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ABSTRACT
The luminosity distribution of the brightest star clusters in a population of galaxies encodes
critical pieces of information about how clusters form, evolve and disperse, and whether and
how these processes depend on the large-scale galactic environment. However, extracting
constraints on models from these data is challenging, in part because comparisons between
theory and observation have traditionally required computationally intensive Monte Carlo
methods to generate mock data that can be compared to observations. We introduce a new
method that circumvents this limitation by allowing analytic computation of cluster order
statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population.
Our method is flexible and requires few assumptions, allowing for parametrized variations in
the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age
distribution, stellar evolution and dust extinction, as well as observational uncertainties in both
the properties of star clusters and their underlying host galaxies. The method is fast enough
to make it feasible for the first time to use Markov chain Monte Carlo methods to search
parameter space to find best-fitting values for the parameters describing cluster formation and
disruption, and to obtain rigorous confidence intervals on the inferred values. We implement
our method in a software package called the Cluster Luminosity Order-Statistic Code, which
we have made publicly available.

Key words: methods: data analysis – methods: numerical – methods: statistical – techniques:
photometric – galaxies: star clusters: general.

1 IN T RO D U C T I O N

Stars do not generally form in isolation, in either space or time.
Instead, they form in a spatially and temporally clustered fashion
(e.g. Lada & Lada 2003; Bressert et al. 2010; Gutermuth et al. 2011),
at a density far above the background field stellar density in their
host galaxy. This clustering has profound effects on the observable
properties of galaxies (Fumagalli, da Silva & Krumholz 2011b;
da Silva, Fumagalli & Krumholz 2012), and it also provides an
important clue to the physical mechanisms that govern the process
of star formation. If we could confidently measure the fraction of
stars that form in star clusters, the mass distribution of those clusters
(including its upper and lower limits), and the rate at which clusters
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dissolve into the field stellar population, we would learn a great deal
about how stars form.

Unfortunately, extracting all of these quantities from observations
is far from trivial. When high spatial resolution multicolor photom-
etry is available, the standard approach is to use stellar population
synthesis models to assign masses and ages to each cluster, then
measure the distributions of these or other quantities of interest.
These observations generally indicate that the mass distribution can
be approximated as a (possibly truncated) power law dN/dM ∝
Mβ with β ≈ −2 over a wide mass range (e.g. Zhang & Fall
1999; Bik et al. 2003; Boutloukos & Lamers 2003; Fall 2006; Fall,
Chandar & Whitmore 2009; Chandar, Fall & Whitmore 2010;
Bastian et al. 2012a,b; Fall & Chandar 2012). There is more contro-
versy over the age distribution, mostly arising from issues of how the
samples are selected. More inclusive cluster catalogues constructed
to include all objects above a surface brightness threshold tend
to show power-law age distributions dN/dt ∝ tγ with γ ≈ −0.9
(Fall, Chandar & Whitmore 2005; Fall et al. 2009; Chandar et al.
2010; Fall & Chandar 2012). If one imposes additional selection
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criteria based on morphology or crowding, this removes many
young clusters from the sample, yielding a distribution that can still
be approximated by a power law, but with a significantly shallower
index, γ ≈ 0 (Gieles, Lamers & Portegies Zwart 2007; Bastian et al.
2011, 2012a,b). While measuring the mass and age distribution by
assigning masses and ages to all clusters has the virtue of being con-
ceptually direct, the data required to use this approach are available
only for a relatively modest number of galaxies. Single-band pho-
tometry capable of resolving the brightest few clusters is available
for a much larger sample of galaxies (e.g. Larsen & Richtler 1999;
Larsen 2002; Bastian 2008), and exploiting such large but lower
quality data sets is the only feasible means to detect whether cluster
mass or age distributions deviate from power-law behaviour at the
very high mass end, where the number of clusters in an individual
galaxy is necessarily very small, and data from many galaxies must
therefore be combined to yield a statistically meaningful result.

The primary method of using these data to study the tip of the
cluster mass function has traditionally been to use Monte Carlo
methods to compute the luminosity distribution that would be ex-
pected from a given theoretical model, and compare that to the ob-
servations (e.g. Bastian 2008; Larsen 2009; Fouesneau et al. 2012).
This has the advantage that it allows one to handle observational
errors properly, and to include ‘nuisance’ parameters such as dust
extinction that limit the information that can be extracted from data.
Unfortunately, Monte Carlo methods can be forbiddingly expen-
sive to employ. The Lada & Lada (2003) compilation of clusters
just within 2 kpc of the Sun includes ∼100 entries, and this survey
covers only ∼1–3 per cent of the Milky Way’s star-forming disc,
and a significantly smaller fraction of the Milky Way’s total star
formation budget. Thus, a single Monte Carlo realization of the
star clusters in a Milky Way-like galaxy, including the effects of
cluster disruption, might require that ∼106 clusters be drawn, and
determining the order statistics of this distribution (i.e. the distri-
butions of luminosities of the most luminous cluster, second most
luminous cluster, etc.) might then require ∼103 realizations, for a
total of ∼109 total draws from the cluster luminosity distribution.
The problem is far worse if one considers more rapidly star-forming
galaxies like the Antennae, which have larger cluster populations.
Since our knowledge of the various processes that influence cluster
luminosity distributions is limited, and the set of parameters de-
scribing them is therefore relatively large, ideally one would like to
be able to search the parameter space for models that fit observa-
tions using standard Markov chain Monte Carlo (MCMC) methods.
However, this is not feasible if one requires ∼109 draws from the
cluster luminosity distribution at every point in this parameter space.
As a result, many authors have resorted to fixing many of the pa-
rameters that describe cluster formation, and varying only a single
one (e.g. the upper mass cutoff – Bastian 2008) in an attempt to fit
observations. Clearly, this approach is not ideal.

In this paper, we introduce a method to solve this problem. We
show that it is possible to calculate the cluster luminosity distribu-
tion and its order statistics analytically, even including parametrized
treatments of processes such as cluster disruption, stellar evolu-
tion and dust extinction. While our method is not quite as general
in the types of distributions that one can handle as a full Monte
Carlo method, it retains the vast majority of Monte Carlo’s flexi-
bility and requires only a tiny fraction of the computational time.
Moreover, using our method the computational time is close to in-
dependent of the number of clusters present and it is much more
expensive to compute order statistics than it is to compute the lumi-
nosity function itself. This makes our method particularly advanta-
geous for calculations involving large galaxies, and those seeking to

explore the tip of the luminosity distribution. In a companion paper
(da Silva et al., in preparation), we use this method to revisit the
question of whether the observed relationship between star forma-
tion rate (SFR) of luminosity of the most luminous cluster provides
strong constraints on the upper limit to the cluster mass function.
We have developed a software tool called the Cluster Luminosity
Order-Statistic Code (CLOC) to perform these analytic calculations,
and made it publicly available under the terms of the GNU General
Public License.

The remainder of this paper is organized as follows. Section 2
describes our model and its derivation. In Section 3, we describe
the publicly available code that implements this model, and present
comparisons between it and a full Monte Carlo method. In Section 4,
we use our formalism to explore how the various parameters that go
into the cluster luminosity function affects its shape in order to gain
insight about what sorts of observations can be used to constrain
star cluster formation.

2 TH E MO D EL

2.1 Cluster order statistics

Our overall goal is to derive an analytic expression for the proba-
bility distribution function (PDF) and cumulative distribution func-
tion (CDF) of the kth order statistic of star cluster luminosities, or
any other property. Formally, we define φk(L) as the PDF of the
kth most luminous cluster in a region of interest, either a galaxy
or some specified subgalactic volume.1 We normalize this and all
other PDFs in this paper to unity, i.e.

∫
φk(L) dL = 1. We define

�k(L) = ∫ L

0 φk(L′) dL′ as the corresponding CDF. Thus, �k(L) is
the probability that the kth most luminous cluster in a population
has a luminosity of L or less, while φk(L) dL is the probability that
the kth most luminous cluster has a luminosity in the infinitesimal
range L to L + dL.

We will perform this calculation in several steps. In this section,
we will derive φk(L) and �k(L) under the assumption that we know
both the PDF φ(L) for the luminosity of a single cluster and the ex-
pected number of clusters 〈N〉 in the region of interest. In subsequent
sections, we will derive these two quantities from parametrized ver-
sions of the cluster mass and age distributions. Deriving φk(L) and
�k(L) from φ(L) and 〈N〉 is most straightforward if we assume that
cluster formation is a Poisson process, so that clusters are created
fully independently of one another, and the number of clusters in a
given region is Poisson distributed. We note that this cannot be pre-
cisely true, simply due to mass conservation: for a purely Poisson
distribution, there is a finite, non-zero probability for any number
or total mass of clusters, whereas in reality the probability that the
total mass of star clusters in a given region exceeds the total baryonic
mass of the region is identically zero. Nonetheless, when the total
mass of star clusters is large compared to the mass of any individual
cluster (as is often the case in practice), then the Poisson assump-
tion should be reasonable, and so we will adopt it. In Appendix A,

1 Note that our convention in defining the first order statistic as describing
the distribution of the most massive or luminous cluster, while sensible
for astronomy (where samples are usually mass- or luminosity-limited and
thus the least luminous cluster is generally not observed), is the opposite of
the standard statistics convention whereby the first order statistic describes
the distribution of the smallest member of a sample, not the largest. The
usual convention may be recovered by replacing k by N + 1 − k in all the
expressions below, where N is the size of the sample.
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Cluster luminosity statistics 2357

we provide a more detailed derivation of the PDF and CDF that
shows how to generalize to the non-Poisson case.

There is one more subtlety with which we must reckon before
proceeding to calculate. For any Poisson process, and for most non-
Poisson ones, there is a finite probability that a region of interest will
contain a number of clusters N that is smaller than the order statistic
k in which we are interested. For example, we might be interested
in the luminosity distribution of the second most luminous cluster
(k = 2), but some of the regions we are examining will contain only
0 or 1 clusters. We must therefore decide between two possible
ways of handling this case: we could either say that the kth most
luminous cluster has a luminosity of 0 if there are fewer than k
clusters present, or we could restrict our calculation of the PDF of
the kth most luminous cluster to the case where k or more clusters
are present. We argue in Appendix A that the former approach is
preferable, and we will therefore say that, if the number of clusters
N is smaller than the order statistic k we are computing, then the
luminosity of the kth most luminous cluster is 0.

With this choice, we are now prepared to derive φk(L) and �k(L).
For a Poisson process, the expected number of clusters with lumi-
nosity >L is

〈N (>L)〉 = 〈N〉(1 − �(L)), (1)

where �(L) = ∫ L

0 φ(L′) dL′ is the CDF of luminosity for a sin-
gle cluster. The probability that there are exactly m clusters with
luminosity >L is given by the Poisson formula

Pm(>L) = 1

m!
〈N (>L)〉me−〈N(>L)〉 (2)

= e−〈N〉

m!
〈N〉m[1 − �(L)]me〈N〉�(L). (3)

When the number of clusters present, N, is larger than the order
k, the PDF φk(L) should be proportional to the probability that a
single cluster is in the luminosity range L to L + dL, multiplied by
the probability that exactly k−1 clusters are more luminous than
L, i.e. we should have φk(L) ∝ φ(L)Pk − 1( > L). When N < k,
the luminosity of the kth most luminous cluster is zero. Combining
these two terms, the complete PDF is

φk(L) = �(k, 〈N〉)
�(k)

δ(L) + 〈N〉Pk−1(>L)φ(L) (4)

= �(k, 〈N〉)
�(k)

δ(L)

+ 〈N〉 〈N〉k−1[1 − �(L)]k−1

(k − 1)!
φ(L), (5)

where �(x) is the usual (complete) � function and �(x, s) is the
incomplete � function. The coefficient of the δ function is the
probability that, for a Poisson process, the number of clusters
is smaller than k, while the second term represents the product
φk(L)Pk − 1(>L). The coefficient on this term is chosen to ensure that∫

φk(L) dL = 1. We derive both coefficients by alternative means
in Appendix A. Note that the coefficient of the δ function, �(k,
〈N〉)/�(k), goes to zero extremely rapidly as k/〈N〉 → 0. Thus, this
term is significant only when 〈N〉 � k. There term would vanish
entirely if we adopted the alternative approach to defining order
statistics by excluding the case N < k, but in that case the other term
would have to modified as well.

The CDF �k(L) is the probability that the kth most luminous
cluster has a luminosity ≤L, but this must be equal to the probability

that at most k − 1 clusters have luminosities ≥L. For example, the
probability that the second brightest cluster has a luminosity ≤L,
which is �2(L), must be equal to the probability that there are either
0 or 1 clusters brighter than L, which is P0(>L) + P1(>L). Thus, in
general we have

�k(L) =
k−1∑
m=0

Pm(>L) (6)

= e−〈N〉e〈N〉�(L)
k−1∑
m=0

〈N〉m[1 − �(L)]m

m!
. (7)

Note that �k(L) remains finite in the limit L → 0, even if �(L)
is identically zero below some finite minimum L. This behaviour
occurs because, even if there is zero probability that any individual
cluster has a luminosity L = 0, we can still find a luminosity of
exactly 0 for the kth most luminous cluster if there are fewer than k
clusters present in the region of interest, and the probability of this
occurring is finite.

2.2 Calculation of the expected number of clusters

The second step in our derivation is to calculate the expected number
of clusters 〈N〉. This is a function of the SFR in the region under
study Ṁ∗, the star cluster mass function ψ(M), the cluster age
distribution χ (t) defined over the full range of cluster masses,2 the
minimum and maximum cluster ages tmin and tmax used to define
the sample, and the fraction of stars in clusters at birth, which we
denote fc.3 We normalize the mass and age distributions such that∫

ψ(M) dM = ∫
χ (t) dt = 1, where the integrals are taken over all

possible masses and ages, respectively.
Given these definitions, the expected number of clusters formed

during the time interval of interest is

〈Nform〉 = Ṁ∗�t

〈M〉 fc, (8)

where 〈M〉 = ∫
Mψ(M) dM is the expectation value of the cluster

mass and �t = tmax−tmin is the age range in the observed sample. If
the cluster age distribution is not flat, indicating that not all clusters
that form survive to indefinite ages, the expected number of clusters

2 There are two subtle points to be made here. First, the age distribution χ (t)
must be that for all clusters, not, as is sometimes reported in the literature,
the age distribution for a luminosity-limited sample. Secondly, in principle
the mass and age distributions might not be independent, in which case we
would need to consider the joint distribution g(M, t). There is a dispute
on this point in the observational literature – e.g. see Bastian et al. (2011,
2012a,b) versus Fall et al. (2009), Chandar et al. (2010) and Fall & Chandar
(2012). Fortunately, even in those papers where the authors do report that the
mass and age distributions are not independent, the covariance is very weak,
at least at the large masses with which we will be concerned. Similarly,
some theoretical models also predict that cluster disruption will be mass
dependent (e.g. Kruijssen et al. 2012), but the predicted dependence is again
weak. For these reasons, we will assume that the mass and age distributions
are independent.
3 Note that the quantity fc is subtly different from the cluster formation
efficiency � defined by some authors (e.g. Bastian 2008), because � refers
to the fraction of stars formed as part of gravitationally bound clusters. In
contrast, fc depends only on the observational criteria used to define clusters
when selecting them in an observed galaxy. Thus, fc and � are identical
only if the observational selection criteria pick out all gravitationally bound
structures, and only such structures.
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that survive long enough to be observed will be reduced. Let Psurv(t)
be the probability that a cluster survives to age t, in which case

〈N〉 = Ṁ�t

〈M〉 fc

(
1

�t

∫ tmax

tmin

Psurv(t) dt

)
≡ Ṁ∗�t

〈M〉 Fc (9)

is the expected number of surviving clusters within the age interval
of interest. The quantity in parentheses is the time-averaged fraction
of surviving clusters, and the quantity Fc that we have defined is the
fraction of all stars in clusters, averaged over the stellar age range
under consideration. For a constant SFR, the survival probability is
proportional to the cluster age distribution, renormalized so that the
survival probability is unity at time t = 0, i.e. Psurv(t) = χ (t)/χ (0).
Thus,

Fc = fc

χ (0)�t

∫ tmax

tmin

χ (t) dt . (10)

Note that although for simplicity we have assumed constant Ṁ∗,
our results in the end depend only on the cluster age distribution
χ (t) and the expected number of clusters 〈N〉. Thus, the formulae
throughout this paper are equally valid for other combinations of
Psurv(t) and Ṁ∗(t) that give the same χ (t) and 〈N〉.

To proceed further we must specify functional forms for ψ(M)
and χ (t). To render the problem analytically tractable, we will as-
sume that both of these can be described by truncated power laws.
Specifically, we adopt

ψ(M) =
{

AMβ, Mmin < M < Mmax

0, otherwise
(11)

and

χ (t) =

⎧⎪⎪⎨
⎪⎪⎩

B, t < t0

B(t/t0)γ , t0 ≤ t < t1

0, t ≥ t1.

(12)

Here t0 may be understood as the age at which clusters begin to
disappear and t1 is the maximum possible age of any cluster. The
normalization factors appearing in these equations are

1

A
=

∫ Mmax

Mmin

Mβ dM

=
{

(Mβ+1
max − Mβ+1

min )/(β + 1), β �= −1

ln(Mmax/Mmin), β = −1.
(13)

and

1

B
= t0 +

∫ t1

t0

(
t

t0

)γ

dt

= t0 +
{

(tγ+1
1 − t

γ+1
0 )/(γ + 1), γ �= −1

ln(t1/t0), γ = −1.
(14)

The functional forms for both the mass and age distributions are
well motivated by observations. As discussed in Section 1, there is
an observational consensus that the mass function is well fitted by a
(possibly truncated) power law with index β ≈ −2. There is dispute
in the observational community about the age distribution, but all
groups agree that a power law is a good fit to the data. The dispute is
whether the index γ ≈ −0.9 or ≈0, with most of the disagreement
stemming from how the cluster sample is selected.

With these definitions, we can write out 〈M〉 explicitly as

〈M〉 = A ×
{(

Mβ+2
max − Mβ+2

min

)
/(β + 2), β �= −2

ln(Mmax/Mmin), β = −2.
(15)

We can similarly write out Fc explicitly. For simplicity, we will
assume that tmin ≥ t0 and tmax ≤ t1, so that the age distribution χ (t)
over the observed age range can be represented by a pure power law.
Given that all observed open cluster samples satisfy this condition,
this is not a significant limitation. With this assumption, we have

Fc = fc
t0

�t

×
{[

(tmax/t0)γ+1 − (tmin/t0)γ+1
]
/(γ + 1), γ �= −1

ln(tmax/tmin), γ = −1.
(16)

We could substitute this into equation (9) to obtain an explicit form
for 〈N〉, but this would simply replace Fc with fc and t0 as the
variables that must be specified to compute cluster luminosity order
statistics. Since these two quantities enter the problem only through
the combination Fc, we will use Fc as the variable of interest
through the rest of this work, keeping in mind that it is related to
the physical quantities fc and t0 via equation (16).

2.3 The cluster luminosity function: dust and stellar evolution

The final step in our calculation is to derive the PDF φ(L) for
the luminosity of a single cluster. This quantity depends on three
factors. The first is the cluster mass distribution ψ(M), since more
massive clusters are more luminous, all other things being equal.
The second is the cluster age distribution χ (t), since at fixed mass
there will be a range of cluster ages, and the mass-to-light ratio
depends on the cluster age. The third factor is the distribution of
dust optical depths, which we denote η(τ ). The amount of extinction
may vary from cluster to cluster, and this will create a scatter in the
observed luminosity even at fixed mass and age. A fourth possible
factor, which we will not include in our formalism, is stochastic
variation in luminosity from cluster to cluster at fixed mass, age
and extinction due to the effects of incomplete initial mass function
(IMF) sampling. While this is significant for clusters with masses
below ∼103.5 M� (Cerviño & Luridiana 2004; Fouesneau et al.
2012), we focus in this work on the PDF of luminous and massive
clusters, and in particular on the PDF of the most luminous cluster,
which minimizes the importance of this effect. Below, we verify
via Monte Carlo calculation that this effect is indeed negligible for
φ1(L) except at the very lowest SFRs. Thus, we are left with age-
dependent mass-to-light ratio and dust extinction as the two effects
we must include.

To handle the age dependence, we define ϒ(t) as the mass-to-
light ratio for a cluster of age t, so that the luminosity L = M/ϒ(t);
note that ϒ(t) must be defined relative to a particular waveband.
For ages t in the range 10 Myr to 1 Gyr, and many wavebands in
the visible part of the spectrum, it is approximately the case that
ϒ(t) ∝ tζ , where both the index ζ and the constant of proportionality
depend on the choice of waveband. In Appendix B we fit for ϒ(t)
in V band, and obtain

ϒ(t) = ϒ∗

(
t

10 Myr

)ζ

, (17)

with ζ = 0.688 and ϒ∗ = 8.3 × 10−21 M� (ergs−1Hz−1)−1.
Since ϒ(t) is a deterministic one-to-one function of t, the distribu-

tion of mass-to-light ratios for a cluster population can be computed
from the distribution of cluster ages via

θ (ϒ) ∝ χ (t)

∣∣∣∣dϒ

dt

∣∣∣∣
−1

. (18)
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Cluster luminosity statistics 2359

The intrinsic luminosity of a cluster (i.e. before dust extinction is ap-
plied) is Lin = M/ϒ , and so the distribution of intrinsic luminosities
is (Fall 2006)

φin(Lin) =
∫ ∞

0
ψ(ϒLin)θ (ϒ)ϒ dϒ. (19)

For the purposes of algebraic evaluation, it is most convenient to
transform to logarithmic variables, which allows us to write the
integral as a convolution. We define ξ ([1/ϒ]) = ϒ2θ (ϒ) as the
distribution of light-to-mass (instead of mass-to-light) ratios, and
compute the PDF φin(log Lin) = Linφin(Lin) via

φin(log Lin) ∝ ψ(log M) ∗ ξ (−log ϒ)

≡
∫ ∞

−∞
ψ(log Lin − log ϒ)ξ (− log ϒ) d log ϒ, (20)

where ∗ denotes convolution. We defer actual calculation of this
convolution to Appendix C, since it is conceptually straightforward
but algebraically tedious. The result for φin(log Lin) is given by equa-
tion (C14), and the corresponding CDF �in(log Lin) by equations
(C15) and (C20).

We model dust as providing a distribution of optical depths η(τ )
(in the appropriate waveband) that is uniform in the range from τ 0 to
τ 1, such that the luminosity of a given cluster is reduced by a factor
of e−τ . Our choice of distribution is motivated by a compromise
between realism and analytic tractability. The simplest approach
would be to adopt a single dust optical depth for all clusters, which
corresponds to decreasing the luminosity of each cluster by a con-
stant factor. This is trivial to include, but would miss the potentially
important effect that differential extinction can broaden the lumi-
nosity distribution. In order to capture this effect while still retaining
a distribution that can be calculated analytically, we adopt the next
most complicated approach, which is a step function distribution.
Should it be desirable, it is straightforward to mix distributions with
different step functions to create essentially arbitrary dust distribu-
tions. From this distribution of dust extinctions, and the distribution
of intrinsic luminosities computed above, the distribution of ob-
served luminosities can again be obtained via convolution,

φ(log L) = φin(log Lin) ∗ η(−τ )

=
∫ ∞

−∞
φin(log Lin)η(log Lin − log L) d log Lin, (21)

where L = Line−τ . As with the computation required to compute the
PDF of intrinsic luminosities, the convolution is straightforward but
algebraically tedious to compute. We give the result in Appendix
D; the final expressions for φ(log L) and �(log L) are given by
equations (D11) and (D14), respectively.

With this step complete, we now have a full analytic description
of the order statistics of cluster luminosities, including the effects of
age-dependent mass-to-light ratios and a range of dust extinctions.
Specifically, we can compute the PDF and CDF of an arbitrary order
statistic from equations (5) and (7), using the expected number
of clusters 〈N〉 given by equation (9) and the PDF and CDF of
luminosity for individual clusters given by equations (D11) and
(D14).

2.4 Observational uncertainties

We now add one final element to our model, which is that neither
SFRs nor cluster luminosities can be measured perfectly. There
are several options for how to treat this issue, depending on the
application one has in mind. One might choose simply to use the

formalism above to generate theoretical distributions of cluster lu-
minosity, and then compare these to observations using a statistical
technique that accounts for the observational errors. In this case,
one can simply use the formalism as we have described it thus far,
without accounting for observational error. However, an alternative
and often preferable approach is to fold reasonable estimates of the
errors into the theoretical model, and then to compare the model
including these error estimates with the observed data. This makes it
possible to use non-parametric tests (e.g. the Kolmogorov–Smirnov
test) that do not naturally handle observational errors.

To fold observational errors into our model, we define εS and εL as
the uncertainties on the SFR and cluster luminosities, respectively.
Both of these errors are dominated by systematic effects that are
highly uncertain. For cluster luminosities, the dominant errors arise
from the need to extrapolate the cluster profile to large radii in order
to assign a total luminosity (Larsen & Richtler 1999). These can lead
to an approximately half magnitude of error. Similarly, depending
on the choice of star formation tracer, observational estimates of
the SFR are subject to uncertainties arising from dust extinction,
ionizing photon escape, the choice of stellar IMF and ambiguities
in the choice of time-scale over which the SFR is averaged, among
others – see Kennicutt & Evans (2012) for a recent review. Typical
errors are again ∼0.5 dex.

Despite the fact that these errors are systematic and non-Gaussian,
we make a simplistic assumption that they can nevertheless be at
least roughly approximated as a simple Gaussian blur applied to both
the log cluster luminosities and log SFRs. Under this assumption,
we can write the distribution of observed luminosities Lobs in a
galaxy with observed SFR Ṁ∗,obs as simply

φk,obs(log Lobs | log Ṁ∗,obs) = 1

2πεSεL

“
φk(log L | log Ṁ∗)

× exp

{
− [log(Ṁ∗/Ṁ∗,obs)]2

2ε2
S

−
[
log(L/Lobs)

]2

2ε2
L

}

× d log Ṁ∗ d log L,

(22)

where φk(log L | log Ṁ∗) is computed as described in the preceding
sections. The expression for �k,obs(log Lobs) is analogous.

2.5 The importance of variable mass-to-light ratios

To demonstrate the effects of variable mass-to-light ratios, dust
extinction, and observational uncertainties, and to understand why
it is crucial to include these effects in any realistic model, it is
helpful to compare the results of our formalism that includes them
to simplified formalisms in which these complications are ignored.
To this end, we use three different approaches to compute the PDF
and CDF of the first order statistics of cluster luminosity, �1(L)
and φ1(L), as a function of SFR Ṁ∗. The first calculation uses the
full formalism we have just derived. The second uses a simplified
formalism in which we adopt a fixed mass-to-light ratio ϒfit, and
set the luminosity distribution to

φ(L) = ψ(M/ϒfit)ϒfit (23)

before using equations (5) and (7) to compute φ1(L) and �1(L).
We determine the value of ϒfit by performing a least-squares fit to
minimize the difference between the median values of L and Ṁ∗
as computed via the two formalisms. This approach amounts to
ignoring the scatter in the relationship between cluster luminosity
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statistics and SFR induced by the presence of a range of cluster
ages, dust and observational uncertainties. The third approach we
use is even simpler, but is common in the literature. This is to assert
that the expected mass of the most massive cluster 〈M1〉 is such that
the expectation value of the mass being in the interval M1−Mmax is
unity, i.e.

1 = N

∫ Mmax

〈M1〉
AMβ dM. (24)

In this case, we have

〈M1〉 =
(

Mβ+1
max − 1

〈N〉A
)1/(β+1)

, (25)

and the expected luminosity of the most massive cluster is then
〈L〉 = 〈M1〉/ϒfit.

We show the results we obtain from these three methods for
two example sets of parameters in Fig. 1; the parameters used for
the model in the lower panel are those given in Table 1, while the
upper panel is identical except for the value of Mmax. There are sev-
eral noteworthy points about this figure. First, the 5–95 percentile
confidence interval we obtain from the full formalism completely
encompasses the confidence interval we obtain by assuming a fixed
mass-to-light ratio. This is expected, as the full formalism has other
degrees of freedom to explore in the mass-to-light ratio, thus al-
lowing more scatter. On the other hand, the median luminosities
we obtain in all three models are very similar except at the highest
SFRs. At these large SFRs, models with a fixed mass-to-light ra-
tio predict a stark flattening, while the full model produces a more
gradual tapering. This is due to the additional variability from the
scatter in mass-to-light ratios that allows a continually increasing
range of luminosities. This effect is particularly important for ef-
forts to constrain Mmax using the observed relationship between Ṁ∗
and the luminosity of the most luminous cluster (Weidner, Kroupa
& Larsen 2004; Bastian 2008), and it shows that any such attempt
is likely to fail if it does not properly account for variations in mass-
to-light ratio. Our conclusion on this point is consistent with that
of Bastian (2008), who found using Monte Carlo simulations that
adopting a fixed mass-to-light ratio is a poor approximation.

3 SO F T WA R E I M P L E M E N TAT I O N
A N D VA L I DAT I O N

We have implemented the analytic formalism for computing cluster
luminosity statistics in a software package called Cluster Luminos-
ity Order-Statistic Code (CLOC), which we have released under the
GNU General Public License. The code is available for download
at https://code.google.com/p/cluster-cloc/. CLOC takes as inputs the
parameters required to compute the cluster luminosity function and
its order statistics. To remind the reader, these are the overall SFR
Ṁ∗ (which may be given as a single value or, more commonly, a
range with the computation to be performed on a grid of Ṁ∗ values),
the minimum and maximum cluster ages (tmin and tmax), the param-
eters of the initial cluster mass function (ICMF; Mmin, Mmax, and
β), the minimum and maximum amounts of dust extinction to use
(τ 0 and τ 1), the parameters describing the cluster age distribution
(Fc and γ ), the parameters describing the observational error (εS

and εL) and the parameters describing the time evolution of the light
to mass ratio (ϒ� and ζ ). The last two of these depend only on the
choice of observational filter and stellar evolution, and so should
not be regarded as free parameters. Given these inputs, the code
uses the algorithm described in this paper to produce a set of default

Figure 1. Comparison of the first order statistic φ1(L) as a function of
SFR Ṁ∗ for differing levels of model complexity. The black lines (‘incom-
plete mass-based formalism’) represent the expectation value of the most
luminous cluster determined by computing the maximum mass from equa-
tion (25) and then applying a fixed mass-to-light ratio ϒfit. The red lines
(‘complete mass-based formalism’) show the median, and red bands the 5–
95 percentile range, for the first order statistic computed using equations (5)
and (7) for φ1(L) and �1(L), but using a fixed mass-to-light ratio to com-
pute the luminosity distribution for individual clusters (equation 23). The
blue lines and bands (‘full luminosity formalism’) show the median and 5–
95 percentile range, for φ1(L) and �1(L) computed from the full formalism,
using equations (5), (7) and (D11). The parameters used for the computa-
tion are given in Table 1 for the lower panel; the upper panel is identical
except that it uses Mmax = 107 M� rather than 109 M�. The best-fitting
mass-to-light ratio ϒfit is shown in each panel.

outputs described in Table 2. The code is implemented in C++,
with PYTHON wrappers to call the program and parse the output files.
In the remainder of this section, we verify the accuracy of CLOC via
comparison to two different Monte Carlo methods, making slightly
different assumptions.

3.1 Monte Carlo verification

Our first comparison is to a Monte Carlo calculation that, like CLOC,
assumes that cluster formation is a Poisson process, and also com-
putes the mass-to-light ratios of clusters using the same approximate
relationship (equation 17). This allows us to verify the accuracy of
our analytically calculated PDFs, and our software implementation
thereof. Luckily, the Monte Carlo implementation of the model is
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Table 1. Fiducial parameter values.

Parameter Description Fiducial value

Mmax Maximum cluster mass 109 M�
Mmin Minimum cluster mass 100 M�
β ICMF power law index −2
γ Cluster age distribution power law index −0.9
tmin Minimum age of sample 107 yr
tmax Maximum age of sample 109 yr
τ 0 Minimum dust optical depth 0
τ 1 Maximum dust optical depth 1
Fc Fraction of stars in clusters at time of observation 0.01

Table 2. Description of software outputs.

Variable Name Description

x the x-array for luminosity arrays in units of ln (ergs−1 Hz−1)
pdf_l the PDF of the luminosity of a single cluster φ(L) before observational uncertainty convolution

pdf_l_obs the PDF of a single cluster φ(L) after observational uncertainty convolution
sfr_x the x-axis for the Ṁ∗−L1 relation in M� yr−1

q5, q50, q95 the 5th, 50th and 95th percentile of the �1(L) distribution corresponding to sfr_x in the same units as x

Note that the full distributions at each SFR are output and easily obtainable, but these are the only numbers output to this
summary data structure.

simple compared with the analytic derivation of its results (although
of course much slower to run). The process is as follows: we adopt
a set of parameters Mmin = 500 M�, Mmax = 109 M�, β = −2,
tmin = 107 yr, tmax = 109 yr, Fc = 0.01, γ = −0.9, τ 0 = 0 τ 1 = 1
and Ṁ∗ = 0.1 M� yr−1. From these parameters, we compute the
mean cluster mass 〈M〉 = 7254 M� and the expected number of
clusters 〈N〉 = 136.5 from equations (9) and (15). We then create a
sample of clusters via the following algorithm.

(i) Draw an actual number of clusters N from a Poisson distribu-
tion with expectation value 〈N〉.

(ii) For each cluster, draw a mass M from the ICMF ψ(M), a
light-to-mass ratio from the distribution ξ ([1/ϒ]), and a dust optical
depth τ from η(τ ). Each of these distributions is determined fully
from the input parameters.

(iii) From the drawn values, compute the observed luminosity
L = (M/ϒ)e−τ .

We repeat this process 106 times, to create 106 independent cluster
samples. From each sample, we record the luminosity L of the most
luminous cluster. The code that performs these tasks is included for
download with CLOC.

We then run CLOC with the same input parameters, using εS =
εL = 0, i.e. assuming that there is no observational uncertainty on
either the SFR or cluster luminosities. We compare the analytically
predicted PDF φ1(L) of the most luminous cluster as computed by
CLOC with the results of the Monte Carlo code in Fig. 2. We see
that CLOC exactly predicts the PDF of the Monte Carlo realizations,
performing as desired, and with a run time that is far smaller than
that of the Monte Carlo code.

3.2 Comparison to SLUG

We next compare CLOC to the Monte Carlo code SLUG (Fumagalli
et al. 2011a; da Silva, Fumagalli & Krumholz 2012). This test is
interesting because SLUG and CLOC treat star cluster formation in
somewhat different ways, and this difference allows us to check the
sensitivity of our predictions to some of the assumptions we made

Figure 2. Comparison of the analytic prediction of the PDF of the most
luminous cluster as computed by CLOC (blue curve) and the result of 106

Monte Carlo realizations of a cluster population (grey histogram). The input
parameters for this test are Mmin = 500 M�, Mmax = 109 M�, β = −2,
tmin = 107 yr, tmax = 109 yr, Fc = 0.01, γ = −0.9, τ 0 = 0 τ 1 = 1 and
Ṁ∗ = 0.1 M� yr−1.

along the way. SLUG is like CLOC in that it produces a population of
clusters with a specified ICMF and following a cluster disruption
law that produces a specified cluster age distribution, but it differs in
two ways. First, SLUG does not assign clusters a fixed, deterministic
mass-to-light ratio. Instead, it populates the clusters with individual
stars, each of which has an individual mass-to-light ratio determined
by stellar evolution models. Thus, SLUG uses the full numerical
evolution of the mean mass-to-light ratio as computed from stellar
evolution codes, rather than our power-law approximation to it, and
also correctly handles the case where the IMF is not fully sampled.
The comparison to SLUG enables us to determine where we can
no longer safely assume that stochastic variations in mass-to-light
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ratio due to imperfect sampling of the IMF is negligible for order
statistics at the bright end of the cluster luminosity function.

The second difference between CLOC and SLUG is that SLUG uses
a mass-constrained method to sample the cluster mass function,
and this method is not precisely described by Poisson statistics.
Specifically, when given a time interval �tSLUG, an SFR Ṁ∗ and
an ICMF, SLUG draws clusters from the ICMF until the total mass
of clusters drawn exceeds the target mass Ṁ∗�tSLUG; it keeps the
last cluster drawn if the result of doing so is closer to the tar-
get mass than the result of omitting this cluster. When the ex-
pected mass of stars Ṁ∗�tSLUG is much larger than the maximum
cluster mass Mmax, the distribution of number of clusters should
converge to the Poisson distribution we have assumed. At the other
extreme, Ṁ∗�tSLUG � 〈M〉, the SFR ceases to be a well-defined
concept. Since stars form in (approximately) discrete events of fi-
nite mass, one can only define a meaningful SFR by averaging
over time-scales that are long compared to the mean time be-
tween events. The behaviour in the intermediate regime, where
〈M〉 � Ṁ∗�tSLUG � Mmax is more complex, and the distribution
of number of clusters, and of star formation history, begin to de-
pend on how one samples from the ICMF. The different assumptions
made by SLUG and CLOC in this case will produce somewhat different
results. We emphasize that neither code’s prescription is necessarily
physically correct in the intermediate regime, as the results depend
on the real physical details of how galaxies form clusters. Both
mass-limited sampling and Poisson sampling are at best reasonable
guesses at the right answer. The differences between these two ap-
proaches can therefore provide some measure of how accurate any
method of producing synthetic cluster catalogues can hope to be in
the regime where the ICMF is not well sampled.

With this discussion in mind, our procedure for comparing SLUG

to CLOC is as follows. As in our previous test, we consider clusters
in the age range tmin = 10 Myr and tmax = 1 Gyr. We use the default
SLUG prescription for cluster formation disruption, which amounts to
fc = 1, t0 = 1 Myr and γ = −1, and from these values, we compute
Fc = 0.0047 using equation (16). We then run both CLOC and SLUG

for six cases: we use SFRs Ṁ∗ = 10−3, 10−2 and 10−1 M� yr−1,
and maximum cluster masses Mmax = 105 and 109 M�. We do not
use any dust extinction for this test, as SLUG does not include any. All
other parameters are as specified in Table 1. For the SLUG runs, we
perform 103 realizations of the cluster population for each case. We
output the cluster population at an age of 100 Myr for the runs with
Mmax = 109 M�, and at an age of 1 Gyr for the Mmax = 105 M�
runs. Note that we do not consider SFRs higher than 10−1 M� yr−1

due to issues of computational cost: performing even 1000 SLUG runs
at Ṁ∗ = 10−1 M� yr−1 requires of the order of a CPU day, and the
computational cost is linear in both the number of realizations and
the SFR. However, the vast majority of the observational sample
is at higher SFRs, illustrating the difficulty of using Monte Carlo
methods to analyse the observations.

We show the results of a comparison between CLOC and SLUG

in Fig. 3. We see that the agreement between the two codes is
generally quite good, but that there are some important differences.
First focus in the left-hand column, showing the models with Mmax =
105 M� and �tSLUG = 1 Gyr. These runs are in the regime where
Ṁ∗�tSLUG � Mmax, so our assumption that N is Poisson distributed
should be safe. Thus, differences between CLOC and SLUG in this
column are entirely due to the treatment of mass-to-light ratio in
CLOC. At Ṁ∗ = 10−1 and 10−2 M� yr−1, the difference between
the two codes is minimal. However, at Ṁ∗ = 10−3 M� yr−1 we see
that the distribution produced by SLUG is noticeably broader than the
one computed by CLOC. This difference occurs because CLOC’s value

for the mass-to-light ratio assumes that each cluster fully samples
the IMF, but at very low SFRs the maximum cluster mass is likely
to be well below the ∼103.5 M� value required for full sampling
(Cerviño & Luridiana 2004; Fouesneau et al. 2012). This induces an
additional scatter in mass-to-light ratio that is not included in CLOC,
and that broadens the distribution. This indicates that CLOC’s results
for the luminosity distribution of the brightest cluster should not
be considered reliable at SFRs below ∼10−3−10−2 M� yr−1, due
to its incomplete treatment of IMF sampling effects. Fortunately,
at such low SFRs, codes like SLUG are fairly fast to run, since the
number of stars involved is small.

Now consider the right-hand column, which uses Mmax =
109 M� and �tSLUG = 100 Myr. These runs are in the regime
where Ṁ∗�tSLUG � Mmax, and so differences in how the ICMF
is sampled begin to be important, on top of IMF sampling ef-
fects within clusters. In particular, note that, because the sampling
is mass constrained, even though we have set Mmax = 109 M�,
no cluster of that mass can ever be created in the SLUG runs, be-
cause Ṁ∗�tSLUG = 106−108 M�. Thus, even if SLUG does draw
a cluster close to 109 M� from the ICMF, it will reject it on the
grounds that a mass of 0 is closer to the target mass than a mass of
109 M�. We have chosen this extreme case intentionally, to show
the importance of ICMF sampling effects. At Ṁ∗ = 10−3 M�, we
find that the SLUG distribution is not only broader than the CLOC one,
it is systematically shifted to higher luminosity. The broadening is
almost certainly a result of the same effect as in the upper-left panel,
i.e. extra scatter in the mass-to-light ratio in SLUG due to incomplete
IMF sampling. At Ṁ∗ = 10−2 M� yr−1, the broadening effect has
vanished, but the SLUG distribution remains shifted to higher lumi-
nosity than the one predicted by CLOC by ∼1−2 mag. Only once
the SFR reaches Ṁ∗ = 10−1 M� yr−1 do CLOC and SLUG agree well.
Clearly, at low SFRs, CLOC’s assumption that the number of clusters
is Poisson distributed produces fewer massive, luminous clusters
than SLUG’s mass-limited sampling method, leading to a systematic
offset in the first order statistic PDF.

The most important point to take from this comparison exercise
is that, as long as one avoids the regime Ṁ∗�tSLUG � Mmax or
Ṁ∗ � 10−2 M� yr−1, differences between CLOC and SLUG (and pre-
sumably between CLOC and other Monte Carlo codes that behave
similarly to SLUG) are negligible. At SFRs below ∼10−2 M� yr−1,
CLOC systematically underestimates the breadth of the cluster lu-
minosity distribution due to its omission of IMF sampling effects.
If one wishes to consider models with Ṁ∗�tSLUG � Mmax the sit-
uation is considerably more complicated. In this case, differing
choices of exactly how to handle the incompletely sampled ICMF
can result in an SFR-dependent offset of ∼1−2 mag level in the pre-
dicted luminosity PDF. The correct physical answer in this regime
is unclear.

4 D I SCUSSI ON OF PARAMETER EFFECT S

Having presented the basic outline of the derivation and the param-
eters that determine cluster luminosities, we now turn to a study of
the effects of varying these parameters, with particular attention to
the first order statistic. Our goal is both to demonstrate the power of
the analytic formalism, and also to build some intuition to help us
interpret observations of the relationship between SFR and brightest
cluster luminosity, which we refer to for simplicity as the ‘SFR–L1’
relation. This has traditionally been used in an attempt to deduce
parameters describing star cluster formation (e.g. Bastian 2008).
To that end, we consider a fiducial model whose parameters are
given in Table 1, and we then systematically vary the parameters.
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Cluster luminosity statistics 2363

Figure 3. Comparison of the PDFs of the most luminous cluster as computed analytically by CLOC (blue curve) and via Monte Carlo sampling by SLUG (grey
histogram), following the procedure outlined in the main text. The left-hand column uses Mmax = 105 M� and a run time of 1 Gyr in SLUG, while the right-hand
column uses Mmax = 109 M� and a run time of 100 Myr. The SFRs used are 10−3, 10−2 and 10−1 M� yr−1, in the top, middle and bottom rows, respectively.

The results of this experiment are shown in Figs 4 and 5 which we
discuss below. Although we focus on the first order statistic here,
we note that many of the phenomena we identify are generic, and
will affect higher order statistics as well.

4.1 Clustering parameters

Ignoring essentially random effects of dust and light-to-mass ratio,
the dominant input shaping the SFR–L1 diagram is the cluster mass

function, which in turn is set by the fraction of stars in clusters
Fc, and the ICMF parameters Mmin, Mmax and β. The effects of the
first factor, Fc, are simple. (We remind the reader again that Fc is
not the same as the mass fraction of stars that form in clusters or
in other gravitationally bound structures; it is the fraction of stars
in the observationally selected age range that are in observationally
identified clusters today.) Varying Fc simply translates the observed
relation left or right, such that Fc = 0.1 with a given SFR Ṁ∗ is
fully equivalent to having Fc = 1 and an SFR of 0.1Ṁ∗. This can
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Figure 4. (Left) the PDF of the luminosity of a single cluster before observational error is applied. The filled region corresponds to the fiducial model, while
the solid red line denotes the PDF for that result when the change for each corresponding row is applied. The black line corresponds to the model before
observational errors are included. (Middle) PDFs of the most luminous cluster for SFRs log10 Ṁ� = −2.75 (blue) and 2.75 (green). The filled regions are
for the fiducial values and solid lines are for when the change for each corresponding row is applied. (Right) The 5–95 percentile confidence range for the
luminosity of the brightest cluster as a function of Ṁ∗. The red region is for the fiducial model and blue is the altered model.

be seen in the first row of Fig. 4. The value of Fc also has another
effect. In the upper panel of Fig. 4, notice that 5 per cent confidence
contour in the low Fc model extends all the way to the bottom of the
plot (and in fact all the way to −∞) at the lowest SFRs. This occurs
because, when Ṁ∗ and Fc are both very low, 〈N〉 is low as well, and
there is a reasonable chance that there will be no clusters present
at the time of the observation. Thus, for these models the PDF has
a significant component at zero luminosity, corresponding to the
δ function term in equation (5). When the prefactor on this term,
�(1, 〈N〉)/�(1), exceeds 0.05, the 5 per cent confidence contour
must encompass zero luminosity. The value of Fc, to which 〈N〉 is
proportional, determines at what SFR this happens.

Behaviour as a result of changing the upper and lower limits on
the ICMF is less trivial than the simple translation that results from
modifying Fc, and is illustrated in the bottom four panels of Fig. 4.
For qualitative trends, when all other variables are held constant
it is reasonable to treat the Ṁ∗−L1 relation as behaving like the
Ṁ∗−M1 relation, i.e. the relationship between SFR and the mass of
the most massive cluster. This only is reasonable when applied over
a relatively small time window �t where any clusters older than this
age are likely to have faded too dramatically to be candidates to be
the most luminous. Thus, changing the upper mass cutoff Mmax has
little to no effect until there is a sufficiently high cluster formation
rate to make the probability of a cluster near the maximal mass
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Cluster luminosity statistics 2365

Figure 5. Same as Fig. 4 but with different parameters varied.

forming over a time �t relatively high. Thus, the effect of changing
the maximum cluster mass from Mmax to a value M ′

max < Mmax

is to first order to leave the distribution unchanged until the SFR
reaches a critical value Ṁ∗,lim. We can find this limiting SFR by
first noting that we need to expect to find at least one cluster in
the range M ′

max−Mmax with an age <�t for the change to have a
large effect. This condition can be roughly estimated using equation
(25) to compute the expected mass of the most massive cluster and
equation (9) to compute the expected number of clusters. Combining
these two results gives the SFR at which we expect to produce a
cluster with a mass of at least CMmax. This is roughly

Ṁ�,lim ≈ 〈M〉
Fc�t(β + 1)

[
(Mmin/Mmax)β+1 − 1

(M ′
max/Mmax)β+1 − 1

]

≈ 〈M〉
Fc�t(β + 1)

(
Mmin

M ′
max

)β+1

, (26)

where in the second step we have assumed that (Mmin/Mmax)β + 1 �
1 and (M ′

max/Mmax)β+1 � 1, as is the case for any realistic values
of Mmin/Mmax and β. Above Ṁ�,lim, the relation between Ṁ∗ and
the luminosity of the brightest cluster is dramatically flattened. One
can see an example of this by comparing the second and fourth rows
of Fig. 4, which differ only in their values of Mmax.

The effect of the lower mass cutoff Mmin is twofold (see equation
25). Consider the use of a higher minimum mass M ′

min compared
to a fiducial case with a lower limit of Mmin. First, note that the
observed maximum mass cannot be less than M ′

min and thus in any
regime where M1 is in the range of Mmin−M ′

min will have its value
set to a floor of approximately M ′

min. This is of course assuming that
there is at least one cluster. The other effect of raising Mmin is to raise
the mean cluster mass 〈M〉. This both decreases the allowed range
of cluster masses and thus increases M1 and L1, but also decreases
the expected number of clusters 〈N〉, making N = 0 a more likely
outcome. The net effect is that, at higher SFRs, increasing Mmin very
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slightly increases the expected luminosity of the brightest cluster,
but it also raises the SFR at which the 5 per cent confidence contour
extends all the way down to zero.

Changing the value of the slope β will affect the observed rela-
tion in several ways. The dominant effects are on the overall slope
and dispersion of the relation (see the first two rows of Fig. 5).
A flatter mass function corresponds to a broader distribution of
cluster masses at fixed number of clusters N. As a result, β closer
to 0 results in the most massive cluster spanning a wider range of
luminosities at fixed SFR. A steeper mass function will result in a
less dispersed distribution. The ICMF slope also directly controls
how the most luminous cluster varies with N and thus will affect
the overall slope of the relation.

Finally, we have already seen that the cluster age distribution
plays a key role in setting the total number of extant clusters at the
time of observation. However, this role is entirely encoded in the
parameter Fc, which provides the mapping between the mass frac-
tion of stars observed to be in clusters at the time of the observation
(Fc) and the mass fraction of stars formed in clusters (fc). At fixed
�t and fc, changing the cluster age distribution slope γ changes
the value of Fc, and thus the expected number of clusters. However,
changes in γ are degenerate with changes in fc that leave the overall
value of Fc the same.

4.2 Dust extinction and observational uncertainties

In addition to the parameters discussed above that characterize the
physical way clusters form and evolve, there are additional ‘nui-
sance’ parameters that affect the observed luminosity function, and
that must be accounted for if we are to have confidence in any
deductions we make about the physical parameters. Dust is one
such nuisance parameter, though one that is often ignored. As illus-
trated in the bottom panel of Fig. 5, higher mean dust extinctions
lower the median luminosity expected at fixed SFR. Equally im-
portantly, dispersion in the dust optical depth distribution broadens
the distribution. In the extreme case of a highly extinct galaxy, the
most luminous cluster might well be the one with the lower extinc-
tion, rather than the one with the highest intrinsic luminosity. More
generally, variations in the mean or width of this distribution can
mimic the effects of many other parameters, and the problem is even
worse if the amount of dust extinction is systematically correlated
with the SFR. Should this be the case, there is little that one can
do short of attempting to estimate the extinction of each cluster
individually.

A final, also commonly neglected nuisance effect is the uncertain-
ties in the measurements of SFR and cluster luminosity themselves.
While the photometric errors are often quite small, significant er-
rors can arise from uncertainties in how to extrapolate the cluster
surface brightness distribution to large radii. These effects can in-
troduce scatter of 0.5−1.5 magnitudes (Larsen & Richtler 1999).
The SFR also remains significantly uncertain due to scatter in the
SFR calibration and even stochastic variations in the SFR indicators
[see Kennicutt & Evans (2012) for a recent review]. Robust SFR
measurements are best achieved by combining two SFR indicators
to capture both obscured and unobscured populations (e.g. UV and
IR, or Hα and IR), and in this case the error is likely 0.5 dex or
less, but many studies of cluster statistics are based on less accurate
SFR measurements. These uncertainties have the effect of broad-
ening the distribution along both the Ṁ∗ and L1 axes, and must be
correctly accounted for when interpreting observations. The effect

of varying the assumed uncertainty can be dramatic, as evidenced
by rows 3 and 4 of Fig. 5.

5 C O N C L U S I O N S

In this paper, we present a new analytic method to compute lu-
minosity order statistics of star clusters from theoretical models
of the cluster formation process, including realistic parametrized
treatments of cluster aging, cluster disruption, dust extinction and
observational uncertainties in the determination of both cluster lu-
minosities and galaxy SFRs. We have implemented this analytic
method in a new software package, the CLOCcode, which is re-
leased under the terms of the GNU General Public License, and we
have verified that this package produces results consistent with the
full Monte Carlo stellar and cluster population synthesis code SLUG

(da Silva et al. 2012) in the regime where the SFR is large enough
that the initial stellar and cluster mass functions are well sampled.

The primary advantage of our method compared to previous work
is its speed. Monte Carlo methods of computing order statistics of
cluster luminosity (i.e. the probability distribution of the most lu-
minous cluster in a population, second most luminous, third most
luminous, etc.) are extremely expensive, requiring vast numbers of
trials to produce converged distributions. In contrast, because our
method is analytic, we are able to obtain the same results in a tiny
fraction of the time – for some of the examples we present, the
difference in computation time is a matter of days versus millisec-
onds. The reduction in computational cost that we achieve is such
that we can, for the first time, use MCMC methods to explore the
full, multidimensional parameter space characterizing the way star
clusters form, fade and disrupt, as well the a variety of observational
uncertainties that affect measurements of star cluster luminosities
and galaxy SFRs. We can therefore conduct statistically rigorous
analyses of what can be inferred about the properties of star cluster
formation and evolution from observed cluster luminosity distribu-
tions, the order statistics thereof, and the dependence of both of
these quantities on the large-scale properties of galaxies. The free-
dom to explore the ways in which nuisance variables confound our
attempts to constrain the relevant cluster parameters opens the door
for an unprecedented analysis of the relationship between galaxy
SFRs and brightest cluster luminosities, which is the subject of the
companion paper (da Silva et al., in preparation).
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A P P E N D I X A : G E N E R A L D E R I VAT I O N O F
CLUSTER ORDER STATISTICS

Here we derive the order statistics for clusters using a more general
method that can be extended to the case where cluster luminosities
are independent of one another, but where the full cluster formation
process does not obey Poisson statistics. Let φ(L) be the luminosity
PDF of a single cluster and �(L) = ∫ L

0 φ(L′) dL′ be the corre-
sponding CDF. Note that, although we use L as the variable, our
derivation applies equally well to any other quantity that is defined
for a star cluster, for example mass. First consider a region of study
containing exactly N clusters. For independently drawn cluster lu-
minosities, the probability that any single cluster has a luminosity
>L is 1 −�(L), and for m ≤ N, the probability that exactly m clusters
have luminosities >L is simply given by the binomial distribution.
Thus, we have

Pm(> L) =
{

N!
(N−m)!m! [1 − �(L)]m�(L)N−m, m ≤ N

0, m > N.
(A1)

To obtain the CDF �k(L), recall that �k(L) is the probability that
the kth most luminous cluster has a luminosity ≤L. If N ≥ k, this

probability must be equal to the probability that there are between
0 and k − 1 clusters that have luminosities >L, and therefore

�k(L | N ) =
k−1∑
m=0

Pm(> L). (A2)

Note that for N < k, this evaluates to �k(L|N) = 1 for any luminosity
where �(L) �= 0. This amounts to asserting that, in a region with
N < k clusters, the CDF of the kth most luminous cluster is 1 for
any non-zero value of L. For N ≥ k, the corresponding PDF is

φk(L | N ) = d

dL
�k(L | N ) (A3)

= N !

(N − k)!(k − 1)!
�(L)N−k[1 − �(L)]k−1φ(L). (A4)

Note that the second equality is not immediately obvious, but is
a standard result in statistics that can be proven by a variety of
arguments (e.g. Rose & Smith 2002, section 9.4).

The case N < k is more subtle, since this amounts to asking what
we mean by the PDF φk(L|N) when N < k. To put the question in
words: what is the probability that the kth most luminous cluster
has a luminosity in the range L to L + dL, if we are considering
a region where there are fewer than k clusters present? We must
answer this question if we are to define a meaningful PDF, because
in any sample of galaxies or subgalactic regions, there are likely to
be regions that contain no or only a small number of clusters. There
are two possible approaches. One could simply exclude cases where
N < k, and compute statistics in the remaining cases. This would
amount to changing the summations below (equations A6 and A7)
to run from N = k to ∞ rather than N = 0 to ∞. The other option
is to assign a luminosity of 0 to the kth most luminous cluster in
regions where N < k.

While both options are equally valid from the standpoint of statis-
tics, from a practical standpoint the second one is preferable. The
difficulty with excluding the case N < k is that, in order to com-
pare a model of this form to observations, we would be required to
construct an observational sample in which we exclude regions that
contain too few clusters. However, finite observational sensitivity
means that we can never count clusters with certainty. In particular,
we cannot easily distinguish between the possibilities that there are
no clusters present and that there are clusters present, but below our
detection limit. For this reason, we could never be certain of suc-
cessfully constructing an observational sample that is appropriately
cleaned of cluster-free regions. In contrast, if we simply assign a
luminosity of zero in our formalism when N < k, we avoid this
complication. In this case, we need make no effort to sort our ob-
servational sample into galaxies with and without a large enough
number of clusters, and can instead handle cases of non-detections
by folding the observational upper limits into our analysis. For this
reason, we choose to formally extend the definition of φk(N) to

φk(L | N )

=
{

N!
(N−k)!(k−1)! �(L)N−k[1 − �(L)]k−1φ(L), k ≤ N

δ(L), k > N.
(A5)

This choice is also consistent with the CDF for the case N < k.
As noted above, �k(L) evaluates to unity for N < k and �(L) �= 0,
so (d/dL)�k(L | N ) = 0 for any L such that �(L) �= 0. However,
for φk(L|N) to be properly normalized, it must have an integral of
unity overall L. The definition given by equation (A5) meets these
requirements, as for any N < k it gives a zero derivative for any
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luminosity L that it is possible for a cluster to have, but also has unit
integral over all luminosities.

We are now in a position to compute the PDF φk(L) and CDF
�k(L) for a population of regions with varying numbers of clusters.
This is given by the sum of φk(L|N) and �k(L|N) weighted by the
probability P(N) that a given region contains exactly N clusters:

�k(L) =
∞∑

N=0

P (N )�k(L | N ) (A6)

φk(L) =
∞∑

N=0

P (N )φk(L | N ). (A7)

To proceed further one requires the discrete probability distribution
P(N) for the number of clusters. One might guess that P(N) is
Poisson distributed, but, as noted in the main text, this cannot be
strictly true due to mass conservation. As has been discussed in
the context of sampling from the IMF (e.g. Haas & Anders 2010),
many other choices are possible that enforce mass conservation to
varying degrees. For example, the SLUG code to which we compare
in Section 3.2 uses a ‘stop-nearest’ approach in which clusters are
drawn from the cluster mass function until the total mass exceeds the
specified mass budget, and then one keeps or does not keep the last
cluster drawn based on which choice puts the total mass closest to
the target value. Alternately, one could always or never keep the last
cluster, which corresponds to ensuring that one always overshoots or
undershoots the mass budget, one could produce a list of clusters but
then sort them by mass, or any number of other approaches. Clearly,
each of these approaches will generate a different distribution of
P(N) values. To calculate the order statistics for a given method
of sampling the cluster mass function, one must derive P(N) for
that approach (either analytically or numerically) and then use that
distribution in equations (A6) and (A7).4

Without a real physical theory of star cluster formation there is
no obvious reason to favour one method of mass-limited sampling
over another. However, in the limit where the mean cluster mass
is much less than the total gas mass, it is probably reasonable to
approximate that clusters form independently of one another, in
which case P(N) will be Poisson distributed. In this case, the PDF
and CDF of cluster luminosities are

�k(L) =
∞∑

N=0

〈N〉Ne−〈N〉

N !
�k(L | N ) (A8)

φk(L) =
∞∑

N=0

〈N〉Ne−〈N〉

N !
φk(L | N ), (A9)

where 〈N〉 is the expected number of clusters in the region under
consideration.

Evaluating equation (A8), we have

�k(L) =
∞∑

N=0

〈N〉Ne−〈N〉

N !

k−1∑
m=0

Pm(>L) (A10)

4 The stop-nearest method and some others like it present a further compli-
cation. For this method, the masses and luminosities of individual clusters
are not independent, because the last cluster drawn is much more likely to be
kept if its mass is smaller than if it is large. Thus, clusters drawn late in the
selection process are not independent of those drawn early. The formalism
given here cannot be used in this case.

=
k−1∑
m=0

∞∑
N=0

〈N〉Ne−〈N〉

N !
Pm(>L) (A11)

=
k−1∑
m=0

〈N〉m[1 − �(L)]me−〈N〉

m!

∞∑
N=m

〈N〉N−m�(L)N−m

(N − m)!
(A12)

= e−〈N〉e〈N〉�(L)
k−1∑
m=0

{〈N〉[1 − �(L)]}m

m!
. (A13)

Note that in the second line we exchanged the order of summation,
which is possible because the sums involved are absolutely conver-
gent. The third line is simply a substitution using equation (A1),
and the fourth line follows from the definition of the exponential
function. The final line is equation (7) of the main text.

Similarly, evaluating equation (A9) gives

φk(L) =
k−1∑
N=0

〈N〉Ne−〈N〉

N !
δ(L) +

∞∑
N=k

〈N〉Ne−〈N〉

(N − k)!(k − 1)!

×�(L)N−k[1 − �(L)]k−1φ(L) (A14)

= �(k, 〈N〉)
�(k)

δ(L) + 〈N〉ke−〈N〉

(k − 1)!
[1 − �(L)]k−1φ(L)

×
∞∑

N=k

〈N〉N−k�(L)N−k

(N − k)!
(A15)

= �(k, 〈N〉)
�(k)

δ(L) + 〈N〉 {〈N〉[(1 − �(L)]}k−1

(k − 1)!
e−〈N〉e〈N〉�(L).

(A16)

The first line follows from substituting equation (A5) into
equation (A9), the second is just an algebraic re-arrangement, and
the final line uses the definition of the exponential function. This is
equation (5) of the main text.

APPENDI X B: FI T FOR ϒ

In this appendix, we compute an approximate power-law fit to the
age-dependent cluster mass-to-light ratio ϒ(t) for V band. We run a
STARBURST99 simulation of a simple stellar population with a Kroupa
IMF, Padova+AGB stellar tracks, Lej+SMI stellar atmospheres
and solar metallicity. From this simulation, we find that at ages
t = 10 Myr−1 Gyr, the light-to-mass ratio in V bands is well ap-
proximated by ϒ(t) = ϒ∗(t/10Myr)ζ , with best-fitting parameters

ζ = 0.688 (B1)

ϒ∗ = 8.3 × 10−21 M�
(
erg s−1 Hz−1

)−1
. (B2)

Fig. B1 shows both the STARBURST99 result and our best-fitting func-
tion. The maximum deviation between the fit and the numerical
result is 0.07 dex.

A P P E N D I X C : T H E L U M I N O S I T Y F U N C T I O N
F O R VA R I A B L E AG E S

Here, we evaluate the convolution

φin(log Lin) ∝ ψ(log M) ∗ ξ (− log ϒ) (C1)
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Figure B1. Fit of a simple power-law approximation (1/ϒ ∝ t−ζ , red) for
the light to mass ratio 1/ϒ(t), compared to the results of a STARBURST99
calculation of ϒ with a Kroupa IMF, Padova+AGB stellar tracks, Lej+SMI
stellar atmospheres and solar metallicity (black). The greyed out region
corresponds to populations younger than 10 Myr, for which the fit is poor.

for the PDF of intrinsic luminosities including age-dependent mass-
to-light ratios, where Lin = M/ϒ . First we evaluate ξ ([1/ϒ]) using
equation (18), which gives

ξ ([1/ϒ]) ∝
{

ϒ (γ−1−ζ )/ζ , 1/ϒ0 < 1/ϒ < 1/ϒ1

0, otherwise,
(C2)

where for convenience we have defined ϒ0 = ϒ∗(tmin/10Myr)ζ and
ϒ1 = ϒ∗(tmax/10Myr)ζ . The calculation can be done most easily
by transforming to logarithmic variables. Given the above equation
for ξ ([1/ϒ]), the PDF of −log ϒ is given by

f1(− log ϒ) ∝
{

ϒ (γ−1)/ζ , 1/ϒ0 < 1/ϒ < 1/ϒ1

0, otherwise.
(C3)

We can similarly transform the ICMF ψ(M) to a logarithmic variable
as

f2(log M) ∝
{

Mβ+1, Mmin < M < Mmax

0 otherwise.
(C4)

Since the intrinsic luminosity Lin obeys log Lin = log M − log ϒ ,
we can now find the PDF of log Lin via the substitution z = −log ϒ ,
giving

φin(log Lin) ∝
∫ ∞

−∞
f1(z)f2(log Lmin − z) dz (C5)

=
∫ ∞

−∞
[exp(z)](γ−1)/ζ

[
exp (log Lin − z)

]β+1
dz (C6)

∝

⎧⎪⎪⎨
⎪⎪⎩

0, Lin > Mmax
ϒ0∫ z1

z0
G(z) dz, Mmin

ϒ1
< Lin < Mmax

ϒ0

0, Lin < Mmin
ϒ1

,

(C7)

where for convenience we have defined

z0 = log max[1/ϒ1, Lin/Mmax] (C8)

z1 = log min[1/ϒ0, Lin/Mmin] (C9)

G(z) = [exp(z)](γ−1)/ζ
[
exp (log Lin − z)

]β+1
(C10)

= Lβ+1
in exp(ωz), (C11)

where

ω = γ − 1

ζ
− β − 1. (C12)

The integral
∫

G(z) dz therefore trivially evaluates to
(Lβ+1

in /ω) exp(ωz), up to the constant of integration.
We now limit ourselves to considering the case log (Mmax/Mmin)

> log (ϒ1/ϒ0), which amounts to saying that the mass distribution
is broad enough that a cluster with the minimum possible mass
at the youngest possible age is still dimmer than a cluster at the
maximum possible mass and the oldest possible age. Using our fit
to V band, tmin = 10 Myr and tmax = 1 Gyr, this is true as long as
log10(Mmax/Mmin) > 1.38, which is a fairly unrestrictive requirement
given the observations imply a far broader range of cluster masses
exists. With this assumption φ(log Lin) reduces to

φ(log Lin) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Lin > Mmax
ϒ0∫ log 1/ϒ0

log Lin/Mmax
G(z) dz, Mmax

ϒ1
< Lin < Mmax

ϒ0∫ log 1/ϒ0
log 1/ϒ1

G(z) dz, Mmin
ϒ0

≤ Lin ≤ Mmax
ϒ1∫ log Lin/Mmin

log 1/ϒ1
G(z) dz, Mmin

ϒ1
< Lin < Mmin

ϒ0

0, Lin < Mmin
ϒ1

(C13)

∝ Lβ+1
in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Lin > Mmax
ϒ0

ϒ−ω
0 − M−ω

max
L−ω

in
, Mmax

ϒ1
< Lin < Mmax

ϒ0

ϒ−ω
0 − ϒ−ω

1 , Mmin
ϒ0

≤ Lin ≤ Mmax
ϒ1

M−ω
min

L−ω
in

− ϒ−ω
1 , Mmin

ϒ1
< Lin < Mmin

ϒ0

0, Lin < Mmin
ϒ1

.

(C14)

The corresponding CDF for γ �= 1 is

�in(log Lin) = B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/B,
[

Mmax
ϒ0

, ∞
)

L
β+1
in −M

β+1
max /ϒ

β+1
1

(β+1)ϒω
0

−
Lν

in−Mν
max/ϒν

1
νMω

max

+ B1 + B2,
[

Mmax
ϒ1

, Mmax
ϒ0

)
(

ϒ−ω
0 −ϒ−ω

1
β+1

)
×(

Lβ+1
in − Mβ+1

min /ϒ
β+1
0

)
+ B1,

[
Mmin
ϒ0

, Mmax
ϒ1

)
Lν

in−Mν
min/ϒν

1
νMω

min
−

L
β+1
in −M

β+1
min /ϒ

β+1
1

(β+1)ϒω
1

,
[

Mmin
ϒ1

, Mmin
ϒ0

)
0,

[
0, Mmin

ϒ1

)
,

(C15)

where the interval in each case specifies the range in Lin over which
it applies, and we have defined

B1 = Mν
min/ϒν

0 − Mν
min/ϒν

1

νMω
min

− Mβ+1
min /ϒ

β+1
0 − Mβ+1

min /ϒ
β+1
1

(β + 1)ϒω
1

(C16)
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B2 =
(

ϒ−ω
0 − ϒ−ω

1

β + 1

) (
Mβ+1

max /ϒ
β+1
1 − Mβ+1

min /ϒ
β+1
0

)
(C17)

1/B = B1 + B2 + Mβ+1
max /ϒ

β+1
0 − Mβ+1

max /ϒ
β+1
1

(β + 1)ϒω
0

−Mν
max/ϒν

0 − Mν
max/ϒν

1

νMω
max

(C18)

ν = γ − 1

ζ
. (C19)

For γ = 1, we instead have a CDF

�in(log Lin) = B ′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/B ′,
[

Mmax
ϒ0

, ∞
)

L
β+1
in −M

β+1
max /ϒ

β+1
1

(β+1)ϒω
0

− log(ϒ1Lin/Mmax)
Mω

max

+ B ′
1 + B ′

2,
[

Mmax
ϒ1

, Mmax
ϒ0

)
(

ϒ−ω
0 −ϒ−ω

1
β+1

)
×(

Lβ+1
in − Mβ+1

min /ϒ
β+1
0

)
+ B ′

1

[
Mmin
ϒ0

, Mmax
ϒ1

)
1

Mω
min

log Lin
Mmin/ϒ1

− L
β+1
in −M

β+1
min /ϒ

β+1
1

(β+1)ϒω
1

,
[

Mmin
ϒ1

, Mmin
ϒ0

)
0,

[
0, Mmin

ϒ1

)
,

(C20)

where

B ′
1 = 1

Mω
min

log
ϒ0

ϒ1
−

[
Mβ+1

min

(β + 1)ϒω
1

] [
ϒ

−(β+1)
1 − ϒ

−(β+1)
0

]
,

(C21)

B ′
2 = ϒ−ω

0 − ϒ−ω
1

β + 1

(
Mβ+1

max /ϒ
β+1
1 − Mβ+1

min /ϒ
β+1
0

)
(C22)

1/B ′ = B ′
1 + B ′

2 +
[

Mβ+1
max

(β + 1)ϒω
0

] [
ϒ

−(β+1)
0 − ϒ

−(β+1)
1

]

− 1

Mω
max

log
ϒ0

ϒ1
. (C23)

A P P E N D I X D : T H E L U M I N O S I T Y F U N C T I O N
F O R VA R I A B L E AG E S A N D D U S T

In this appendix, we derive the PDF and CDF for clusters includ-
ing the effects of both variable ages and dust, by evaluating the
convolution

φ(log L) ∝ φin(log Lin) ∗ η(−τ ), (D1)

where φin(Lin) is the distribution of intrinsic luminosities given by
equation (C14),

η(τ ) = 1(τ0,τ1)(τ )

τ1 − τ0
=

{ 1
τ1−τ0

, τ0 < τ < τ1

0 otherwise
(D2)

is the distribution of dust optical depths and L = Line−τ . Here 1(x0,x1)

is the indicator function, which is unity on the interval (x0, x1) and
zero elsewhere.

As in Appendix C, we evaluate the PDF of the sum by transform-
ing to logarithmic variables. To simplify the analysis, first note that
equation (C14) for φin(log Lin) can be rewritten as a sum of power
laws multiplied by indicator functions:

φin(log Lin) ∝
5∑

i=1

CiL
pi
in 1(Lin,0,i ,Lin,1,i )(Lin), (D3)

with

C = (ϒ−ω
0 , −M−ω

max, ϒ
ω
0 − ϒ−ω

1 ,M−ω
min,−ϒω

1 ) (D4)

p = (β + 1, β + 1 + ω, β + 1, β + 1 + ω, β + 1) (D5)

Lin,0 =
(

Mmax

ϒ1
,
Mmax

ϒ1
,
Mmin

ϒ0
,
Mmin

ϒ1
,
Mmin

ϒ1

)
(D6)

Lin,1 =
(

Mmax

ϒ0
,
Mmax

ϒ0
,
Mmax

ϒ1
,
Mmin

ϒ0
,
Mmin

ϒ0

)
. (D7)

The intrinsic and observed luminosities are related by
log L = log Lin − τ , and we let z = log Lin, so the convolution
may be written as

φ(log L) ∝
∫ ∞

−∞
φin(z)η(z − log L) dz (D8)

= 1

τ1 − τ0

5∑
i=1

Ci

∫ ∞

−∞
epiz1(Lin,0,i ,Lin,1,i )(e

z)1(τ0,τ1)(z − log L) dz

(D9)

= 1

τ1 − τ0

5∑
i=1

Ci

∫ ∞

−∞
epiz1(log Lin,0,i ,log Lin,1,i )(z).

1(τ0+log L,τ1+log L)(z) dz (D10)

= 1

τ1 − τ0

5∑
i=1

Ci max

(
L

pi
i,1 − L

pi
i,2

pi

, 0

)
, (D11)

where

L0,i = max
(
log Lin,0,i , τ0 + log L

)
(D12)

L1,i = min
(
log Lin,1,i , τ1 + log L

)
. (D13)

The corresponding CDF is

�(log L) =
∫ log L

−∞
φ(log L′) d log L′. (D14)

We refrain from writing out the full result of this integration, be-
cause, although each term is trivial to evaluate, there are a very
large number of them thanks to the multiple min and max opera-
tors involved. The full expression is included in the CLOC software
package.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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