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ABSTRACT
The integrated light of a stellar population, measured through photometric filters that are
sensitive to the presence of young stars, is often used to infer the star formation rate (SFR)
for that population. However, these techniques rely on an assumption that star formation
is a continuous process, whereas in reality stars form in discrete spatially and temporally
correlated structures. This discreteness causes the light output to undergo significant time-
dependent fluctuations, which, if not accounted for, introduce systematic errors in the inferred
SFRs due to the intrinsic distribution of luminosities at any fix SFR. We use SLUG a code that
Stochastically Lights Up Galaxies, to simulate galaxies undergoing stochastic star formation.
We then use these simulations to present a quantitative analysis of these effects and provide
tools for calculating probability distribution functions of SFRs given a set of observations. We
show that, depending on the SFR tracer used, stochastic fluctuations can produce non-trivial
errors at SFRs as high as 1 M� yr−1 and biases � 0.5 dex at the lowest SFRs. We emphasize
that due to the stochastic behaviour of blue SFR tracers, one cannot assign a deterministic single
value to the SFR of an individual galaxy, but we suggest methods by which future analyses
that rely on integrated-light indicators can properly account for these stochastic effects.

Key words: methods: numerical – methods: statistical – techniques: photometric – stars: for-
mation – galaxies: star clusters: general – galaxies: stellar content.

1 IN T RO D U C T I O N

Stellar light is the primary observable in astronomy, and it provides
most of our knowledge of the Universe and its evolution. While
for the nearest stellar populations we can observe individual stars,
we are often restricted to measuring the integrated photometric
properties of stars, both spatially and spectrally. These integrated
properties, when filtered through a model for stellar populations,
can then yield estimates of the mass, star formation rate (SFR), star
formation history (SFH), initial mass function (IMF), and numerous
other properties.

Because the light produced by a star is a function of its mass and
age, the stellar population synthesis (SPS) models required to map
between observed luminosity and underlying physical properties
involve calculating a sum over the mass and ages of all the stars that
comprise the population. The most commonly used approaches for
evaluating this sum rely on several assumptions for computational
efficiency. Most relevant to this paper is the fact that it is common

�E-mail: rdasilva.astro@gmail.com (RLS); michele.fumagalli@durham.
ac.uk (MF); mkrumhol@ucsc.edu (MRK)

to assume that the IMF and SFH are infinitely well populated (e.g.
STARBURST99: Leitherer et al. 1999; Vázquez & Leitherer 2005;
PEGASE: Fioc & Rocca-Volmerange 1997; GALEV: Kotulla et al. 2009,
but see Anders et al. 2013; FSPS: Conroy, Gunn & White 2009; Con-
roy, White & Gunn 2010; Conroy & Gunn 2010). This approach
is convenient because it replaces the sum with a separable double
integral: one first integrates over the IMF at fixed time to calculate
the light per unit mass for a stellar population as a function of age,
and then integrates this light-to-mass ratio weighted by the SFH in
order to arrive at an estimate of the integrated light produced by
stars of all ages.

While this approach is convenient, it can also be dangerous. The
potential pitfalls of assuming a fully sampled IMF when analysing
a simple stellar population (i.e. a group of stars of uniform age)
are well known: if the IMF is not fully sampled, the highly non-
linear dependence of luminosity on stellar mass causes the manner
in which stars discretely fill a population’s mass to have large con-
sequences for the luminosity (e.g. Cerviño & Valls-Gabaud 2003;
Cerviño & Luridiana 2004; Popescu & Hanson 2009, 2010a,b;
Anders et al. 2013). In this case, there is no longer a deterministic
relation between the total mass and age of the population to the
total luminosity and colour of its integrated light. The implication
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is that the inverse problem, that of determining the mass or age of a
simple stellar population from its photometric properties, no longer
has a unique solution. Nor can this non-uniqueness be described
as a simple error symmetrically bracketing a central estimate. In a
small stellar population, a single high-mass star can dramatically
increase (and at times dominate) the luminosity of a stellar popula-
tion. Thus, this very high luminosity for rare realizations skews the
mean of the luminosity distribution well away from its median. As
a result, mean relations for luminosities that are in the stochastic
regime (where a single star can dramatically affect the luminosity)
often greatly overpredict the luminosity of a randomly chosen real-
ization. See Cerviño (2013) for a recent review of this topic and a
discussion of the implications of these uncertainties.

The hazards of assuming a smooth SFH over time-scales of few
million years, and thus the accuracy of SPS models that make this
assumption, have received significantly less attention (e.g. see the
recent review by Kennicutt & Evans 2012; see also Cen 2014).
We know from observations of both the Milky Way and nearby
galaxies that star formation is a highly clustered process (e.g. Lada
& Lada 2003), which more closely resembles a series of discrete
bursts identifiable with the formation of individual clusters than the
continuous creation of new stars at a constant rate. Only when the
SFR is sufficiently high, do the individual bursts blur together to cre-
ate an approximately continuous SFH (see figs 3 and 11 of da Silva,
Fumagalli & Krumholz 2012, hereafter Paper I). The questions of
how star formation proceeds inside stellar clusters populated from
a finite IMF sampling, and how clustered star formation affects the
observed integrated light and the inferred SFHs, motivated us to cre-
ate the Stochastically Lighting Up Galaxies (SLUG) code, presented
in Paper I. This code hierarchically follows clusters drawn from a
cluster mass function, each of which is individually populated on
a star-by-star basis according to an IMF. Each star evolves follow-
ing an individual evolutionary track and contributes light calculated
from an individual stellar atmosphere model. As a result of this
approach, SLUG produces Monte Carlo realizations of stellar popu-
lations rather than simply the mean results, including stochasticity
in both the IMF and the SFH. Our initial application of this code
(Fumagalli et al. 2011; Paper I) showed that, for non-simple stellar
populations, SFH sampling stochasticity turns out to affect the light
output of stellar populations far more than IMF sampling stochastic-
ity. Indeed, Fumagalli, da Silva & Krumholz (2011, also see Weisz
et al. 2012) show that this effect explains the low Hα-to-FUV ratios
seen in dwarf galaxies (Boselli et al. 2009; Lee et al. 2009; Meurer
et al. 2009), something that some earlier authors had attributed to
variations in the IMF itself. Since this initial application, SLUG has
been used to study these effects in a number of other contexts (Siana
et al. 2010; Cook et al. 2012; Andrews et al. 2013; Forero-Romero
& Dijkstra 2013).

In this paper, we extend the application of SLUG to the problem
of interpreting SFR indicators (SFIs). These are, by construction,
extremely sensitive to the properties of the most massive, shortest
lived, brightest stars, and thus are very vulnerable to stochasticity.
They are therefore subject to the same ‘inverse problem’ that affects
the determination of mass and age for simple stellar populations:
at low SFRs, where IMF and SFH are sparsely sampled, there is
no unique mapping between SFRs and SFIs, and thus no unique
way to infer an SFR from an SFI in an individual galaxy.1 Given

1 The mean relations are still accurate. On average, those SFRs produce
that SFI luminosity. However, the interpretations that simply use the mean
relation are not appropriate. The broad and highly skewed nature of the PDFs

Table 1. SLUG simulation parameters.

Fiducial

fc 1
tsf (Myr) 500
mmax ( M�) 107

mmin ( M�) 20
[Fe/H] 0
IMF Kroupa

Here fc is the clustering fraction, tsf is the duration of star for-
mation, mmin and mmax are the minimum and maximum of the
ICMF, [Fe/H] is the metallicity used for the stellar evolution and
atmosphere models, and IMF is the choice of stellar IMF. For a
description of how each of these parameters is implemented in
SLUG, see Paper I.

these limitations, our goal in this paper is to provide the next best
possible solution: a full characterization of the probability distribu-
tion function (PDF) of an SFR given a particular observed value of
SFI. The layout of the paper is as follows: Section 2 describes a
library of SLUG simulations that we have performed to solve the for-
ward problem of characterizing the distribution of luminosities that
result from stochastic sampling of the IMF, including the effects of
clustering2 and a discussion of the dependence on free parameters.
Section 3 describes how we use these SLUG simulations to solve the
inverse problem of determining the PDF of SFR given a set of ob-
servations, including the higher dimensional correlations between
the true underlying SFR and multiple SFIs. Finally, Section 4 dis-
cusses the implications of this work, and Section 5 summarizes our
conclusions.

2 T H E D I S T R I BU T I O N O F L U M I N O S I T Y
AT FIXED SFR

2.1 SLUG simulations

We first consider the problem of determining the distribution of lu-
minosities of SFIs given an input SFR. This allows us to determine,
for example, how much scatter is expected for a given stellar popu-
lation and to characterize the types of errors one might incur if only
using the mean properties. We approach this problem via SLUG sim-
ulations, which produce Monte Carlo realizations of photometric
properties given a set of user inputs including the input SFH, IMF,
the initial cluster mass function (ICMF), the fraction of star forma-
tion occurring in clusters, and a set of stellar evolutionary tracks and
atmosphere models. The code also takes parameters describing how
clusters disrupt, but these affect only the properties of the cluster
population, not the integrated light of a galaxy, and so we will not
refer to them further. Unless otherwise noted, all our simulations
make use of the default SLUG parameter choices described in Paper I,
and summarized in Table 1. We also refer the readers to Paper I
for a full description of SLUG’s functionality, but we provide here a
brief summary on how the IMF and ICMF are implemented, which
is most relevant to our discussion.

SLUG treats both the IMF and ICMF as PDFs. When clustered
star formation is enabled (i.e. fc > 0), SLUG draws clusters from

for SFR given an SFI means that care must be taken to properly interpret
observations.
2 Stellar clustering is the dominant mechanism for SFH sampling stochastic-
ity; thus, in several places we use the terms ‘SFH stochasticity’ and ‘effects
of clustering’ interchangeably.
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the ICMF, at a rate which satisfies the imposed SFH. Each cluster
is then populated with stars drawn at random from the IMF, until
the collective mass of the drawn stars is equal to the cluster mass.
For the last star, SLUG implements a so-called stop-nearest method
(Haas & Anders 2010), according to which the last drawn star is
included only if keeping it makes the total effective mass of the
cluster closer to the one drawn from the ICMF than leaving it out.
Following this algorithm, the effective IMF (i.e. the IMF which
results from repeated draws of an input Kroupa IMF) differs on
average from the input IMF due to the constraints imposed by the
cluster mass distribution. As shown in the previous papers of this
series (Fumagalli et al. 2011; Paper I), these additional constraints
enhance the effect of stochasticity compared to random drawing of
the IMF alone.

As discussed in our previous work, this approach should not
be confused with other formulations which introduce a determin-
istic relationship between the galaxy SFR and its IMF or ICMF.
A popular example of one such formulation is the original imple-
mentation of the integrated galactic stellar initial mass function
(IGIMF) (e.g. Kroupa & Weidner 2003; Weidner & Kroupa 2004;
Weidner, Kroupa & Bonnell 2010), in which a truncation of
both the IMF and ICMF is set by deterministic equations. As
shown in Fumagalli et al. (2011), this approach differs from SLUG

simulations, yielding flux distributions that systematically miss
the high fluxes associated with the presence of massive stars.
Conversely, these high fluxes are still achievable in SLUG simula-
tions, although with low probability. In particular, we found that the
deterministic limitation on stellar masses introduced in the IGIMF
models actually leads to a dramatic reduction in the luminosity scat-
ter at low SFRs compared to our model of random sampling. An
IGIMF-like model would therefore produce significantly smaller
scatters but significantly higher biases than the fiducial results we
present below, as one can see from the distributions presented in
Fumagalli et al. (2011). However, we do not explore this topic fur-
ther, because Fumagalli et al. (2011) found that the reduced scatter
predicted by deterministic IGIMF models is strongly inconsistent
with observational constraints (see also Andrews et al. 2013, 2014).

For the purposes of this paper, we restrict ourselves to very sim-
ple input SFHs: those with constant SFR over a time of 500 Myr.3

Our choice of time period is long enough that we avoid any tran-
sient initial phases of the buildup of the stellar population. The
primary output of each SLUG simulation is a realization of the PDF
of luminosities given an SFR and other ancillary variables,

p(L | log SFR, φ), (1)

where L is a vector of log luminosities in various photometric
bands and φ denotes parameters that define the model, as listed for
example in Table 1. For simplicity, in the analysis that follows we
will omit φ except where relevant.

While SLUG is capable of producing photometry in many bands,
and the next release of the code will support full spectra, here

3 It is important to note that, as discussed in Paper I, the input SFH does
not match the actual realized SFH. In fact, due to stochastic sampling of the
cluster mass function, the output SFH will differ from the input SFH as it
will exhibit a series of bursts on small time-scales (see fig. 3 in Paper I).
This is because there is no ‘constant’ SFR. For example, consider a galaxy
forming stars at 1 M� yr−1. In one day, 1/365th of a solar mass of gas is not
transformed into a star. Constant SFRs (and SFHs in general) can only be
considered continuous when averaged over some time interval. In our case,
the observations dictate their own averaging window and we investigate how
well the continuous model matches reality.

we focus on the three most common indicators of the SFR: the
FUV luminosity LFUV, the bolometric luminosity Lbol, and the Hα

luminosity LHα . The last of these is a recombination line produced
when the ionizing radiation of the stars interacts with the ISM,
and SLUG does not report this directly. Instead, it reports the rate
of hydrogen-ionizing photon emission Q(H0), which we convert to
Hα luminosity via

LHα = (1 − fesc)(1 − fdust)Q(H0)αeff
Hα

hνHα

≈ 1.37 × 10−12(1 − fesc)(1 − fdust)Q(H0) erg, (2)

where fesc and fdust are the fractions of ionizing photons that es-
cape from the galaxy and that are absorbed by dust grains rather
than hydrogen atoms, respectively, αeff

Hα
is the recombination rate

coefficient for recombination routes that lead to emission of an Hα

photon, and hνHα = 1.89 eV is the energy of an Hα photon. For the
purposes of our analysis, we assume fesc = 0, noting that non-zero
values for this poorly constrained quantity would simply amount
to applying a constant shift to our results, provided that fesc does
not vary substantially with galaxy properties (see a discussion in
e.g. Boselli et al. 2009). Similarly, although we focus on Hα, the
results will be identical up to a constant shift for any other hydrogen
recombination line, or any other source of emission (e.g. free–free
emission) that is directly proportional to the ionizing luminosity. We
leave for future work the discussion of other SFIs that have more
complex, non-linear relationships with the ionizing photon produc-
tion rate (e.g. [O II] 372.7 nm, [Ne II] 12.8 µm, [Ne III] 15.6 µm –
Kennicutt & Evans 2012). In this work, for all indicators, we report
intrinsic luminosities in the absence of dust (i.e. assuming fdust = 0 in
equation 2). Therefore, results from our study need to be compared
to dust-corrected fluxes, after accounting for dust absorption of the
selected indicator and, for Hα, also for the intrinsic absorption of
the ionizing photons within H II regions. As shown in e.g. Boselli
et al. (2009), a particular choice of the many available dust extinc-
tion laws (e.g. Meurer, Heckman & Calzetti 1999; Calzetti 2001;
Buat et al. 2005) may imprint non-negligible systematics on the re-
sulting UV and Hα flux distribution, requiring particular care in the
derivation of unobscured fluxes before comparing to our theoretical
models.

In order to characterize the PDFs of our chosen SFIs, we run
approximately 1.8 × 106 SLUG models. Of these models, we run
9.83 × 105 at input SFRs with a distribution of log SFR that has a
linear form with a slope of −1 over a range in log SFR from −4
to 0.3, where SFRs here are measured in M� yr−1. The remaining
0.8 × 106 models are uniformly distributed in log SFR over a range
from −8 to −4. The distribution of the model SFRs pM(log SFR)
is shown in Fig. 1. Our choice of distribution is motivated by the
practical requirement that we need more simulations to adequately
sample the PDFs at lower SFRs because the scatter is larger. As we
will show in Section 3.1, our results do not depend on the assumed
distribution of models, pM(log SFR).

2.2 Simulation results

For convenience, we report the result of our simulations in SFR
space, meaning that we report luminosities as the SFRs one would
infer using the approximation of perfect IMF and SFH sampling,
which we refer to as the ‘point-mass approximation’.4 For our

4 This is standard statistical terminology. It arises from the fact that one
treats the posterior PDF as having all of its mass located at a single point.
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Figure 1. Distribution of input SFRs for SLUG simulations. The sudden
discontinuity at 10−4 occurs simply because we compute a different number
of models above and below 10−4 M� yr−1. As discussed in the text, this
choice enables a more efficient simulation strategy, but it does not affect our
results.

fiducial IMF, stellar evolution tracks, and atmosphere models, the
conversions between these and the luminosities reported by SLUG

are

SFRQ(H0) = 7.638 × 10−54( M� yr−1 s)Q(H0) (3)

SFRFUV = 9.641 × 10−29( M� yr−1 erg−1 s Hz)LFUV (4)

SFRbol = 2.661 × 10−44( M� yr−1 erg−1 s)Lbol. (5)

This approach allows us to report the results using the different
SFIs on a common scale, making them easier to compare. It also
allows us to separate the effects of stochastic sampling from the
dependence of the results on the choice of stellar evolution and
atmosphere models as these, to good approximation, simply cause
changes in the conversion constants in equations (3)–(5).

Each SLUG model may be thought of as a point in a four-
dimensional parameter space defined by these three luminosities
and their corresponding intrinsic SFR. In Fig. 2, we show the raw
distribution of our models in three orthogonal projections of this
parameter space. One can see that at progressively lower fluxes,
which correspond to progressively lower intrinsic SFRs, the SFRs
inferred applying the point-mass approximation deviate from the
1:1 relation, emphasizing the need for accurate modelling in the
conversion between SFIs and SFRs in this regime. One can also see
that the effect is more pronounced for indicators which are most
sensitive to massive short-lived stars, particularly Q(H0). Fig. 3
presents the distributions related to their intrinsic SFRs. We can
immediately see that there is significant mass of models well away
from the line predicted by the point-mass approximation, confirm-
ing the necessity of the stochastic treatment and our assertions that
full PDFs should be used in place of simple mean relations. We
also see that, as expected, the deviation from the line is largest for
SFRQ(H0) and smaller for the other two dimensions. This was dis-
cussed in Fumagalli et al. (2011), as tracers that are sensitive to
stars with lifetimes shorter than a few Myr are most sensitive to
the flickering in the SFHs, while SFIs that depend on longer lived
stars average over longer time-scales and are thus more stable in
recovering the mean SFH. In passing, we note that at progressively
lower SFRs, an increasingly higher number of models do not con-
tain massive enough stars that produce UV fluxes in SLUG models.
These realizations are set to a floor of log SFRFUV = −18 and are

shown in Fig. 3 to preserve the correct number density of models
in each SFR bin.

While a clear picture of the ensemble of all the models is pre-
sented in Fig. 3 (which is critically useful in our subsequent
analysis – see Section 3), explorations of the level of scatter can
perhaps be better addressed by Fig. 4, which shows the marginal
distributions of p(L | log SFR). To emphasize the shape of the dis-
tribution over the actual values that are related to adopted point-mass
calibrations, we plot the distribution of the offsets between these in-
ferred SFRs and the true SFR that was used in each simulation. It is
again clear that Q(H0) has the largest scatter,5 in extreme cases pro-
ducing estimates that differ from the true SFR by as much as eight
orders of magnitude! Furthermore, these distributions are clearly not
Gaussians centred on the true SFR. Instead, they are highly asym-
metric. Finally, it is clear that as the SFR increases, the PDF gets
narrower. This is the result of being better sampled and the laws of
statistics of large numbers.

3 T H E D I S T R I BU T I O N O F S F R AT FI X E D
LUMI NOSI TY

3.1 Derivation

Thus far we have shown how one can estimate the probability
distribution of log luminosities L given an intrinsic SFR, p(L |
log SFR). However, we want to invert the problem and find the full
distribution of SFRs given L, i.e. p(log SFR | L). We perform this
inversion with a technique known as implied conditional regression.
The idea behind this technique is simple. We start with the following
decomposition:

p(log SFR | L) = p(log SFR, L)

p(L)
. (6)

Each SLUG model has a known SFR and produces an output L, and
thus represents a sample point in the multidimensional parameter
space (log SFR, L); we denote such a point as a vector z, where the
first component is log SFR, and the three log luminosities that com-
prise L form the second through fourth components. This definition
can obviously be generalized to an arbitrary number of components
in L. In this space, we define the distance between two points z1

and z2 by the usual Cartesian metric,

|z1 − z2| = [(log SFR1 − log SFR2)2

+ (log SFRQ(H0),1 − log SFRQ(H0),2)2 + · · ·]1/2. (7)

The first task in computing p(log SFR | L) is to use these sam-
ple points to estimate the underlying multidimensional probabil-
ity distribution p(log SFR, L) and its projection along the log SFR
direction

p(L) =
∫

p(log SFR, L) d log SFR. (8)

5 It is important to caution that, while a large scatter is a real limitation
of SFIs based on ionizing luminosity, it would be incorrect to conclude
from this that alternates such as FUV or bolometric luminosity are always
preferable. If the true SFR is stable on the ∼10–100 Myr time-scales to
which these tracers are sensitive, as is the case in our models, then, all
other factors equal, they are preferable. However, in a galaxy where the
intrinsic SFR might be variable on shorter time-scales (e.g. in a merging
or interacting galaxy), the longer averaging interval of FUV or bolometric
luminosity becomes a disadvantage, as it produces too coarse an estimate of
the true recent SFR.
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Figure 2. Contours representing 10[1, 2, 3] models for the three different SFIs converted to SFRs using the point-mass approximations. Without stochastic
effects, the galaxies would be forced to lie exactly on the dashed line.

To do this, we use a kernel density estimation technique which
constructs the PDF as a sum of kernels centred on each multidi-
mensional simulation point. Explicitly, we approximate the value
of the PDF at a position z = (log SFR, L) by

p(log SFR, L) = A
∑

i

K(|zi − z|; h), (9)

where zi is the position of the ith sample point, A is a normalization
constant, and K is the kernel function, which has the bandwidth
parameter h. For its compactness, we choose to use an Epanechnikov
kernel, which is of the form

K(z; h) ∝
{

1 − z2/h2, z < h

0, z ≥ h
. (10)

The parameter h must be chosen to balance the competing demands
of smoothness, favouring larger h, and fidelity, favouring smaller h.
We choose to set this parameter equal to 0.1 dex because exploration
of histograms at various bin sizes indicates that there is little struc-
ture below this scale. We are thus washing out any features of this
PDF on scales below 0.1 dex in any dimension. The result of this
procedure is an estimate of the multidimensional probability den-
sity p(log SFR, L) describing our raw SLUG data, and, by plugging
into equation (6), an estimate of p(log SFR | L).

The second step in computing p(log SFR | L) is to the apply
a proper weighting of the prior probability distribution of SFRs.
Simply applying equation (6) using our computed p(log SFR, L)
amounts to adopting a prior probability distribution of the logarith-
mic SFR that follows the distribution of our SLUG simulations, shown
in Fig. 1. This is clearly not an ideal choice, as this distribution was
chosen to ensure good sampling of the PDF, rather than to reflect
a realistic prior distribution. Fortunately, it is trivial to rescale the
results to an arbitrary prior probability distribution using Bayes’s
theorem,

p(log SFR | L) = p(L | log SFR)p(log SFR)

p(L)
, (11)

where p(log SFR) is the prior probability distribution for the SFR.
Our input grid of models has a distribution of log SFR given

by p(log SFR) = pM(log SFR), where pM(log SFR) is the distribu-
tion shown in Fig. 1. Bayes’s theorem tells us that we can use
the results from one prior distribution p1(log SFR) to find the re-
sults for a different prior distribution p2(log SFR) by multiplying

p(log SFR | L) by p2(log SFR)/p1(log SFR).6 For the case of trans-
forming our SLUG simulations to a desired p2(log SFR), we set
p1(log SFR) = pM(log SFR). This is equivalent to assigning a dif-
ferent relative weighting to each of the models in the library such
that the effective p(log SFR) matches whatever form is desired.

Obviously, the relationship between the SFI and the intrinsic SFR
will depend on the choice of the prior, which should be made ac-
cording to the problem at hand. For the purposes of this analysis, we
present two different examples, which allow us to compare results
obtained adopting different priors. The first prior we adopt is the
most natural choice that can be made when analysing a large sam-
ple of galaxies from a volume-limited survey. The SFR distribution
of galaxies in the local Universe is observed to follow a Schechter
function, with slope −1.51 and characteristic SFR of 9.2 M� yr−1

according to the determination of Bothwell et al. (2011). It is there-
fore natural to assume that the prior distribution of SFR follows a
similar Schechter function. A caveat to this assumption is that the
observational determination of the Schechter function parameters
was made ignoring the effects of stochasticity. This is unlikely to
affect the characteristic SFR, since this is high enough that stochas-
tic effects probably do not dominate the error budget for the FUV
plus IR SFIs used in these observational studies (cf. Fig. 4). On the
other hand, the slope at low SFRs may be more problematic, a topic
to which we return below.

To highlight the importance of priors in the final result, we also
consider a flat distribution of log SFR. Flat priors are often assumed
to be a ‘robust’ or ‘agnostic’ choice, but in reality they are nei-
ther. They represent a specific choice that may be appropriate or
inappropriate depending on the sample being analysed. Applied to
the hypothetical problem of establishing the SFR distribution in a
volume-limited sample as mentioned above, a flat prior would rep-
resent a rather poor choice because it neglects the fact that lower
values of log SFR are more common than larger ones in a volume-
limited sample. This in turn exacerbates the problems of bias and
scatter that we discuss below. Conversely, a flat prior would be a
more suitable choice when dealing with samples selected to be rep-
resentative of a full range of properties, e.g. galaxy masses, with
equal number of objects per selection bin. In our work, which does
not deal with a specific problem, the flat prior does offer an inter-
esting second choice to highlight the sensitivity of results to the
applied prior. It also offers the benefit that it is perhaps easier to

6 This operation requires calculation of a new normalization constant, which
is simple to compute in the case of the one-dimensional SFR.
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Figure 3. Left: PDFs of the SFIs versus intrinsic SFR arising just from stochastic effects (presented as fraction of the maximum value in each intrinsic SFR
bin). The dashed line represents the point-mass approximation. The hard cutoff at log SFR = −8 + log 2[ M� yr−1] is the smallest SFR that can produce
any clusters with a mass of 20 M�, the minimum cluster mass we allow. The horizontal stripe for SFRFUV at −18 corresponds to the lower limit of FUV
luminosity given by the SLUG models. Right: zoomed-in version of plots in the left column.

visualize how our results would scale when changing prior, since
the term p1(log SFR) is in this case a constant.

Once a prior has been chosen, we are at last in a position to derive
the final PDF of log SFR given a set of observations. We can think
of a given set of observational data as describing a PDF p(L | data)

of luminosities in one or more bands; the simplest case would be
an observation of a single tracer which produces a central value
of log luminosity with a Gaussian error distribution, in which case
p(L | data) is a Gaussian in one dimension (corresponding to the
SFI measured) and is flat in the other dimensions (corresponding to
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Figure 4. PDFs for individual components of L normalized by the point-
mass approximation for ease of comparison. Models are grouped by SFR
into bins 0.25 dex wide, and are colour-coded by an input SFR as indicated
in the legend.

SFIs that were not measured). Given the observations, and a choice
of prior distribution p(log SFR) for the SFR, the final posterior
distribution for the SFR is given by applying equation (6), rescal-
ing by the chosen prior, and then integrating over the luminosity
distribution implied by the data. The result is

p(log SFR | data) =
∫

p(log SFR, L)

p(L)

p(log SFR)

pM (log SFR)

× p(L | data) dL, (12)

Figure 5. Posterior distributions for SFR given an observed Hα luminosity
corresponding to an SFR centred at SFRQ(H0) = −3. The observed log
luminosity is taken to have a Gaussian-distributed uncertainty whose width
σ (measured in dex) corresponds to the values shown in the legend; σ = 0
corresponds to a δ function distribution. The top panel shows results using a
flat prior, and the bottom panel shows the results using a Schechter function
prior (see Section 3.1). The curves get noisier at lower SFRs due to the
smaller number of models and the more dispersed nature of the PDFs.

where p(log SFR, L) is given by equation (9), p(L) is given by
equation (8), and pM(log SFR) is the PDF of SFRs in our SLUG

simulations.

3.2 Results

To understand the results for the estimates of p(log SFR | L), we
begin by examining an example corresponding to the simplest case
of a measurement for a single tracer. Consider an observation of Hα

luminosity corresponding to log SFRQ(H0) = −3 with a Gaussian
error bar of width σ . In Fig. 5, we show the posterior PDF for the
SFR given this measurement of Hα using both flat and Schechter
function priors. If we had to assume point-mass conversion, we
would infer log SFR = −3 for the galaxy SFR (the black dashed
line). However, given the skewness in the flux distribution, the
peak and mean of the true PDF7 are significantly offset and neither
corresponds to the point-mass estimate. We will characterize the
difference between the point-mass estimate and the mean of the
true PDF as the ‘bias’. Note that this bias is not meant as a simple
offset that one can blindly apply to the observational determination
to get a better’ answer that fixes the stochastic issues. In practice,
stochasticity fundamentally breaks the deterministic relationship

7 Note that, as is always the case, this PDF is only true in so far as the prior
is the correct prior to use and that other assumptions made are accurate as
well regarding the IMF, stellar tracks, and atmospheres.
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between luminosity and SFR, and thus the full PDF should be
used whenever possible (or at least the first four moments of the
distribution).

We can also see from Fig. 5 that the posterior PDF of SFR
has significant width. Thus, even a perfect measurement of the
luminosity, corresponding to σ = 0 in the figure, retains a systematic
uncertainty in the SFR with a standard deviation of approximately
0.5 dex and a significant negative tail. Indeed, in the example shown,
this stochastic uncertainty dominates the error budget, as is clear
from the fact that the PDFs for observational errors of σ = 0, 0.25,
and 0.5 dex are only marginally different. Finally, we can see that
the choice of prior does affect the results, but not significantly in
this case.8

Given the results shown in Fig. 5, it is obviously of interest to
know how the bias and uncertainty depend on the observed value
of a particular SFI. We formally define these quantities as follows.
Consider an observation of a particular SFI I which returns an
estimated logarithmic SFR log SFRI using the point-mass estimate
[i.e. using equations (3)–(5)], with a Gaussian error distribution σ

on log SFRI. The posterior probability distribution for the true SFR
p(log SFR|log SFRI ± σ ) is then given by equation (12), treating
the observed luminosity distribution p(L | data) as a Gaussian of
width σ centred at log SFRI. The corresponding mean estimate of
log SFR is

log SFR =
∫

p(log SFR | log SFRI ± σ ) log SFR d log SFR. (13)

We define the bias b and scatter s, respectively, as

b(log SFRI ) ≡ log SFR − log SFRI (14)

s(log SFRI )2 ≡
∫

p(log SFR | log SFRI )

× (
log SFR − log SFR

)2
d log SFR, (15)

i.e. for a given observation of a single tracer, we define the bias as
the difference between the mean value of log SFR computed from
the full PDF and the point-mass estimate, and the scatter as the
second moment of the PDF of log SFR. Due to the nature of the
distributions, normally the bias is positive.

Fig. 6 shows the bias and scatter as a function of the observed
luminosity of the three SFIs we consider in this paper, ionizing/Hα

luminosity, FUV luminosity, and bolometric luminosity. As ex-
pected, we see that both the bias and scatter are reduced at high
SFRs, and that both are largest for ionizing luminosity-based SFRs,
since they are the most sensitive to the most massive stars. Although
it is not immediately apparent from the figure, ionization-based SFIs
also have the longest tails (this produces the high value of the bias).
We also see that the choice of prior has a larger effect on the higher
uncertainty observations. This is because there is a bigger dynamic
range for the PDF to affect the result. As is always the case, the
closer the PDF is to a δ function, the less a prior matters.

We also see that the uncertainty is characteristically largest at
log SFR ≈ −4. Two effects contribute to this peak, which we can
understand with simple order-of-magnitude estimates. First, the lu-
minosity, particularly the ionizing luminosity, is dominated by stars
with masses �20 M�. For our adopted IMF, these stars contribute
a fraction fN ∼ 10−2.5 by number. The expected number of stars with

8 Given that the posteriors are so broad, this is the result of the fact that the
priors are similar. Choosing a linearly flat p(SFR) ∝ 1 prior would produce
significantly different results with a much higher weighting of higher SFRs.

masses �20 M� present at any given time is 〈N〉= fNtlife(SFR/〈M〉),
where 〈M〉 ∼ 0.5 M� is the mean stellar mass and tlife ∼ 4 Myr is
the lifetime of the very massive stars with which we are concerned.
Thus, an SFR of ∼2 × 10−4 M� yr−1 is the value for which the
expected number of very massive stars present at any given time
transitions from being �1 to �1, and thus represents something of
a maximum in the amount of stochastic flickering. This effect has
also been discussed by Cerviño & Luridiana (2004) in the context
of the ‘lowest luminosity limit’.

The second effect is more subtle, and points to a fundamental
limitation of our understanding. We adopt a minimum cluster mass
of 20 M�, and, as can be seen from Fig. 3, this imposes a minimum
SFR log SFR ∼ −8 corresponding to the lowest star formation
possible. SFRs below this value always produce luminosities of
zero in our model. However, this means that the range of possible
SFRs for a given observed (non-zero) luminosity has a hard lower
limit, and this has the effect of limiting the width of the SFR PDF,
and thus the scatter, at the very lowest SFRs. Such a hard edge to
star formation is obviously artificial, but it does point out the fact
that, at very low SFRs, it is not possible to make a good estimate of
the scatter without knowing exactly how star formation and stellar
clustering work in regimes where the number of star clusters present
at any given time is likely to be zero. Without this knowledge, one
cannot calculate in logarithmic space the probability that a galaxy
with an SFR of, say, 10−5 M� yr−1 based on the point-mass estimate
is actually a galaxy with a true SFR of 10−8 M� yr−1 that has just
formed a single O star and thus has a temporarily boosted luminosity.

A much more subtle version of this effect is responsible for the
very slight turn-down in bias and scatter that we observe as the SFR
approaches 1 M� yr−1. For reasons of numerical cost, we have not
been able to run models with log SFR � 0.3, and this slightly limits
the bias and scatter at the highest SFRs we explore. As is apparent
from Fig. 6, however, the effect is very minor.

3.3 Publicly available tools

We caution that, while the summary statistics discussed in the pre-
vious section are useful rules of thumb, those attempting a proper
statistical analysis of their data should make use of the full PDFs
and calculate posterior probability distributions from equation (12).
To facilitate such computations, we have made two tools publicly
available at https://sites.google.com/site/runslug.9

First, we have created an interactive visualization tool; Fig. 7
shows a screenshot. Its operation is as follows. As discussed above,
one may think of our simulations as populating a four-dimensional
parameter space (SFR, SFRQ(H0), SFRFUV, SFRBOL). Either an in-
put theoretical SFR or an observation of one or more of the star
formation tracers picks out a particular part of this parameter space,
and therefore restricts the range of values available for the other
tracers. The visualization tool allows users to see these effects by
selecting a range of values in one of the four parameters. The tool
then shows the corresponding range in the other parameters. For
example, in the screenshot shown in Fig. 7, a user has selected
a range of intrinsic SFRs centred around log SFR = −4 (bottom
panel), and the tool is displaying the corresponding range of values
for SFRQ(H0), SFRFUV, and SFRBOL (top three panels). Versions of
the tool are available for both flat and Schechter function priors,
and for different clustering fractions (see Section 4.3).

9 For different ways of accessing these data products, please contact M.
Fumagalli or M. Krumholz.
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Figure 6. Bias (equation 14) and scatter (equation 15) due to stochasticity in SFR estimates using the SFIs indicated in each panel. The lower observational
error models produce noisier curves because they are averaging over fewer SLUG models.

Secondly, we have made available both the full output of the
SLUG simulations and a set of PYTHON scripts to parse them and use
them to evaluate equation (12) for a specified set of observational
constraints. The basic strategy implemented in the code for calcu-
lating p(SFR|data) is as follows.

(i) Run the script that loads in the 1.8 million galaxy simulations
and performs the kernel density estimate.

(ii) Evaluate the density on a grid of SFI values, weighted by the
appropriate prior.

(iii) Weigh each point in the above grid by the input observa-
tional PDF, p(L | data). As an example, the posted PYTHON code
demonstrates how to do this for a Gaussian error bar.

The output is a PDF similar to the one plotted in Fig. 5. The entire
operation should take a few minutes at most, with most of the time
spent in step 1, which only needs to occur once for evaluation of an
entire data set. We note that one of the benefits of our approach, and
our code, is that we can easily extend to considering the distribution

of SFR given a joint set of constraints. Nothing changes in the
formalism since we have thus far always been treating L as a vector.

4 D I SCUSSI ON

Having discussed at length the quantitative implications of stochas-
ticity for the interpretation of SFIs, in this section we step back and
consider some of the broader implications of our results. We also
discuss some caveats and cautions.

4.1 SFR distributions and the cosmic SFR budget

We have already alluded to one important implication of our re-
sults: because there is both a systematic bias and a scatter in SFR
determinations, and because both of these quantities depend sys-
tematically on the observed value for the SFI, there is likely to be a
similar systematic bias in observational determinations of the dis-
tribution of SFRs in a galaxy population derived using point-mass
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Figure 7. Screenshot of interactive data visualization tool for the four-dimensional parameter space (SFR, SFRQ(H0), SFRFUV, SFRBOL). Available at
https://sites.google.com/site/runslug. Selections can be applied to any dimension(s) to show the effects on the others.

calibrations. A number of authors have published such determina-
tions based on a variety of SFIs in both the local and high-redshift
Universes (to name but a few of many examples, Salim et al. 2007:
FUV at z ∼ 0; Bothwell et al. 2011: FUV plus infrared/bolometric
at z ∼ 0; Fontanot et al. 2012: FUV plus infrared/bolometric at
z ∼ 0.4–1.2; Ly et al. 2012: Hα at z ∼ 0.5; Smit et al. 2012: FUV
at z ∼ 4–7; Bauer et al. 2013: Hα at z ∼ 0.05–0.3). Our findings
suggest that the results of these surveys may suffer from significant
systematic errors, with the extent of the problem depending on the
tracer used and on the range of SFR being studied. In particular,
faint-end slopes may need to be revised, as our results open up the
possibility that there may be a non-negligible population of galaxies
that have significant SFRs averaged over time, but that are missed
in observational surveys simply because they happen to have rela-
tively low UV or ionizing photon luminosities at the instant that the
observation is made.

We note that, in setting the prior probability distribution used in
our Bayesian analysis, we have relied on these potentially flawed
measurements.10 In principle, the proper way to address this issue

10 This is not a deficiency of our method compared to others, as any non-
trivial statistical analysis requires the use of some prior distribution for the
SFR, either explicitly or implicitly.

is via forward modelling. Given a parametrized functional form
for the SFR distribution (e.g. a Schechter function), one could use
p(L | log SFR) to calculate the observed SFI luminosity distribu-
tion that would be expected for a particular choice of parameters
describing the SFR, and then adjust those parameters iteratively un-
til the predicted SFI luminosity distribution matches the observed
one. However, such an approach is beyond the scope of this work,
as an accurate forward model would need to be constructed on a
survey-by-survey basis, as it would have to fold in uncertainties and
errors arising from finite instrumental sensitivity, the colour or other
cuts used to define the sample, and similar effects.

This issue may also affect determinations of the cosmic SFR
budget (e.g. Hopkins & Beacom 2006). These measurements are
somewhat less vulnerable to stochasticity than measurements of
the SFR distribution, as they necessarily involve averaging over
a large number of galaxies and thus averaging out stochasticity
(though given the large scatter, the required number of galaxies
may be large). If one could in fact observe every Hα photon, for
example, emitted in a particular field in a given redshift range,
there would be no error from stochasticity as long as the field
were large enough to have a bulk SFR larger than ∼1 M� yr−1.
However, in practice measurements of the SFR budget are based
on flux-limited samples, and stochasticity can interact with the flux
limit by scattering some galaxies with low average SFRs into the
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sample, while scattering others with higher SFRs out of it. Which
of these two effects dominates is a subtle question, since there are
more low-luminosity galaxies that could potentially scatter above
the flux cut, but the skewness of the PDF is such that galaxies are
more likely to be under- than overluminous for their SFR. Again,
rigorous treatment of this issue requires that the study’s selection
function be analysed properly with Monte Carlo simulations.

4.2 Kennicutt–Schmidt relations

Another area where luminosity-dependent bias and scatter in SFIs
can cause problems is in empirical determinations of the relationship
between gas and star formation in galaxies, generically known as
Kennicutt–Schmidt relations (Schmidt 1959; Kennicutt 1998).
Prior to the past decade, such relationships were generally measured
as integrated quantities over fairly large spiral galaxies. In the past
decade, however, there has been a concerted effort to push these
measurements to galaxies with lower global SFRs (e.g. Boselli
et al. 2009; Lee et al. 2009; Meurer et al. 2009), and to ever-
smaller spatial scales within large galaxies (e.g. Wong & Blitz 2002;
Kennicutt et al. 2007; Bigiel et al. 2008, 2010; Fumagalli &
Gavazzi 2008; Onodera et al. 2010; Schruba et al. 2010; Bolatto
et al. 2011; Calzetti, Liu & Koda 2012; Leroy et al. 2013; Momose
et al. 2013). These efforts have pushed the data into realms of ever-
lower absolute SFR, and thus greater vulnerability to stochasticity
(Kruijssen & Longmore 2014).

To take one example, for the lowest gas surface density bin in
the sample of Bigiel et al. (2010), the median SFR surface density
is inferred to be a bit over 10−6 M� yr−1 kpc−2. For the mean
pixel size of 600 pc used in the study, this corresponds to <10−6

M� yr−1. The study uses FUV as its SFI of choice, and consulting
Fig. 6, we see that, for a Schechter function prior and assuming
negligible observational errors, we expect a scatter of ∼0.5 dex
from stochasticity alone. If we adopt a flat prior distribution of
SFRs (perhaps reasonable inside a galaxy), we also expect a similar
amount of bias. This will obviously affect the mean relation that one
infers between gas and SFR, and it should be accounted for when
fitting the observations. Qualitatively, the net effect of stochasticity
is likely to be that the inferred relationship between SFR and gas
surface density is too steep at the lowest SFRs (due to the bias) and
that the inferred scatter will be larger than the true one (due to the
extra scatter in the SFI–SFR relation imposed by the stochasticity).

4.3 Sensitivity to parameter choices

We end this discussion with a caution regarding the sensitivity of
our results to some of the parameters we have chosen in our SLUG

simulations. The results obviously depend to some extent on the
choice of stellar evolutionary tracks and atmosphere models, but
this is true even in the absence of stochasticity. The parameters
that are unique to our stochastic models are those that describe
how stars are clustered. A full analysis of the effects of varying the
cluster mass function’s minimum and maximum mass, as well as its
power-law index and the total fraction of stars formed in clusters,
is well beyond the scope of this paper. However, to explore the
effects of clustering to gain some intuition, we focus on a single
parameter: the total fraction of stars formed in clusters fc.11 This

11 An important note on nomenclature: some authors whose interest lies pri-
marily in stellar dynamics (e.g. Portegies Zwart, McMillan & Gieles 2010)
limit the definition of star clusters to include only those stellar structures that

is likely the single most important parameter. Our default choice is
fc = 1. This is motivated by the observation that, in the Milky Way,
most star formation occurs in clusters (Lada & Lada 2003), and by
the result that models with fc = 1 provide an excellent match to the
observed distribution of Hα-to-FUV ratios in local dwarf galaxies
(Fumagalli et al. 2011). However, to investigate how our results
would change if we alter this parameter, we run roughly 15 000
unclustered models (fc = 0) and 25 000 with fc = 0.5. These models
are uniformly distributed in log SFR between −4 and −2.

Fig. 8 shows the PDFs of offset between SFI and true SFR that we
obtain from the unclustered and reduced clustering runs; it should
be compared with Fig. 4 for our fiducial case. The comparison indi-
cates that reducing the clustering can significantly reduce the spread
of SFI values produced at a fixed SFR. This will correspondingly
significantly decrease the scatter in the inferred SFR PDFs.

This result implies that, at least at low SFRs, it is crucial to un-
derstand the clustering properties of star formation in order to do
something as simple as inferring an SFR. A more accurate determi-
nation of stellar clustering parameters, and whether they vary with
galactic environment, is therefore urgently needed. Our fiducial pa-
rameters are reasonable first approximations based on empirical
constraints from local galaxies, but if clustering parameters vary
systematically with galaxy properties, the effects of stochasticity
on inferences of the SFR may vary as well.

5 SU M M A RY

While star formation in galaxies is often imagined as a continuous,
ongoing process, observations tell us that the actual distribution
of stellar ages is highly stochastic, with stars mostly forming in
discrete bursts of finite size. At sufficiently high SFRs, the overall
process of star formation in a galaxy consists of many such bursts,
and the continuous approximation is reasonable. In this paper, we
use the SLUG code to investigate what happens at lower SFRs when
this approximation begins to break down, with particular attention
to how this breakdown affects our ability to infer the underling SFR
using a variety of SFIs.

We show that the generic effect of stochasticity is to produce a
broad PDF for SFI luminosity at a fixed SFR. The breadth of the PDF
depends on both the SFI being used and on the true SFR. We then
devote the bulk of the paper to understanding the implications of this
spread in SFI at a fixed SFR for the inverse problem of inferring the
true SFR given an observed SFI. We derive an analytic expression
for the PDF of true SFR given a set of observational constraints, and
provide software to evaluate this PDF using our simulation results
and a set of user-specified observational constraints.

Using this formalism, we show that the process of inferring the
SFR from an observed SFI is subject to scatter, and more worryingly
bias, meaning that the process of simply converting between SFI
and SFR using the standard calibrations that apply at higher SFRs
is likely to lead to systematic errors when used at low SFRs. The

are gravitationally bound and dynamically relaxed. These are distinguished
from associations – collections of stars that are born in spatial and temporal
proximity to one another, but need not be bound or relaxed. Since we care
only about the temporal correlation of star formation, and not about the dy-
namical evolution of the structures in which the stars form, we are interested
in a much more expansive definition of clustering, one that includes both
clusters and associations. Thus, our fc parameter is not directly comparable
to the parameter � that is sometimes introduced to denote the fraction of
star formation that occurs in structures that remain bound after the transition
from gas-dominated to gas-free evolution (e.g. Bastian 2008).
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Figure 8. Same as Fig. 4 but for fc = 0.5 (left) and fc = 0 (right).

strength of the bias and scatter depends on both the observed values
of the SFI and on its observational uncertainty, and on the choice of
SFI. Ionization-based SFIs such as Hα emission in particularly can
be problematic due to the very short time-scales over which they
average; for such indicators, a scatter of several tenths of a dex is
expected even at inferred SFRs as high as ∼1 M� yr−1. Even for
indicators much less subject to scatter such as FUV luminosity, for
measurements with non-trivial observational uncertainty, biases of
up to ∼0.5 dex are possible.

Finally, we discuss the implications of these results for efforts
to construct ‘luminosity functions’ of SFR, for estimates of the
cosmic SFR budget, and for inferences of the Kennicutt–Schmidt

law relating gas content to SFR. The Legacy Extragalactic UV
Survey (Calzetti et al., in preparation) will provide a valuable data
set for this type of analysis.
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