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ABSTRACT
Over the past 10 Gyr, star-forming galaxies have changed dramatically, from clumpy and gas
rich, to rather quiescent stellar-dominated discs with specific star formation rates lower by
factors of a few tens. We present a general theoretical model for how this transition occurs, and
what physical processes drive it, making use of 1D axisymmetric thin disc simulations with an
improved version of the Gravitational Instability-Dominated Galaxy Evolution Tool (GIDGET)
code. We show that at every radius galaxies tend to be in a slowly evolving equilibrium state
wherein new accretion is balanced by star formation, galactic winds and radial transport of
gas through the disc by gravitational instability-driven torques. The gas surface density profile
is determined by which of these terms are in balance at a given radius – direct accretion is
balanced by star formation and galactic winds near galactic centres, and by transport at larger
radii. We predict that galaxies undergo a smooth transition from a violent disc instability
phase to secular evolution. This model provides a natural explanation for the high velocity
dispersions and large clumps in z ∼ 2 galaxies, the growth and subsequent quenching of
bulges, and features of the neutral gas profiles of local spiral galaxies.

Key words: galaxies: evolution – galaxies: ISM – galaxies: kinematics and dynamics –
galaxies: structure.

1 IN T RO D U C T I O N

Historically astronomers have studied the evolution of galaxies
through changes in their stellar populations. The real action, though,
takes place in the gas phase. However, it is only recently that obser-
vations in the radio have had sufficient sensitivity to detect molecu-
lar gas in emission at high redshift, and sufficient resolution to map
both molecular and atomic gas in great detail for nearby galaxies.
Integral field and grism spectroscopy of Hα have also opened a
new view on the spatial distribution of star formation (SF) and gas
kinematics at z ∼ 1–2.

Numerous surveys have shown that the specific star formation
rates (sSFRs, the star formation rate divided by the stellar mass)
of Milky Way (MW) mass galaxies have decreased by roughly a
factor of 20 since z = 2. With the wide acceptance of � cold dark
matter (�CDM) cosmology, which entails the hierarchical growth
of dark matter haloes, it became common lore that mergers were
a major driver of this dramatic change in the nature of galaxies.

� E-mail: jforbes@ucolick.org
†Max Planck Fellow.

More recently though, the small scatter in the correlation between
the stellar mass M∗ and the star formation rate (SFR, the star-
forming main sequence) for galaxies out to z = 2 has suggested that
most stellar mass growth occurs in galaxies that are not undergoing
dramatic merger events, but rather in typical-looking discs (e.g.
Noeske et al. 2007; Rodighiero et al. 2011; Kaviraj et al. 2013).
Maps of Hα emission in main-sequence galaxies confirm that SF
occurs in radially extended discs at z ∼ 1 (Nelson et al. 2013).

Even though the higher SFRs at z ∼ 2 are unlikely to be caused
by mergers, galaxies where the sSFRs are so much higher than in
local galaxies must be dramatically different. This has been verified
directly by gas-phase observations, which show that these galaxies
are gas rich (Tacconi et al. 2010, 2013), highly turbulent (Cresci et al.
2009; Förster Schreiber et al. 2009) and gravitationally unstable
(Burkert et al. 2010; Genzel et al. 2011). These differences are also
reflected in the optical morphologies, which are distinctly clumpy
(Elmegreen, Elmegreen & Hirst 2004; Elmegreen et al. 2005).

High-resolution hydrodynamical simulations (Bournaud,
Elmegreen & Martig 2009; Ceverino, Dekel & Bournaud 2010)
have strongly suggested that the reason why these galaxies are so
different from low-redshift discs is rapid gas accretion from the
cosmic web through cold dense filaments (Dekel et al. 2009a),
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which in turn leads to galaxies with low values of the Toomre Q
parameter (Toomre 1964),

QToomre = κσd

πG�d
. (1)

Here κ(r) = √
2(β(r) + 1)	(r) is the epicyclic frequency, which

is roughly comparable to the angular frequency 	, depending on
the local power-law slope of the rotation curve, β = d ln vφ/d ln r.
The velocity dispersion and surface density of the disc material
are σd and �d, respectively. This instability has dramatic effects
on the dynamics of the disc (Dekel, Sari & Ceverino 2009b). In
regions where QToomre � 1, the disc is unstable to axisymmetric
perturbations on a scale λ ∼ σ 2

d /G�d, leading to clumps of this
characteristic size. The clumpiness of the disc will in turn drive tur-
bulence through the random torques exerted by the inhomogeneous
gravitational field on material in the disc. The ultimate source of
this kinetic energy is the gravitational potential of the galaxy, so
mass must flow inwards (e.g. Gammie 2001; Dekel et al. 2009b)
(though some will flow outwards to conserve angular momentum).
As a result of this, the turbulent velocity dispersion σd, and hence
QToomre, is increased, so given a sufficient gas supply, the value of
QToomre will be self-regulated to a marginally stable value of order
unity.

Alternative scenarios for driving the turbulence and producing
clumps have been explored by other authors. Genel, Dekel & Cac-
ciato (2012) constructed a simple model for the scenario in which
the turbulence is driven by the kinetic energy of material as it ac-
cretes on to the disc (see also Elmegreen & Burkert 2010). The
details of the origin of the clumpy morphologies have also come
under recent theoretical and observational investigation, and the
importance of ex situ clumps from minor mergers is not negligi-
ble (Mandelker et al. 2013). Supernovae (SNe; Joung, Mac Low
& Bryan 2009), radiation pressure (Krumholz & Thompson 2012,
2013) and the two working in tandem (Agertz et al. 2013), being the
primary sources of energy outside of gravitational potential energy,
have also been studied as drivers of turbulence and outflows.

Undoubtedly all of these processes occur. All of the sources of
stellar feedback suffer from a great deal of uncertainty in the de-
gree to which they couple with the interstellar medium (ISM), and
typically require extremely high-resolution hydrodynamical simu-
lations to model properly. The highest resolution simulations to date,
those of Krumholz & Thompson (2012, 2013) for radiation pressure
and those of Joung et al. (2009) for SNe, suggest that these sources
of turbulence are unable to produce the high velocity dispersions
observed in z ∼ 2 discs. The gravitational instability (GI) scenario
has the advantage that it is difficult to avoid; if QToomre � 1, gas
will collapse and drive turbulence. In fact, high-resolution hydro-
dynamic simulations identify gravitational instability as the primary
regulator of the disc and ISM (starting with Bournaud et al. 2010).
Simple analytic arguments also suggest that the GI scenario leads to
the correct behaviour of σ/vcirc over time, whereas the direct kinetic
energy injection scenario does not (Genel et al. 2012). Moreover,
even z = 0 disc galaxies have values of QToomre (when corrected
for multiple components and finite disc thickness) of order unity
(Romeo & Wiegert 2011).

In this work, we build on the physical picture presented in simple
toy models (Dekel et al. 2009b; Cacciato, Dekel & Genel 2012) of
the GI and how it evolves over time. Krumholz & Burkert (2010)
developed a formalism to show how gravitationally unstable discs
behave as a function of radius in a steady state and how quickly
the discs approach the steady state. In Forbes, Krumholz & Burkert
(2012, hereafter F12), we extended the time-dependent numerical

model of Krumholz & Burkert (2010) to include SF, stellar migra-
tion and metallicity evolution to give a realistic picture for how
galaxies evolve over cosmological times with all these processes.
In this work, rather than focusing on the stellar populations, we ex-
plore what sets the gas distribution. Our model includes a number
of improvements over the models presented in F12 which we dis-
cuss in detail in Appendix A, and a new stellar migration formalism
(Appendix B).

One of our goals here is to understand the connection between
the high-redshift star-forming galaxies and their z = 0 descendants.
The two galaxy populations are vastly different in terms of their
gas fractions and sSFRs, yet remarkably similar in morphology.
Recent z = 0 measurements of the structure of gas in nearby spirals,
The H I Nearby Galaxy Survey (Walter et al. 2008) and the HERA
CO-Line Extragalactic Survey (Leroy et al. 2009), have provided
unprecedented high spatial resolution data. These data have been
fundamental in our understanding of SF, and Bigiel & Blitz (2012)
recently showed that these galaxies exhibit a universal gas surface
density profile with remarkably small scatter.

The general problem of how to connect high-redshift galaxy pop-
ulations to their low-redshift counterparts has been approached for
the past few decades with semi-analytical models (SAMs). These
models are generally built on top of dark matter merger trees con-
structed from N-body cosmological simulations. Each galaxy is
typically treated as a simple system described by a few quantities,
e.g. cold and hot gas mass, stellar mass, black hole mass and the
entire population evolves according to parametrized recipes for gas
cooling, SF, stellar feedback, black hole growth, mergers, etc. With
a few exceptions [van den Bosch & Swaters (2001) with subsequent
work by Dutton et al. (2007), Dutton & van den Bosch (2009) and
the simpler Fu et al. (2010)], SAMs have not tracked quantities as a
function of radius (or more accurately specific angular momentum).
The only model where matter can change its specific angular mo-
mentum (Fu et al. 2013) does so in an ad hoc way with no physical
justification. This work attempts to fill this void without resorting to
extremely expensive 3D hydrodynamical simulations, which must
necessarily be either of very low resolution to see a large number of
galaxies (e.g. Davé, Oppenheimer & Finlator 2011) or one galaxy
at a time (e.g. Guedes et al. 2011).

In Section 2, we review the equations solved by our 1D code.
The results of a wide range of simulations done with the code are
presented in Section 3. We discuss the implications in Section 4 and
summarize in Section 5.

2 TH E GIDGET CODE

Our one-dimensional disc galaxy evolution code, Gravitational
Instability-Dominated Galaxy Evolution Tool (GIDGET),1 is de-
scribed in more detail in F12. The code tracks the surface density,
velocity dispersion and metallicity of one gas component and one or
more stellar components, as a function of radius and time. The fol-
lowing subsections will describe the evolution equations for these
quantities in some detail; we include a comprehensive list of all
parameters used in this study, defined below, in Table 1. The most
important physical ingredients are SF, external accretion on to the
disc and radial transport of gas through the disc.

1 The source code repository is freely available from http://www.
johncforbes.com/gidget.html

http://www.johncforbes.com/gidget.html
http://www.johncforbes.com/gidget.html


1554 J. C. Forbes et al.

Table 1. An exhaustive list of all parameters used in this study.

Parameter Fiducial value Plausible range Description

Gas migration (Section 2.1)
η 1.5 0.5–4.5 (3/2) kinetic energy dissipation rate per scaleheight crossing time
QGI 2 1–3 Marginally stable value of Q
Tgas 7000 K 3000–104 Gas temperature; sets the minimum gas velocity dispersion
αMRI 0.01 0–0.1 Value of Trφ/ρσ 2

sf without GI

Rotation curve (Section 2.2)
vcirc 220 km s−1 180–250 Circular velocity in flat part of the rotation curve
rb 3 kpc 0–10 kpc Radius where the rotation curve transitions from power law to flat
β0 0.5 0–1 Power-law slope of vφ (r) at small radii
n 2 1–5 Sharpness of the transition in the rotation curve

Star formation (Section 2.3)
εff 0.01 0.003–0.03 SF efficiency per freefall time in the Toomre regime
fH2,min 0.03 0.01–0.1 Minimum fH2

tSC 2 Gyr 1–3 Gyr Depletion time of H2 in the single-cloud regime
fR 0.54 0.4 + Mass fraction of a zero-age stellar population not recycled to the ISM
μ 0.5 0–2 Galactic winds’ mass loading factor

Metallicity (Section 2.4)
y 0.054 0.05–0.07 Mass of metals yielded per mass locked in stellar remnants
ξ 0 0–1 Metallicity enhancement of galactic winds
ZIGM 0.1 Z� = 0.002 (0.01–1) Z� Metallicity of initial and infalling baryons
kZ 1 0.3–3 Amplitude of metallicity diffusion relative to Yang & Krumholz (2012)

Stellar migration (Appendix B)
Qlim 2.5 2–3 Value of Q∗ below which spiral instabilities will heat the stars
Tmig 4 2–5 Number of local orbital times over which stars are heated by spiral instabilities

Accretion (Section 2.5)
Mh,0 1012 M� – Halo mass at z = 0
�ω 0.5 0.1–1 Interval of ω ∼ z over which the accretion rate is constant
racc(z = 0) 6.9 kpc 3–20 kpc Scalelength of new infalling gas
βz 0.38 0–1 Scaling of efficiency with (1 + z)
βMh −0.25 −1 to 0 Scaling of efficiency with halo mass
ε0 0.31 ∼0 to 0.5 Efficiency at Mh = 1012 M�, z = 0
εmax 1 0.5–1 Maximum value of efficiency

Initial conditions (Section 2.6)
αr 1/3 0–1 Scaling of accretion scalelength with halo mass
fg,0 0.5 0.2–0.7 Initial gas fraction
fcool 1 0.4–1 Fraction of fbMh(z = zrelax) contained in the initial disc
zrelax 2.5 2–3 z at which the simulation is initialized
φ0 1 1–5 Initial ratio of stellar to gaseous velocity dispersion

Computational domain (see F12)
x0 0.004 0 < x0 � 1 Inner edge of domain as a function of R
R 40 kpc 10–100 kpc Outer edge of domain
nx 200 � 100 Number of radial cells
tol 10−4 10−5−x0 Fastest change allowed in state variables, per orbital time at r = R

Cosmologya (Section 2.5)
	m 0.258 – Average present-day matter energy density as a function of the critical density
1 − 	m − 	� 0 – Deviation from a flat universe
fb 0.17 – Universal baryon fraction
H0 72 km s−1 Mpc−1 – Hubble’s constant
σ 8 0.796 – Normalization of the dark matter power spectrum

aWe are restricted to using the WMAP5 cosmology because the stochastic accretion histories use fits to N-body simulations with those
cosmological parameters.

2.1 Gas transport and cooling

GIDGET solves the full equations of hydrodynamics in the limit of a
thin, axisymmetric, rotationally supported disc, supported vertically
by supersonic turbulent pressure. In this limit, the state of the gas
at a particular time is described by a surface density �(r) and a
velocity dispersion σ (r) =

√
σ 2

turb(r) + σ 2
sf with a turbulent and a

component supported purely by stellar feedback.

The change in gas surface density at a given radius is described by
a simple continuity equation accounting for mass flow through the
disc, with source terms for SF, recycling of gas by stellar mass-loss,
galactic winds and cosmological accretion,

∂�

∂t
= 1

2πr

∂

∂r
Ṁ − (fR + μ)�̇SF

∗ + �̇cos. (2)
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The first term represents the flow of mass within the disc, where
Ṁ is defined as the net gas mass per unit time moving towards
the centre of the disc across cylindrical radius r. Typically Ṁ > 0,
representing inward mass flux, but negative values at large radii in
the disc are generally necessary to conserve angular momentum.
The second term of the continuity equation represents gas-forming
stars. Only a fraction fR of that gas will remain in stellar remnants,
while the remainder will be recycled to the ISM; we approximate
this process as instantaneous as suggested by Tinsley (1980). Mass
is also ejected at each radius in galactic-scale winds in proportion
to the SFR, with mass loading factor μ. Finally, �̇cos represents
the rate of cosmological accretion on to the disc. The winds are
assumed to escape the galaxy, though in principle they could be
re-accreted later through this final term.

To evolve the velocity dispersion of the gas, we employ the energy
equation added to the dot product of v with the momentum equation,
yielding a total (kinetic + internal) energy equation,

∂σ

∂t
= G − L

3σ�
+ σ

6πr�

∂

∂r
Ṁ + 5(∂σ/∂r)

6πr�
Ṁ + (β − 1)vφ

6πr3�σ
T .

(3)

Radiative gains and losses per unit area, respectively, G and L, are
encompassed in the first term. The second and third terms account
for the advection of kinetic energy as the gas moves through the
disc. The torques which move gas radially in the disc, included in
the final term, transfer energy between the galactic potential and
the turbulent velocity dispersion. Here T = ∫

2πr2Trφ dz is the
vertically integrated effective viscous torque. Note that physically
Trφ ≤ 0, and for rotation curves flatter than solid body β < 1,
so this final term adds kinetic energy to the gas. We also note
that we do not explicitly include any terms related to energy input
by cosmological accretion, as this is expected to be subdominant,
certainly below z = 2 (Genel, Dekel & Cacciato 2012; Gabor &
Bournaud 2013; Hopkins, Keres & Murray 2013).

The viscous torque is related to the mass flux via the conservation
of angular momentum, as derived from the φ-component of the
Navier–Stokes equation:

Ṁ ≡ −2πr�vr = − 1

vφ(1 + β)

∂T
∂r

. (4)

The mass flux, the gas velocity in the radial direction and the torque
are not known ab initio. To calculate them modellers have his-
torically, since Shakura & Sunyaev (1973), appealed to an order-
of-magnitude argument, namely that Trφ = αρσ 2, or equivalently
ν = ασH, where α is a parameter that might be measured from
hydrodynamical simulations, ν is the resultant effective turbulent
viscosity and H is the scaleheight. Physical causes for the turbu-
lence include the magnetorotational instability (MRI), the GI and
misalignment of the angular momentum of accreting material. The
value of α measured from simulations of the MRI varies by orders
of magnitude, but is generally less than 0.1, particularly if the mag-
netic field is not forced to be vertical (Balbus & Hawley 1998).
To distinguish between GI, which we model in a more consistent
way, and the MRI or any other source of turbulence, which we in-
clude for comparison, we split our variables related to the torque
into two components, T = TGI + TMRI, and similarly for vr, Trφ ,
Ṁ and α (the effects can just be added together since all of our
equations are linear in these quantities). We neglect any mismatch
in angular momentum between the disc and the infalling material,
both for simplicity, and since for likely sources of accretion (cold
streams, cooling from the hot halo and re-accreted galactic winds),
the mismatch is unlikely to be large.

Rather than picking a constant value of αGI, we calculate at every
time step the value of TGI(r) such that in regions where Q ≤ QGI,
the torques will act to move and heat the gas so that dQ/dt = 0.
In regions of the disc where Q > QGI, TGI = ṀGI = vr,GI = 0.
This also serves as both the inner and outer boundary conditions,
i.e. we assume that the disc is gravitationally stable outside the
computational domain, which leaves gas free to flow off either
boundary if the innermost or outermost cell has non-zero torque.

To see how this works, consider the rate of change of Q with
time,

dQ

dt
= ∂�

∂t

∂Q

∂�
+ ∂σ

∂t

∂Q

∂σ

+∂�∗
∂t

∂Q

∂�∗
+ ∂σrr

∂t

∂Q

∂σrr

+ ∂σzz

∂t

∂Q

∂σzz

= ftransport

(
�, σ, �∗, σrr , σzz,TGI,

∂TGI

∂r
,
∂2TGI

∂r2

)

+fsource (�, σ, �∗, σrr , σzz, Z) . (5)

The first equation is simply an application of the chain rule, while the
second is just a definition, wherein we split all the terms into those
which depend on TGI and those which do not. Note that the source
term includes the terms related to the αMRI viscosity, SF and radiative
cooling. The function ftransport has the nice property that it is linear in
TGI and its spatial derivatives, so when TGI = 0, ftransport = 0 and we
are left with dQ/dt = fsource. Meanwhile in regions where Q < QGI

(by some small amount), we solve the equation ftransport = −fsource,
i.e. we force dQ/dt = 0. Because ftransport is linear, this equation
may be solved efficiently for TGI by the inversion of a tridiagonal
matrix.

This treatment raises a key question. If dQ/dt = 0, how can the
disc ever stabilize? In the course of solving ftransport = −fsource, some-
times a non-physical value of T will be obtained. In particular, since
viscous heating ∝ −T for reasonable rotation curves β < 1, it must
be the case that T ≤ 0 to satisfy the second law of thermodynamics
(turbulence should not decay into large-scale coherent motions). If
this condition is not satisfied by the solution of ftransport = −fsource,
then we set T = 0 in that cell. Under this circumstance the cell
behaves exactly as if it has stabilized, and Q in that cell will obey
dQ/dt = fsource. Typically, the reason why a cell falls into this sit-
uation is that fsource > 0 and no physical value of ftransport can cancel
this effect, so Q is allowed to rise in that cell.

The gravitational stability of discs to linear axisymmetric per-
turbations is roughly determined by the value of QToomre. Modern
versions of this parameter take into account both gas and stars (e.g.
Rafikov 2001; Romeo & Falstad 2013), the finite thickness of the
disc (Shu 1968; Romeo 1992, 1994; Elmegreen 2011), gas turbu-
lence (Hoffmann & Romeo 2012) and the fact that gas which can
cool to arbitrarily small scales is never formally stable (Elmegreen
2011). Romeo & Wiegert (2011) have developed an approximate,
but analytic, formula for Q taking into account two components of
finite thickness, i.e. both gas and stars. In this way the gravitational
effects of the stars are included in the instability, subject to what
we assume about how the stars self-regulate Q∗ (see Appendix B).
To account for the final complication, we demarcate the stable from
the unstable values of Q at QGI = 2, rather than the canonical value
of unity, as suggested by Elmegreen (2011). This approximation
to Q and its partial derivatives with respect to �, σ , �∗ and σ ∗
is extremely cheap to compute, which is advantageous since all of
these values must be computed at each (unstable) radius and time
to solve ftransport = −fsource.
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Numerical experiments (Mac Low et al. 1998; Stone, Ostriker &
Gammie 1998) of turbulent gas in periodic boxes have shown that
the turbulence decays in roughly a crossing time of the turbulent
driving scale. For the purposes of our simulations, we assume that
the driving scale is the scaleheight of the disc, in which case the
kinetic energy surface density (3/2)�σ 2

turb will decay at a rate,

L = η�σ 2κQ−1
g

(
1 + σ�∗

σzz�

) (
1 − σ 2

sf

σ 2

)3/2

, (6)

where η is a free parameter which would be 3/2 if the decay time
were exactly one scaleheight crossing time. As a result of the final
factor, L → 0 as σ → σ sf, i.e. when the gas reaches the velocity
dispersion induced by various forms of SF feedback, it will no
longer lose any net energy. The value of σ sf is set to agree with the
gas kinetic temperature in the warm neutral medium of the MW
(7000 K), which is in the same range as the maximum velocity
dispersion achievable by SN feedback in simulations (Joung et al.
2009) and the velocity dispersion caused by far-ultraviolet (FUV)
heating in MW-like galaxies (Ostriker, McKee & Leroy 2010), and is
consistent with both neutral and molecular gas velocity dispersions
in local disc galaxies (Caldú-Primo et al. 2013).

2.2 Rotation curve

In order to derive the evolution equations shown in the previous
section, we assumed that the potential and rotation curve of the
disc are constant in time. The primary reason for this is that to
self-consistently calculate vφ would require knowledge of the dark
matter. While N-body simulations assuming �CDM cosmology
consistently produce dark matter haloes with well-characterized
density profiles, the effects of baryons are highly controversial.
Moreover, if one were to calculate the rotation curve simply from
the dark matter (e.g. Cacciato et al. 2012), the circular velocity
would decrease with time since z = 1 (at z = 2, vcirc ≈ 185 km s−1,
increasing to ≈200 km s−1 at z = 1, and falling back to ≈190 km s−1

at z = 0), whereas observations (Kassin et al. 2012) show that (at
fixed stellar mass) the circular velocity actually increases from z = 1
to the present. Therefore, rather than constructing a model for the
rotation curve which depends on the poorly constrained interactions
between baryons and dark matter, we adopt a simple functional
form

vφ(r) = vcirc

(
1 + (rb/r)|β0n|)−sign(β0)/n

. (7)

This is designed to represent a smooth transition from power law
to flat, where rb is the characteristic radius where the rotation curve
turns over. Within this radius, the velocity approaches a power law
with index β0, and the sharpness of the transition between power
law and flat increases with increasing n. The disadvantages of this
approach are that we are restricted to evolving our galaxies over
periods during which the circular velocity does not change very
much (z ∼ 2–0), and changes to the potential owing to the movement
of baryons are not reflected in the rotation curve.

2.3 Star formation

Stars form with a constant efficiency per freefall time εff from
molecular gas, so that �̇SF

∗ ∼ εfffH2�/tff , where tff is the freefall
time and fH2 is the molecular fraction (Krumholz & Tan 2007;
Krumholz, Dekel & McKee 2012). Following Krumholz et al.
(2012), we posit that there are two regimes: one in which the
appropriate time-scale is the freefall time of gas distributed over

the full scaleheight H of the disc, namely tff = √
3π/32 Gρ ≈√

3πH/32 G�, which we call the ‘Toomre regime’ and one in
which the time-scale is determined by the freefall time of indi-
vidual molecular clouds, which observations suggest is tff/εff =
�H2/�̇

SF
∗ ≡ tSC ≈ 2 Gyr (Bigiel et al. 2011), the ‘single-cloud

regime’. Then the SFR is simply set by which of these two time-
scales is shorter,2

�̇SF
∗ = max

(
εfffH2�κ

√
32/3

Qgπ

(
1 + σ�∗

σzz�

)1/2

, fH2

�

tSC

)
. (8)

Typically, the first regime is relevant at small radii since κ∝1/r, and
the transition tends to be fairly constant in time, since the rotation
curve is fixed in our model, and both terms are proportional to fH2

and �, though Qg can change by an order of magnitude or more if
the disc has stabilized.

The molecular fraction fH2 is calculated according to the analytic
formula of Krumholz, McKee & Tumlinson (2009). Their formula
predicts fH2 as a function of � and Z. Roughly speaking, fH2 → 1
at high surface densities, and below some transition surface density,
there is a sharp cutoff where fH2 rapidly approaches zero. This
transition is metallicity dependent, roughly 5 M� pc−2(Z/Z�)−1.
We include the slight modifications to this formula we used in
F12, namely a floor of fH2 ≥ 0.03 to account for the fact that SF
is observed even at very low surface densities (Bigiel et al. 2010;
Schruba et al. 2011), likely as a result of the requirement that the
FUV flux not fall below a certain floor in order for two-phase
equilibrium in the atomic ISM to be possible (Ostriker et al. 2010).

At each time step, a new population of stars is formed with
surface density �̇SF

∗ dt , where dt is the duration of the time step.
The velocity dispersion of this population is the maximum of σ turb

and σ∗,min. Physically this floor might correspond to some com-
bination of cloud-to-cloud velocity dispersion or the internal ve-
locity dispersion of a cloud, roughly 2 km s−1. The newly formed
stars are then merged with the extant population while conserv-
ing mass and kinetic energy, meaning �̇SF

∗ dt is added to �∗, and
the velocity dispersion of the extant population is updated so that
(�∗σ 2

∗ )new = (�∗σ 2
∗ )old + (�̇SF

∗ dt max(σ 2
turb, σ

2
∗,min)).

Once stars form, they also migrate. In our model, this is treated
quite similarly to the gas migration discussed in Section 2.1, namely
the stars experience torques if they are gravitationally unstable to
spiral instabilities. Our prescription has improved significantly since
F12, so we discuss the new governing equations in Appendix B.
Overall this typically has a minor effect on the dynamics of the disc,
although it can strongly influence the stellar velocity dispersions
particularly at small radii.

2.4 Metallicity

In addition to its dynamical effects, SF is responsible for the pro-
duction of metals. We approximate this process as instantaneous, in
which case the production of metals is proportional to the SFR. In
each cell, the mass in metals is evolved according to

∂MZ

∂t
= �r

∂ṀZ

∂r
+ (yfR − fRZ − μZw)ṀSF

∗

+ ṀaccZIGM + ∂

∂r
κZ

∂

∂r
MZ. (9)

2 Note that F12 omitted the factor of 1/Qgπ, though the code and Appendix A
with the dimensionless version were correct.
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The first term accounts for metals advected from other parts of the
disc; �r is defined as the width of the cell under consideration. The
next term includes three effects which occur in proportion to the SFR
in that cell, ṀSF

∗ ≡ π(r2
i+1/2 − r2

i−1/2)�̇SF
∗ – here ri+1/2 ≡ √

riri+1,
the location of the boundary between cells i and i + 1 on our
logarithmic grid. The first is the production of new metals through
the course of stellar evolution, which occurs in proportion to y,
defined as the mass of metals produced per unit mass (of all gas)
locked in stars. Next is the mass of metals locked in stellar remnants.
The final term proportional to the SFR is the mass of metals ejected
in galactic winds with mass loading factor μ. Defining Ṁacc ≡
π(r2

i+1/2 − r2
i−1/2)�̇cos, the next term is simply the mass of metals

accreting from the intergalactic medium (IGM). The final term,
metal diffusion, will be discussed momentarily.

The metallicity of the wind is given by Zw. Many authors assume
that Zw = Z, the metallicity of the gas in the disc. It is worth
pointing out that this is probably a lower bound, but there is also
an upper bound. In the limit of small mass loading factor μ, the
maximum metallicity is the mass in metals expelled by stellar winds
and SNe: (yfR + (1 − fR)Z)�M∗ divided by the total mass ejected,
(1 − fR)�M∗. When the mass loading factor is larger than 1 − fR,
some additional mass from the ISM must also be swept up, thereby
decreasing the maximum metallicity. The metallicity of the wind
must therefore be

Z < Zw <

{
Z + yfR/(1 − fR) if μ ≤ 1 − fR

Z + yfR/μ if μ > 1 − fR

. (10)

We therefore define a new parameter ξ , similar in spirit to e.g. the
metal loss factor in Krumholz & Dekel (2012), so that

Zw = Z + ξ
yfR

max(μ, 1 − fR)
. (11)

Here ξ may vary between 0 and 1, with 0 representing the usual
assumption of perfect mixing of stellar ejecta and galactic outflows,
and 1 representing the minimal possible mixing.

The diffusion of metals has received relatively little attention
until recently. In F12, we included this diffusion term to prevent
the metallicity gradient from steepening excessively, tuning the
value of κZ to yield a reasonable gradient. Since then, Yang &
Krumholz (2012) have measured the value of κZ in a 2D shearing
box simulation with turbulence driven by thermal instability. They
show that to a reasonable approximation κZ ∝ r2

inj/torb, where rinj

is the initial wavelength of the metallicity perturbation and torb is
the orbital time. Here we make the approximation that rinj ≈ λJ =
σ 2/G�, the 2D Jeans length, since this should be similar to the
spacing of the largest giant molecular clouds. We can therefore
scale κZ in our simulation to their measured value as

κZ(r, t) = kZ1.2
kpc2

Gyr

(
σ 2/G�

3.1 kpc

)2
κ√

2 (26 km s−1 kpc−1)
. (12)

The numerical values are the measured κZ and the input parameters
rinj and 	 quoted for one of their simulations. We also include a
free parameter kZ ≈ 1, recognizing that there is some uncertainty in
this result. The numerical implementation of the diffusion term is
operator split from the rest of the terms, implicit and computed in
terms of fluxes so that metal mass is explicitly conserved. We also
enforce κZ < vcircR, the largest velocity and radius in the problem,
which is not guaranteed by equation (12) when � is very small.
This essentially makes sure that the metal injection scale rinj � R,
the size of the system.

2.5 Accretion

In our model, gas accretes on to the disc at an externally prescribed
rate Ṁext and a profile �̇cos such that

Ṁext(t) =
∫ ∞

0
�̇cos(r, t)2πr dr. (13)

In our fiducial model, we take �̇cos ∝ exp(−r/racc(z)). The angular
momentum of accreting gas is thereby entirely set by racc(z), which
is assumed to scale with halo mass so that

racc(z) = racc(z = 0)

(
Mh(z)

Mh(z = 0)

)αr

, (14)

with racc(z = 0) and αr left as free parameters. A reasonable guess
for αr is 1/3, which roughly corresponds to the assumption that
racc ∝ Rvir (e.g. Mo, Mao & White 1998), while a reasonable guess
for racc might be the size scale of local disc galaxies, which varies
significantly at fixed mass but is of the order of 10 kpc.

To determine Ṁext at each time step in our simulation, we cal-
culate Mh(t), the history of the dark matter halo mass, differentiate
with respect to time and multiply by fbεin(Mh, z), where fb ≈ 0.17
is the universal baryon fraction and εin is some efficiency. We take
two separate approaches to calculating Mh(t). The first is to use
an average dark matter accretion history (Neistein & Dekel 2008;
Bouché et al. 2010), which estimates the average growth rate to be

Ṁh = 39(Mh/1012 M�)1.1(1 + z)2.2 M� yr−1, (15)

which agrees well with hydrodynamic simulations (Dekel et al.
2013). This approach allows us to quickly and clearly see the effects
of changes in the physical parameters of the simulations without
averaging over many galaxies with different accretion histories. The
disadvantage is that in reality galaxies are likely to have stochastic
accretion histories, and this will have a significant effect on the
resultant galaxies. For instance, if a galaxy is fed at a steady rate, if
a given region of the disc becomes stable to gravitational turbulence,
it is unlikely to ever destabilize again, but an accretion history with
variation about the median could be unstable at low redshifts or
stable at high redshifts.

To capture the effects of variable accretion histories, we also gen-
erate accretion histories using the analytical formalism developed
by Neistein & Dekel (2008) and Neistein, Maccio & Dekel (2010).
The procedure is as follows. The desired final halo mass Mh,0 and
redshift (z = 0) are converted into their corresponding dimension-
less values S and ω. We use the approximate relation from van den
Bosch (2002)

S(Mh) = u2

(
c0�

	
1/3
m

(
Mh

1 M�

)1/3
)

σ 2
8

u2(32�)
. (16)

The parameters c0 and � are, respectively, 3.804 × 10−4 and 0.169.
The function u(x) is given by

u(x) = 64.087
(
1 + 1.074 x0.3 − 1.581 x0.4

+ 0.954 x0.5 − 0.185 x0.6
)−10

. (17)

Meanwhile, ω(z) may be computed approximately (Neistein &
Dekel 2008) by

ω(z) = 1.260
(
1 + z + 0.09(1 + z)−1 + 0.24e−1.16z

)
. (18)

With these relations, we now have S(Mh(z = 0)) and ω(z = 0).



1558 J. C. Forbes et al.

Figure 1. The growth of haloes. The top panel shows the evolution of the
halo mass for the smooth accretion history (black) and the median, central
68 per cent (shaded), and central 95 per cent of 400 stochastic accretion his-
tories (red). The corresponding distribution of the inferred baryon accretion
rates, including the efficiency factor (equation 22), is shown in the bottom
panel. The steps in Ṁ correspond to our fixed interval �ω = 0.086.

The independent variable ω is steadily incremented by a fixed
value �ω until the entire desired redshift range is encompassed. At
each step in ω, a new value of S is computed by adding

�S = exp (xσk + μk) , (19)

where x is a value drawn from a normal distribution with zero mean
and unity variance. We use a fixed �ω = 0.1, since this is the
time step used in generating the fitting formulae for σ k and μk in
Neistein & Dekel (2008). The fact that we use a fixed �ω rather
than a distribution leads to the distinct steps in Fig. 1, where all of
the accretion histories change at once.

The mean of the normal distribution to be exponentiated, μk, and
its standard deviation, σ k, depend on halo mass, and are fitted to the
results of the Millennium Run (Springel et al. 2005),

σk = 1.367 + 0.012 log10 S + 0.234(log10 S)2 (20)

μk = −3.682 + 0.76 log10 S − 0.36(log10 S)2. (21)

Converting each value of S back to Mh, one obtains a dark mat-
ter accretion history Mh(ωj ), where the ωj are the sequence of
ω’s obtained by incrementing ω by the fixed �ω, namely ωj =

ω0 + j�ω for j = 0, 1, 2, . . . and ω0 = ω(z = 0). We require
that the change in Mh over a single step, Mh(ωi) − Mh(ωi+1), not
exceed Mh(ωi+1) to avoid galaxies ‘accreting’ a larger mass than
their own, i.e. becoming a satellite. Since equations (20) and (21)
were obtained by a fit to the Millennium Run using a cosmology
where (	m, σ8) = (0.25, 0.9), when converting between Mh and S
with equation (16), we use the parameters from the Millennium
Run. Once we have obtained Mh(ωj ) using this cosmology, we
can transform it so that it agrees with the Wilkinson Microwave
Anisotropy Probe 5 (WMAP5; Komatsu et al. 2009) cosmology
(	m, σ8) = (0.258, 0.796), which is much closer to the current best-
fitting values. We use the scaling obtained in Neistein et al. (2010)
via a comparison of merger trees from Millennium and an N-body
simulation run with WMAP5 cosmology, namely we replace ωj

with ω̃j = ω0 + 0.86j�ω. The full dark matter mass history of the
halo Mh(t) is then obtained by converting ω̃j to z (with equation
18) and subsequently to t, and linearly interpolating the sequence
of halo masses Mh(ω̃j ) in time. The dark matter accretion history is
then just the instantaneous derivative of Mh(t).

The input Ṁext(t) to our simulation is taken to be the average dark
matter accretion rate at time t, generated either from the smooth
accretion formula (15) or the lognormal one (19) times fbεin. For
the efficiency, we use a reasonably general parametrization,

εin(Mh, z) = min

(
ε0

(
Mh

1012

)βMh

(1 + z)βz , εmax

)
. (22)

Faucher-Giguere, Keres & Ma (2011) fit the results of a cosmolog-
ical smoothed particle hydrodynamic simulation with no feedback
to find (ε0, βMh , βz, εmax) = (0.31, −0.25, 0.38, 1), though they ex-
plicitly only use this fit above z = 2.

Despite its success at high redshift, the paradigm of cold accretion
is fairly uncertain for galaxies which have some hot coronal gas,
like the MW, at low redshift. Moreover, Diemer, More & Kravtsov
(2013) have pointed out that below z ∼ 1, nearly all the growth in
Mh for haloes with Mh(z = 0) ∼ 1012 M� corresponds to the fact
that the background density of the Universe is decreasing (roughly
as ρm ∝ (1 + z)3) while dark matter haloes are changing very little.
Because the haloes are defined in simulations as having a spherical
overdensity relative to the background of ∼200, relatively static
haloes increase their mass merely because of this drop in the back-
ground density. Dekel et al. (2013) have verified that this is not a
significant effect at z > 1.

A number of ideas have been proposed to explain how MW-
like galaxies can maintain SFRs of the order of 2 M� yr−1 despite
little evidence of cold accretion at anything near these rates. The
gas may be accreting in an ionized phase, slightly hotter than the
observed high-velocity clouds in H I (Joung et al. 2012). The process
may be helped along by SN-induced accretion, where hot halo gas
is supposed to condense in the wakes of cold clouds ejected by
SN feedback from the disc of the galaxy (Marinacci et al. 2010).
Alternatively, galaxies can be powered by gas recycled back to
the ISM from stars (Leitner & Kravtsov 2011); while much of
this process can be approximated as occurring instantaneously (the
winds from and SNe of massive stars), a significant amount of mass
is returned even from very old stellar populations (see also Martig
& Bournaud 2010). Gas ejected by galactic winds often finds its
way back to the star-forming disc (Oppenheimer et al. 2010), which
may provide yet another way to provide star-forming gas to galaxies
even if dark matter is not accreting.

Given the uncertainties in how gas is accreted at low redshift, our
naive approach of setting Ṁext = Ṁhfbεin is not unreasonable. In our
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fiducial model, an MW-mass galaxy accretes roughly 2 M� yr−1 at
redshift zero, and so yields an SFR similar to observations, even if
the physical mechanism for this accretion is unclear. We do retain, in
varying the parameters of the accretion efficiency and the accretion
profile, a considerable amount of flexibility in the model, which is
appropriate given the uncertainties. In Fig. 1, we show Mh(t) and
the resulting Ṁext for the fiducial smooth model and the stochastic
accretion model.

2.6 Initial conditions at z ∼ 2

Having constructed the accretion history, we can now generate an
initial condition. To do so, we first require that the total surface
density in gas and stars equals some fraction fcool of the total bary-
onic mass available, fbMh(z = zstart). For haloes which will host a
single galaxy at redshift zero, it is reasonable to assume that at high
redshift, Mh(z = zstart) will be small enough that the cooling time
of halo gas is short, and that even if a galaxy has a stable virial
shock, it may still be fed by cold streams, and so fcool should be
of order unity (Birnboim & Dekel 2003; Kereš et al. 2005; Dekel
& Birnboim 2006; Ocvirk, Pichon & Teyssier 2008; Dekel et al.
2009a, 2013; Danovich et al. 2012).

We next make the fairly arbitrary decision to have a fixed initial
gas fraction fg,0, defined at each radius to be fg(r) = �/(� + �∗).
Thus, � and �∗ will have the same shape. Observations of main-
sequence galaxies at high redshift show their stellar profiles to be
exponential (Wuyts et al. 2011; van Dokkum et al. 2013), so we
choose an initial exponential profile with scalelength rIC = racc(z =
zstart). With these requirements we arrive at the initial profile,

� = fg,0fcoolfb
Mh(z = zstart)

2πr2
IC

exp (−r/rIC)
1

1 − fout
. (23)

The final factor is a correction for the finite size of the computational
domain. In particular, we want the initial mass of the disc to be
independent of R, so fout is the fraction of the mass profile which
lies beyond the computational domain,

fout = 1

2πr2
IC

∫ ∞

R

2πr e−r/rIC dr. (24)

Since the initial conditions are highly uncertain, it is more important
to get the correct amount of mass in the computational domain than
to make sure the profile has a particular normalization. Still, we
typically set R � rIC so that this is a minor correction.

The other initial variables we need to specify are σ , σ rr, σ zz,
Z and Z∗. For the metallicities, we simply set Z = Z∗ = ZIGM.
For the velocity dispersions, we use σ = σrrφ

−1
0 = σzzφ

−1
0 = σsf ,

i.e. the value of our minimum velocity dispersion. We allow the
velocity dispersion of the stars to be different (generally higher)
than that of the gas, with a free parameter φ0. The low constant
values of the velocity dispersion will often lead some parts of the
disc to have Q < QGI, so in those regions we raise σ , σrrφ

−1
0 and

σzzφ
−1
0 simultaneously (keeping them equal) until Q = QGI. We

emphasize, though, that the gas velocity dispersion σ and the two
stellar velocity dispersions σ rr and σ zz evolve separately throughout
the simulation – their ratio is fixed only initially. The idea is that,
since supersonic turbulence in the disc is generated exclusively by
GI in our model, any region not subject to this instability will have
σ ≈ σ sf.

Typically, our initial conditions have Q = QGI in some annulus.
At larger radii � drops off quickly so Q ∝ �−1 increases, while Q
also increases at smaller radii through the dependence κ ∝ vφ/r.

We discuss the (lack of) sensitivity of our results to these choices
of initial conditions in Appendix C.

3 SI MULATI ON R ESULTS

In this section, we discuss some generic features of the galaxies pro-
duced by our model. We begin by exploring models with smooth
accretion histories and a fiducial choice of parameters, which we
summarize in Table 1. These are compared with artificial, illustra-
tive models where one important physical ingredient is turned off by
hand. We then allow the accretion histories to vary stochastically in
a cosmologically realistic way, illustrating the differences between
galaxies with identical physical laws but different accretion histo-
ries, as one might expect for real galaxies. Finally, we compare our
models with recent observational results.

3.1 Equilibria in smoothly accreting models

There are three terms in the continuity equation (equation 2). At
a particular radius, gas arrives via �̇cos, departs via (fR + μ)�̇SF

and moves to or from other radii via �̇tr ≡ (2πr)−1(∂Ṁ/∂r). The
generic behaviour of this equation at a given radius in our fiducial
model is that gas will build up, either via direct accretion or as mass
arrives from somewhere else in the disc, until an equilibrium is
reached such that �̇ ≈ 0. This equilibrium will then slowly evolve
with time as the global gas accretion rate Ṁext falls off.

To aid in understanding how this equilibrium emerges, we have
run three simple models with identical smooth accretion histories:
(i) the fiducial model – our best guess for physical parameters
which will lead to something resembling the MW (see Table 1),
(ii) the same model with no SF and (iii) the same model with no
gravitational instability, i.e. TGI = 0 everywhere. The features of
models (i) and (ii) are similar at large radii, while the features of
(i) and (iii) bear some resemblance at small radii. This immediately
suggests that GI transport is important at large radii and SF is
important at small radii. The gas surface density distributions of
each model are shown in Fig. 2 as a function of time. The gas is
supplied via an exponential distribution, �̇cos ∝ e−r/racc . Without GI
(model iii), SF carves out the inner parts of the distribution, leaving
a hole in the gas at galactic centres, while without SF (ii), gas is
redistributed into a power-law distribution, following roughly � ∝
1/r.

A useful way to understand what sets the surface density is to
examine the relative effects of each term in the continuity equation.
In particular, at each time and radius, we can divide each term
by A ≡ |�̇tr| + �̇cos + (μ + fR)�̇SF. In Fig. 3, we compute these
contributions, including the sign of their effect on the overall value
of ∂�/∂t , so at each radius the fraction of the coloured region
occupied by red, orange and blue represents the fraction of A from
SF, cosmological accretion and transport. The different shades of
blue show which way the mass is flowing in the disc, i.e. the sign of
Ṁ – dark blue indicates gas flowing towards the centre of the disc
and light blue outward motion.

When the coloured band in Fig. 3 stretches from −0.5 to 0.5, that
region of the disc has reached an equilibrium configuration. In each
case shown here, the equilibration proceeds from inside outwards.
This is a combination of two effects – the especially efficient SF
in the centre of the disc and the fairly centrally concentrated dis-
tribution of accreting gas. The equilibrium does not last forever –
at z = 0, there can be significant deviations as the disc processes
past accretion and the instantaneous accretion rate falls owing to the



1560 J. C. Forbes et al.

Figure 2. The three simplified models. For each of the these simplified models, we show the evolution of the radial gas surface density distribution. We see
that the evolution of the fiducial model is a non-trivial combination of the effects of SF and GI transport.

Figure 3. The balance of terms in the continuity equation. The terms contributing to ∂�/∂t are split into those which increase � at a particular radius and
time and those which decrease �. The former appear above zero and the latter below. Each term is represented by a different colour – orange for �̇cos (with the
exponential scalelength marked as a vertical dashed line), red for (μ + fR)�̇SF∗ and blue for �̇trans. Light (dark) blue indicates gas being transported outwards
(inwards). At each radius, the height of the coloured band is normalized to unity, and its position shows how close the disc is to equilibrium (equal positive
and negative contributions) at that radius – a radius is in equilibrium if the coloured band falls exactly between the dashed lines labelled ‘equilibrium band’.
The columns show different redshifts (z = 2, 1, 0) and the rows show different models: fiducial, no SF and no GI transport. The features labelled ‘A’ at e.g.
r = 15 kpc and z = 2 come from gas from the unstable region heating when it piles up in a single stable cell. Real galaxies will not have such a sharp transition
since there will be some breaking of axisymmetry and some overshoot from the unstable region, neither of which we model here. The feature labelled ‘B’ at
z = 0 around 15–20 kpc in the fiducial model is caused by an enhancement in the surface density distribution – this section of the galaxy has had the direction
of GI transport reverse from outwards to inwards. Features labelled by ‘C’ show where GI changes from removing gas from a given radius to adding it to that
radius (see the text for more details), and ‘D’ shows GI quenching, wherein SF has exhausted the supply of inflowing gas.
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expansion of the Universe on time-scales potentially shorter than
the gas depletion time at these large radii.

3.1.1 Equilibrium between SF and accretion: the no GI model

We first focus on the model with no GI. In this model, at a given
radius, gas builds up until the local SFR ∝ � can balance the
incoming accretion. This happens first in the centre of the disc. Not
only is the cosmological accretion rate per unit area larger there, but
the SF time-scale is shortest (Fig. 4). In this model there is in fact

Figure 4. SF in the fiducial and no GI models. The SFR (top) is propor-
tional to the surface density of gas modulated by other factors reflected in
the depletion time, tdep = �/�̇SF∗ (second row). The first is the molecular
fraction (third row), itself determined by � and Z, and the second is the
regime of SF (bottom row), either single-cloud (tdep,H2 = 2 Gyr) or Toomre
(tdep,H2 ∝ 1/

√
Gρ < 2 Gyr). For each quantity, the left-hand panel shows

the fiducial model, while the right shows the model with GI transport turned
off. SF in the fiducial model is much more concentrated and reaches much
higher surface densities �̇SF∗ through the action of GI transport. The absence
of GI causes so much gas to build up at larger radii that at high redshift the
Toomre regime of SF extends to nearly 10 kpc, instead of just the inner few
kpc.

a huge range of depletion times, from roughly 100 Myr at z = 2 at
small radii to 60 Gyr in the outer disc. There are two effects driving
this diversity. For depletion times between 100 Myr and 2 Gyr, the
disc is in the Toomre regime of SF (see equation 8), for which the
depletion time scales as κ−1. This region is typically small, �3 kpc,
outside of which the time-scale would become longer than 2 Gyr if it
continued to follow the κ−1 scaling. At this point, the disc transitions
to the single-cloud regime of SF. At the transition, the disc still tends
to be dominated by molecular gas. In the mostly molecular but still
single-cloud regime, the depletion time is roughly 2 Gyr, the single-
cloud molecular depletion time – this can be seen as a flattening
in the tdep distribution with radius. There is then a transition from
molecular to atomic gas, which accounts for the difference between
parts of the disc with a 2 Gyr depletion time and a 60 Gyr depletion
time – this maximum depletion time is set by fH2,min , which is quite
uncertain.

A generic feature of the no GI model is that at the edge of the
star-forming region, SF occurs at a slightly faster rate than new
gas is accreted at that radius (Fig. 3, bottom-right panel). All of
the models, particularly at lower redshift, exhibit a slight tendency
to fall just below the ‘equilibrium band’ after they have initially
equilibrated at a given radius, since the accretion rate is externally
imposed and falling monotonically. The feature at z = 0 in the no
GI model goes beyond this, however, and may be explained by a
small feedback loop in the SF law introduced by the dependence on
metallicity. The demarcation between the star-forming part of the
disc and the outskirts is set by the molecular to atomic transition.
Typically, the SFR at a given radius is able to consume the incoming
material only if the molecular fraction there is above the minimum
allowed value – otherwise SF would be too slow. When enough
gas has accumulated to satisfy fH2 > fH2,min = 0.03, the SFR rises
steeply with column density and new metals are produced, which in
turn catalyse SF by reducing the amount of gas needed to maintain
a molecular, star-forming phase. Thus, the extra gas, which is now
no longer necessary for the SFR to balance the accretion rate, can
be consumed, though this generally takes a significant amount of
time, tdep � 2 Gyr.

3.1.2 Equilibrium between GI transport and accretion:
the no SF model

We now turn to the no SF model to help us understand the impor-
tance of GI. In our model, when the disc has enough gas to be grav-
itationally unstable, it self-regulates to a marginally stable level,
namely Q = QGI = const., where QGI demarcates gravitational
stability from instability. The value of Q depends on the surface den-
sities and velocity dispersions of the gas and stars. In our numerical
simulations, we account for these dependences using the formula
from Romeo & Wiegert (2011), but this formula reduces to some-
thing quite similar to the much simpler Wang & Silk (1994) approx-
imation when σ ≈ σ rr ≈ σ zz, namely Q−1 ∼ (2/3)(Q−1

g + Q−1
∗ ).

In our model, the situation can be simplified even further by the fact
that Q∗ is separately self-regulated by stellar migration via transient
spiral heating, so that Q ∼ (3/2)Qg. In this case, the Q = QGI

condition may be re-written as

� ≈ �GI ≡ 3

2

√
2(β + 1)vφσ

πGrQGI
. (25)

At a given radius, β, vφ , r and QGI are all fixed, so equation (25)
may be considered a direct mapping between � and σ . If σ does
not vary by much and the velocity dispersions of the gas and stars
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are similar, then � will simply follow a 1/r power law over a wide
range of radii.

The velocity dispersion and hence r�GI is restricted to a relatively
narrow range because there is both a minimum and maximum ve-
locity dispersion. The minimum is set by the feedback velocity
dispersion, σ sf – the gas cannot get colder than when its turbulent
velocity dispersion is zero. We can therefore say that in a gravita-
tionally unstable region,

� � �crit ≡ 3

2

√
2(β + 1)vφσsf

πGrQGI
. (26)

The maximum is determined by the gas supply – for a given Ṁext

to be transported to the centre of the disc in a quasi-steady state, it
must dissipate the gravitational potential energy between where it
arrives and the centre of the galaxy, and it must experience enough
torque to lose its angular momentum. In a steady state, local heat-
ing by torques balances local cooling by turbulent dissipation (see
Section 3.1.4). Note that ‘heating’ and ‘cooling’ refer to changing
the turbulent velocity dispersion of the gas, not its kinetic tem-
perature. The rate at which the gas cools (and hence experiences
torques) L depends on the velocity dispersion. The maximum ve-
locity dispersion is therefore set by assuming that 100 per cent of
the gas arriving from an external source flows towards the centre
in a steady state. Since some gas never reaches the centre because
of SF, and other gas moves outwards rather than inwards, this is an
upper limit. As shown in Section 4.1, at z ∼ 2 for galaxies accreting
at ∼10 M� yr−1 the velocity dispersion is restricted to 8< σ � 20
km s−1. This value is low compared to the measured velocity dis-
persions in the SINS galaxies (Förster-Schreiber et al. 2009). As we
will see in Section 4.1, some small fraction of MW progenitors do
have much higher accretion rates in our stochastic accretion model.
Moreover, the SINS galaxies are likely somewhat more massive
than the MW progenitors we consider here.

As more gas arrives at a region of the disc in a marginally unstable
state, the surface density is fixed in the profile given by �GI. Since
there is a maximum velocity dispersion for a fixed accretion rate, gas
is not allowed to accumulate, lest σ ∝ �GI exceed this maximum, so
the only thing the gas can do is move elsewhere. The gas will then be
transported away from where it arrives until it reaches part of the disc
which is stable, where it will pile up until that region too becomes
unstable. This ‘wave’ of GI can be seen propagating outwards in

Fig. 3 in both the fiducial model and the model without SF, until
essentially the entire disc is unstable. The equilibrium between GI
transport and accretion appears originally at r ≤ 7 kpc both with
and without SF. This location is picked out by the maximum in
�̇acc/�GI ∝ r exp(−r/racc), i.e. where gas piles up fastest relative
to the amount necessary to be gravitationally unstable, which occurs
at racc for a flat rotation curve.

3.1.3 The fiducial model

Having examined the simplified models where we disabled GI trans-
port or SF, we now turn to our fiducial model which includes both.
Recalling the surface density distributions shown in Fig. 2, it seems
that the fiducial model behaves largely like a superposition of the
model without SF and the model without GI.

In the previous section, we point out that an equilibrium between
GI transport and infalling accretion arises when � ≈ �GI > �crit

(see Fig. 5) and more gas is added. The new gas will be whisked
away until it piles up somewhere in the disc that is not yet unstable.
If we also include SF, then rather than being pushed out into a
stable region, the gas can be consumed by SF. Comparing the model
without SF to the fiducial model at z = 2 and 1 in Fig. 3, we can see
this effect in action. Gas arrives around racc, and on its way inwards
it is consumed by SF. The balance is then between cosmological
accretion and both SF and GI transport, rather than just GI transport
alone. In other words, if the disc can get rid of some gas via SF,
it no longer has to transport it away as fast to maintain � ≈ �GI.
Eventually, all of the infalling gas at a given radius can be consumed
by SF, and GI transport briefly has no net effect. Just interior to this
point though, the cosmological accretion rate is low enough and the
SFR is fast enough that accretion alone can no longer supply the SF
at that radius, and the stars start forming not from material falling
directly on to that radius, but from gas arriving from other parts of
the disc via GI transport. These are the points in Fig. 3 (labelled by
‘C’) where �̇trans goes from negative to positive. Visually, it is clear
that the SF (red) is being supplied by inflowing material (dark blue).

In this situation, where the SF is depleting the inflowing gas,
the surface density is affected but not necessarily drastically. In a
steady state, the surface density and velocity dispersion (related via
� ≈ �GI) are primarily set by the amount of energy that needs to
be dissipated by turbulence, which is set by the amount of torque

Figure 5. The ratio of � to the minimum surface density necessary for GI, �crit. Gas spreads out to keep the surface density above this critical value but below
the maximum value, �GI evaluated at σmax. This ratio falls below ∼1 where the disc has not yet destabilized (two left-hand panels, large radii) or has stabilized
due to GI quenching (left-hand panel, small radii, low redshift). Note however that in the fiducial model, especially at low redshift, � can fall slightly below
�crit even in gravitationally unstable regions because in deriving �GI and �crit we assumed that σ ≈ σ rr ≈ σ zz, which is no longer true at low redshift. This is
a factor of 2 level effect – the gravitationally stable regions always have � well below �crit. Interestingly, even the ‘no GI’ run does not reach values far larger
than �/�crit = 1 (although it reaches significantly higher values than the other two models), since the SFR increases as Qg decreases – essentially the gas is
compressed under its own weight and forms stars faster.
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Figure 6. The inward mass flux through a given radius. Negative values
are outward flux. We compare the fiducial model (left) to the same model
with SF turned off (right). As usual, black, red, blue, orange and purple are
z = 2.0, 1.5, 1.0, 0.5, 0.0. The outward mass flow is modestly affected by
SF at late times, whereas the inward flow is completely consumed by low
redshift. The disc stabilizes in the centre, i.e. Ṁ ≈ 0, simply because all of
the available mass has been consumed by stars.

which must be exerted on the gas to maintain the steady state of
matter flowing through the disc at rate Ṁ (see Fig. 6), which is set
by the profile and rate of external accretion. If SF is removing some
of this gas supply, less energy needs to be dissipated and both � and
σ will decrease. Eventually, if the SFR is fast enough, the inflowing
gas (plus the much smaller supply of directly accreting gas) will
be entirely depleted and GI will be shut down within that radius.
The MRI or some other torque may operate within that radius,
and there is certainly still gas within that radius. For αMRI � 0.1,
the supply of gas from transport is essentially negligible compared
to the supply from continued cosmological accretion. Once the
gas supply is shut off in this manner, the gas will burn through
the previously ∼1/r surface density until it reaches equilibrium
with the infalling material. At this point newly accreted material
is immediately consumed by SF, and it would take a large burst of
accretion to re-activate the GI. In the fiducial model, this shutoff
occurs between z = 1 and 0. For quantitative estimates of when this
is important, see Section 4.2.

The fiducial model also shows a peculiar peak in the SFR around
r = 17 kpc at z = 0 (visible in Figs 3 and 4). This corresponds
to a peak in the surface density where gas has built up in a ring,
which in turn is caused by the fact that the stagnation point in the
GI transport flow (i.e. where Ṁ = 0) passes through this region. At

first gas arrives at this radius from a smaller radius, but at late times
it arrives from a larger radius. The location of this stagnation point
is set by the boundaries of the GI region, which move outwards with
time (as a result of GI quenching and the steady viscous spread of
the disc), and the particular choice of accretion profile. We therefore
expect this feature to exist in many galaxies, but its location and
prominence are quite parameter dependent in our model.

3.1.4 Energy equilibrium

Thus far we have been concerned mostly with the surface density
distribution. It is clear that GI transport plays a significant role
in setting this surface density. For regions of the disc which are
gravitationally unstable, we have asserted that � ≈ �GI ∝ σ/r . In
Section 4.1, we will show that there is a maximum velocity disper-
sion set by the mass accretion rate; there is also a minimum velocity
dispersion, σ sf, set by the temperature of the gas. This is an ade-
quate first-order understanding of what sets the surface density in
the gravitationally unstable regions, but we have yet to explore what
sets σ and hence � between the minimum and maximum values.

Just as with the surface densities, we can show which terms dom-
inate the evolution of σ as a function of radius and time (Fig. 7)
for the fiducial model. The equilibrium here is even more strik-
ing than for the surface densities. Nearly everywhere in the disc,
the advection terms (blue and orange) are negligible, and the disc
equilibrates between local heating via GI and MRI torques ∝ T
and cooling ∝ L from turbulent dissipation. The exception is at the
wave of gas moving outwards to maintain � ≈ �GI in the inner
disc. Here advection becomes important because gas is being trans-
ferred from an unstable cell to a stable one with much lower surface
density. This stable cell does not pass any mass to the next cell
since both have T ≈ 0, so ∂Ṁ/∂r can be quite large. In reality, the
radius separating the gravitationally unstable region from a stable
region would be much less well defined, both because real galaxies
are not axisymmetric and because there may be some ‘overshoot’.
Our model overlooks these effects, so our transition is quite sharp
– a single cell in our simulation. This is the cause of the spikiness,
not only in Fig. 7, but also in Figs 3, 6 and 9.

Another exception to the otherwise good approximation that local
heating balances local cooling is at z = 2 at large radii, where the
disc is not gravitationally unstable and the only torque comes from
the MRI. This region takes a long time to equilibrate because the

Figure 7. The balance of terms in the energy equation for the fiducial model. For each term in ∂σ/∂t (equation 3), the contribution it makes relative to all
the other terms is shown as a function of radius and time. The red region shows cooling ∝ L, purple is heating ∝ T , orange and blue are terms associated
with advection, ∝ ∂σ/∂r and ∂Ṁ/∂r , respectively. Within the regions which are gravitationally unstable, heating and cooling balance almost perfectly. The
advection terms are only relevant right where the gravitationally unstable region borders a stable region, where the velocity dispersion and especially the mass
flux change dramatically, leading to the spikes at the locations labelled ‘A’ in the figure.
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dynamical time is quite long, and the MRI is weak, so building up
enough turbulent velocity dispersion to be countered by turbulent
dissipation takes a few Gyr. Note that this is not the case in the
central region at z = 0 where the disc is again gravitationally stable,
but this time the dynamical time is short. Note also that our model
implicitly assumes that gas near σ ≈ σ sf is in equilibrium between
radiative cooling and heating, so the terms we do not show here, e.g.
cooling due to metal lines or heating due to the grain photoelectric
effect, may dominate in the regions stable to GI.

Based on Fig. 7, it is safe to approximate the energy balance as
entirely local, i.e. to neglect the advection terms, in regions of the
disc where GI transport is important. Though our simulations keep
all of the relevant terms, we will make this approximation in Sec-
tion 4.1 to understand exactly what sets σ and � in gravitationally
unstable regions.

3.2 Stochastic accretion

From the previous section, we have seen that a lot depends on the
rate of new material being added to the galaxy. This is the term in
the continuity equation which increases �, and the disc tends to
adjust its available sinks – SF (plus galactic winds) and GI transport
– to cancel this out. One may also be concerned that if galaxies do
not accrete smoothly at the average rate, the intuition we have built
up about a slowly evolving equilibrium in the previous section may
not be applicable to real galaxies. In this section, we explore the
effect of varying the accretion history stochastically.

Fig. 8 shows the distribution of surface densities for the same
400 galaxies whose accretion histories were shown in Fig. 1, plus
the fiducial smooth model for reference. These galaxies all have
the same radial scale, namely racc = 6.9 kpc. At high redshift,
the galaxies have similar profiles – 1/r profiles at small radii and
exponential profiles at large radii. The variation is mostly due to the
different gas masses of each galaxy, largely the result of the variation
in initial halo mass. Regions of galaxies that are gravitationally
unstable have similar � ≈ �GI, since �GI varies only weakly with
accretion rate (see Section 4.1). As a consequence, the radii over
which the galaxy is gravitationally unstable are just a matter of
how far the gas needs to be pushed away from where it arrives to
maintain � ≈ �GI.

By low redshift, the galaxies have become remarkably similar at
large radii but with more than an order-of-magnitude variation near
the centre. At large radii, the disc tends to be gravitationally unsta-

ble, but in contrast to the high-redshift case, these galaxies all have
the same halo mass and so are quite similar in terms of the available
gas budget. Meanwhile at small radii, some galaxies, namely those
with a recent burst of accretion, are still gravitationally unstable
and so exhibit the same 1/r profiles seen at high redshift, while oth-
ers have stabilized and are in an equilibrium between infalling gas
and SF. Thus, GI transport greatly magnifies the different accretion
rates, causing a wide range of column densities near the centre of
the galaxy, but at the same time GI enforces remarkable similarity
at large radii.

Whether the galaxies are in equilibrium is shown explicitly in
Fig. 9. As with the fiducial model, the ensemble of discs tends to
equilibrate from the inside out. The most remarkable difference is
the significant fraction of galaxies which are out of equilibrium,
not because they are building up gas, but because they are burning
through excess gas. These are galaxies which had a burst of accretion
followed by a lull. Most galaxies in our stochastic sample are in
this state because of the lognormal distribution of accretion rates,
which vary on time-scales that are typically short compared to the
depletion time. At any given time, a galaxy is therefore likely to be
accreting gas slowly but still working through gas that was accreted
in a recent burst.

3.3 Comparison with observations

Using high-resolution and high-sensitivity data to infer the H I and
H2 distributions in nearby spiral galaxies, Bigiel & Blitz (2012)
found that these galaxies have neutral gas surface density profiles
well approximated by a simple exponential,

�UP = 2.1�tre
−1.65r/r25 . (27)

Here �tr and r25 are empirical quantities derived from the data,
respectively, the surface density at which a particular galaxy has
�H I = �H2 and the radius of the 25 mag arcsec−2 B-band isophote.
To compare to our simulations, we need to determine these quanti-
ties in our own simulated data. We can find �tr in our simulations
by searching for the location where fH2 = 0.5. In our model this
is determined by the Krumholz et al. (2009) formula, in which this
transition surface density is set by the metallicity. The value we
should use for r25 is somewhat more ambiguous. B-band luminosi-
ties are, roughly speaking, set by the SFR averaged over at least
gigayear time-scales, and the exact luminosity derived for a partic-
ular SF history is somewhat model dependent. To avoid this issue,

Figure 8. The radial surface density profile of gas for different redshifts. The black line shows the fiducial model, and the red lines show the median and central
68 per cent (shaded) and 95 per cent of the models with stochastic accretion histories. The variation between surface density profiles at a given radius and
time depends mostly on whether the galaxy is gravitationally unstable there. The variation in external accretion rate is largely responsible for the differences
between galaxies in regions of the disc which are gravitationally unstable. Additional dependences on parameters of the model and physical properties of the
galaxy are shown in Appendix C.
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Figure 9. Inside-out equilibration. Here we show, for the smooth accretion model (black) and the median, central 68 per cent (shaded) and central 95 per cent
of the stochastically accreting ensemble of galaxies (red), the radial distribution of �̇ divided by A, where A is the sum of the absolute value of each term
contributing to �̇. Values of �̇/A near 1 or −1 indicate that the surface density is changing entirely due to a single term in the equation, while values near zero
mean terms of opposing sign are cancelling and the surface density is close to equilibrium. Equilibration occurs from inside out, though significant deviations
from equilibrium are possible – in fact the typical galaxy is in a low-accretion-rate state and burning through the gas from a past accretion event. Galaxies are
also out of equilibrium at large radii where the gas is mostly atomic and hence SF is slow.

we note that if the universal profile is correct, it can be written just
as well

�UP = 2.1�tr exp (−0.74r/rtr) , (28)

where rtr is the radius at which fH2 = 0.5. This is because �UP = �tr

at r = rtr = 0.45r25. In this way, we avoid the modelling uncertainty
in converting between an SF history and a B-band luminosity, and
the uncertainty in our SF prescription at low surface densities, or
equivalently the uncertainty in the value of fH2 .

For each of our galaxies, we can easily compute rtr and �tr

(Fig. 10), each as a function of time, to construct the corresponding
�UP (Fig. 11). The agreement is reasonable, within a factor of 2 of
the empirical relation at z = 0 for most of the simulated galaxies.
At large radii, the effects of photoionization may be important –
namely the observations are sensitive only to neutral gas, whereas
for the low surface densities ∼1 M� pc−2, UV radiation may ionize
a significant portion of the gas. As in the observed galaxies, the
largest scatter occurs within the central region. We argue that this is
a consequence of variations in the accretion histories which allow
some galaxies to continue to transport gas to their centres via GI
torques, while others have stabilized.

The agreement between � and �UP is not a trivial consequence
of the exponential cosmological accretion profile we use. In partic-
ular, the universal profile predicts that the gas surface density pro-
file should have a scalelength equal to r25/1.65. Reading off from
Fig. 10, we see that r25/1.65 ∼ 12−18 kpc, whereas in our fiducial
model, the scalelength of the exponential accretion only reaches
6.9 kpc at z = 0, and is smaller at higher redshift. In other words,
the scalelength of the accretion is always substantially smaller than
the universal profile scalelength in our simulations. Therefore, SF
and GI must be responsible for altering the profile such that we find
reasonable agreement with the observations.

4 D ISC U SSION

One of the striking results of our models is the equilibrium that
develops between different terms in the continuity equation. In
retrospect this is not surprising, especially near the centre of the
galaxy, where the SF time is short and the accretion rate is high.
The former allows SF to quickly adjust to whatever supply of gas
is available to it, while high accretion rates mean enough gas can
build up to make the disc gravitationally unstable which allows the

Figure 10. The parameters that define the universal profile. The median,
central 68 per cent (shaded) and 95 per cent of the stochastic ensemble
of galaxies are shown in red, with the smooth accretion model (black) for
comparison. As the metallicity of the galaxies increases, the column density
�tr at which fH2 = 0.5 falls. As metals build up in the outer disc from local
SF, and advection and diffusion from SF nearer to the centre, the radius at
which the molecular–atomic transition occurs, rtr, and hence r25 = rtr/0.45,
steadily increases.
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Figure 11. The ratio of the surface density to the universal profile inferred by measuring rtr and �tr for each simulation for each time. Black shows the smooth
accretion model, while red shows the median, 68 per cent (shaded) and 95 per cent of the distribution for a sample of 400 stochastically accreting galaxies.

disc to redistribute the gas and prevent it from piling up wherever it
happens to land.

We discuss, roughly in chronological order, or more to the point,
in order of decreasing external accretion rate the implications of
this slowly evolving equilibrium. At high redshift, the galaxy expe-
riences the maximum surface density it can obtain via an equilibrium
between cosmological accretion and GI transport (Section 4.1). GI
transport is eventually shut off via SF (Section 4.2), after which each
annulus near the centre of the disc reaches an equilibrium between
local gas supply and local SF (Section 4.4).

4.1 Maximum velocity dispersion

Conservation of angular momentum requires that ∂T /∂r =
−Ṁvφ(1 + β) (equation 4). At a particular time, we see that the
torque at a given radius can be calculated by integrating

T (r) = T (r = r0) −
∫ r

r0

Ṁ(r ′)vφ(r ′)(1 + β(r ′)) dr ′. (29)

In our numerical model, the rotation curve and hence vφ and β are
fixed in time, as is the inner boundary condition, T (r = r0) = 0.
Thus, the torque as a function of radius is exactly mapped to Ṁ(r).
In a steady state, we also know that Ṁ < Ṁext, since otherwise
the surface density would be decreasing somewhere to increase it
somewhere else. For the moment, we can specialize to a flat rotation
curve for which

|T | < Tmax ≡ Ṁextvcircr. (30)

This relation will still hold approximately for somewhat flat rotation
curves, since, given the finite supply of new gas Ṁext, typically Ṁ

will be significantly less than Ṁext owing to the effects of SF and
outward mass flow, necessary to conserve angular momentum.

We now employ the assumption of local energy balance, i.e. that
the value of σ is set by local heating and local cooling with negli-
gible contribution from advection. This assumption is well satisfied
in gravitationally unstable regions of our simulations. Under this
assumption,

1

3
η�σ 2κ

(
1 − σ 2

sf/σ
2
)3/2 = (β − 1)vφ

6πr3
T . (31)

Rearranging and approximating � ≈ �GI,

T = 6rη(β + 1)vφσ 3
sf(σ

2/σ 2
sf − 1)3/2/((β − 1)GQGI). (32)

Again specializing to a flat rotation curve and defining the dimen-
sionless number N ≡ QGIGṀext/6ησ 3

sf = 1.8Ṁext/(1 M� yr−1)

and imposing the requirement that −T � Tmax, we arrive at the
condition

σ � σmax ≡ σsf (N 2/3 + 1)1/2. (33)

Thus, we see that the velocity dispersions of galactic discs are a di-
rect consequence of cosmological accretion and energy equilibrium.
We compare this prediction with the maximum measured values of
σ in our simulations in Fig. 12. From the decay of the spikes in the
bottom panel, we see that the time-scale to reach the steady state
assumed in our derivation can be of the order of a Gyr. We also
see that the central value of max (σ )/σ max is remarkably close to
unity, meaning that σ max is more of an estimate of max(σ ) than
an upper limit. We note that the measured max (σ ) can exceed the
predicted maximum slightly even for the smooth accretion model
because the assumptions we made in deriving the limit are only
approximately true – in particular � ≈ �GI becomes a worse ap-
proximation as the stellar and gaseous velocity dispersions diverge
from each other. Meanwhile the stochastic histories are likely to
have max (σ ) > σ max. This is because σ max depends on the instan-
taneous accretion rate only, but since the accretion rate changes
quickly, the galaxy is likely to still be adjusting to a past burst of
accretion.

Even the most extreme galaxies in our population only have
Ṁext ∼ 100 M� yr−1, implying σ/σsf � 5.7, while a more typi-
cal z = 2 galaxy might only have Ṁext ∼ 10 M� yr−1, implying
σ/σsf � 2.4. Since of course σ/σ sf ≥ 1, the surface density in grav-
itationally unstable regions can typically only vary by a factor of
a few at a fixed radius and vcirc. We note that the velocity disper-
sions we show here are somewhat smaller than those observed in
the SINS galaxies; however, our MW-progenitor models likely have
lower masses than the observed galaxies, and we have included no
drivers of turbulence besides GI.

The exact way that σ varies between σ sf and σ max (Fig. 13)
depends on the particular accretion profile feeding the galaxy (which
roughly determines the shape of the σ (r) profile), the total amount
of gas accreted previously (which sets the outer boundary of the GI
region) and SF (which sets the inner boundary). Qualitatively, the
velocity dispersion is highest near the centre of the galaxy, since
most of the accreted mass arrives near the centre of the galaxy and
flows inwards. At low redshift, this is no longer true because the
centre of the galaxy becomes gravitationally stable, so the velocity
dispersion is forced towards its value from star formation feedback
σ sf. The outer edge of the unstable region moves outwards as well,
since GI transport will always move some gas outwards to conserve
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Figure 12. Simulated versus predicted velocity dispersion. Here we show
the maximum value of σ measured in our simulations (top), the value of σmax

predicted by equation (33) (middle panel) and their ratio, max (σ )/σmax

(bottom). At every change in the accretion rates, the predicted σmax jumps
and it takes some time for each galaxy to adjust to its new accretion rate.
As usual the black line shows the fiducial model and the red lines show
the median, central 68 per cent and 95 per cent of the distribution for the
stochastically accreting models.

angular momentum. This gas is barely touched by SF given the low
molecular fraction at large radii, so over cosmological time that
gas will continue to build up and the edge of the gravitationally
unstable region will march outwards. Stabilization at small radii
and destabilization at large radii lead the whole unstable region
to move outwards in time. The lower velocity dispersions in the
unstable region, the result of the decreasing cosmological accretion

rate, leads to lower characteristic clump masses as estimated by the
2D Jeans mass, MJ = σ 4/G2�, shown in Fig. 14.

The maximum value of σ immediately implies a maximum sur-
face density for a flat rotation curve,

� � (3/2)vcircσsf

πGrQGI
(N 2/3 + 1)1/2 = �crit

σmax

σsf
. (34)

Since �crit for a given model is a fixed function of radius, we im-
mediately see that at a given radius � in a gravitationally unstable
region will also only vary by a factor of a few. However �, un-
like σ , may fall below the value corresponding to σ = σ sf. This
typically happens because some process has shut off GI transport
(Section 4.2), at which point the disc will equilibrate to a new, lower
value of � (Section 4.4). We also note that, at least for galactic discs,
this maximum column density is likely to be much more restrictive
than the one proposed by Scannapieco (2013), which is based upon
the requirement that the rate of turbulent energy dissipation must
be removable by radiative cooling.

4.2 GI quenching

GI transport shuts off when SF can consume all of the transported
gas. To get an idea of where this happens, we can compare the rate
at which a region of the disc, between inner radius rA and outer
radius rB, is resupplied to the rate at which stars are formed within
this region,

Ṁsupply

ṀSF
≈ Ṁ(rB )∫ rB

rA
2πr(fR + μ)�̇SF∗ dr

. (35)

When this ratio is �1, the region in question would easily deplete
the gas supply and shut down GI transport, while when it is �1, SF
makes no difference and gas flows through the region unharmed.
To evaluate this ratio, we use the SFR for the Toomre regime, on
the grounds that once SF is slow enough to be in the single-cloud
regime, it is unlikely to be hugely important anyway and this ratio
will just be �1. On similar grounds, we can also assume fH2 ≈ 1,
� ≈ �GI and Qg ≈ (2/3)QGI. In that case, our ratio becomes

Ṁsupply

ṀSF
≈ Ṁ(rB )GQ2

GIπ (1 + 2QGI/3Qlim)−1/2∫ rB
rA

36
√

2/3(fR + μ)εff (β + 1)v2
φσ r−1dr

, (36)

and we have restricted ourselves to regions where SF is efficient.
In practice, this means that rB can be at most a few kpc. As usual,
for simplicity’s sake we will specialize to a flat rotation curve, for
which we can easily evaluate the integral in the denominator assum-
ing σ ∼ σmax = const., leaving

∫ rB
rA

r−1dr = ln(rB/rA). Recall that
σ max depends on the external accretion to roughly the 1/3 power, so
unsurprisingly our ratio will decrease with decreasing Ṁext, mean-
ing that all else equal, for a low enough accretion rate the inner
region of the disc will be quenched. The logarithmic dependence
on rB/rA means that in the Toomre regime of SF, depletion of a fixed
gas supply Ṁ(rB ) is self-similar.

More explicitly, the gas supply is exhausted when Ṁsupply/ṀSF =
1, which occurs for

rA = rB exp

(
−0.24v−2

220ε
−1
0.01

1.54

fR + μ

Ṁ1

(1.5Ṁ
2/3
1 + 1)1/2

)
, (37)

where we have neglected the additional scalings with
√

1 + Qg/Q∗
and we have introduced a few scaled parameters, v220 =
vcirc/(220 km s−1), ε0.01 = εff/0.01 and Ṁ1 = Ṁ(rB )/(1 M� yr−1).
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Figure 13. The velocity dispersion distribution for our models as a function of radius and time. The median, central 68 per cent (shaded) and 95 per cent
for the stochastic accretion models are shown in red, with the smooth accretion model in black for reference. The high velocity dispersions at high redshift
characterize galaxies undergoing ‘violent disc instability’, which manifests itself most dramatically with giant clumps. At low redshift, the turbulent velocity
dispersions driven by GI are much lower and occur further out in the disc, largely as a result of the falling accretion rate. Galaxies undergo this transition, from
violent, dynamical evolution to a ‘secular’ evolution, smoothly.

Figure 14. The characteristic size of clumps in the star-forming disc. Here we show the distribution of the 2D Jeans mass in regions where the molecular
fraction is larger than fH2,min . The typical mass of gravitationally bound clumps decreases with time, and the peak moves outwards in radius. The median,
central 68 per cent (shaded) and 95 per cent of the values at each radius and time for the ensemble of stochastically accreting galaxies are shown in red, along
with the fiducial model in black.

We caution that this formula is for illustrative purposes only, since
vφ and σ are unlikely to be constant. For these values, it turns out
that the exponent is fairly close to zero and so relatively insensitive
to the exact values. The exponential evaluates to 0.86, 0.64 and 0.43
for Ṁ1 = 1, 4 and 10.

This is actually somewhat surprising, since in our fiducial model
Fig. 6 shows that the mass flux at a few kpc is near 3 M� yr−1,
yet the gas reaches the inner edge of the computational domain
at r = 80 pc easily and GI transport is not shut off until much
later. This illustrates the dramatic effect of the rotation curve. The
essence of the effect is visible even in equation (37), namely by
the time we reach radii well within the turnover in the rotation
curve at rb = 3 kpc, vφ is appreciably smaller than 220 km s−1,
meaning rA/rB should be much smaller. The two powers of vφ

come from (i) the dynamical time’s proportionality to the SF time
– stars form more slowly if the freefall time ∝r/vφ is longer, and
(ii) the requirement that Q = QGI, which implies � ≈ �GI ∝ vφ –
lower velocities and hence smaller shear mean less gas is required
to destabilize the disc. Thus, lowering vφ decreases both the surface
density and the SFR for a fixed surface density.

Our simulations use a fixed rotation curve which increases as
a power law with index β0 = 0.5 near the centre, but galaxies
with prominent bulges have what we would term negative values
of β0, i.e. their rotation curves fall with radius near their centres
(see e.g. Dutton 2009). As gas approaches the centre, it would see

higher rotation velocities, which, just the opposite of above, would
increase the gas surface density required to maintain GI transport
and speed up SF for fixed gas surface density, hence increasing
the GI quenching radius rA. We suggest that this may be a specific
physical mechanism for morphological quenching (Martig et al.
2009). In our estimation, the formation of a bulge acts to quench
the innermost regions of the galaxy by shutting off GI transport
through the increase in vφ , but other factors contribute, namely the
available supply of gas Ṁ and the radius at which stars begin to
form efficiently in a galaxy, rB. We also note that in our model this
quenching is not caused by an increase in Q – the increase in Q
and the decrease in SFR are both caused by the shutdown of GI
transport.

4.3 The growth of bulges

Disc instabilities have of late been invoked to explain the growth of
spheroids and AGN activity (Dekel et al. 2009b, 2013; Bournaud
et al. 2011). Our fiducial choice of parameters certainly funnels gas
to the very centres of our model galaxies at a rate of the order of
solar masses per year until z ∼ 0.5. We caution though that these
results depend on our choice of rotation curve, and in particular the
rotation curve at the very centre of the galaxy. Nonetheless, we can
measure the growth of bulges in our simulations.
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There are a number of components which we include in the bulge
mass,

MB (t) =
∫ t

0

(
Ṁ∗(r = r0) + fR

μ + fR

(
Ṁ(r = r0)

+
∫ r0

0
2πr�̇cosdr

))
dt

+
∫ rg

r0

2πr(�∗ − �∗,exp) dr. (38)

Starting from MB(z = zstart) = 0, mass enters the bulge a number of
ways. First, there is the mass of stars which migrate off the inner
boundary of the computational domain r0. Secondly, there is the
gas which does the same, which we assume will quickly form stars.
Thirdly, there is gas which, according to our cosmological accretion
profile, would accrete within the inner boundary. Lastly, there are
stars that are still within the computational domain, but which are in
excess of an exponential stellar surface density profile extrapolated
inwards from larger radii. We sum all of these components, reducing
the gaseous terms by fR/(fR + μ) to account for the fact that for
every unit mass of stars formed, only fR will remain in remnants
and fR + μ will be lost from the gas supply. The exponential fit
�∗,exp is found by

log �∗,exp = log �∗(rg) + r
m log(�∗(rg)/�∗(rg − �r))

�r
, (39)

where rg = 1.5racc(z) is the location at which we will fit the lo-
cal exponential slope, �r is the width of one cell and m is initially
unity. The value of m is gradually reduced until �∗,exp < �∗ at every
radius interior to rg (typically m = 1 satisfies this condition immedi-
ately). This method may overestimate the bulge-to-total (BT) ratio
if the stellar profile increases slower than an exponential towards
the centre, while if the profile is rising faster than an exponen-
tial near rg, the contribution to the bulge may be underestimated.
The stellar surface density profiles are, however, quite exponential
within the star-forming region and far from the bulge, likely owing
to the mechanism proposed by Lin & Pringle (1987), so this is a
reasonable if imperfect estimate. In practice, the flow of gas across
the inner boundary, Ṁ(r = r0), is the largest of the four terms by a
factor of a few, followed by the excess above the exponential.

The growth of bulges measured by the BT ratio, with the bulge
mass estimated by equation (38), is shown in Fig. 15. Although GI
funnels gas to the centres of these galaxies, our simulations have SF
efficient enough and a mass loading factor large enough, that the BT
ratios tend to lie near 1/3, a fairly reasonable value for MW-mass
galaxies. The trend with redshift seems to be a steep rise between
z = 2 and 1, followed by a very gradual decrease from z = 1 to
0. This may be attributable to the efficient action of GI at high
redshift and its subsequent quenching at lower redshift. Moreover,
it is clear that galaxies for which GI transport is important at z ∼ 2
need not end up as bulge-dominated galaxies at z = 0. These specific
numbers are sensitive to both the angular momentum distribution of
infalling gas and the parameters which influence SF, and hence GI
quenching, near the centre of the galaxy. The galaxies in our sample
all have the same accretion scalelength at z = 0, but if we include
a 0.4 dex scatter in this parameter, comparable to the scatter in spin
parameters observed for dark matter haloes in N-body simulations
(Bullock et al. 2001), the central 95 per cent of z = 0 BT ratios for
those galaxies stretches from 0.05 to 0.72.

Figure 15. Estimated BT ratio of the stellar profile. Both the fiducial model
(black) and the stochastic ensemble (red) follow similar trends, growing their
bulges through GI transport at high redshift, then forming stars preferentially
in the disc since z = 1.

4.4 Equilibrium between accretion and SF

The SF law has two regimes, so naturally there are two profiles
where �̇cos = (fR + μ)�̇SF

∗ . The simplest case is the single-cloud
regime, defined by a constant molecular depletion time ∼2 Gyr. In
this regime,

� = �̇cos(fR + μ)−1ε−1
ff f −1

H2
tSC. (40)

This equation is typically not applicable, however, since the outer
regions of the disc in the single-cloud regime tend to still be gravi-
tationally unstable even at z = 0.

Where SF tends to make a large impact is in the centre of the
galaxy. In particular, once SF exhausts the mass flux from GI trans-
port (see the previous section), the supply of gas quickly forms stars
until SF equals the local rate of accretion. This equilibrium is local,
in that it occurs independently at each radius, since gas is not be-
ing transported between radii. The equilibrium picks out a specific
value of �, such that �̇cos (imposed externally) is roughly equal to
�̇SF (largely determined by �). By the time the disc reaches low
redshift, we can assume Qg � 1 in this region, so if fH2 ∼ 1 we
can calculate that in the central regions of these galaxies,

�eq =
(

3π�̇2
cosQlimσsf

32ε2
fff

2
H2

κG(fR + μ)2

)1/3

≈ 16
M�
pc2

�̇
2/3
cos,0.01

(fR + μ)2/3f
2/3
H2

r
1/3
1 v

−1/3
220 σ

1/3
th,8ε

−2/3
0.01 . (41)

We have used typical values of �̇cos,0.01 = �̇cos/

(0.01 M� kpc−2 yr−1), r1 = r/(1 kpc) and σth,8 = σsf/(8 km s−1).
Note that other sources of gas may be added to �̇cos, although if
they depend on the SFR (e.g., for a galactic fountain), the form
of the solution will be a bit different. The assumed accretion
rate corresponds closely to the redshift zero value for the smooth
accretion history model, and the numerical value of �eq, despite
the approximations made, agrees quite well with the simulation.
We see that as long as �̇cos is sufficiently flat, as is the case for
an exponential on radial scales much less than the scalelength,
the value of �eq will have a moderate increase with radius. This
relation will break down if radial transport of gas is operating, and
if fH2 is appreciably smaller than unity, there will be an implicit
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dependence on �eq on the right-hand side, since fH2 is a function
of � (and Z).

We saw in Section 3.1.3 that in our smooth accretion model,
the inward mass flux from GI transport is exhausted beginning
around z = 0.5, after which the central gas surface density is rapidly
depleted by SF. We refer to this process as ‘GI quenching’. When GI
transport is active, it essentially collects cosmological infall from
all radii and sends most of that gas inwards and some outwards.
This can concentrate most of the SF in the centre of the disc, i.e.
gas does not form stars at the location it arrives, but in the centre
of the galaxy. When GI transport is shut off, the centre of the
galaxy loses this vast supply of gas virtually instantaneously. The
surface density falls from � ≈ �GI ∝ 1/r to � ≈ �eq ∝ r1/3�̇2/3

cos

in a few depletion times, which may be significantly faster than
1 Gyr (Fig. 4).

We have found that even for large values of an α viscosity (see
Appendix C), and even for a rotation curve quite favourable for
transporting gas to the central regions of galaxies, the supply of
gas to the central regions of galaxies at z = 0 via transport through
the disc is negligible for a large fraction of the galaxy population.
Moreover, gas within this region is unable to move any significant
distance radially via these mechanisms. Therefore, the equilibrium
which develops there is a balance between the local SF in some
annulus and the local gas supply. In our model this comes from
cosmological infall, but it could in principle also come from SN-
induced accretion (Marinacci et al. 2010; Hobbs et al. 2013) or gas
recycling from old stellar populations (Leitner & Kravtsov 2011).
Therefore, we suggest that measuring the SFR and profile in the
centres of local galaxies with low SFRs should directly determine
the rate and profile with which those particular regions (regardless
of the rest of the galaxy) are being supplied with cold gas.

5 SU M M A RY

We have explored the evolution of an ensemble of typical disc
galaxies with MW-like masses over the past 10 Gyr of cosmic
history, with the aim of understanding what sets their surface density
profiles.

In our model, discs begin their life at high redshift as exponential
and gravitationally unstable in the vicinity of the initial exponential
scalelength. This is a somewhat artificial initial condition, but by
z = 2 (the simulations are started at z = 2.5), the gas has had suffi-
cient time to migrate inwards and the discs become gravitationally
unstable interior to the accretion scalelength. As more gas is added,
the gravitationally unstable region spreads outwards. In this grav-
itationally unstable state, accreted gas at fairly large radii (of the
order of the accretion scalelength) is funnelled towards the centre
of the disc where the high surface densities and short dynamical
times allow for efficient SF. Eventually, the cosmological accretion
rate falls off and the supply of inflowing gas can be consumed by
SF before the gas reaches the centre of the galaxy. At this point, the
gas transport is shut off and the region of the galaxy interior to this
point is quenched, with SF balancing only the local supply of gas.
The main lessons we can draw from these results are as follows:

(i) The surface density at every radius is set by a slowly evolving
equilibrium. In general, this is a balance among the three terms in the
continuity equation: cosmological accretion, SF and GI transport.
In this paper, we have described the properties of the disc when
each pair of those terms is in balance.

(ii) At a given time, a galaxy will tend to have the following
progression of regions, from outside inwards. First there is an out-

of-equilibrium, low column density region, where gas is building up
from cosmological accretion but is not yet gravitationally unstable.
Next, the galaxy is in equilibrium between infalling material and
GI transport. Further in, SF takes up an increasing share of the
responsibility for balancing incoming accretion – at this point all
three terms in the continuity equation are important. Eventually, SF
is so efficient that it outstrips the direct supply of gas and can only
be balanced by GI transport from larger radii. Finally, if SF can
use up the entire supply of GI-transported gas, there is a quenched
region at the centre of the galaxy where SF balances only the direct
accretion on to that radius.

(iii) If a region is gravitationally unstable, its gas kinetic energy
will equilibrate on a dynamical time-scale, with local heating by
GI-driven torques balancing cooling by turbulent dissipation. In a
high surface density region where SF is efficient because of the
high molecular fraction and short freefall times, SF can equilibrate
with its gas supply within a few Gyr. The centres of galaxies, where
both GI transport operates (at least at high redshift) and stars form
efficiently, will therefore generically equilibrate first. Thus, galaxies
equilibrate from the inside out.

(iv) In equilibrium, new accretion must be balanced by the avail-
able sinks: SF (plus galactic winds) and transport through the disc.
Even at radii where SF is inefficient, GI transport alone is sufficient
to balance accretion. GI transport operates through torques which
redistribute angular momentum, allowing gas to be removed from
where it accretes. To balance the accretion rate, the gas must lose
angular momentum in proportion to the accretion rate, so in a steady
state the accretion rate specifies the torque. The heating caused by
these torques is balanced by turbulent dissipation. The turbulent
dissipation rate is proportional to the kinetic energy in the gas, so
this balance picks out a velocity dispersion. In summary, the mass
flux sets the torque and hence a dissipation rate, which in turn sets
the velocity dispersion, so the cosmological accretion rate sets the
velocity dispersion.

(v) In general, both the inner and outer boundaries of the grav-
itationally unstable region move outwards in time. The inner edge
moves outwards through a process we call GI quenching. As the
cosmological infall rate drops, SF near the centre of the galaxy be-
comes capable of consuming all of the mass moving inwards via GI
transport. If all of the gas is consumed on its way towards the centre
of the disc, any part of the disc at smaller radii will be deprived of
this large supply of gas. This picture is supported by a number of
observational studies, including the depletion of gas near the cen-
tres of green valley galaxies (Fang et al. 2012), the link between
quenching and a large inner surface density of stars (Cheung et al.
2012; Fang et al. 2013), and the rings of SF and centrally peaked Q
observed in gas-rich high-redshift discs (Genzel et al. 2013). SF at
a particular radius in this quenched region can only be supplied by
whatever cold gas is arriving at that particular radius. In our model
this is exclusively from direct accretion from the IGM, but there are
other plausible sources.

(vi) The process of GI quenching becomes more effective at
higher rotational velocities, which increase the SFR. Massive bulges
increase the rotational velocity near the centre of a galaxy, so we
propose that morphological quenching may occur through the fol-
lowing physical channel: GI transport moves gas to the centre of a
galaxy forming a bulge, the central concentration of matter increases
the rotational velocity, GI transport is quenched by the increased
SFR (and the decreasing cosmological accretion rate) and so the SF
in the central region drops dramatically as its gas supply is removed.
The value of Q and Qgas will rise as the gas surface density drops
to its new, much lower, equilibrium value. This is distinct from the
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mechanism proposed by Martig et al. (2009), wherein they claim
that the formation of a spheroid removes the stellar disc and causes
the gas disc to stabilize and hence SF to cease. In our model, the
self-gravity of the stars has very little effect on the gas because the
stars are assumed to be separately self-regulated to a fixed Q∗. Both
models predict a rise in Q and a drop in the SFR; in our model,
both of these are effects of the shutoff in GI transport (which may
be hurried by an increased circular velocity from the formation of
a bulge), whereas in Martig et al. (2009), Q increases through the
removal of the stars’ contribution to the self-gravity to the disc,
which then causes the SFR to drop.

(vii) The growth of bulges in our simulations occurs primarily
through GI transport of gas from the scale on which it is accreted to
the centres of galaxies where it forms stars efficiently. Our galaxies
all have the same z = 0 halo mass and accretion scalelength, and
we recover a relatively narrow range of BT ratios around 0.3−0.4.
If we use a more realistic scatter in accretion scalelength of 0.4 dex,
the variety of BT ratios increases dramatically.

(viii) Our simulations show that at z = 0, some galaxies will
be gravitationally unstable at radii �3 kpc, while others will have
undergone GI quenching. The surface density at small radii can
therefore vary by an order of magnitude from galaxy to galaxy.
This variability at small radii is in fact observed in the neutral gas
profiles of nearby galaxies studied by Bigiel & Blitz (2012). Fun-
damentally, we predict that this variability is the result of variance
in the cosmological accretion rate from galaxy to galaxy, which in
turn determines whether the galaxy has undergone GI quenching.
Another consequence of this variability is that some galaxies – those
which have undergone GI quenching – will have a peak in their SF
surface density in a ring. This may explain so-called ring galaxies
without invoking a recent merger or bar-induced transport.

(ix) The outer edge of the gravitationally unstable region expands
as more mass falls on to the galaxy. This is because some fraction of
the accreted material will move to larger radii until it runs into the
edge of the gravitationally unstable region, where it piles up until
the disc at that radius also becomes gravitationally unstable.

(x) Although we have emphasized the equilibration of galaxies,
we also observe situations where some region of the galaxy is out
of equilibrium (meaning that the surface density is changing at a
rate �5 per cent of the instantaneous accretion rate), even in the
gravitationally unstable region, and even if the accretion history is
perfectly smooth. This occurs primarily in the outer regions of the
galaxy where the depletion time and even the dynamical time can
be long enough for the cosmological accretion rate to change signif-
icantly – in other words the sinks for gas are in equilibrium with a
past accretion rate. Equilibrium also breaks down near the moving
boundaries between gravitationally stable and unstable regions –
for instance when a new region of the galaxy has just lost its gas
supply via GI quenching, it takes a depletion time to burn through
the (now stationary) gas and reach a new equilibrium with direct
accretion. As the surface density of gas, and hence the molecular
fraction, declines with time, even the inner parts of the disc may
experience depletion times much longer than 2 Gyr, and they too
may drop out of equilibrium.

(xi) The turbulent velocity dispersion of gas in the galaxy falls
over time, and the region of the disc subject to GI-driven trans-
port and turbulence moves outwards. This may be interpreted as a
smooth transition from violent to secular instability. The high veloc-
ity dispersions and shorter dynamical times of gas at small radii and
high redshift lead to giant clumps (since the Jeans mass ∝ σ 4/�)
evolving rapidly, while at low redshift the gravitationally unstable
region has a much longer dynamical time and is characterized by

lower clump masses. As predicted in the simpler models of Cacciato
et al. (2012), the violent disc instability which operates at z = 2 no
longer operates today in most MW-mass galaxies, but we show that
the transition is gradual and the outskirts of the disc remain unstable
even at z = 0.

We conclude that GI transport is an important driver of disc galaxy
evolution. It provides a natural link between MW-like galaxies at the
present day and their high-redshift progenitors, and plays a crucial
role in determining the structure of disc galaxies.
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A P P E N D I X A : C H A N G E S S I N C E F 1 2

Here we explicitly list the changes made to our simulation code. In
addition to the items discussed below, our code here differs from
that of F12 in our assumed rotation curve, assumed accretion rate,
the metallicity evolution equation we use and the SF prescription
we use. These changes are detailed in the main text.

A1 Finite volume/explicit mass conservation

The evolution equations for � and σ are written here in terms of
T , Ṁ and ∂Ṁ/∂r , as opposed to T , ∂T /∂r and ∂2T /∂r2. The
terms involving these quantities are mathematically identical, but
this version is clearer physically. Moreover, when we solve these
equations, we explicitly calculate the flux Ṁ from cell i + 1 to i,
via

Ṁi+1/2 = −1

vφ(ri+1/2)(1 + β(ri+1/2))

Ti+1 − Ti

ri+1 − ri

, (A1)

where i’s indicate cell-centred quantities and i + 1/2’s are edge-
centred. Using these fluxes, the change in surface density of cell i
is then(

∂�

∂t

)
transport

= Ṁi+1/2 − Ṁi−1/2

2πri(ri+1/2 − ri−1/2)
(A2)

so that if mass is transported out of cell i + 1, it must reappear
in cell i (or i + 2). Note that we are using a logarithmic grid, so
ri+1/2 = √

riri+1, and vφ and β may be calculated at these values
analytically because of our simple formula for the rotation curve.

The reason why this is an improvement is that, written in terms
of T and not Ṁ , ∂�/∂ttransport ∝ ∂2T /∂r2. This derivative was
computed using a minmod slope limiter, so for example if material
attempted to enter or exit a cell from both directions (i.e. the value
of Ṁi+1/2 and Ṁi−1/2 had opposite signs), ∂�/∂ttransport = 0, and so
the entering mass would be lost or the exiting mass would remain
in the cell. For monotonic solutions of T , this is a small effect,
and so only became apparent when mass was added inside the
computational domain instead of at its outer edge (see Appendix
A3), which meant some regions would have mass flowing outwards.

A2 Treatment of stable regions where Q > QGI

In our previous work, when Q > QGI, we solved ftransport = 0. In
contrast, in this work we simply set TGI = 0 in those regions. The
difference between the two is somewhat subtle. The two treatments
would be equivalent if the boundary conditions around the stable
region were TGI,boundary = 0, but this will generally not be the case in
our discs because the neighbouring unstable regions will have non-
zero torques. Thus, our previous approach would lead to small but

http://arxiv.org/abs/1310:1923
http://arxiv.org/abs/1310.3838
http://arxiv.org/abs/1311.0013
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non-zero mass fluxes in stable regions. Our new approach is more
consistent with the physical picture we are presenting, namely that
radial motion is caused by GI-induced turbulence.

A3 Accretion on to the disc instead of at the outer boundary

In our previous work, the accretion of gas on to the galaxy oc-
curred only at the outer boundary of the galaxy, and the accretion
rate was enforced by setting (∂TGI /∂r)r=R = Ṁext(t)vcirc. We have
abandoned this approach because it is inflexible and likely to be
physically wrong. In particular, if all the gas comes in at r = R,
then the value of R may strongly affect the results of the simulation,
especially for discs where the accretion rate is not large enough to
maintain a GI, e.g. low-mass galaxies or galaxies experiencing a lull
in their accretion rate. For these galaxies, accretion at large radii
leads to an unphysical pileup of gas in the outermost radial cell.
Moreover, the hole in the gas distribution which we saw forming at
the centre of our simulated galaxy is not a ubiquitous feature in real
galaxies, suggesting that a more flexible accretion model might be
necessary.

In this work, we still need to specify the boundary conditions at
inner and outer edges of the computational domain. We opt for the
simplest choice, TGI(r = r0) = TGI(r = R) = 0, which should be
reasonable so long as R is much larger than the radial scale of the
accretion.

A P P E N D I X B: N E W S T E L L A R MI G R AT I O N
E QUAT I O N S

To derive the evolution of stars as a result of their migration
through the disc, we will assume that stars obey dQ∗/dt =
�Q∗/Tmig(2π	)−1, i.e. that stars will exponentially ‘decay’ to a
limiting value of Q∗ above which they will be stable to GI, Qlim,
on some multiple of the local orbital time (Sellwood & Carlberg
1984; Carlberg & Sellwood 1985). As with the gas, we take the
stars to be subject to gravitational torques which will lead to some
velocity v∗

r of stars inwards or outwards at each radius such that Q∗
approaches Qlim. In analogy with the gas, we derive evolution equa-
tions for the stellar surface density and velocity dispersion which
depend on this torque. To do so we begin with the continuity equa-
tion and the φ-component of the Jeans equations, both derived from
the collisionless Boltzmann equation. The continuity equation is

∂ρ∗
∂t

+ ∇ · (
ρ∗〈v∗〉) = 0. (B1)

The angled brackets define an average over the distribution function,
namely 〈v∗

i 〉 ≡ ρ−1
∗

∫
v∗

i f d3v∗. Note that for simplicity we have
taken f to be the distribution function of mass rather than number
of stars, where all stars are assumed to have the same mass. The
φ−component of the Jeans equations is

∂ρ∗〈v∗
φ〉

∂t
+ ∂ρ∗〈v∗

r v
∗
φ〉

∂r
+ ∂ρ∗〈v∗

φv∗
z 〉

∂z
+ 2ρ∗〈v∗

r v
∗
φ〉

r
= 0. (B2)

As with the gas, we have assumed axisymmetry.
The evolution of the surface density follows almost immediately

from integrating the continuity equation in z.

∂

∂t

∫ ∞

−∞
ρ∗dz = −1

r

∂

∂r

(
r

∫ ∞

−∞
ρ∗〈v∗

r 〉 dz

)
−

∫ ∞

−∞

∂

∂z
ρ∗〈v∗

z 〉 dz.

(B3)

We will assume that 〈v∗
i 〉 does not vary much over the scaleheight of

the disc, that the disc does not change orientation (so 〈v∗
z 〉 = 0), and

that ρ∗ → 0 for large and small values of z, so integrals over z of
the z-derivative of a quantity weighted by ρ∗ will vanish. Defining
�∗ ≡ ∫ ∞

−∞ ρ∗dz, we have

∂�∗
∂t

= −1

r

∂

∂r

(
r�∗〈v∗

r 〉
) = 1

2πr

∂

∂r
Ṁ∗, (B4)

where we have defined Ṁ∗ ≡ −2πr�∗〈v∗
r 〉 to be the inward mass

flux of stars through the disc.
To relate this to the torque experienced by the stars, we integrate

the φ-component of the Jeans equations in z,

∂

∂t
�∗〈v∗

φ〉 + 1

r2

∂

∂r
r2

∫
ρ∗〈v∗

r v
∗
φ〉 dz = 0. (B5)

We now define the quantity δvi ≡ v∗
i − 〈v∗

i 〉, the deviation of a par-
ticular velocity at a given point from the mean velocity at that point.
As usual, we define 〈δviδvj 〉 ≡ σ 2

ij , and so 〈v∗
r v

∗
φ〉 = 〈v∗

r 〉〈v∗
φ〉 + σ 2

rφ

(since by construction 〈δvi〉 = 0). Rearranging, we arrive at

〈v∗
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∫
ρ∗σ 2

rφdz. (B6)

Using the continuity equation and multiplying through by 2πr2

yields the evolution equation for specific angular momentum j∗ ≡
r〈v∗

φ〉,

2πr�∗
∂j∗
∂t

+ 2πr�∗〈v∗
r 〉

∂j∗
∂r

= ∂

∂r
T∗, (B7)

where T∗ ≡ −2πr2
∫

ρ∗σ 2
rφdz. As with the gas, we assume a slowly

varying potential, in which case we have

− Ṁ∗
∂j∗
∂r

= −Ṁ∗vφ(1 + β) = ∂

∂r
T∗, (B8)

so it is clear that the time derivative of �∗ is proportional to the
second derivative of the torque. At this point we have also assumed
that 〈v∗

φ〉 = vφ , the circular velocity of the gas, so that here, as in
e.g. equation (3), β = ∂ ln vφ/∂ ln r .

To find the evolution of the stellar velocity dispersion, we begin
with the collisionless Boltzmann equation,

∂f

∂t
+ v∗

i

∂f

∂xi

− ∂ψ

∂xi

∂f

∂v∗
i

= 0. (B9)

Next, we multiply through by v∗
j v

∗
j and as usual integrate over d3v∗.

Since ψ , xi and t are independent of v∗, we have∫
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The final term may be integrated by parts,
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while the second term may be expanded by again splitting up v∗
k =

〈v∗
k 〉 + δvk , so that

〈v∗
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∗

∫
f δviδvj δvj d3v∗. (B12)
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For simplicity we drop the final term. This should be a reasonable
approximation, since even though the δvi are not necessarily small
compared to 〈v∗

i 〉, the integrand contains a quantity which averages
to zero, fδvi, multiplied by a positive definite quantity δvjδvj. We are
therefore reweighting an integral which would vanish for a constant
weight and approximating it as zero.

With these two substitutions, we arrive at an equation for the
evolution of the specific kinetic plus potential energy of the stars,

0 = ∂

∂t
ρ∗

(
〈v∗〉2 +

∑
i

σ 2
ii

)
+ ∇ · ρ〈v∗〉

(
〈v∗〉2 +

∑
i

σ 2
ii

)

+∇ · (
2ρ〈v∗〉 · σ 2

) + 2ρ∗∇ψ · 〈v∗〉. (B13)

Here σ 2 is the tensor with components 〈δviδvj 〉 = σ 2
ij . The grav-

itational work term may be replaced via the continuity equation,
since

∇ · (ρ∗〈v∗〉ψ) = ψ∇ · (ρ∗〈v∗〉) + ρ∗〈v∗〉 · ∇ψ

= −∂(ρ∗ψ)

∂t
+ ρ∗

∂ψ

∂t
+ ρ∗〈v∗〉 · ∇ψ. (B14)

With this substitution, we can group the terms compos-
ing the specific energy together, so that if we define A =(〈v∗〉2 + ∑

i σ
2
ii + 2ψ

)
, we arrive at

∂

∂t
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Before integrating over z, we can use the continuity equation to
make one more simplification,

ρ∗
∂

∂t
(A − 2ψ) + ρ∗〈v∗〉 · ∇A + ∇ · (

2ρ∗〈v∗〉 · σ 2
)= 0. (B16)

Next we approximate A ≈ v2
φ + ∑

i σ 2
ii + 2ψ , since the other com-

ponents of 〈v∗〉 are small, 〈v∗
r 〉, or zero, 〈v∗

z 〉. We also approxi-
mate σ 2

φφ ≈ σ 2
zz, in accordance with observations in the solar neigh-

bourhood (e.g. Holmberg, Nordström & Andersen 2009). Finally,
we will again assume that the potential changes slowly, so that
∂vφ/∂t = 0. With these approximations, we have
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Now we will integrate over z and assume, consistent with our ap-
proximation that

∫
f δviδvj δvj d3v ≈ 0, that σ 2

ii is roughly constant
over a disc scaleheight. Employing the angular momentum con-
servation equation and assuming ∂σrr/∂t ≈ 2∂σzz/∂t (Sellwood,
private communication), we arrive at

∂σrr
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2πr�∗(σrr + σzz)
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+ Ṁ∗

(
3σrr

∂σrr

∂r
+ 2σzz

∂σzz

∂r
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. (B18)

This is very similar to equation (3), since the procedures used to
derive the two are quite similar. The primary distinction is that here
we have split the velocity dispersion into a radial and non-radial
component whereas for the gas they are assumed to be identical (a
reasonable approximation since the gas is collisional). Besides that
the only difference is in the numerical values of the coefficients.

With equation (B18), its counterpart for ∂σzz/∂t , and the conti-
nuity equation (equation B4), we can follow a similar procedure as

detailed in Section 2.1 to solve for T∗. In particular, we can again
split the terms which appear in dQ∗/dt into those which contain T∗
and its radial derivatives, and those which do not,

dQ∗
dt

= ∂�∗
∂t

∂Q∗
∂�∗

+ ∂σrr

∂t

∂Q∗
∂σrr

+ ∂σzz

∂t
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= f ∗
transport
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�∗, σrr , σzz,T∗,

∂T∗
∂r

,
∂2T∗
∂r2

)

+f ∗
source(�, σ, Z, �∗, σrr , σzz). (B19)

None of the equations used so far in this appendix contribute to
f ∗

source – the only way Q∗ can change without transport is via SF,
which increases �∗ and typically reduces σ rr and σ zz, which in turn
tends to lower Q∗. For the purposes of computing T∗, we ignore
f ∗

source and simply solve f ∗
transport = �Q∗/Tmig(2π	)−1 when Q∗ <

Qlim and set T∗ = 0 otherwise. This allows Q∗ to fall significantly
below Qlim, though in practice SF is typically slow enough that
Q∗ ≈ Qlim. As with the gas, if this equation yields a solution where
T∗ > 0, we set T∗ = 0 in the offending cell.

APPENDI X C : SENSI TI VI TY TO PARAME TERS

Thus far we have used only the fiducial parameters, but each one
is at least somewhat uncertain (e.g. εff may vary by a factor of 3
in either direction), or may change for physical reasons (e.g., lower
mass haloes will likely have smaller racc and vcirc, and larger μ). To
explore the effects of each parameter, we have varied them one at
a time from their fiducial values for the smooth accretion history.
Fig. C1 shows the z = 0 surface density distribution when each
parameter is varied. Essentially, all of the models are gravitationally
unstable over a wide range of radii and parameter choices. We also
show the metallicity distribution for all of these models in Fig. C2.
The metallicities are in general hugely sensitive to the parameters,
so much so that any attempt to draw a physical conclusion by
fitting a metallicity gradient should be treated with extreme caution,
since the same metallicity gradient can be produced by varying any
number of parameters. We discuss each of the parameters in more
detail in the following sections.

C1 Initial conditions – αr, fg,0, fcool, φ0

These parameters, the scaling of the accretion scalelength with halo
mass, the initial gas fraction, the fraction of baryons which have
cooled into a disc at z = zstart and the initial ratio of stellar to gas
velocity dispersion, are almost completely irrelevant for the z = 0
surface density distribution. In our framework, the surface density at
each radius is set by an equilibrium relation, and so it is unsurprising
that the initial conditions are washed out. The exception is that
strong evolution of racc with halo mass, i.e. (probably unrealistically)
high values of αr, leads to smaller gravitationally unstable regions
at z = 0, since so little mass was accreted directly at large radius.

C2 Rotation curve – β0, n, rb, vcirc

The shape of the rotation curve is controlled by these four param-
eters – inner power-law slope, the sharpness and location of the
turnover from flat, and the overall normalization. The most dra-
matic effect of changing these parameters is in the inner region of
the disc, where different values can change the surface density by
an order of magnitude. This is because the rotation curve influences
both the surface density in gravitationally unstable regions and the
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Figure C1. Surface density at z = 0. Each pane shows models where the given parameter is varied within the quoted range – red models have lower values
of the parameter, blue higher. The models are arranged in six columns according to what the parameters are controlling – from left to right: initial conditions,
rotation curve, SF, metallicity, gas transport and gas supply.

SFR in the central region, where �̇SF
∗ ∝ κ ∝ vφ , and hence has a

strong influence on where exactly the disc is able to form stars fast
enough to shut off GI transport to the innermost region. Negative
values of β0 have an effect at large radii too. In general, however, the
qualitative behaviour of our models is largely insensitive to these
parameters except near galactic centres.

C3 Star formation – εff, fH2,min, tSC, μ

Each of these parameters governs the rate at which gas is depleted
from the galaxy, either into stars or galactic winds. As we would
expect, εff is important in the inner region of the disc where the
SFR is in the Toomre regime, while fH2,min is important in the
outer disc where the gas is mostly atomic and hence SFR ∝ fH2 =
fH2,min . Note however that the factor of 3 variation in εff has a much
larger effect than the order-of-magnitude variation in fH2,min . This
is because the surface density is set by different equilibria – in the
outer disc the surface density is mostly set by GI, whereas in the
inner region the surface density is determined by whether SF has
shut off GI transport to the central region or not, which in turn
depends strongly on the SF law there. If GI transport has been shut
off, then the surface density is set by cosmological infall balancing
SF, so a change in the SF law given a fixed infall rate �̇cos can have a
large effect. The mass loading factor μ affects the rate of mass-loss
everywhere in the disc, but again because of the different equilibria,
it has a much stronger effect in the inner region. Again, however, we
note that the qualitative results, as opposed to the precise numerical
values of �(r), are insensitive to these parameters.

C4 Metallicity – ZIGM, ξ , κZ, y

The metallicity of the infalling and initial gas in the disc, the metal
enhancement of galactic winds, the metal diffusion coefficient and
the yield. The first three strongly influence the metallicity of the
disc, as does the yield to a lesser extent. This in turn affects the H2

fraction when the gas is near its transition surface density [higher
(lower) surface densities will have fH2 ∼ 1 (fH2,min) respectively].
The H2 fraction then has an effect on the SFR. In general, changes
in the parameters which decrease the overall metallicity increase
the surface density everywhere by decreasing the rate at which SF
is depleting/ejecting the gas.

C5 Transport – QGI, αMRI, η, Tgas

The parameters which control the radial transport of the gas have the
potential to strongly affect the surface density, since much of the disc
is gravitationally unstable. QGI and Tgas both directly affect �crit,
namely the minimum surface density for the gas to be gravitationally
unstable. Meanwhile η only affects the energy balance in the disc.
For all the parameters, the primary difference is in where the GI
transport is shut off. Higher QGI and dissipation rate allow the gas
to reach farther towards the centre before being consumed by SF.
Tgas turns out not to matter all that much, primarily because in
the limit of large accretion rates/low velocity dispersion floors, the
energy balance is independent of Tgas. Perhaps the most dramatic
parameter here is αMRI, which has even less effect on the surface
density distribution than the initial conditions.
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Figure C2. Metallicity for the same models as in Fig. C1.

C6 Gas supply – εin, Mh,0, fR, racc

Here we come to the most important parameters in setting the sur-
face density – the quantity and distribution of the gas supply. These
parameters, respectively, are the efficiency at z = 0 (assuming a
fixed efficiency at z = 2), the halo mass at redshift zero (where
we change only Mh and hence the accretion history, but no other
parameters), the remnant fraction and finally the accretion scale-
length. These models obey the trends one might expect. Less gas

means the region over which the gas is gravitationally unstable is
smaller. Parts of the disc beyond this radius retain the exponential
character of the accretion profile, and parts of the disc interior have
their surface densities set by the balance between local accretion
and local SF.
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