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Early turbulent mixing as the origin of chemical
homogeneity in open star clusters
Yi Feng1 & Mark R. Krumholz1

The abundances of elements in stars are critical clues to stars’ origins.
Observed star-to-star variations in logarithmic abundance within
an open star cluster—a gravitationally bound ensemble of stars in
the Galactic plane—are typically only about 0.01 to 0.05 over many
elements1–9, which is noticeably smaller than the variation of about 0.06
to 0.3 seen in the interstellar medium from which the stars form10–14.
It is unknown why star clusters are so homogenous, and whether homo-
geneity should also prevail in regions of lower star formation efficiency
that do not produce bound clusters. Here we report simulations that
trace the mixing of chemical elements as star-forming clouds assem-
ble and collapse. We show that turbulent mixing during cloud assem-
bly naturally produces a stellar abundance scatter at least five times
smaller than that in the gas, which is sufficient to explain the observed
chemical homogeneity of stars. Moreover, mixing occurs very early,
so that regions with star formation efficiencies of about 10 per cent
are nearly as well mixed as those with formation efficiencies of about
50 per cent. This implies that even regions that do not form bound
clusters are likely to be well mixed, and improves the prospects of using
‘chemical tagging’ to reconstruct (via their unique chemical signatures,
or tags) star clusters whose constituent stars have become unbound
from one another and spread across the Galactic disk.

The question of how star clusters become chemically well mixed has
received relatively little attention. With a few exceptions15, work to date
has been limited to simple analytic estimates16, or to calculations omit-
ting star formation and self-gravity17,18. To improve this situation, we
have performed a series of simulations of star cluster formation including
hydrodynamics, gravity, and optically thin radiative heating and cool-
ing. Our simulations use the ORION code19–21, with a new implementa-
tion of particle-mesh gravity (Methods, Extended Data Figs 1 and 2). We
use initial conditions based on the ‘colliding flow’ model22. We consider
a region containing gas of number density n0 5 1 cm23 (mass density
r0 5 2.1 3 10224 g cm23) with initial temperature T 5 5,000 K. The gas
has a random turbulent velocity vrms, for which we consider two values:
0.17 and 1.7 km s21; we refer to runs with these values as S and L, for small
and large turbulence, respectively. In addition to the turbulent velocity,
we set up two cylindrical regions 32 pc long and 32 pc in radius, centred
on the x axis, with their closer ends separated by 64 pc, within which the
gas has a uniform velocity v0 5 9.2 km s21, directed towards the other
cylinder. To trace chemical mixing, the simulation includes two passive
scalars QL and QR, which have initial abundances of 1 within the left and
right cylinders, respectively, and 0 elsewhere. In addition to these two
simulations with smooth initial conditions, we also run a simulation C
(for clumpy)15, in which we randomly add cold clumps one coarse cell in
radius with a filling fraction of 0.05 and a number density nc 5 132.5 cm23;
at this density the equilibrium temperature is such that the pressure is
in equilibrium with that of the warm low-density background. Full details
of the simulations are given in Methods.

The overall evolution of our simulations is very similar to previous
colliding flow simulations15,22,23 (Fig. 1). The two streams of gas converge
rapidly, and compression of material at the heads of the two cylinders
leads to thermal instability and the formation of a cold phase even before
the two flows collide. For runs S and L, the two streams collide just before

10 Myr of evolution, and this produces a dense, cold, turbulent layer that
is gravitationally unstable. The layer begins to form stars at ,19 Myr
in run S, and approximately 50% of the gas in the two streams has been
converted to stars by ,25 Myr of evolution (Extended Data Fig. 3). In
run L, star formation begins at ,25 Myr, and follows a similar time evo-
lution to run S thereafter. In run C, the two streams collide at ,6 Myr
because the dense cold phase is less decelerated by the warm phase. Star
formation begins immediately after collision, and ,40% of the gas in
the two streams has been converted to stars by ,13 Myr of evolution.
We note that all our simulations have star formation rates that exceed
observationally inferred values24,25, but we select this scenario for exam-
ination precisely because its rapidity minimizes the time available to fully
mix out chemical inhomogeneities. Our results should therefore rep-
resent lower limits on the true amount of mixing.

By the onset of star formation, the interaction region where the flows
have collided is reasonably well mixed by the turbulence (Fig. 1). The ratio
of passive scalar concentrations R 5 QL/QR is very broad for material at
densities up to ,10222 g cm23, reflecting the broad range of abundances
in low-density gas. However, in gas with densities of ,10221 g cm23 or
higher, the range of compositions is dramatically reduced (Fig. 2). For
the densest gas, the full range in R is at most a decade, and the vast major-
ity of the mass is spread over an even smaller range. This densest gas is
produced in regions where the two flows are converging and mixing
efficiently, and it is these regions that produce stars.

To assess how this affects stellar abundances, we note that the abun-
dance scatter for some element in a collection of stars is formally defined

as S�~
P

log a�,i{log a�
� �2

.
N

h i1=2
, where the sum runs over all N

stars present at any time, a*,i is the abundance of that element in star i,
and log a�~1=N

P
i log a�,i is the mean of the logarithmic abundance

over all stars. To compute this quantity from our simulations, let aL and
aR be the abundances of some element of interest in the left and right
streams, respectively. Without loss of generality, we can choose aL , aR.
For each star i formed in the simulations, we know the masses ML,i and
MR,i contributed by each stream. The abundance a*,i of that star is there-
fore a*,i 5 (aLML,i 1 aRMR,i)/(ML,i 1 MR,i). Note that the actual values
of aL and aR need not be chosen before the simulations are run, since
the only quantities actually measured from the simulations are ML,i and
MR,i. We can therefore use a single simulation to compute S* for an arbi-
trary value of the gas abundance ratio, aR/aL (see Extended Data Fig. 4).

We show in Methods that the dependence of S* on aR/aL is character-
ized by two limiting cases: when aR/aL < 1, we have S*< 2sYSg ; SslopeSg.
Here Yi 5 MR,i/(ML,i 1 MR,i) is the mass fraction in star i provided by

the right stream, sY~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Yi{�Yið Þ2

.
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r
is the dispersion of the Yi

values, and we have defined the gas scatter as Sg~ log aL{log ag
� �2
hn

z log aR{log ag
� �2�=2g1=2

, where log ag~ log aLz log aRð Þ=2 is the
mean logarithmic abundance in the two streams. In the opposite limit,
when aR=aL?1, we have S* < slogY ; Slimit, where slogY is the disper-
sion of log Yi. Intuitively, the reduction in abundance scatter is at its
minimum when the gas is close to homogenous already, and Sslope char-
acterizes the factor by which the gas abundance scatter is reduced in this
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limit. The quantity Slimit is the maximum possible stellar abundance
scatter no matter how inhomogeneous the gas is.

We define the star formation efficiency e 5 M*/2Minf, where M* is the
total stellar mass and Minf is the mass in one of the streams; Minf ~6:5
|103M8 in runs S and L, and 4:9|104M8 in run C (M[ is the solar
mass). The general evolution of both Slimit and Sslope with e in run S is a
rapid rise from 0 as the first stars form (Fig. 3), followed by a rapid fall
by the time e reaches ,0.02. At values of e . 0.1, we have Slimit = 0.4
and Sslope = 0.3, indicating that a relatively small abundance inhomo-
geneity will be reduced by a factor of at least 3 in the star formation
process, and that even a very large inhomogeneity will produce at most
,0.4 dex of scatter in the resulting stars. By the time the star formation
efficiency reaches ,30%, the reduction in scatter is close to a factor of
5, and the absolute upper limit on the scatter is ,0.2 dex. In run L, the
stronger turbulence delays the onset of star formation and allows more
rapid mixing at early times, so the stellar scatter starts small and very
gradually increases with time. However, it is always smaller than at the
corresponding value of e in run S. Similarly, Slimit is smaller in run C

than in run S, probably due to the stronger global collapse in the clumpy
run15. However, Sslope is nearly identical in runs S and C. This suggests
that clumpiness does not alter the amount of mixing much where Sg=1.
We have also conducted convergence studies to verify that our results for
mixing are robust against changes in numerical resolution (Methods,
Extended Data Figs 5 and 6).

Figure 3 indicates that the process of star formation leads to a great
deal of chemical homogenization as soon as even very modest star for-
mation efficiencies are achieved. For realistic efficiencies, which are prob-
ably in range ,10–50% on the scale of star clusters26, we should expect
the abundance scatter to be reduced by at least a factor of ,4–6 com-
pared to that in the gas from which the stars are formed, and even in the
most chemically inhomogeneous environments the scatter will be no
more than a few tenths of a dex. Since observed gas abundance scatters
are Sg < 0.06–0.3 dex over size scales of ,0.1–1 kpc (refs 10–14), a factor
of ,5 reduction in the stellar abundance scatter compared to this is
sufficient to fully explain the observed scatter S* < 0.01–0.05 dex seen
in open clusters and moving groups.
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Figure 1 | Slices through
simulation S at a variety of times,
showing the total density and the
densities of the passive scalar fields.
a, Gas density r in run S on slices in
the x–y (left column) and y–z (right
column) planes. The rows show
increasing times in the simulation, as
indicated in each row. b, Density of
passive scalars rQL (red) and rQR

(blue) at the same times and in the
same planes as in a. The densities of
the two tracers have been mapped to
the red and blue channels of the
image, so that cells containing equal
contributions from the two streams
appear as purple, with the intensity of
the purple colour proportional to the
logarithm of the total density. In
contrast, cells dominated by one
passive scalar or the other appear as
red or blue in colour.
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Figure 2 | Distribution of gas in simulation S
in density and mixing ratio at two different
times. The colour in each two-dimensional pixel
indicates the relative fraction of mass in the
corresponding bin of (r, R), where R 5 QL/QR is
the ratio of the two passive scalars. Panel a shows
the result at t 5 9.8 Myr, just as the two streams are
beginning to collide, and panel b shows the result at
t 5 22.2 Myr, just after the onset of rapid star
formation. Note that some of the features seen in
b, including the streaks near R < 3 3 1026 and
R < 1021, are transients due to the chaotic nature
of the mixing process. Similar features appear
at other times and for different simulation
resolutions, but they come and go essentially
randomly. Only the must more prominent
structure near R 5 0 is persistent.
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Moreover, our results are also very encouraging for the prospects of
chemical tagging as a method of reconstructing the star formation his-
tory of the Milky Way, and for identifying potential ‘solar siblings’—
stars born in the same cluster as the Sun27,28. We find that both Slimit and
Sslope reach values of ,0.1–0.3 even at low star formation efficiencies of
,0.1, and that the degree of mixing increases only modestly as e rises
from ,0.1 to ,0.5. Since star formation sites with e < 0.1–0.3 are prob-
ably the progenitors of the majority of field stars, while those with e < 0.5
probably represent the sites of bound cluster formation, our results imply
that the clusters and moving groups that have been studied for chem-
ical homogeneity thus far are not atypical in their degree of chemical
mixing. They are at most marginally better mixed. Thus it is likely that
even those stars that did not form in bound clusters will be chemically
similar to their neighbours formed at the same point in space and time,
and that these unique chemical signatures can serve as a fingerprint to
identify these common formation sites even as stars disperse through-
out the Galaxy. Indeed, with a group finding technique29 and high reso-
lution data, recent work30 shows evidence that chemical tagging of field
stars does identify coeval groups of stars. We discuss the implications
and broader context of our work in more detail in Methods.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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star formation efficiency in simulations S, L and C. a, Sslope versus star
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METHODS
Equations and algorithms. We perform simulations using the parallel adaptive
mesh refinement (AMR) code ORION. ORION utilizes a conservative second order
Godunov scheme to solve the equations of compressible gas dynamics coupled to a
multi-grid method to solve the Poisson equation for gas self-gravity19,20. We treat
radiative heating and cooling by parameterized heating and cooling curves, which
we take from the approximation of ref. 31. In self-gravitating collapse problems, it
is necessary to cut off the collapse at finite resolution in order to render the problem
computationally tractable, and ORION handles this problem by replacing regions that
become Jeans-unstable at the finest allowed resolution by sink particles21. The full
set of equations solved by the code is

Lr

Lt
z+: rvð Þ~{

X
i

_MiW x{xið Þ ð1Þ

L rvð Þ
Lt

z+: rvvð Þ~+P{r+w{
X

i

_piW x{xið Þ ð2Þ

L reð Þ
Lt

z+: rezPð Þv½ �~rv+w{
X

i

_eiW x{xið Þ{n2LznC ð3Þ

L rQkð Þ
Lt

z+: rQkvð Þ~{
X

i

_Mk,iW x{xið Þ ð4Þ

+2w~4pGpz4pG
X

i

Mid x{xið Þ ð5Þ

d
dt

Mi~ _Mi ð6Þ

d
dt

Mk,i~ _Mk,i ð7Þ

d
dt

xi~
pi

Mi
ð8Þ

d
dt

pi~{Mi+wz _pi ð9Þ

where r, P, and v are the fluid density, pressure, and velocity, respectively, e 5 (1/2)
v2 1 P/[r(c 2 1)] is the specific energy of the gas, and w is the gravitational poten-
tial. We do not attempt to model the transition from atomic to molecular gas, and
thus we adopt a constant ratio of specific heats c 5 5/3, as appropriate for a mon-
atomic ideal gas. Passive scalars or ‘colours’ are denoted with Qk, where k is the index
of the tracer in question. We use these to represent and track abundance patterns
in the gas.

Terms subscripted by i refer to sink particles, which represent stars; xi, Mi, pi,
and Mk,i are the position, mass, momentum, and mass of passive scalar k in the ith
star, and _Mi, _pi, _ei , and _Mk,i are the rates at which those stars add or remove mass,
momentum, energy, and the mass of the kth tracer from the gas. The quantity Wi is
the weighting kernel that spreads the stellar interaction over some number of com-
putational cells. These quantities are all computed following the sink particle algo-
rithm introduced in ref. 21, which estimates the accretion rates onto sink particles
by fitting the gas around them to Bondi–Hoyle flow.

The quantities n, C, and L are the number density, heating function, and cool-
ing function. Since we are interested in simulating flows in the atomic interstellar
medium that lead to the formation of star clusters, we adopt a mean molecular weight
of 1.27, so n 5 r/(1.27mH), where mH is the mass of the hydrogen atom, and we
adopt the approximate heating and cooling functions suggested in ref. 31:

C~2:0|10{26erg s{1 ð10Þ

L

C
~107exp

{1:184|105

Tz1,000

� �
z1:4|10{2

ffiffiffiffi
T
p

exp
{92

T

� �
cm3 ð11Þ

Here the temperature T is in K, and is given by T 5 (e 2 v2/2)/[(c 2 1)kB]. Phys-
ically, C represents the rate of photoelectric heating per particle, while L describes
cooling due to emission in the Lyman-a and C1 158mm lines, which dominate
cooling at high and low temperatures, respectively.

We use the AMR capability in our code to increase the resolution in regions under-
going gravitational collapse. We refine by a factor of 2 any cells in which the local
density exceeds the Jeans density

rJ~J2 pkBT
mmHGDx2

ð12Þ

where we use a Jeans number J 5 1/8, m 5 1.27 is the mean molecular weight, and
Dx is the cell size. Refinement continues up to some specified maximum level. If
the density exceeds the Jeans density on this maximum level, evaluated with a Jeans
number J 5 1/4, we introduce a sink particle.
Sink particle algorithm. For the purposes of this computation, we have modified
the implementation of sink particles in the ORION code slightly from the method
described in ref. 21. First, in addition to tracking the mass and momentum of sink
particles as in the original method, we also track the masses of passive scalars. We
compute the rates at which passive scalars are incorporated into sink particles by
assuming that the accretion rate for each passive scalar in a given computational
cell is equal to the overall mass accretion rate from that cell multiplied by the con-
centration Qk of the passive tracer in that cell. Thus the total mass of passive scalar
Mk~

Ð
rQk dVz

P
i Mk,i over the entire computational grid plus that in sink par-

ticles is conserved by the accretion process, as are the concentrations Qk in the cells
from which accretion occurs. Since we initialize the passive scalar abundances QL

to unity in the left stream, and zero elsewhere, the mass contributed to star i from
stream L is identical to the mass ML,i of the passive scalar in that star, and similarly
for MR,i.

Second, in the original21 method, the velocities of sink particles were updated by
calculating the gravitational force between every cell and every sink particle. The
code then performed an operator-split step during which the sink particle positions
and velocities were evolved under their mutual gravitational interaction using a sub-
cycled ordinary differential equation solver. While this approach is highly accu-
rate, and allows the code to correctly evolve sink particle orbits even when they are
smaller than the size of a hydrodynamic cell, the computational cost of this method
scales as the number of sink particles times the number of computational cells, plus
the square of the number of sink particles. This is prohibitively expensive for the large
number of sink particles (> 5,000) that form in the simulations we present here.

For this reason, we have implemented a particle-mesh (PM) method to update
sink particle positions and velocities. Before solving the Poisson equation, we assign
the mass carried by sink particles to the computational grid, so that this mass is
included when solving for the gravitational potential. We perform this mass assign-
ment using a cloud-in-cell interpolation (CIC) scheme32. Once we have obtained
the potential, we update the positions and velocities of the particles. For the velocity
update, we compute the accelerations of the particles from the gradient of the poten-
tial returned by the Poisson solve, interpolated in space to the positions of the
particles using the same CIC interpolation scheme. The use of the same interpola-
tion for the mass assignment and force computation steps ensures that self-forces
vanish to the accuracy of the Poisson equation solution.

We have performed two tests of this implementation. The first is maintaining
the orbit of a binary system. We place two sink particles of mass 10 M8 into a com-
putational domain that runs from [22.5 3 1013, 2.5 3 1013] cm in each direction.
Particle 1 is initially placed at (3.1253 1012, 0) cm with velocity (0, 1.0333 107) cm s21.
Particle 2 is initially placed at (23.125 3 1012, 0) cm with velocity (0, 21.033 3

107) cm s21. The separation and velocity we have chosen are such that the particles
should perform a circular orbit at constant radius centred on the origin. In addi-
tion to the two sink particles, we fill the computational domain with a uniform,
isothermal gas of density 1.0 3 10222 g cm23 and sound speed 1.3 3 107 cm s21.
The density and sound speed are such that the mass accreted onto the particles per
orbit should be a negligible fraction of their initial mass, and thus interaction with
the gas should have no effect on the orbit.

We perform the test at two different resolutions: 16 and 64 cells per linear dimen-
sion, corresponding to cell sizes of 3.125 3 1012 cm and 7.8125 3 1011 cm, respec-
tively. Thus the particles are separated by only 2 computational cells at the lower
resolution, and 8 cells at the higher resolution. In Extended Data Fig. 1, we show
the separation between the two sink particles tracked over many orbits. We see that
the algorithm maintains the orbital separation to a precision of ,10% in the lower
resolution test, and ,1% in the higher resolution test, with no apparent secular drift.
In both cases the error is roughly 1/10 the size of a computational cell. Given that the
forces felt by the particles are only interpolated to an accuracy of one cell, this is the
best precision that could be expected.

The second test is Bondi accretion. We place a sink particle of mass 10 M8 at
the centre of a computational grid that is filled with an isothermal gas of sound
speed 1.3 3 107 cm s21, so that the Bondi radius of the particle is 7.85 3 1012 cm.
The computational grid is 1.4 3 1014 cm on a side, and has a linear resolution of
256 cells, so that the size of a cell isDx 5 rB/14.4, and the length of the computational
box is L 5 17.8rB, where rB is the Bondi radius. We initialize the density and velocity
profile of the gas to the analytic solution for Bondi accretion, and then allow the
computation to evolve for a time t 5 5rB/cs, where cs is the gas sound speed.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014



We run this test twice, once with the original ORION sink particle implementa-
tion, and a second time with our new PM method. We show the results of both tests
in Extended Data Fig. 2. We can see that the algorithm maintains the density and
infall velocity outside the accretion kernel quite well. The accretion rates are also
close to the analytical result, with errors of 3.4% for the standard algorithm and 5%
for the PM algorithm, respectively. The small differences in velocity between the
two algorithms at r/rB < 10 are to be expected, because the gas at this distance is near
the edge of the computational box, and the algorithms differ slightly in how they
treat boundary conditions. The PM method imposes periodic boundary conditions
on the potential, such that the gravitational force exerted by the particle goes to
zero smoothly as the distance from the particle approaches half the size of the com-
putational box. In contrast, the standard method simply uses a 1/r2 force law for all
cells, so the force does not go to zero smoothly at the box edge.
Initial conditions and resolution. Runs S and L both start with a uniform density
n0 5 1 cm23 (mass density r0 5 2.1 3 10224 g cm23) and a temperature of T0 5

5,000 K; given our choice of heating and cooling functions, this is the equilibrium
temperature at that density. In addition to the uniform velocity fields imposed within
the converging cylinders (see main text), we impose a turbulent velocity field with
a dispersion of 0.17 (run S) or 1.7 (run L) km s21. We generate this field in Fourier
space by choosing random phases and drawing amplitudes following a power spec-
trum that is flat at wavenumbers k in the range 4 # kLbox # 8 and zero elsewhere.
Here Lbox 5 128 pc is the size of the (cubical) computational domain. Our simula-
tions use periodic boundary conditions, and for runs S and L we use a base grid of
2563 for our coarsest level, plus 2 levels of refinement. Thus the base grid resolution
is Dx 5 1/2 pc, and the minimum cell size is Dxmin 5 1/8 pc.

The setup is identical for run C, except that in 5% of the coarse cells we replace
the warm medium with a cold clump with number density nc 5 132.5 cm23 and
temperature Tc 5 37.7 K, which is the equilibrium temperature at this density. We
choose this density and temperature so that ncTc 5 n0T0, and the cold clumps are
initially in pressure balance with the surrounding warm gas. We randomly choose
which cells will be cold rather than warm, and the probability of a cell being cold is
independent of whether it is part of one of the streams or is part of the medium
between the streams.
Characterizing the stellar scatter. Here we show that the function S*(Sg), which
characterizes the stellar abundance scatter as a function of the initial gas abundance
scatter, is a linear function in the limit Sg R 0, and reaches a finite limiting value as
Sg R ‘.

First consider the latter case, Sg R ‘. Without loss of generality we will assume
aL , aR. Since we are working in the limit Sg R ‘, this implies that aR/aL R ‘ as
well. We define Xi 5 ML,i/(ML,i 1 MR,i) and Yi 5 MR,i/(ML,i 1 MR,i) as the mass frac-
tions in star i coming from the left and right streams, respectively, so that a*,i 5

XiaL 1 YiaR. As long as Yi ? 0 (that is, as long as there is any mixing at all), then in
the limit aR/aL R ‘ we have a*,i R YiaR. Thus the mean stellar abundance is
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where the quantity slogY is simply the scatter in the logarithm of the mass fraction
contributed by each stream. Intuitively, this makes perfect sense: if one incoming
stream contains iron and the other does not, then clearly the scatter in the loga-
rithmic iron abundance must reduce to the scatter in the logarithm of the mass frac-
tion provided by the iron-bearing gas.

Now consider the opposite limit, Sg R 0, in which case aL < aR. To analyse this
limit, we set aR~ 1z2Eð ÞaL and take the limit E?0. Inserting these values into

the definition of Sg~ log aL{log ag

� �2
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, Taylor-

expanding about ~0, and dropping terms beyond leading order, we obtain:
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ln 10
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Similarly, the mean stellar abundance can be expanded to give to leading order
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where Y~ 1=Nð Þ
P

iYi is the mean value of Yi. The stellar abundance scatter thus
becomes
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to leading order, where sY is the dispersion in mass fraction. We therefore have

S�<2sY Sg ð19Þ
in the limit Sg R 0.
Convergence. Convergence is a critical issue for any calculation of mixing, since,
in a grid-based code without explicit diffusion such as ours, the chemical (and phys-
ical) diffusivity is directly set by the grid size. We do not expect all quantities in our
simulations to converge—indeed, a number of authors have pointed out that there
appears to be no converged solution to the problem of computing the mass spec-
trum of objects produced by gravitational fragmentation of a turbulent medium
with an isothermal or sub-isothermal equation of state26,33. We therefore do not
expect things like the mass distribution or number of stars in our simulations to
converge. However, we can still check if the amount of chemical mixing converges,
or, more basically, if there is a trend of increasing or decreasing mixing with reso-
lution that we can use to extrapolate.

To assess this question, we have performed runs S3, S4, and 512S1, which have
identical physical conditions to run S, but differ in resolution. Runs S, S3, and S4 all
have the same base grid resolution, but differ in the maximum AMR level permitted
before sink particles are introduced. Since refinement is based on the Jeans con-
dition, these runs are therefore identical in their resolution of low-density, non-
self-gravitating gas, but runs S3 and S4 offer factors of 2 and 4, respectively, better
resolution in the self-gravitating regions from which stars form. The correspond-
ing minimum cell sizes are Dxmin 5 1/16 and 1/32 pc. In comparison, run 512S1
has the same peak resolution as S (Dxmin 5 1/8 pc), but uses twice as many cells in
its base grid. Run 512S1 therefore provides better resolution in the diffuse, non-self-
gravitating gas (Dx 5 J pc), but the same resolution in self-gravitating regions.

We plot Slimit and Sslope as a function of star formation efficiency e for all runs in
Extended Data Fig. 5. We also plot S* as a function of Sg for runs S, S3, and S4 at a
fixed star formation efficiency e < 0.06 in Extended Data Fig. 6. For the runs that
have a base grid of 256 cells, the plots show strong signs of convergence. Qualita-
tively, runs S, S3, and S4 all show similar variations of S* and Slimit versus e. The only
substantial difference is for Slimit in run S at very low e, when there are very few stars
present and the results are therefore highly stochastic. In contrast, for runs S3 and
S4, Sslope values are almost the same even when the star formation efficiency e is less
than 0.1. The values of Slimit in these runs are within 10% of one another at all times.
We can see this even more clearly from Extended Data Fig. 4, where the curves of S*
versus Sg for runs S3 and S4 are fairly close. The two curves overlap when Sg , 1
and differ only slightly when Sg R ‘.

In comparison, the time evolution of Sslope and Slimit in run 512S1 is qualitatively
different: the absolute level of scatter is smaller than in run S at all times, and the
value of Slimit is smaller than in runs S3 and S4 at almost all times as well, while the
value of Sslope is about the same. Increasing the base grid resolution therefore also
appears to result in reduced scatter. This may occur because, with finer resolution
of the base grid, turbulent mixing is better resolved in lower density regions, thus
make the mixing process more efficient. So the initial rapid rise of scatter of runs
with a base grid resolution of 256 may be caused by the gravitational collapse of
poorly mixed regions. The same regions are better mixed in run 512S1 because of
better resolved turbulence, so the rapid rise disappears in run 512S1 and the scatter
is also smaller thereafter.

Thus we find that increasing either the finest AMR level or the number of cells per
linear dimension on the coarsest AMR level reduces the abundance scatter, although
the results converge relatively fast and Sslope especially does not change much between
different runs. This result might initially seem surprising, since increasing resolu-
tion should decrease the diffusivity of the code. However, this effect appears to be
outweighed by the better resolution of the turbulence, perhaps associated with a
better separation between the warm and cold phases, provided by a finer grid. In any
event, the conclusion that the abundance scatter is reduced by a factor of ,3–6 com-
pared to that in the gas from which the stars are formed appears to be robust to
changes in resolution. If anything, we have underestimated the degree of mixing.
Implications and broader context. Chemical homogeneity in open star clusters is
of interest for a number of reasons, and our results therefore have a number of
important implications. One important implication is for chemical tagging34. The
field stars that make up the bulk of the Galactic disk most probably consist of dis-
solved star clusters, each carrying a unique chemical tag marking its birth site. If one
measures the abundances of enough elements in field stars with enough precision,
then in principle it should be possible to use this tag to infer that two seemingly unre-
lated field stars in fact originated in the same cluster, and in the process one could
answer a number of outstanding questions about the origin of the Sun and the move-
ments of stars through the Galaxy27,28. There are two major surveys underway that
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include among their goals the performance of such reconstructions: the Gaia-ESO
Public Spectroscopic Survey35, and the Galactic Archaeology with HERMES Survey.

However, in the absence of a theoretical explanation for why star clusters are chem-
ically homogeneous, and under what circumstances we expect homogeneity to pre-
vail, doubt must remain about these techniques. For example, observations indicate
that only a small fraction of star formation produces gravitationally bound open
clusters36, and it might be the case that the observed chemically homogeneous open
clusters and moving groups represent a mode of star formation that produces an
unusually high degree of chemical homogeneity. Our work showing that chemical
homogeneity is achieved even at very low star formation efficiencies should help
lay this concern to rest. Of course for chemical tagging to be practical it must be the
case that clusters are not only internally chemically homogeneous, but that they are
also sufficiently distinct from one another that it is possible to distinguish between
them using the types of moderate-resolution spectra that can be obtained for large
samples28,29,37, and our study of individual clusters does not address this second require-
ment. However, recent practical successes in using chemical tagging to identify coeval
stellar groups30 suggest that it is satisfied as well.

More broadly, our work has identified a powerful new process for chemically homog-
enizing the stars in a galactic disk. Observations show that, at a given overall metal-
licity, stars in the Milky Way thin disk show remarkably little abundance variation38.
This must partly be due to homogenization of the interstellar medium (ISM) across
galactic scales, which wipe out large-scale variations in chemical abundance. Supernova-
driven turbulence appears to mix large-scale modes most effectively17, while thermal

instability mixes small modes but still leaves small filaments of cold ISM with
noticeably different abundances than their surroundings18. These mechanisms
probably explain the relatively low logarithmic abundance scatter of ,0.1 seen
in the ISM. However, to explain the even smaller spread in stellar abundances seen
on galactic scales probably requires a further mixing mechanism that can wipe out
inhomogeneities on very small scales within star-forming clouds. It seems likely that
the turbulent mixing mechanism we have identified in this work is responsible.
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Extended Data Figure 1 | Variation in distance d between two stars in a test
of how well our new particle-mesh gravity implementation can maintain
the orbit of a binary. a, Distance between two stars, d, minus initial distance,
d0, in a test with d0 5 2Dx, where Dx is the cell size. The left-hand vertical axis
shows the d 2 d0 normalized to d0, and the right-hand vertical axis shows it
normalized toDx. Perfect accuracy would be a flat line at d 2 d0 5 0. b, Same as
a but for a test with d0 5 8Dx, so the two stars are initially separated by 8 cells.
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Extended Data Figure 2 | Comparison between the analytic solution for
Bondi accretion and the numerical results produced by an ORION
simulation. a, Density normalized to density at infinity, r/r‘, versus radius
normalized to the Bondi radius, r/rB. We show the analytic solution (black line),
the result using ORION with its standard implementation of sink particle
gravity (red squares), and the result using our newly implemented particle-
mesh (PM) gravity method. The numerical results show averages over radial
bins. To prevent the numerical results from lying completely on top of on
another and from obscuring the line for the exact result, we show only every
fourth radial bin, and the bins we show are offset between the two simulations.
The dashed vertical line shows the accretion kernel radius of two cells. b, Same
as a but now showing the infall velocity normalized to the sound speed, v/cs.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 3 | Number of stars and star formation efficiency as a
function of time. a, Number of stars in simulations S, L, and C. b, Star
formation efficiency e versus time in the same simulations.
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Extended Data Figure 4 | Stellar abundance scatter S* versus gas abundance
scatter Sg at the end of simulation S.
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Extended Data Figure 5 | Stellar abundance scatter S* as a function of gas
abundance scatter Sg for runs S, S3, and S4, measured at the time when the
star formation efficiency e < 0.06.
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Extended Data Figure 6 | Evolution of two measures of the abundance
scatter versus star formation efficiency e in runs S, S3, S4, and 512S1.
a, Evolution of Sslope, the factor by which the abundance scatter is reduced in the
limit where the gas abundance scatter Sg is small. b, Evolution of Slimit, the
maximum stellar abundance scatter in the limit of infinite gas abundance
scatter.
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