green line, as it should be since we are testing the
ability of the code to maintain the correct analytic steady state.. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

steady state solution. In regions where Q > 1, we suppress grav-
itational instability-driven transport by reducing the torque by a
factor e−10(Q−1). The VADER simulation uses an outer boundary
condition with a fixed mass flux Ṁ , and an inner boundary condi-
tion whereby the fixed torque is given by τ = −xe−10(Q−1), where
Q is evaluated in the first grid zone. All simulations use a uniform
logarithmic grid of 512 cells that goes from 0.01R − R, and piece-
wise constant enthalpy advection.

Fig. 5 shows the results of a simulation where the system is
initialized to the analytic steady-state solution and allowed to
evolve for 4 outer orbital times, corresponding to 400 orbital
times at the inner edge of the disk. As the figure shows, VADER
successfully maintains the steady state. The total time required to
run this computation was 20–30 s.

Although no analytic solutions are known for systems that start
away from equilibrium, a more stringent test is to start the code
away from the analytic solution and verify that it approaches the
steady state in a physically reasonable manner. Fig. 6 shows the
evolution for a simulation that begins the same surface density
as the steady state solution Eq. (88), but a velocity dispersion a
factor of 2 smaller, and thus at Q = 0.5. The enthalpy at the outer
boundary condition is also a factor of 2 below the steady-state
solution value. As the figure shows, the system rapidly evolves
from the inside out to Q = 1 due to an increase in the velocity
dispersion driven by viscous transport. After ∼1 outer orbital time
the disk has converged to the analytic solution everywhere except
in the outermost cells, where low-enthalpy material continually
enters the grid and is then heated by the gravitational instability.
This test required ∼3 s to complete.

Fig. 7 shows the results of a test in which the system begins at
Q = 1, but with the surface density and velocity dispersion both
increased by a factor of 2 relative to the steady state solution. The
outer enthalpy boundary condition is equal to that of the analytic



12 M.R. Krumholz, J.C. Forbes / Astronomy and Computing 11 (2015) 1–17
Fig. 6. Same as Fig. 5, but now showing a simulation that starts out of equilibrium
with Q = 0.5.

Fig. 7. Same as Fig. 5, but now showing a simulation that starts out of equilibrium
with Q = 1 but a surface density and velocity dispersion that are both double the
steady-state value.

solution. Again, the system evolves toward the steady-state solu-
tion. The time required for this evolution is ∼10 orbits because
reaching the steady state requires decreasing the column density,
and thus drainingmaterial out of the disk through the inner bound-
ary. This test required ∼3–4 min of computation time.

3.4. Singular ring with a complex equation of state

Our fourth and final test focuses on VADER’s ability to handle
complex equations of state. As is the case for a non-equilibrium
gravitational instability-dominated disk, no analytic solutions are
known for this case, but we can nevertheless verify that the code
gives a physically realistic solution, and that it shows good conser-
vation properties. We therefore choose to repeat the singular ring
test, but using parameters such that the ring encounters both gas
pressure-dominated and radiation pressure-dominated regimes.

For simplicity consider a disk where the shapes of the vertical
density and temperature distributions are fixed, so that the density
and temperature can be separated in r and z, i.e.,

ρ(r, z) = ρ(r)a(ζ ) (91)

T (r, z) = T (r)t(ζ ) (92)

where ζ = z/z0 is a dimensionless height, z0 is an arbitrary
vertical scale factor, and the vertical distribution functions a(ζ )
and t(ζ ) are both normalized such that


a(ζ ) dζ =


t(ζ ) dζ = 1.

The vertically-integrated column density and gas and radiation
pressures are

Σ = ρz0 (93)

Pg =
kB
µmH

ΣT


a(ζ )t(ζ ) dζ ≡
kB
µmH

ΣTeff (94)

Pr =
1
3
aT

4
z0


t(ζ )4 dζ ≡

1
3
faT 4

effz0, (95)

where µ is the mean molecular weight, and we have defined

Teff = T


a(ζ )t(ζ ) dζ (96)

f =


t(ζ )4 dζ

a(ζ )t(ζ )dζ
4 . (97)

The corresponding vertically-integrated internal energies are

Eint,g =
Pg

γg − 1
(98)

Eint,r = 3Pr , (99)

where γg is the gas adiabatic index. The total pressure and internal
energy are simply the sums of the gas and radiation components,
i.e., P = Pg+Pr and Eint = Eint,g+Eint,r . From these definitions,with
a bit of algebra one can show that the equation of state parameters
γ and δ can be written in terms of the total pressure and internal
energy as

γ =
(16 − 3γg)P + (16 − 15γg)Eint

9P + (13 − 12γg)Eint
(100)

δ =
4(3P − Eint)


(γg − 1)Eint − P


P

3(γg − 1)Eint + (3γg − 7)P

 . (101)

Since the problem is not dimensionless once a real equation of
state is added, we adopt the following dimensional parameters.
The simulation domain has inner radius r−1/2 = 1.5 × 1010 cm,
outer radius rN−1/2 = 1.5 × 1012 cm, and a rotation curve corre-
sponding to Keplerian motion about a central object of mass M =

3M⊙. The initial ring of material is located at R0 = 7.5 × 1011 cm,
its mass and effective temperature are M = 1.0 × 10−6M⊙ and
Teff = 104 K, its adiabatic index γg = 5/3, and the scale height
parameter fz0 = 7.5 × 109 cm. The kinematic viscosity ν =

1.483 × 1011 cm2 s−1, which gives a characteristic evolution time
ts = 104 yr. With these choices, the ring has Pg ≫ Pr in its inte-
rior, but as it expands, its edges heat up to the pointwhere Pr ≫ Pg .
The simulations use a linear grid of 4096 cells, backwards Euler up-
dating, and piecewise constant interpolation of enthalpy; the latter
two choices are made to suppress numerical ringing at the discon-
tinuous expansion front.We also use a time step tolerance C = 1.0
rather than 0.1 in order to speed up the simulations. The total time
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Fig. 8. Vertically-integrated pressure P divided by the scale height parameter fz0
at several times in the singular ring test. The top panel shows a simulation omitting
radiation pressure (γ = 5/3, δ = 0), while the bottom panel shows an otherwise
identical simulation with a complex equation of state including radiation pressure.
In the gas plus radiation run, we show both total pressure (solid lines) and the
pressures due to gas (dashed lines) and radiation (dotted lines) alone.

required to run these simulations was∼5min for the case without
radiation, and ∼3 min for the case with radiation.

Figs. 8 and 9 show the pressure and temperature distributions
in the simulations, both for a case where we ignore radiation
pressure and use constant values γ = 5/3, δ = 0, and a case
including radiation pressure. (The column density distributions
are nearly identical to those shown in Fig. 4, as is expected since
the choice of viscosity for this problem is such that the column
density evolution does not depend on the pressure.) As shown
in the figures, in both cases the spreading ring has sharp rises in
pressure and temperature at its low-density edges, where the ring
encounters near-vacuum. However, in the run including radiation
pressure the pressure and temperature in these spikes are greatly
reduced. In the run without radiation pressure, the temperature
rises to unphysical values because the pressure must be carried
entirely by the gas, and the gas pressure is linear in temperature
and inversely proportional to surface density. In the run including
radiation, the pressure at the ring leading and trailing edges is
carried by radiation instead, and the temperature rise is vastly
reduced because the radiation pressure rises as the fourth power
of temperature, and does not scale with gas surface density. There
is also a small spike in the pressure at the original ring location in
the case with radiation pressure. It is not clear if this is physically
real, or if the spike is a purely numerical effect resulting from the
unresolved, singular initial condition.

This test also enables us to check the level of conservation of
energy in the computation with the complex equation of state. We
simulate a time interval from t/ts = 0 to 0.128, as shown in the
figures, and record the total energy in the computational domain at
65 times uniformly spaced throughout this interval. In the runwith
constant γ we find that themaximum change in total energy in the
computational domain, after accounting for energy transmitted
across the grid boundary by advection or torques, is 9.1× 10−15 of
the initial energy, and that the mean difference between the initial
energy and the energy at later times is 4.3 × 10−15 of the initial
energy. This is consistent with our expectations that the algorithm
Fig. 9. Same as Fig. 8, but now showing effective temperature Teff versus position
in the singular ring test without (top) and with (bottom) radiation pressure. Notice
the difference in scales between the top and bottom panels.

should conserve total energy to machine precision. In contrast, the
run including radiation pressure has maximum and mean energy
conservation errors of 3.7 × 10−14 and 1.4 × 10−14 of the initial
energy. Thus, while conservation is not quite at machine precision,
the loss of precision is only ∼1 digit of accuracy.

4. Performance

The tests presented in the previous section demonstrate that
VADER and the algorithms on which it is based provide correct
solutions to a number of problems, and give a rough indication
of the performance of the code. Here we investigate the
performance of the code in much more detail. We are particularly
interested in the performance of the implicit solver and the
Anderson acceleration code, because, while Anderson acceleration
accelerates convergence and reduces the number of iterations
requires in the implicit solver, it also requires a linear least squares
solve that increases the cost per iteration. The tradeoff between
these two is almost certainly problem-dependent, andmay also be
processor- and compiler-dependent, but the testswe describe here
can serve as a guide for users in selecting appropriate parameters
for their own problems. All the testswe discuss in this sectionwere
performed on a single core of a 2 GHz Intel i7 chip on a system
running Mac OS X v. 10.9.3; VADER was compiled using gcc-4.8
with optimization level -O3, while the GNU Scientific Library was
built using its default options. We obtain code timing using the C
clock() function.

We first verify that Anderson acceleration does, as expected,
lead tomuchmore rapid convergence of the iterative solver. To test
this, we run each of our four test problems described in Section 3 –
the self-similar disk, the singular ring, the gravitational instability-
dominated disk, and the radiation pressure ring – for one time
step, starting from the initial conditions as described in the
previous Section. We use time steps of 10−2.5ts, 10−6ts, 10−3.5torb,
and 10−7.5ts, respectively, and we test both Crank–Nicolson and
backwards Euler updating. We set the tolerance on the iterative
solver to 10−10, and allow a maximum of 100 iterations. Fig. 10
shows how the residual changes versus number of iterations for
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Fig. 10. Maximum normalized residual max |R0,i| (Eq. (57)) remaining after N
iterations in the four test problems described in Section 4. Solid lines show updates
using the Crank–Nicolson method, and dashed lines using the backwards Euler
method. Colors indicate the order M of Anderson acceleration used, with M = 0
corresponding to no acceleration (standard Picard iteration).

each of these runs, and Table 1 shows the number of iterations
and the wall clock time required to converge. The performance
of the algorithm is in line with our expectations. We also see
that the Crank–Nicolson method almost always produces faster
convergence than the backwards Euler method, which is not
surprising due to its higher order of accuracy.

Note that, at lower orders of Anderson acceleration, for some
problems the iteration diverges rather than converging, until
eventually the code produces non-numerical values (Inf or NaN),
at which point the solver halts iteration. In a full simulation,
such cases of divergence are treated exactly like cases where the
solver fails to converge within the prescribed maximum number
of iterations, i.e., the time step is attempted again using a reduced
value of∆t (see Section 2.5).

While this test shows that Anderson acceleration does speed
convergence in termsof number of iterations, anddoes allow larger
time steps, it does not prove that the extra computational cost
per iteration is worthwhile. Indeed, carefully examining the timing
results given in Table 1, we see that the wall clock time is by no
means a monotonically decreasing function of M , even in cases
where the number of iterations is. To evaluate this question, we
next run each of our test simulations for 1000 time steps or until
the simulation completes, whichever comes first, and measure the
total execution time. For this test we return the iterative solver
tolerance to its default value of 10−6, the maximum number of
iterations to its default of 40, and allow the time step to be set
by the normal VADER procedure. We use a time step restriction
C = 0.1 for the self-similar and gravitational instability problems,
and C = 1.0 for the two ring problems.

In Fig. 11weplot thewall clock time required per unit of simula-
tion time advanced in each of our four test cases. As the plot shows,
the optimal Anderson acceleration parameter, and the range of
cases for which it is helpful, depends strongly on the problem. For
the self-similar disk and ring problems, Anderson acceleration is
neutral at smallM and actually harmful at largerM . This is because
the reduction in number of iterations is more than offset by the in-
creased cost per iteration. On the other hand, for the gravitational
Fig. 11. Wall clock time required per unit simulation time advanced versus
Anderson acceleration parameter M in the four test problems, normalized so that
M = 0 corresponds to unity. Thus values<1 indicate a reduction in computational
cost relative to the unaccelerated case, while values >1 indicate a slowdown. The
thick black lines indicate the total cost, and shaded regions indicate the fraction
of the cost contributed by different parts of the computation. Problem-specific
routines, including those used to compute the viscosity (α), source terms (Σ̇src ,
Ėint,src), equation of state terms (γ , δ), and boundary conditions are shown in
green. The Anderson acceleration step is shown in blue; for M = 0 this is simply
the cost of copying temporary arrays. The remainder of the time step advance
procedure is shown in red. The dashed horizontal lines indicate values of 0.25, 0.5,
1.0, and 2.0. Note the change in y-axis range between the top two and bottom two
panels. The plots shown are for Crank–Nicolson; the results for backwards Euler are
qualitatively similar. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

instability-dominated disk and ring with radiation pressure prob-
lems, Anderson acceleration with M of a few provides very signif-
icant gains in performance, reducing the computational cost by a
factor of ∼5.

The difference in performance between the cases where Ander-
son acceleration helps and those where it does not arises mostly
from the complexity of the implicit update. In the self-similar disk
and ring problems, the viscosity and boundary conditions are triv-
ial to compute and there are no source terms. As a result, the
linear least squares solve required by Anderson acceleration con-
tributes significantly to the total implicit update cost, and begins
to dominate it for higher values ofM . In contrast, the gravitational
instability-dominated disk and radiation pressure ring problems
have much higher computational costs per update. For the former,
the cost is high because there is a source termand because comput-
ing the viscosity requires solving a tridiagonal matrix equation at
every iteration; this is indicated by the green region in Fig. 11. For
the latter there are no source terms, but because the problemuses a
complex equation of state, there is additional computational work
associated with updating the internal energy equation (which is
included in the red region in Fig. 11).

The implications of this analysis are that the choice of optimal
Anderson acceleration parameter is likely to depend on the nature
of the model being used to generate the viscosity, source terms,
boundary conditions, and equation of state. If these are given by
simple analytic formulas, then Anderson acceleration is probably
of very limited use. The more computationally complex they are
to evaluate, however, the greater the advantage that one gains by
using Anderson acceleration to reduce the number of iterations
required.
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Table 1
Number of iterations and total wall clock time required for convergence during one step of the self-similar disk, singular ring, gravitational instability-dominated disk, and
singular ring with radiation pressure tests, using Crank–Nicolson and backwards Euler updating methods. The quantity M is the Anderson acceleration parameter, with
M = 0 indicating no acceleration (standard Picard iteration). Blank entries indicate that the solver failed to converge within 100 iterations.

Self-similar Ring GI Disk Rad. ring
M CN BE CN BE CN BE CN BE

Niter

0. . . . . . 22 – 94 – – – 60 –
1. . . . . . 21 – 92 – – – 26 25
2. . . . . . 16 51 44 – 72 100 26 24
4. . . . . . 14 31 44 72 27 89 26 25
8. . . . . . 13 23 39 50 22 31 28 31

16. . . . . . 13 20 31 48 21 26 27 36

Time (ms)

0. . . . . . 1.80 – 49.24 – – – 33.48 –
1. . . . . . 2.33 – 72.79 – – – 21.46 20.40
2. . . . . . 1.92 6.15 45.41 – 13.34 18.47 31.14 25.64
4. . . . . . 2.14 4.83 63.02 99.32 7.93 25.05 52.44 42.25
8. . . . . . 2.91 6.12 128.45 157.75 7.60 11.51 123.55 120.10

16. . . . . . 3.53 8.94 248.57 424.27 10.99 15.76 283.69 412.33
5. Summary and future prospects

Thin, axisymmetric accretion disks where the transport of mass
and angular momentum is approximated as being due to viscos-
ity represent an important class of models in theoretical astro-
physics. They are widely used in situations where full two- or
three-dimensional simulations would be prohibitively expensive,
either due to the number of orbits that would have to be simu-
lated, or because of the dynamic range in spatial resolution that
would be required. We have developed a new, extremely flexible
and general method for simulating the evolution of such models.
Our discretization of the equations is conservative tomachine pre-
cision, and allows complete freedom in the specification of rota-
tion curves, equations of state, forms of the viscosity, boundary
conditions, and sources and sinks of energy and mass. The core
of our method is an unconditionally-stable update strategy that
uses accelerated fixed point iteration to achieve rapid convergence.
We show that this technique allows relatively large time steps,
and that it significantly reduces the number of implicit iterations
required to advance the simulation a specified time. In practical
tests, even at resolutions as high as 4096 cells, and using com-
plex equations of state or disk α parameters that must themselves
be computed iteratively, the code can evolve a disk for many vis-
cous evolution timescales in no more than a few minutes of com-
putation time on a single CPU. In tests with simple equations of
state and fixed α, computational times are only a few seconds. We
have implemented our algorithm in a new open source code called
the Viscous Accretion Disk Evolution Resource VADER, which can
be downloaded from https://bitbucket.org/krumholz/vader/. The
code is designed formodularity, so that users can easily implement
their ownmodels for viscosity and similar parameters that control
disk evolution.

While the number of potential applications for VADER is large,
we end this discussion by highlighting a few possible exam-
ples. One, already underway, is to model the long-term behav-
ior of the gas around the central black in the Milky Way and
other galaxies. Observations suggest that the gas accumulates
over long timescales before undergoing periodic starburst events
(e.g. Kruijssen et al., 2015), and this process can be modeled as
gas undergoing slow viscous accretion before accumulating to the
point where it becomes gravitationally unstable and undergoes
a starburst. The customization required for this project consists
mostly of implementing a custom rotation curve, viscosity rep-
resenting the instabilities that likely drive the gas migration, and
testing for the onset of gravitational instability.

In the context of planet formation, viscous evolution models
have been used to study the long-term interaction of planets with
the disks out of which they form, and the migration of the planets
through viscous disks (e.g., Lyra et al., 2010; Horn et al., 2012).
VADER is well-suited for this application, and could be customized
to it simply by implementing cooling and viscosity prescriptions
appropriate to a protoplanetary disk, by coupling the state of the
disk found by VADER to a calculation of the torques on planets,
and perhaps bymodifying the viscosity prescription to incorporate
the back-reaction of disk–planet torques on the transport of gas
through the disk. Also in this context, VADER could be used to
simulate the photoevaporation of disks around young stars by
high-energy radiation, either from the central star or from an
external source (e.g. Adams et al., 2004; Gorti and Hollenbach,
2009; Gorti et al., 2009). In this case one could treat the effects
of photoevaporation by adding mass and energy source terms to
represent the rates of mass loss and heating driven by ultraviolet
and X-ray photons striking the disk.

For accretion disks around compact objects, a number of au-
thors have used viscous disk models to study variability and flar-
ing on timescales associated with viscous evolution (e.g., Cambier
and Smith, 2013). VADER is well-suited to this problem too, and
could be customized to it by adding in prescriptions for viscos-
ity and radiative heating and cooling, and by post-processing the
VADER models to predict observable X-ray fluxes. One could also
add mass and energy source terms representing the exchange of
mass and energy with a hot corona.

This list of potential applications is certainly not exhaustive,
but its breadth and diversity should make clear that a general-
purpose viscous disk evolution code is a tool of wide applicability.
The availability of such a code should reduce the need for every
modeler to develop his or her own approach to a standard problem.
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Appendix. Tabulated rotation curves

VADER allows arbitrary rotation curves vφ(r), and these can be
specified either via user-supplied analytic functions, or in the form

https://bitbucket.org/krumholz/vader/
http://arxiv.org/1406.6691v1
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Fig. A.1. B-spline reconstruction of the rotation curve for a Paczyńsky and Wiita
(1980) potential using a fit of degree D = 6 with B = 15 breakpoints. In the
upper panel, we show the exact analytic values of vφ ,ψ , and β (solid lines) and the
numerical fits (data points, only every 16th point shown for clarity). All quantities
are plotted in units where GM = rg = 1, and the gauge of the potential set so that
ψ → 0 as r → ∞. In the bottom panel, we plot the relative error of the b-spline
reconstruction versus r , defined as Error = (vφ,fit − vφ,exact)/vφ,exact , and similarly
for ψ and β .

of a table of (r, vφ) values. In the latter case VADER generates a ro-
tation curve vφ on the grid via interpolation, and the potentialψ by
integrating the interpolating function. However, the interpolation
procedure requires special care to ensure smoothness. Eqs. (1) and
(2) involve the second derivative of the torque T , which is propor-
tional to the rotation curve index β = ∂ ln vφ/∂ ln r . Thus deriva-
tives up to ∂3 ln vφ/∂ ln r3 appear in the evolution equations, and it
is therefore highly desirable, for both computational stability and
to avoid imposing artifacts on the solution, that the interpolating
function constructed to approximate a table of (r, vφ) values have
at least three continuous derivatives.

To achieve this aim,VADER constructs tabulated rotation curves
using basis splines (b-splines). In the b-spline method, the domain
of the function to be fit is brokenup into a set of intervals, separated
by breakpoints, and one must choose the degree D of the fit, the
number of breakpoints B, and their locations. For the choice of
locations, we use the method of Gans and Gill (1984), who show
that errors in the resulting fit are minimized if the breakpoints
are distributed evenly in the size of the interval weighted by the
square root of the function being fit. Let (rn, vφ,n) be our table of
N input data, ordered from n = 0 . . .N − 1 with rn increasing
monotonically, and let bm be the location of the mth breakpoint,
m = 0 . . . B − 1. We set b0 = r0 and bB−1 = rN−1, and we assign
the remaining breakpoints bm via the following algorithm. Let

ST ≡
1

B + 1

N−1
n=0

v
1/2
φ,ndxn, (A.1)

where dxn = (1/2) log(rn+1/rn−1) for n ≠ 0,N − 1, dx0 = log(r1/
r0), and dxN−1 = log(rN−1/rN−2). Starting from a breakpoint bm lo-
cated at data value rnm , we set the position of the next breakpoint
to bm+1 = rnm+1 , where nm+1 is the smallest index for which

nm+1
n=nm+1

v
1/2
φ,ndxn ≥ ST . (A.2)
Fig. A.2. B-spline reconstruction of the rotation curve of the Milky Way. The top
panel shows data from Bhattacharjee et al. (2014) (black points with error bars),
together with b-spline fits of degree D = 2, 3, and 4 (blue lines). The D = 2 and
D = 4 fits use 15 breakpoints each, while for D = 3 we show models with both
B = 8 and B = 15 breakpoints. The middle panel shows the potential, with a gauge
chosen so that ψ = 0 at the edge of the grid. The bottom panel shows β .

This assures that the breakpoints are as uniformly distributed as
possible following the criterion of Gans and Gill (1984).8 Once the
breakpoint locations are chosen, the function and its derivatives
can be constructed by the standard basis spline method.

To demonstrate and evaluate the performance of this capability,
we perform two tests. For the first, we take the Paczyńsky and
Wiita (1980) approximation for a black hole potential

ψPW =
GM

r − rg
, (A.3)

where rg = 2GM/c2 is the horizon radius, and generate a table
of rotation velocities by analytically evaluating vφ = dψPW/dr at
points from 1.9rg to 10.1rg , spaced in units of 0.1rgg . We then use
this table to generate a 6th-order b-spline fit using 15 breakpoints,
and from that fit compute the potential ψ and the rotation curve
index β on a grid of 512 points logarithmically spaced from r = 2
to 10rg . Fig. A.1 shows the results of the fit as compared with the
analytic values forψ , vφ , and β . Clearly the b-spline reconstruction
is excellent.

For the second test we use a much noisier data set: a compi-
lation of data on the rotation curve of the Milky Way from Bhat-
tacharjee et al. (2014), using their model where the Sun is 8.5 kpc
from the Galactic center and the rotation velocity at the Solar cir-
cle is 220 km s−1. Fig. A.2 shows the data and a variety of VADER
b-spline reconstructions of vφ , ψ , and β on a logarithmic grid of
512 points uniformly spaced from 0.2 to 180 kpc. In this case it
is clear that the rotation curve and potential are very well recon-
structed and that fits to them do not depend strongly on the choice

8 If the number of points N is very small, it is conceivable that, due to the discrete
placement of the data points rn , this algorithm might result in not all breakpoints
bm being assigned before we reach the end of the array. In this case we end up with
the last breakpoint interval being of size 0, i.e., bB−2 = bB−1 . However, this presents
no obstacles to the remainder of the algorithm.
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of degree D and number of breakpoints B, except that D ≥ 4 intro-
duces artificial ringing at small radii. In contrast, β does depend at
least somewhat on these choices. For this particular data set, there
appears to be no value of D that both guarantees that the deriva-
tive of β be continuous and that β itself remains within physically-
reasonable values (roughly−0.5–1).With data sets of this sort, one
must either accept discontinuities in the derivative of β , prune the
data set more carefully, or use a more sophisticated fitting proce-
dure.
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