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ABSTRACT

The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies,
and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To
address it, we present high-resolution adaptive mesh refinement simulations of Milky Way-like isolated disk
galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation,
but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully nonlinear
gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the
gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability
alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover,
the rate of mass transport produced by this turbulence approaches M1~  yr−1 for Milky Way-like conditions,
sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper, we add feedback to our
models, and use the comparison between the two cases to understand which galaxy properties depend sensitively
on feedback and which can be understood as the product of gravity alone. All of the code, initial conditions, and
simulation data for our model are publicly available.

Key words: galaxies: evolution – galaxies: kinematics and dynamics – galaxies: spiral –
ISM: kinematics and dynamics – ISM: structure

1. INTRODUCTION

1.1. Gravitational Instability as a Driver of Galactic Evolution

Until the past few years, most theoretical work on galaxy
evolution has focused on reproducing observed correlations in
the bulk properties of galaxies, such as the stellar mass-halo
mass relation (e.g., Behroozi et al. 2013; Moster et al. 2013),
the stellar mass–star formation relation (e.g., Daddi et al. 2007;
Elbaz et al. 2007; Noeske et al. 2007), and the mass–metallicity
relation (e.g., Pilyugin et al. 2004; Tremonti et al. 2004). In
such correlations, galaxies are treated as single points, and
theoretical models have been largely content to treat them as
such. In these models, the behavior of galaxies is almost
entirely dictated by a balance between cosmological accretion
and feedback (e.g., Bouché et al. 2010; Lilly et al. 2013; Forbes
et al. 2014b; Mitra et al. 2015), and for this reason most
theoretical attention has been focused on stellar feedback as the
dominant driver of galaxy evolution.

The recent availability of large samples of spatially resolved
maps of gas, metals, and star formation in nearby galaxies has
opened up a new frontier in the study of galaxies: explaining
the radial distribution of these quantities. Observational studies
conducted to date have turned up puzzling facts that demand
explanation, which cannot obviously be explained simply by a
local balance of accretion versus feedback at all locations in a
galaxy. Instead, these observations point to a potentially
significant role for radial redistribution of material as a key
process for understanding the evolution and growth of galaxies
over cosmological timescales.

The first observational puzzle concerns the radial distribution
of gas and star formation in present-day disk galaxies.
Observations show that the neutral gas in such galaxies is
distributed with an approximately universal exponential profile,
with typical gas scale lengths of r0.5 25~ , where r25 is the

optical radius of the galaxy (Regan et al. 2001; Schruba
et al. 2011; Bigiel & Blitz 2012). The gas is dominated by H2
inside r0.4 25~ , while HI predominates at larger radii (e.g.,
Leroy et al. 2008). The radial distribution of star formation is,
to first approximation, simply linearly proportional to the
H2 distribution (Bigiel et al. 2008; Schruba et al. 2011; Leroy
et al. 2013), so star formation is much more radially
concentrated than the total neutral gas, and predominantly
occurs inside r0.5 .25~ In such regions, the time required to
convert all the available gas to stars is 2 Gyr~ , much less than
a Hubble time (Bigiel et al. 2008; Leroy et al. 2013). Thus the
inner parts of galaxies will become gas-depleted and cease star
formation unless fresh gas is supplied at an equal rate, which
for L* galaxies is a few M yr−1 (Kennicutt & Evans 2012).
While some disk galaxies, including the Milky Way, do have
inner gas holes and quenched central star formation, such
systems appear to be the exception rather than the rule among
the local disk galaxy population (Bigiel & Blitz 2012).
How the fresh gas responsible for the lack of quenched

centers can be explained is an unsolved problem. While
condensation of gas from the hot halo (Marinacci et al. 2010;
Fraternali et al. 2013; Hobbs et al. 2013) will supply gas in a
centrally concentrated manner, direct accretion of cold gas
from the intergalactic medium (e.g., Kereš et al. 2005; Dekel
et al. 2009a) primarily deposits gas at large galactocentric radii,
far from the actively star-forming regions that need to be
refueled. This can lead to build-up of gas at large radii (c.f.
Dutton 2012). Gas recycling from evolved stellar populations
can potentially provide some of the required mass (Leitner &
Kravtsov 2011) at small galactocentric radii, but, in addition to
uncertainties about whether this channel provides enough mass
and is consistent with various chemical evolution constraints,
the radial distribution of recycled gas has not been explored. In
summary, the lack of quenched, gas-depleted centers in local
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disk galaxies seems to require some form of gas redistribution
within the disk, for which gravitational instability is an obvious
candidate.

A second surprising observation regarding the radial
distribution of gas concerns gas velocity dispersions. HI lines
in disk galaxies show super-thermal velocity dispersions of

10~ km s−1 (e.g., van Zee & Bryant 1999; Petric &
Rupen 2007; Tamburro et al. 2009; Ianjamasimanana
et al. 2012, 2015). Velocity dispersions are highest toward
the centers of galaxies, but they decline only shallowly with
radius, and remain superthermal even well outside r25. While
star formation feedback alone appears able to drive the
observed velocity dispersion in inner disks, the same is not
true outside r25, where the star formation rate drops
precipitously but the velocity dispersion does not (Tamburro
et al. 2009; Ianjamasimanana et al. 2015). Dwarf galaxies
represent an extreme in this regard: due to their very low rates
of star formation, supernova feedback cannot plausibly provide
enough energy to drive the observed turbulence anywhere
within them (Stilp et al. 2013). Nor do magneto-rotational or
thermal instability appear to be sufficient (Kim et al. 2003;
Piontek & Ostriker 2004, 2005, 2007; Yang et al. 2007).
Again, gravitational instability is an obvious candidate to drive
the turbulence in the weakly star-forming portions of galaxies
(although see Elmegreen & Hunter 2015, who show that
gravitational instability is not globally important in very low-
mass dwarfs).

A final surprising observation concerns the metallicity
distributions of galaxies. Observations of disk galaxies show
that they have slightly negative gas-phase metallicity gradients
inside r25 (e.g., Vila-Costas & Edmunds 1992; Pilyugin
et al. 2004; Henry et al. 2010; Balser et al. 2011; Ho
et al. 2015), and nearly flat distributions of metallicity outside
r25 (Bresolin et al. 2009, 2012; Werk et al. 2011). Dwarf
galaxies show no metallicity gradients at all (Croxall
et al. 2009). While the gradients in inner disks might be
explicable simply via a balance between inflow, outflow, and
star formation (e.g., see Portinari & Chiosi 2000 and Spitoni &
Matteucci 2011 versus Ho et al. 2015), this is not the case for
the flat gradients in outer disks. In these strongly gas-
dominated regions, the metallicity should simply scale with
the stellar mass fraction, regardless of the presence of either
inflow or outflow. While the stellar mass fraction changes
sharply with galactocentric radius outside r25, the metallicity
does not, a finding that seems extremely difficult to explain
without invoking some form of metal redistribution. As with
the previous two results, gravitational instability seems a
candidate redistribution mechanism worthy of further
exploration.

1.2. Theoretical Studies of Gravitational Instability

Given the likely importance of gravitational instability as a
driver of galaxy evolution, it is not surprising that there have
been a number of theoretical studies devoted to it. Some of the
earliest were one-dimensional (1D) models by Lin & Pringle
(1987a, 1987b), Olivier et al. (1991), and Ferguson & Clarke
(2001), who argued that the observed exponential distribution
of stars in galactic disks could only be understood if gas
undergoes significant viscous transport on a timescale compar-
able to the timescale over which the stellar disk forms. These
models assumed a fixed dimensionless viscosity, but Krumholz
& Burkert (2010; generalizing earlier work by Bertin & Lodato

1999 in the context of Keplerian disks with no stars) showed
that the viscosity and thus the rates of mass and angular
momentum transport could be computed self-consistently by
balancing energy loss against turbulence generation by
gravitational instability.
Building on this work, (Forbes et al. 2012, 2014a) argue that

the observed structure of star forming disks is a natural result of
an equilibrium between gravitational instability, accretion, and
star formation. Cosmological accretion brings gas to the disk
outskirts, where the gas is in general stable to collapse. Over
the course of a few rotation periods, gravitational instability
drives torques that tend to move gas to smaller galactocentric
radii. The inward flow of gas feeds active ongoing star
formation in the inner disk, such that the total star formation in
the inner disk is ultimately modulated by the accretion of gas at
large galactocentric radii. In these models the bulk of the disk is
at all times near Q 1.total ~
Our motivation for three-dimensional (3D) simulations is

that, while the 1D models are instructive and useful for exploring
parameter space quickly, they have substantial limitations. The
gas and stars both contribute to the self-gravity of the disk, so the
degree of gravitational instability of both components must be
considered (Lin & Shu 1966; Jog & Solomon 1984a, 1984b;
Bertin & Romeo 1988; Wang & Silk 1994; Romeo &
Wiegert 2011), in the form of the Toomre (1964) stability
criterion. While this is possible in 1D models, it requires strong
assumptions about the vertical and azimuthal structure of the
disk, and about the response of each component. Moreover,
material at a given radius is only allowed to move inward or
outward at one bulk velocity. Properly modeling the full
nonlinear multi-component gravitational instability process
requires 3D modeling of both the gas and stars embedded in a
realistic galactic gravitational potential field.
Recently, a new class of high-resolution numerical galaxy

formation simulations have arisen that begin to probe the
density and resolution scales necessary to resolve star forming
clouds. These models include a variety of simplifying
assumptions, including an analytic stellar background potential,
both with and without imposed spiral arms (Dobbs et al. 2006;
Tasker & Tan 2009; Tasker 2011; Smith et al. 2014; Dobbs
et al. 2015; Tasker et al. 2015). Others resolve the gas to very
high spatial resolution at the cost of capturing only a fraction of
a galactic dynamical time, or of simulating a galaxy much
smaller than the Milky Way (Bournaud et al. 2010; Renaud
et al. 2013). Still others take a similar approach to ours (Agertz
et al. 2009; Hopkins et al. 2012; Fujimoto et al. 2014a, 2014b;
Behrendt et al. 2015), including runs based on the same
AGORA (Kim et al. 2014) initial conditions that we use
(Agertz et al. 2015).
In this paper we make use of simulations of the gas, stars,

and dark matter in idealized isolated models of star forming
disk galaxies. We focus on the spatial and mass scale similar to
the Milky Way and study three different disks with varying gas
fractions. We expand on previous work in a number of ways:

1. Using our high numerical resolution— x 20 pcD ~ at the
maximum refinement level, corresponding to a threshold
density for star formation, n 50 cmthresh

3~ - —we are
able to comfortably resolve the global properties of star
forming regions in our disk models (although we do not
resolve the internal properties of star forming clouds),
allowing us to resolve an ISM with multiple distinct
phases.
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2. Our simulations are run for several galactic dynamical
times. This long time baseline allows the instability to
reach a saturated, fully chaotic state. As we will show, the
onset of violent gravitational instability in our disk
models is accompanied by substantial transient ringing
behavior characteristic of the smooth unstructured initial
conditions, and we run for long enough for this initial
state to be forgotten.

3. We perform a detailed modeling of the Toomre Q
parameter, taking into account contributions of the gas
and stars, including both the thermal and kinetic gas
pressure, and accounting for the nonzero thickness of the
gas and stellar disks.

4. We measure the radial and temporal variation in the rate
of radial mass transport at high spatial and temporal
resolution, allowing us to track the detailed dynamics of
the flow of matter in the disk and measure a mean flow of
matter through the disk.

5. The initial conditions data, full simulation code, simula-
tion outputs, and analysis code are publicly available.3

Our simulations are quite similar to those of Agertz et al.
(2015). Their simulations are based on nearly identical initial
conditions but were run with a factor of two higher spatial
resolution than we use. On the other hand, we simulate galaxies
over much longer baselines (600 Myr versus 140 Myr), which
is essential to allow the gravitational instability to settle reach
full nonlinear saturation and thereby to allow an accurate
measurement of the rates of the typical mass transport rate due
to gravitational instability. Agertz et al. (2015) do not consider
the issue of transport in their study.

In addition, our simulations can be compared to the
numerical experiments of Behrendt et al. (2015). They focused
on the transition from the linear to nonlinear phase of
gravitational instability in the context of an analytic treatment
of the Toomre instability. We see similar morphology in our
simulations—an initially smooth disk that breaks up into axis-
symmetric rings which then further segment and collapse into
bound clumps. Their simulations were run with an isothermal
equation of state and did not include a stellar disk and
furthermore did not consider radial mass transport.

This paper is part of a series. In the companion paper
(N. J. Goldbaum et al. 2015, in preparation) we perform
simulations including stellar feedback, and compare these to
the pure-gravity simulations presented here. A previously
published paper in this series (Petit et al. 2015) makes use of
one of the suite of simulations we describe here in order to
study metal transport by gravitational instability, and thus we
will not examine that topic further in this work.

The plan for the remainder of this paper is as follows. In
Section 2 we describe the code, subgrid physics models, and
initial conditions. In Section 3, we describe in general terms the
time evolution of our simulations, particularly with respect to
the dynamical evolution of the gravitational instability process.
In Section 4 we quantitatively measure the effect of the
gravitational instability via the time evolution of the Q
parameter, as well as the radial mass flux, measure the mean
mass flux rate through our simulated disks, and discuss the
velocity structure of the gaseous disk. Finally in Section 5 we
review our findings and discuss implications for future work.

2. SIMULATIONS

This paper makes use of three simulations of isolated disk
galaxies. All simulations were performed using the Enzo
AMR hydrodynamics code (The Enzo Collaboration
et al. 2014). These simulations include self-gravity, cooling,
high-order shock-capturing hydrodynamics, and N-body
dynamics. The properties of the simulations are summarized
in Table 1.

2.1. Initial Conditions

The initial conditions were generated for the AGORA
project (Kim et al. 2014) using the makegalaxy code
(Springel et al. 2005). Briefly, makegalaxy transforms an
input halo mass (M200), stellar disk mass (M*), gas fraction (fg),
halo spin parameter (λ), and halo concentration parameter (fc)
into particle initial conditions. These input parameters uniquely
set the rotation curve,V RC ( ), and radial scale length, hR, via the
analytic theory of Mo et al. (1998).
The dark matter and stars are represented in the galaxy

model using collisionless particles and are initialized by
stochastically drawing from analytic distribution functions.
The dark matter positions are initialized to follow a Hernquist
(1990) distribution, which closely matches the more commonly
used Navarro et al. (1996) fitting formula, but is more
analytically tractable. The star particle positions are initialized

Table 1
Simulations

Halo Parameters

M200 1.1 1012´ M

V200 150 km s−1

R200 206 kpc
fc 10
λ 0.04

Disk Parameters

M* 4.3 1010´ M

hR 3.4 kpc
hz 0.34 kpc

Bulge Parameters

MB 4.3 1010´ M

Resolution Parameters

xD 20 pc
nthresh 50 cm−3

NH 107

ND 107

NB 1.25 106´
mH 1.3 105´ M

mD 3.4 103´ M

mB 3.4 103´ M

Gas Fraction

LGF 10%
Fiducial 20%
HGF 40%

Note. All three simulations are initialized with the same halo, disk, bulge, and
resolution parameters.

3 http://dx.doi.org/10.13012/J8F769GV
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where M* is the mass of the stellar disk, hz is the vertical scale
height, z is the vertical coordinate, and R x y2 2= + is the
cylindrical radial coordinate. We consider gas fractions
f 0.1g = , 0.2, and 0.4, which we refer to as the low gas
fraction (LGF), fiducial, and high gas fraction (HGF) runs,
respectively (Table 1). Once the particle positions are
computed, the velocities are populated using a distribution
function that depends only on the local orbital energy E and
vertical component of the angular momentum Lz. The velocity
distribution function is assumed to be axissymetric, making it
strraightforward to locally solve the Jeans equation making use
of the known density distribution from above (see Springel
et al. (2005) for more details).

In addition to the stellar disk component, we also include a
bulge of mass MB. The bulge is initialized following a
Hernquist profile:
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where hB is a free parameter. The bulge-to-total mass ratio,
M M MB B( )*+ , is 0.1 in all three runs.
We include N 10H

7= halo particles, N 10D
7= particles in

the stellar disk, and N 1.25 10B
6= ´ particles in the stellar

bulge. All particles in each population have uniform masses.
For the halo population, the mass of each particle is
m M1.3 10 .H

5= ´  For the bulge and disk population the
particle masses are m m M3.4 10 .D B

3= = ´ 
Since makegalaxy produces initial conditions formatted

for the gadget smoothed particle hydroynamics (SPH) code,
special care must be taken to initialize the gas onto Enzoʼs
AMR grid structure. Rather than interpolating from the initial
conditions for the SPH particles, we instead initialize the gas
density following an analytic density profile:
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where M f MgG *= is the mass of the gaseous disk. The gas
velocities are initially axisymmetric, with the radial profile set
according to the circular velocity curve written out by
makegalaxy.

This departs somewhat from the procedure used by
makegalaxy to generate SPH initial conditions, where the
gas density distribution is assumed to be exponential in the
radial direction but the vertical extent is determined via an
iterative relaxation process to ensure the gas disk is initially in
equilibrium. This relaxation process assumes that the gas
pressure is moderated by a subgrid effective equation of state
model, which we do not employ in this study. In practice, the
gas in our simulations initially experiences a phase of violent
collapse and relaxes into a quasi-equilbrium state after the
gravitational instability has fully developed. This means the
precise state of the gas in the initial conditions is not terribly
important—the simulation “forgets” the gas initial conditions.
Furthermore, this choice also allows us to make an apples-to-
apples comparison with future isolated galaxy simulations that

make use of the public AGORA isolated galaxy initial
conditions.

2.2. N-body Dynamics, Hydrodynamics

Rather than making use of an analytic dark matter and stellar
potential (see, e.g., Dobbs et al. 2006; Tasker & Tan 2009), we
employ a live dark matter halo and stellar disk. This allows us
to follow the active response of the stars and dark matter to the
collapse of the gaseous disk. The particle dynamics are
implemented in Enzo using a standard particle-mesh scheme
(Hockney & Eastwood 1988). Particle positions and velocities
are updated according to the local gravitational acceleration
using a drift-kick-drift scheme.
Hydrodynamics are captured using the piecewise parabolic

method (PPM; Colella & Woodward 1984). PPM hydrody-
namics allows us to accurately capture strong shocks in a few
computational zones while also maintaining second-order
spatial accuracy. While the PPM method is formally second-
order accurate in space and time, Enzoʼs adaptive timestepping
scheme is only first-order accurate, so these calculations are
only first order accurate in time. In addition, after experiencing
intermittent instability using second-order interpolation, we
opted to degrade to first-order interpolation at AMR level
boundaries. This means that we are formally first-order
accurate in space, although these inaccuracies should only
show up at level boundaries.
Since the ∼200 km s−1 circular velocity of the galaxy

necessitates strongly supersonic flows in the galactic disk, we
make use of the dual energy formalism implemented in the
Enzo code (Bryan et al. 1995). In standard PPM hydro-
dynamics, the internal energy is not tracked—instead it is
derived from the total energy and velocity. When the kinetic
energy is much larger than the internal energy, this can lead to
spurious temperature fluctuations due to floating point round-
off error. To avoid this, Enzo tracks a separate internal energy
field that in effect provides extended precision to the total
energy field. This allows us to safely resolve the thermal
physics of the gas in a global simulation of a disk galaxy
without worrying about spurious temperature fluctutions due to
advection errors.

2.3. Initial Grid Structure and Refinement Criteria

Our simulations make full use of the AMR capabilities of the
Enzo code. Our refinement strategy is to focus computational
effort on the highest refinement level, while still adequately
resolving the dark matter halo so our estimate of the
gravitational potential in the neighborhood of the galactic disk
is accurate. Since the dark matter halo is spatially extended
compared to the disk, with the furthest dark matter particles
living 500 kpc away from the center of the galaxy, this
necessitates a hierarchically nested AMR structure.
To fully encompass the dark matter halo, we employ a cubic

simulation box with a width of 1.3 Mpc, and resolve the root
grid with 643 cells. In addition to the static root grid, we impose
5 additional levels of statically refined regions, enclosing
volumes that are successively smaller by a factor of 8.
In addition to the static refinement, we allow for an

additional five levels of adaptive refinement. To keep the
particles properly resolved at all times, we refine a cell if the
total mass in particles within the cell exceeds 1.7 106´ M, or
approximately 10 halo particles. This choice produces nested
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grid hierarchies in the region of the simulation dominated by
the dark matter halo where the grid hierarchy is determined
adaptively.

To keep the gaseous disk resolved at all times, we refine a
cell if the total mass in gas within the cell exceeds
2.2 104´ M. Finally, to avoid artificial fragmentation, we

ensure the Jeans length, c GsJ
2( ) ( )l p r= , is locally resolved

at all times by at least 32 cells, comfortably satisfying the
Truelove et al. (1998) criterion. To keep the Jeans length
resolved after collapse has reached the maximum refinement
level, we employ a pressure floor such that the Jeans length is
resolved by at least four cells on the maximum refinement
level. To avoid contaminating the hydrodynamics in situations
where we can use more resolution, the pressure floor is only
employed for cells on the maximum refinement level. The
pressure floor is implemented as a source of “extra” pressure
above the thermal pressure—an improvement over the Jeans
stabilization routines in the current stable version of Enzo
where the pressure floor is implemented by increasing the
temperature. The new pressure floor implementation will be
included in the next stable release of Enzo.

The Enzo AMR hierarchy is fully adaptive in space and time,
so regions that no longer satisfy the refinement criteria
described above will no longer be refined. We do not include
an explicit de-refinement criteria, instead allowing the refine-
ment criteria described above to fully control the AMR
hierarchy.

The particle refinement criteria we use are not as stringent as
the gas refinement criteria. If the gas were not present in the
simulation, the star refinement criteria alone would cause the
stellar disk to be refine to AMR level 7 (160 pc) resolution in
the outskirts of the disk and AMR level 8 (80 pc resolution in
the inner disk and bulge. Since the combined contribution of
the gas and stars determine the final resolution of the stars, in
general the stellar disk is resolved to 20 40 pc– resolution. In
particular, the resolution is higher near dense clumps and
filamentary structure in the gas. Early in the simulation, before
the gas has had a chance to be consumed by star formation, the
resolution is also generally higher.

Near the beginning of all three simulations, there are 3 107´
computational zones in total, with about1.5 107´ zones on the
maximum refinement level. Toward the end of the fiducial and
high gas fraction simulations, after much of the gas disk has
been consumed the number of zones on the maximum
refinement level decreases to 5 106~ ´ zones. We attribute
this decline to the collapse of gas into dense clumps and the
consumption of gas by star formation, leaving much of the
volume occupied by relatively rarefied gas.

2.4. Star Formation

Since the gaseous disks in our simulations are unstable to
fragmentation and collapse, it is necessary to include a subgrid
model that converts dense, collapsing gas into newly formed
star particles. Rather than using the built-in “standard” star
formation prescription in the Enzo code (Cen & Ostriker 1992;
The Enzo Collaboration et al. 2014), which is tuned for lower-
resolution cosmological simulations, we make use of a new star
formation prescription. To ease comparison with future papers
using the AGORA initial conditions, the prescription is based
on the suggested star formation model for the AGORA project
(Kim et al. 2014).

Briefly, the model assumes that the star formation rate
density in any cell is a function only of the gas density in that
cell, according to the following formula:

d

dt

f
t

:

0 : ,
4ff

thresh

thresh

( )
⎧
⎨⎪
⎩⎪

* *



r
r

r r

r r
=

>

where f* is the star formation efficiency, t G3 32ff p r= is
the local dynamical time, and m nthresh h threshr m= is the
threshold density for star formation. Here μ is the fixed mean
molecular weight, mh is the mass of a hydrogen atom, and
n 50 cmthresh

3= - is the threshold number density. Note that
since we do not advect species fractions for hydrogen and
helium ionization states, 1.4m = is constant over the full
simulation box. The value we choose is typical of the bulk of
the atomic ISM. In all of our simulations, we use f 1%,

*
= in

accordance with the observed low star formation efficiency
universally observed in star forming regions at a range of
density and size scales (Krumholz & Tan 2007; Krumholz
et al. 2012).
The star formation threshold is chosen such that the Jeans

length for gas on the maximum refinement level remains
resolved by at least four cells until the refinement reaches the
maximum level, assuming a temperature floor of 100 K,
approximately the minimum temperature we see in our
simulations. Once gas reaches the maximum allowed refine-
ment level, the gas is no longer well resolved, and we allow the
gas to convert itself into stars and apply a pressure floor to
prevent artificial fragmentation. Since we only barely resolve
the typical densities for the formation of molecular gas, we do
not employ a subgrid model to track the molecular gas fraction,
instead assuming that gas above the threshold density is fully
molecular. This follows Guedes et al. (2011), who found that
the precise value chosen for threshr was not important for
determining the star forming properties of a disk galaxy in a
cosmological zoom-in simulation, so long as the threshold
density is high enough that star formation occurs primarily in
dense clumps of gas rather than in the bulk of the ISM.
Practically speaking, Equation (4) cannot be solved by

spawning star particles at each timestep for all cells with
densities above the threshold density. Given a typical timestep
of 1000 years, and assuming a cell containing gas at the
threshold density, we would expect to be spawning star
particles with masses of only 0.01 M. Rather than spawning
star particles in every cell that exceeds the density threshold,
we instead impose a minimum star particle mass, and form stars
stochastically. In our scheme, a cell will form a star particle of
mass m M300sf =  with probability

P
f

x

m

dt

t
:

0 : ,
5

3

sf ff
thresh

thresh

( )
⎧
⎨⎪
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*
*



r
r r

r r
=

D
>

where dt is the simulation timestep on the maximum refinement
level. By stochastically creating according to Equation (5), the
time-averaged value of the star formation rate in each cell is
still given by Equation (4), while creating a reasonable number
of particles.
In Figure 1, we compare the star formation rate inferred from

the ages of star particles present at the end of each simulation
with the expected star formation rate measured by evaluating
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Equation (4) at 25Myr intervals. We see that there is good
agreement between the measured and predicted star formation
rate, with a maximum deviation of ∼7%. The implementation
of this star formation algorithm has been made publicly
available and will included in the next stable release of Enzo.

2.5. Heating and Cooling

To model the thermal physics of the gas in our simulations,
we make use of the Grackle cooling library4 (Kim et al.
2014; The Enzo Collaboration et al. 2014). The Grackle
cooling and heating routines were adapted from the chemical
and thermal physics implementation included in the Enzo
code. Relative to Enzoʼs implementation of thermal physics,
Grackle adds novel capabilities that we make use of in this
study. In addition, this choice eases comparison with future
simulations performed in other codes as well as simulations
performed for the AGORA comparison.

Grackle includes a primordial cooling routine based on
tabulated cooling rates as a function of density and tempera-
ture, avoiding the need to evolve separate fields for each
hydrogen and helium ionization state. In addition to cooling by
primordial species, we also include cooling due to metal line
emission. These cooling rates are inferred from tabulated rates
output by the CLOUDY code.

The disk is initialized to include a metal color field that
follows the initial gas distribution. All gas zones in the disk are
initialized with a solar metal fraction. The metal field is
passively advected along with the gas. We include a dynamical
metal color rather than assuming a fixed metal fraction in
anticipation of modeling the production of metals in simula-
tions with supernova feedback.

To properly model the thermal physics in a Milky Way-like
ISM, we include a prescription for heating due to electrons
released from dust grains by the photoelectric effect. This is
implemented as a constant heating rate of 8.5 10 erg s26 1´ - -

per Hydrogen atom applied uniformly throughout the simula-
tion box for gas below 104.3 K (Tasker 2011). This rate is

chosen to match the expected heating rate assuming a UV
background consistent with the solar neighborhood value
(Draine 2011).

2.6. Analysis

In order to analyze our simulations, we construct an
extensive post-processing pipeline using a combination of the
yt toolkit (Turk et al. 2011) and a set of custom python
analysis scripts that we have made publicly available on
Bitbucket.5 Details of the analysis pipeline, and how we
reconstruct various quantities of interest from the raw
simulation outputs, are described in Appendix A. In particular,
Appendix A gives our formal definitions of quantities that are
non-trivial to calculate, including velocity dispersions (Appen-
dix A.4), effective sound speeds (Appendix A.5), and Toomre
Q parameters (Appendix A.6).

3. QUALITATIVE OUTCOME

We present snapshots of the fiducial simulation at four times
in Figure 2 and snapshots of all three simulations at a fixed time
in Figure 3. Each figure displays the gas and stellar surface
density and effective sound speed as well as the combined
Toomre Q parameter.
The dynamics of all three simulations are similar. The

initially smooth gaseous disk quickly cools from the initial
temperature of 104 K to 200–300 K. The initially thermally
supported disk proceeds to collapse from vertically over the
course of the next 20–50Myr. Denser regions in the center of
the disk collapse first, followed by less dense regions further
out in the disk, with the precise collapse time determined by the
initial gas surface density at any given radius. Once the gas has
collapsed in the vertical direction, the disk remains very thin for
the rest of the simulation, with the bulk of the gas only one or
two cells (20–40 pc) away from the midplane. Our disks are
thus not well resolved in the vertical direction.
Once the gas has collapsed vertically, a combination of shear

and self-gravity shepherds the gas into filaments which in turn
collapse into isolated gravitationally bound clouds. Since these
simulations do not include feedback, these clouds survive more
or less permanently, only disappearing if they exhaust their gas
supply by converting gas into stars, or merge with one another.
As the gas in the gravitationally bound clouds is converted into
stars, massive star clusters form inside the clouds. Once the
initial period of collapse and fragmentation has passed, both the
gas and stars spontaneously align into clear spiral arms. Later,
as an increasing fraction of both the gas and stars collects inside
the gravitationally bound clumps, the spiral structure becomes
less clearly defined. These long-lived dense clouds are very
similar to those seen by Hopkins et al. (2012) in their
simulations with no feedback.
Gas in the innermost regions is stabilized against fragmenta-

tion by the presence of the bulge. Rather than forming
gravitationally bound clouds, the gas in the bulge quickly
stabilizes into a thin disk. Since the disk is above our density
threshold for star formation, the central disk disappears as it
converts itself into newly formed stars. We caution that star
formation in the bulge might be an artifact of our 20 pc
resolution, since we do not see any fragmentation there and the

Figure 1. Observed (solid lines) star formation rate as a function of time for all
three simulations. The black squares were calculated by directly measuring the
expected star formation rate in the fiducial simulation according to Equation (4).
The blue, orange, and gray lines were calculated by binning the star particles
that are dynamically formed in the simulation by their formation times. In the
bottom panel we plot the residual between the black squared and orange line in
the top panel. We find good agreement between the predicted and measured
star formation rate.

4 https://grackle.readthedocs.org 5 https://bitbucket.org/ngoldbaum/galaxy_analysis
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bulk of the gas in the bulge is at or above our star formation
threshold density.

The combination of gravitational collapse and shear induces
significant turbulent motion in the gas, with typical velocity

dispersions of 10–20 km s−1 in the portion of the disk that
participates in gravitational instability (R 15 kpc ). The hot,
low-density gas in the interarm regions exhibits slightly higher
turbulent velocity dispersions than the dense gas, but with

Figure 2. Time evolution of the gas and stars in the fiducial simulation. The quantities shown are, from top to bottom, gas surface density, effective sound speed of the
gas (including thermal and turbulent contributions), gas velocity dispersion, stellar surface density, stellar velocity dispersion, and total (gas plus stars) Toomre Q;
formal definitions for all quantities are given in Appendix A. The simulation time for each column is indicated at top and the spatial scale is indicated by the scale bar
at the bottom left. Each panel displays a region 25 kpc across centered on the galaxy.
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much lower typical Mach numbers. In the interarm region, the
effective sound speed is typically 100 200 km s 1– - and is
dominated by the thermal sound speed, while in the dense gas
the turbulent velocity dispersion dominates the effective sound
speed. Thermal sound speeds are high in the interarm regions
because these are heated by spiral shocks, and their low
densities leave them unable to cool effectively afterwards. In

contrast, the denser arm gas quickly cools back to its
equilibrium temperature. The stellar orbits do not experience
significant heating or dissipation, retaining the ∼ 40 km s−1

velocity dispersion present in the initial conditions. We also
note that the kinetic energy content of the interarm gas is
negligible compared to the gas in dense clumps, and does not
contribute significantly to the kinetic energy budget of the disk.

Figure 3. Same as Figure 2, but for each of the three different simulations at T 500 Myr.=
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The Toomre Q parameter tends to increase in time. In our
initial conditions for all three simulations, Q 1~ throughout
the disk. As soon as the gas is able to cool and begins to
collapse, Q 1. As collapse proceeds, the typical surface
density decreases and the degree of turbulence increases,
leading to Q steadily increasing in time. Regions in which
gravitationally bound clumps develop consistently exhibit
Q 1 , even at late stages, but, as we show below, azimuthal
averages of Q are always greater than one. The locally low
values of Q within the bound clumps can mostly be attributed
to very high gas and stellar surface densities in these regions.
We do not see any significant increase in the stellar velocity
dispersion in these regions, and we see only a modest increase
in the gas effective sound speed. See Section 4.1 below for
more discussion of how Q evolves with time.

The stellar and gas dynamics in all three simulations are
similar, but the detailed dynamics do vary somewhat as a
function of initial gas fraction. Increasing the gas fraction leads
to quicker collapse. Decreasing the gas fraction produces a
slower collapse in which the gas spends a longer amount of
time in filaments rather than dense clumps. Spiral arms are
more prominent in the LGF simulation, presumably because
they do not have enough time to be disrupted by the formation
of gravitationally bound clouds and accompanying star
clusters. The star forming portion of the disk is also more
compact, since regions at the outskirts of the disk are no longer
dense enough to cool and collapse.

The degree of gravitational instability displays a weak
dependence on the gas fraction. Since the high gas fraction run
is able to process a much larger fraction of the gas present in
the initial conditions, it reaches a higher typical Qtotal value due
to the lower typical gas surface densities in the depleted gas
disk. The LGF run exhibits less variation, with Qtotal ~ 1–3
throughout the disk, though this may merely reflect that Qtotal
rises more slowly with smaller initial gas fraction, and that we
have run only for a few orbits. In any case, in all three cases,
the disks are formally stable according to classical Toomre
analysis, with Q 1.total  We consider this state to be the final,
saturated result of gravitational instability unrestrained by any
form of feedback. We make the notion of what constitutes such
a steady state in our simulations more quantitative in
Section 4.2, where we discuss mass transport through the disk.

A robust feature of all of our simulations is that
gravitationally bound clouds form and then are unable to be
destroyed by any mechanism besides gas exhaustion. This
leads to the formation of large star clusters composed of stars
that formed dynamically in the simulations. These star clusters
in turn become a significant contribution to the mass
distribution in the midplane, creating substantial streaming
motions and departures from a smooth axisymmetric rotation
curve. In the companion paper (N. J. Goldbaum et al. 2015, in
preparation) we show that feedback capable of disrupting these
complexes is necessary to form realistic smooth disks and
prevent the formation of unrealistically massive star clusters.

4. RESULTS

4.1. Gravitational Instability

Since our simulated galaxies do not include a prescription for
star formation feedback, the primary driver for the dynamical
evolution of our model galaxies is gravitational instability.
While the initial conditions for our simulations are formally

stable, cooling allows the gas to quickly lose hydrostatic
support, leading to catastrophic collapse in the vertical
direction. In addition, our shearing self-gravitating disks are
susceptible to the Toomre (1964) instability.
This story can be inferred by inspecting Figure 4, where we

plot the time evolution of the azimuthal average of Q .total The
initially stable disk quickly becomes unstable (e.g., the regions
that show up in red in the bottom half of each subplot). The
instability leads to a radially expanding wave of collapsing gas.
Soon after, the gas collects in gravitationally bound clumps,
which proceed to migrate through the disk, both radially inward
and outward. The regions inside the gravitationally bound
clouds are formally unstable according to a local Toomre
analysis due to their very high surface densities. The
interclump regions reach relatively high values of Qtotal so
these regions are formally stable to collapse.
This process plays out in all three simulations, albeit with

varying collapse speeds and degrees of violence. The high gas
fraction case initially develops filaments, but by ∼200Myr of
evolution these have broken up into giant clumps everywhere
in the disk. As we lower the gas fraction, the transition to the
clump-dominated phase takes longer, and the clumps them-
selves become smaller. Nonetheless, all three simulations reach
similar clump-dominated regimes, which appears to represent
the fully saturated state of the gravitational instability.
We can see what is driving the evolution of Qtotal by

inspecting Figure 5. We show the evolution in Qtotal (top row)
along with the quantities that determine Q :total the gas and
stellar surface density and effective sound speed, as well as the
epicyclic frequency. We see that both the epicyclic frequency
and the stellar surface density and velocity dispersion show
little variation over the course of the simulations.

Figure 4. Time evolution of the azimuthally averaged Toomre Q parameter in
each of our simulations (see Equation (22)). This estimate includes the
combined contribution of both the gas and stars. The color scale is chosen such
that regions that are gravitationally unstable are colored red, regions that are
marginally stable are colored white, and regions that are stable are colored blue.
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On the other hand, the gas surface density and effective
sound speed show significant variation. The effective sound
speed tends to increase in time and the gas surface density
tends to decrease. Both of these effects drive a secular increase
in Qgas over the course of the simulation. In turn, this increase
in Qgas leads to the secular increase in Qtotal Eventually, once
the gas supply is exhausted, Q 1gas  , so Qtotal approaches Q .*

4.2. Mass Transport

Here we examine the radial flow of material in the disks of
our simulated galaxy models. We measure if there is any net
flow of material either from the galactic center outward or from
the outskirts inward. In addition, we examine the detailed radial
and time dependence in the gas mass flux.

In Figure 6, we present our measurements of the gas mass
flux as a function of radius and time. All three simulations
exhibit similar overall behavior. Initially, the models exhibit
significant ringing as the disks initially collapse and settle

down. In this stage the mass flux is dominated by rings of
material experiencing alternating bands of inward and outward
flow. After the initial collapse phase, the gas collects in
gravitationally bound clouds. For the rest of the simulation, the
mass flux rate is primarily determined by the inward and
outward flow of the gravitationally bound clumps. As spiral
arms develop, the gravitational potential in the disk begins to
develop non-axisymmetric components that tend to drive the
gas clumps both radially inward and outward.
Along with the detailed variation in the mass flux, we would

also like to know if there is any net mass flux once the disk has
settled down into a quasi-equilibrium state. To answer this
question, we make use of the time averaging algorithm
described in Appendix A.9. In this way we only consider the
mass fluxes measured above the blue lines in Figure 6, which
delineate the approximate time at which the disk has settled
into a steady state.
This averaging procedure results in the time-averaged mass-

flux measurements in the top panel of Figure 7. For each

Figure 5. Time averages of the Toomre Q parameter (top row), the surface density (second row), and effective sound speed (third row) for the gas and stars averaged
over three different periods (indicated at top) in the fiducial simulation. The bottom row shows the local epicyclic frequency κ, which does not vary significantly over
the course of the simulation. The evolution in Qtotal is primarily driven the evolution in Qgas, which in turn is driven by depletion in the gas supply and and increase in
the gas velocity dispersion.
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simulation, we plot the time-averaged mass flux as a function
of radius. We find that there is a net inward flux of gas at most
radii for all three model galaxies. The flux scales very roughly
with the gas fraction, with a typical mass flux of −0.3, −1.0,
and −2.0 M yr−1 mass flux in the LGF, fiducial, and HGF
cases, respectively.
Although the flow is inward at most radii in the disk, we note

that the outer edges of the disks instead show an outward mass
flux. (In Figure 7, this feature is outside the plotted region for
the HGF case, but is visible for the Fiducial and LGF cases.)
Comparing with Figure 4, we see that this outward mass flux
appears roughly at the boundary between the gravitationally
unstable region and the still-stable outer region of the disk.
Such a reversal of the mass flow direction at the transition
between the stable and unstable regions of a gravitationally
unstable disk is consistent with the predictions of Forbes et al.
(2014a). However, we caution that these outer regions have
been averaged over for the shortest times, and so the exact
value of the typical outward flux is uncertain.
We might expect that the inward flow of gas is sufficient to

supply the star formation in the inner regions of our model
galaxies. To see if this is the case, we plot the time-average of
the radially accumulated star formation rate in the bottom panel
of Figure 7. The mass flux in the top panel is sufficient to
supply the star formation in the bottom panel only if the mass
flux is greater than the cumulative star formation rate at any
given radius. Due to the very high star formation rates in these
simulations with no feedback (c.f. Figure 1), we find that the
inward flow of gas is insufficient to fuel the star formation rate
in these simulations.
However, we note that this is a result of the unphysically

high star formation rates that our simulations exhibit due to the
lack of star formation feedback. If we instead consider the star
formation rate that would be expected given the gas surface
density distribution combined with observed star formation
rates (e.g., Leroy et al. 2013), we reach the opposite
conclusion: our inflow rates are sufficient to fuel star formation
at observed levels. Indeed, our fiducial, Milky Way-like
simulation produces mass transport at a rate of 1~ M yr−1,
which is roughly the observed star formation rate in the Milky
Way (e.g., Chomiuk & Povich 2011). The question of whether
inflows and star formation can be matched simultaneously in a
simulation including feedback we defer to the companion
paper.

4.3. Gas Velocity Structure

Here we examine the detailed gas velocity structure in our
simulated galaxies. We are particularly interested in the radial
dependence in the effective sound speed, the anisotropy in the
velocity dispersion, and the relative contribution of turbulent
motions and thermal sound speed to the effective sound speed.
In Figure 8 we present the time evolution of the azimuthally
averaged effective sound speed in each of our simulations. In
all three simulations, gravitational instability alone is able to
drive substantial turbulent velocity dispersions in the inner
disk. The outer, gravitationally stable disk is characterized by
much lower velocity dispersions. We also note that the typical
velocity dispersion scales with the initial gas fraction. This may
be interesting for studies of high-redshift gas disks, which are
known to exhibit substantial turbulent velocity dispersions.
To obtain a more complete picture of the velocity structure in

our simulations, we look in more detail at the time-averaged

Figure 6. Gas mass flux as a function of radius and time for each of our
simulations. We define Mgas˙ such that positive values correspond to outward
radial flow while negative values correspond to inward radial flow. The blue
line indicates where we expect the disk has fully transitioned to an equilibrium
condition, “forgetting” about the initial transients. Data below the blue line is
excluded from the time averages plotted in Figure 7.

Figure 7. Time averaged mass flux (top panel) and radially cumulative star
formation rate (bottom panel) as a function of galactocentric radius for all three
simulations. For the top panel, positive values correspond to outward radial
flow while negative values correspond to inward radial flow. In all cases there
is a significant net inward flow of material toward the galactic center in the
inner galaxy.
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velocity structure in the fiducial simulation. We perform the
same sort of time averages described in Appendix A.9,
focusing on the velocity dispersion, sound speed, effective
sound speed, and velocity anisotropy.

We present the results of this time averaging in Figure 9. In
the top panel, we plot the average effective sound speed as a
function of radius, along with the 1σ dispersion in the effective
sound speed at any given radius. The effective speed is
typically of order ∼20 km s−1, with a gradual radial decline
comparable to what is observed in HI maps of nearby galactic
disks (see the discussion and references in Section 1.1). This is
perhaps surprising given that feedback processes are often
invoked as an energy source for turbulence. Instead, we find
generically that gravitational instability alone is sufficient to
drive substantial turbulent velocity dispersions, more than
enough to match observed gas velocity dispersions in resolved
observations of galactic gas kinematics.

Since the averages used in these profiles are mass weighted,
the hot low-density interarm regions do not contribute
significantly. As can be seen by inspecting Figure 2, the
interarm gas has sound speeds of order 100 km s 1- , but as we
show in Figure 9, a typical gas parcel (in a mass-weighted
sense) has an effective sound speed of order 20 km s .1- We
make use of mass-weighted averages so that the measured
effective sound speed profiles are representative of the kinetic
energy content of the gaseous disk.

Our galaxy models look quite different from real galaxies
when we look at the anisotropy in the velocity dispersion
components. To investigate this, in the middle panel of Figure 9
we present the time-averaged, azimuthally averaged ratio of the
vertical velocity dispersion to the in-plane velocity dispersion
in the fiducial galaxy model, 2 .v z v d, ,s s We include the factor
of 2 in the numerator so that a value of unity would
correspond to a flow field with isotropic turbulence, in which

the dispersion in the two in-plane components of the velocity
field account for exactly twice as much kinetic energy as the
one out-of-plane component. In our model galaxies, the we find
that this ratio is approximately 0.5 over the bulk of the disk,
indicating that in-plane motions contribute substantially more
to the turbulent kinetic energy. This can also be seen in the
thickness of our disks, where we typically find that the scale
height is of order one or two cell spacings on the maximum
refinement level. The extreme two-dimensional (2D) disks we
form are likely an artifact of the lack of feedback in our
simulations.
Finally, we show in the bottom panel of Figure 9 how the

effective sound speed we measure in the inner regions of the
gaseous disk is primarily due to bulk turbulent motions. The
small sound speed we measure is typical of the dense gas in our
simulation, which cools to temperatures of~ 200–300 K due to
metal line cooling. The large velocity dispersions we measure
indicates that the dense gas participates in large-scale turbulent
motions.

5. DISCUSSION AND CONCLUSIONS

5.1. Turbulence in a Gravity-dominated ISM

Our simulations show, in agreement with previous numerical
studies by Agertz et al. (2009, 2015) and Bournaud et al.
(2010), that gravitational instability is capable of driving
turbulence and stabilizing a disk galaxy at Q 1 even in the

Figure 8. Time evolution of the azimuthally averaged velocity dispersion for
the gas in each of our simulations. Gravitational instability alone is sufficient to
drive substantial ( 10 km s 1> - ) velocity dispersions in all three simulations.

Figure 9. Time-averaged effective sound speed (top and bottom panel) and
velocity dispersion anisotropy (middle panel) for the gas in our fiducial
simulation. Shaded blue regions indicate the 1σ scatter at a fixed radius. In the
bottom panel, we show the contribution to the effective sound speed due to the
velocity dispersion and sound speed. In the inner disk, bulk velocity dispersion
dominates the effective sound speed, while at large radii the thermal component
dominates. Note that these are mass-weighted averages so the hot, low-density
interarm medium does not contribute significantly to these profiles.
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absence of any additional energy input from star formation.
This state is characterized by a velocity dispersion that
decreases somewhat with radius from 20 km s−1 near galactic
centers to 10 km s−1 at large radii, in good agreement with
observed gas velocity dispersions in nearby disk galaxies
(Tamburro et al. 2009; Ianjamasimanana et al. 2015). Indeed,
the only possibly significant disagreement between the
kinematic behavior found in our simulations and that observed
in nature is that our galaxies’ velocity dispersions are
anisotropic by a factor of ∼2, leading to a scale height that is
too small. Nonetheless, our results suggest that, even if stellar
feedback is required to explain the vertical velocity distribution
of the ISM, it need not be the dominant energy source for all
turbulent motions. Gravity alone can generate the required in-
plane motion.

It is interesting to consider our simulations in light of the
arguments commonly made that star formation feedback is the
dominant driver of turbulence in galaxies. The primary
observational argument for feedback driving turbulence is that
there is a correlation between star formation rate and velocity
dispersion, both within galaxies (Tamburro et al. 2009) and
from galaxy to galaxy (Green et al. 2010). However, our
simulations would also display precisely such a correlation: the
regions of our galaxy that have the highest velocity dispersion
are also the most strongly star-forming, and our models with
the highest gas fractions show both the highest star formation
rates and the highest velocity dispersions. The point is not that
feedback cannot drive turbulence, simply that a correlation
between star formation and turbulence does not necessarily
imply a causal relationship between the two. A correlation of
this sort can be produced even when there is no feedback.

The fact that galaxies can maintain Q 1 and continuously
drive strong turbulence without star formation feedback calls
into question analytic models in which galaxies’ star formation
rates are set by the need to maintain Q=1 (e.g., Thompson
et al. 2005; Faucher-Giguère et al. 2013). We find that galaxies
can maintain Q 1 regardless of the level of star formation
feedback. Feedback is still needed to produce star formation
rates in agreement with observation and drive out-of-plane
motions, but the condition that determines the level of feedback
and star formation appears to be completely decoupled from the
need to maintain Q 1.

5.2. Fueling Star Formation, From z 2~ to Today

The primary result of our simulations is that gravitational
instability-driven turbulence is capable of inducing significant
bulk mass flows in galaxies, leading to a migration of mass
inward from the passive outer regions of disks toward their
actively star-forming centers. The inward mass transport rates
we measure in our simulated galaxies are comparable to the star
formation rates of typical L* galaxies. While there has been a
great deal of work done on such inward migration in the
context of the observed giant clumps in z 2~ galaxies (e.g.,
Genzel et al. 2008; Bournaud & Elmegreen 2009; Cresci
et al. 2009; Dekel et al. 2009b), our simulations show that a
completely analogous phenomenon can operate for Milky
Way-like galaxies at z=0.

An important implication of galaxies’ ability to transport gas
inward at rates comparable to their star formation rates is that
their available fuel for star formation is their full gas reservoir,
not simply the material in the actively star-forming inner disk.
This is significant because, while gas depletion times are much

less than the Hubble time only considering inner disk gas, the
same is not true for many galaxies at z=0 if we consider the
full gas reservoir. For a volume-limited sample of local star-
forming galaxies with stellar masses in the range

M Mlog 10 11.5( ) –* = , Saintonge et al. (2011) find typical
HI depletion times of 3 Gyr~ , with no strong dependence on
stellar mass, and H2 depletion times that range from

0.5 3 Gyr–~ from the lowest to the highest stellar masses in
the sample. If galaxies have access to their full extended HI
reservoirs to fuel star formation, then their total depletion times
are simply the sum of these, implying that galaxies with stellar
masses above 1011~ M have depletion times of ∼6 Gyr. This
is still less than the Hubble time, but not by much. Galaxies in
this mass range could receive no new gas supply after z 1~
and still fuel all their present star formation, particularly once
the contribution from stellar recycling is included. Addition-
ally, although galaxies with masses in the range

M Mlog 10 11( ) –* = have shorter molecular gas depletion
times, the atomic gas depletion times are also 3 Gyr.~ If these
galaxies are also able to transport atomic gas from their
outskirts into the active star-forming centers, they could supply
all of their star formation without accreting any gas at all
since z 0.5.~
We are therefore forced to conclude that strong equilibrium

between gas inflow, star formation, and outflows may, by
z=0, exist only for dwarf galaxies with M M109.5

*  , since
dwarfs are able to eject mass out of their star forming regions
via high mass-loading factor winds. This means the mass range
M 10 109.5 10.5–* ~ M, which corresponds to where galaxies
are most efficient at converting baryons to stars (Behroozi
et al. 2013), may not necessarily be in a state of near-
instantaneous equilibrium between gas accretion, star forma-
tion, and outflows. Galaxies with masses above M M109.5

* ~ 
may be far from equilibrium, contradicting one of the central
assumptions of “bathtub” models of galaxy formation (e.g.,
Bouché et al. 2010; Lilly et al. 2013; Forbes et al. 2014b; Mitra
et al. 2015).
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APPENDIX A
ANALYSIS

Here we describe the analysis pipeline used to post-process
our simulations.
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A.1. Grid Slabs

Rather than analyzing the AMR data structures directly, we
instead perform the bulk of our analysis using data interpolated
onto uniform resolution meshes with 20 pc cell spacings
encompassing the galactic disk out to a radius of 20 kpc and to
a height of 1.25 kpc above and below the disk. This choice
significantly eases the implementation of the various analysis
tasks we want to perform on the data without introducing a
significant amount of error. Since the disk is very thin, a
vertical extent of only 1.25 kpc comfortably encloses the gas
and stellar disk at all times.

To interpolate the gas data onto a uniform resolution grid, we
make use of the smoothed covering grid object in yt. This
operation uses cascading trilinear interpolation to represent an
AMR data set at a uniform resolution. The fields representing
gas density, the velocity vector components, and the gas
thermal energy were extracted from the raw simulation outputs.
Since the gravitational potential is not normally written to disk,
we made use of the -g command-line option of the Enzo code
to solve the Poisson equation using the gravity in Enzo during
post-processing.

So that we can apply the same analysis tasks we use for gas
fields defined on Enzoʼs AMR mesh to N-body star particles in
our data sets, we opt to analyze stellar fields by depositing the
star particle data onto the uniform resolution grids slabs. In all
cases, we use cloud-in-cell interpolation onto grids with the
same shape and resolution as those used for the gas data. Our
choice of uniform resolution slabs leads to issues with data
sparseness in the outskirts of our simulated galaxies but is a
good match for the density of particle data within a radius of
10 kpc.

A.2. Rotation Curve and Epicyclic Frequency

Because our simulations use a live stellar and dark matter
halo, the rotation curve of our galaxy is not fixed, and must
instead be computed self-consistently from the simulation
outputs. Following Binney & Tremaine (2008) and Shu (1992),
we note that for an axisymmetric system with gravitational
potential field R z,( )F , we can define the circular frequency

R
R R

1
, 6

R

2

,0

( ) ( )
( )

⎜ ⎟⎛
⎝

⎞
⎠W =

¶F
¶

and epicyclic frequency

R
R

R R
d

dR

2
2 . 72 2( ) ( )⎜ ⎟⎛

⎝
⎞
⎠k =

W
W +

W

This implicitly assumes the disk is thin so we can infer the
circular velocity curve by only considering the gravitational
potential in the midplane.

To measure the rotation frequency, we extract the gravita-
tional potential in a slice at the midplane of the galaxy, and
evaluate the partial derivative of the potential with respect to x
and y coordinates using a centered finite difference of the
gravitational potential. We then form a 2D array of the gradient
with respect to the cylindrical R coordinate out of the images of
the x and y gradients. This results in a local estimate of the
rotation frequency based on the local radial gradient in the
gravitational potential. To average over local departures from
axissymmetry, we create our final estimate of the rotation
frequency by fitting a spline interpolator to a binned version of
our local estimate of the circular frequency as a function of

radius. This produces a binned 20 pc resolution estimate of the
rotation frequency as a function only of cylindrical radius.
Finally, we calculate the circular velocity via

v R . 8c ( )= W

A.3. Surface Density

Several different quantities we are concerned with are
defined in terms of the projection of our simulation data. For a
3D density field x y z, ,( )r we can define the surface density,

x y dz, . 9( ) ( )ò rS =
-¥

¥

Here ρ represents the mass density of gas or stars, which we
denote as gasr and

*
r below. Both quantities are defined on the

uniform resolution grid slabs discussed in Appendix A.1.
Discretizing ρ into a uniform resolution 3D array, which we

denote as ijkr , the continuous definition of the surface density
reduces to

z, 10ij
k

N

ijk
0

z

( )årS = D
=

where zD is the cell spacing the vertical direction. Since our
grid slabs only include data within 1.25 kpc of the disk
midplane, we are implicitly assuming that gas well off the
midplane does not contribute significantly to the surface
density.
We introduce the notation, q zá ñ , to represent the discrete

mass-weighted projection operator. The result is a uniform
resolution 2D array, where the i j, resolution element can be
found by computing,

q q z
1

. 11z ij
ij k

N

ijk ijk,
0

z

( )årá ñ =
S

D
=

This notation allows us to write several of the definitions below
in a compact form.

A.4. Velocity Dispersion

Since turbulent motions are a significant component of the
energy budget in the ISM, we would like to directly measure
the turbulent kinetic energy in our simulations. Since our
simulations are a discretized representation of a continuous
underlying system, we can only estimate the velocity
dispersion by comparing velocity values in cells contained
within a moving window several cells across. So that variations
in the rotation curve over the extent of the window do not tend
to inflate the measured velocity dispersions, we define the
velocity of streaming motions

v v v R . 12c ( ) ˆ ( )d f= -

To simplify notation in our definition of the velocity
dispersion, we define the discrete operator

C x x , 13ijk
k k

k

j j

j

i i

i

i j k
2

2

2

2

2

2

( ) ( )å å å=
¢= -

+

¢= -

+

¢= -

+

¢ ¢ ¢

where x is a field defined on the uniform resolution mesh. This
is equivalent to a discrete convolution of x using a cubical top-
hat kernel function. The top-hat kernel includes 5 cells, so the
spatial scale of the convolution is 100 pc. Using this notation,
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our estimate of the velocity dispersion due to motions in the x
coordinate, vxd , can be written

C C v C v

C
, 14x ijk

x x
,

2 2( ) ( )( )

( )
( )s

r r d r d

r
=

-

where vxd is the x component of the streaming velocity vector
v.d The expressions for the y and z velocity dispersions are
analogous. We write the variance in terms of the convolution
operator since this form lends itself to faster one-pass
parallel reduction. This result can be derived from the definition
of the weighted variance for a sampled quantity with
measurements xi and weights wi, and weighted mean xw¯ ,

w x x w
i

N
i i w i

N
i

2
1

2
1

( ¯ )å ås = -= = by expanding the squared
term and substituting for the definition of the weighted mean.

We use the same definition for stellar velocity dispersions,
but rather than calculating the dispersion on a cell-by-cell basis,
we instead iterate over particles, performing a running
dispersion calculation by depositing particle densities and
velocities into accumulating arrays. This uses more memory,
but is substantially faster for the particle counts in our
simulations. Like the gas velocity dispersions, the stellar
velocity dispersion is computed on a spatial scale of 100 pc.

Finally, we calculate the projected velocity dispersions by
performing a weighted projection of the turbulent kinetic
energy density:

. 15v x y z z

2 2 2 ( )s s s s= + +

In addition, to estimate the relative contribution of in-plane and
out-of-plane turbulent motions, we separately define the in-
plane velocity dispersion

, 16v d x y z
,

2 2 ( )s s s= +

and the out-of-plane velocity dispersion

. 17v z z z
,

2 ( )s s=

A.5. Effective Sound Speed

We can define an effective sound speed that takes into
account both gas pressure and turbulent pressure,

c c 18v seff
2 2 ( )s= +

For collisionless fluids, c veff s= , but for the gaseous
component we must calculate the sound speed. In practice,
we do this in terms of the weighted projection of the thermal
energy density e,

c e1 , 19s z( ) ( )g g= - á ñ

where 5 3g = is the adiabatic index.

A.6. Toomre Q

Using the derived data we introduced above, we can
compute the Toomre Q parameter for both the gas,

Q
c

G
20gas

eff

gas
( )k

p
=

S

and stars,

Q
G3.36

. 21v, ( )*
*

*

s k
=

S

We also attempt to estimate the degree of gravitational
instability due to both the gas and stars. We make use of the
formula derived by Romeo & Wiegert (2011) that takes into
account the separate contribution of the gas and stars as well as
their finite thickness. In this formalism,

Q

W

T Q T Q
T Q T Q

T Q
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T Q T Q

1

1
:

1
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, 22
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where T 0.8 0.7 z ds s= + , and W 2 .gas
2

gas
2( )* *s s s s= +

A.7. Scale Height

For a fluid with local mass density ρ, we define the scale
height h such that

dz e dz1 . 23
h

0

1

0
( ) ( )ò òr r= - -

¥

Here the z coordinate is perpendicular to the disk and centered
on the disk midplane. Since the fluid distribution is not
necessarily symmetric in z, the z coordinate of the midplane is
not constant, and the scale height above and below the
midplane might not be equal. In practice, we take the true scale
height h to be the arithmetic mean of the scale heights
measured above and below the midplane.
We generate maps of of the scale height by individually

processing z-aligned pencil stacks of cells. We calculate a
running sum of the gas mass along each pencil stack and note
the z locations where the surface density equals one of e2 1( ) S- ,

2S , and e1.0 2 .1( ( ) )- S- We use linear interpolation in z to
estimate the intra-cell locations where the running sum exceeds
each critical value. Finally, we calculate a single scale height
estimate by averaging the “top” and “bottom” estimates.

A.8. Radial Mass Flux

For a cylindrical test volume V of radius R, the flux of mass
across the surface of the cylinder is

M R v dz d . 24r
0

2
˙ ( )ò ò r q=

p

-¥

¥

In practice, we calculate this quantity using a discrete
approximation based on our interpolated data defined on
uniform resolution grid slabs. Here we can take advantage of
the cylindrical symmetry of the problem to substantially reduce
the computational cost of this calculation. If we consider a
single x–y slice through our grid slab, it is a straightforward
geometric problem to find the set of cells in this slice that the
cylindrical test volume intersects.
If we define a one-dimensional index l N0,[ ]Î where N is

the total number of cells in the x–y plane that intersect with the
circular test region, we can approximate

M v z. 25
k

k

l

N

lk r lk l
0 0

,

max

˙ ( )åår q» D D
= =
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Here l maps to a set of unique coordinates in the 2D slice of the
3D grid slab and k indexes along the z direction in the grid slab.
One can think of l as a map to a single pair of i j, indices for the
x and y rows in our grid slice. The problem of calculating the
radial mass flux reduces to calculating the angles subtended by
each cell .lqD Since we ignore gas well off the midplane, this
implicitly assumes that the mass transport at large heights
above and below the midplane is small.

Doing this at many different radii allows up to map how the
radial mass flux varies with galactocentric radius. In practice,
we choose a set of 1000 nested test cylinders, binned evenly in
radius with a spacing of 40 pc.

A.9. Time Averaging

We are interested in the time-average behavior of azimuth-
ally averaged quantities, both to compare to 1D models of
galaxy formation and also to capture the large-scale behavior of
our simulations over long periods of time. As we show in the
main text, the internal structure of our simulated galaxies is
initially dominated by transient disturbances. After several
galactic rotation periods, the disks settle down and reach a
quasi-equilibrium state in which the global structure is more or
less static. Since the galactic rotation period is an increasing
function of radius, the places where we expect the disk to be
settled corresponds to a wedge-shaped region of radius-time
phase space.

For any azimuthally averaged quantity x r t,( ), we define its
time average, a function of radius only, as

x r t
t t ar

x r t dt,
1

, , 26t
t ar

t

max 0 0

max

( )
( )

( ) ( )òá ñ =
- + +

where tmax is the simulation time at the end of the simulation
(600Myr for all three simulations presented here) and a and t0
are constants that define the shape of the “averaging wedge” as
denoted by the blue lines in Figure 6. In practice we determine
these constants “by eye” based on inspection of the simulation
results.
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