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ABSTRACT

Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations,
most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their
early evolution in these substructured environments, stars can undergo close encounters with one another that
might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body
simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the
aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster
properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution
of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost
only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough
that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments
in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and
of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for
inclusion in population synthesis models of planet formation in a clustered environment.
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1. INTRODUCTION

Stars form in giant molecular clouds that possess a high
degree of substructure. They tend to be clumpy and filamentary
(Williams et al. 1994, 2000), almost certainly as a result of
pervasive supersonic turbulence (Larson 1981; Mac Low &
Klessen 2004). Stars that form out of these clouds inherit the
substructures of their parents, leading to a hierarchy of clustering
(Lada & Lada 2003; Bressert et al. 2010; Gutermuth et al.
2011), and to self-similar (fractal) structures within star clusters
(Larson 1995; Elmegreen 2000; Elmegreen & Elmegreen 2001;
Cartwright & Whitworth 2004; Chen et al. 2005). Numerical
simulations of star formation produce similar results (Klessen &
Burkert 2000; Bonnell et al. 2003; Offner et al. 2009; Krumholz
et al. 2012).

Aarseth & Hills (1972) were the first to study the evolution
of star clusters with initial substructure. They found that any
substructure initially present was typically destroyed within one
free-fall time, and observations generally support this picture
(Cartwright & Whitworth 2004; Schmeja et al. 2008). However,
simulations indicate that substructure can be destroyed quickly
only in initially subvirial clusters, a case characterized by
an initial collapse of the star cluster toward the center of
mass followed by a chaotic evolutionary phase (Goodwin &
Whitworth 2004; Allison et al. 2010). For supervirial clusters,
on the other hand, substructure can survive for up to several
crossing times (Goodwin & Whitworth 2004).

Both observations and theory suggest that clusters typically
form subvirially with respect to the gas, though not necessarily
with respect to the stars alone (Fűrész et al. 2008; Tobin et al.
2009; Offner et al. 2009). However, the star formation process is
inefficient, with relatively small amounts of the mass in a given
molecular cloud being converted into stars, which then expel the
remainder of the cloud back into the diffuse interstellar medium

through their radiation, winds, and supernovae (Hills 1980; Lada
1999; Lada & Lada 2003; Matzner 2002; Krumholz et al. 2006;
Fall et al. 2010; Goldbaum et al. 2011; Kruijssen 2012). Once
the gas is expelled, stars disperse into the field, with only a
minority remaining in bound clusters for many dynamical times
after gas dispersal. As a result, even if stars are born subvirial
with respect to the gas, they may be rendered supervirial by
its rapid dispersal. Real star clusters may therefore experience
periods of both subvirial and supervirial evolution.1

Whether subvirial or supervirial, this early evolutionary stage
is of considerable interest for the problem of planet formation.
In denser environments and massive clusters containing massive
stars, where a significant fraction of stars appear to form (Lada &
Lada 2003; Chandar et al. 2010), close passages between solar-
type stars and massive stars may lead to the photoevaporation of
protoplanetary disks and modification of the planet formation
process (Adams et al. 2004; Throop & Bally 2005; Adams 2010
and references therein). Close encounters with passing stars can
also gravitationally disrupt both disks and planetary systems,
potentially truncating disks, exciting planetary orbits, or ejecting
planets completely. Such encounters have been suggested as
a potential explanation for such diverse observations as the
existence of free-floating planets (e.g., Sumi et al. 2011; Veras
& Raymond 2012) and the structure of the Kuiper Belt (e.g.,
Lestrade et al. 2011; Jiménez-Torres et al. 2011). The need to
avoid disruptive encounters has also been used as a constraint on
the potential birth environment of the Sun (Adams & Laughlin
2001; Adams et al. 2006). Our solar system is remarkably well
ordered compared to many extrasolar planetary systems, with

1 A brief comment on terminology: some authors use the word “cluster” to
refer to any significant stellar over density regardless of its dynamical state,
while others use the term to refer exclusively to stellar structures that remain
bound after gas dispersal. We follow the former approach, and refer to our
objects as clusters even though they are unbound.
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all of the planets on nearly circular orbits (every planet except
Mercury has e < 0.09), while the Kuiper Belt is also relatively
undisturbed. Adams & Laughlin (2001) and Adams (2010) have
argued that this implies that the Sun could have been formed in
a cluster no larger than ∼103 stars, though this conclusion has
recently been questioned by Dukes & Krumholz (2012).

A crucial input for all these questions is the rate and distribu-
tion of orbital elements of the encounters that a star in a cluster
will experience. These are a necessary ingredient for popula-
tion synthesis models for planet formation in clustered envi-
ronments (e.g., Adams 2010; Dukes & Krumholz 2012; Ovelar
et al. 2012). While a number of authors have measured these
distributions numerically (e.g., Bonnell et al. 2001; Adams et al.
2006; Spurzem et al. 2009; Olczak et al. 2006, 2010), none thus
far have done so in the context of a dispersing, initially highly
substructured cluster, which modern observations suggest is the
typical condition for the formation of most stars.

Several authors have recently studied properties of initially
substructured (fractal) clusters in slightly different contexts.
Parker et al. (2011) find that reproducing the observed present-
day binary properties of the ONC require that it have formed
with a high degree of substructure and a high initial binary
fraction. Parker & Meyer (2012) find that the surface density of
fractal star clusters decreases rapidly in time, which implies that
a large fraction of star–star encounters will occur very early on
in the cluster life. Smith et al. (2013) found that gas removal after
multiple crossing times typically results in relaxed clusters with
no remaining substructure, whereas quick gas expulsion before
one crossing time leads to a stochastic, unpredictable outcome.

The two papers closest to our work are Adams et al. (2006),
who calculate encounter rates in both dispersing and cold
clusters, but do not include any initial substructure, and Parker
& Quanz (2012) who do include substructure and study how star
clusters affects orbital elements of planetary systems. We add
to these studies by conducting a series of N-body simulations of
dispersing, fractal star clusters across a much broader parameter
space than has been considered before. We consider a wide range
of dynamical environments, from unbound, supervirial stellar
associations to subvirial stars in a gas-dominated clump that are
subsequently unbound by gas expulsion. For each simulation
we track every event in which two or three stars pass within
1000 AU of one another, giving a nearly complete dynamic
profile of possible interactions. Our work expands on that of
Adams et al. (2006) and Parker & Quanz (2012) by surveying a
significantly broader parameter space, with cluster masses from
30–30,000 M� and surface densities from 0.1–3.0 g cm−2. This
broad survey allows us to measure how the results depend on
cluster mass and surface density, and thereby to extrapolate into
the regime of high mass and surface density clusters that are too
computationally expensive to simulate directly.

The remainder of this paper is as follows. Section 2 discusses
the model parameters, the initial conditions for the clusters, and
the simulations and data reduction methods, and defines the
statistical distributions of interest. Section 3 details our results,
and Section 4 discusses their implications. Our conclusions are
presented in Section 5.

2. METHODS

To study stellar encounters in dissolving clusters, we perform
an ensemble of N-body simulations using a modified version of
the numerical integrator NBODY6 (Aarseth 1999). Below, we
describe the parameters in our simulations, the initial conditions,
and how we process the resulting data.

2.1. Simulation Parameters and Initial Conditions

We characterize clusters by four parameters: the virial ratio,
Q, defined as the ratio of kinetic to potential energy (so that
a cluster in equilibrium has Q = 0.5); the fractal dimension,
D; the stellar mass, Mc; and the cluster surface density, Σc. We
describe below how we use these parameters to set up the initial
conditions in our simulations. We consider four combinations
of Q and D, and for each combination we then simulate clusters
with a broad range of masses Mc and surface densities Σc.

We use the surface density Σc rather than the radius Rc or the
volume density ρc as a parameter for two reasons. First, while
the volume density determines encounter rates, the quantity
of interest for the standpoint of studying how clusters affect
planetary systems is the total number of encounters a star can
expect to experience over the cluster lifetime, not the encounter
rate. The natural time scale for a disrupting cluster is the crossing
time, and the total number of encounters per crossing time
depends on the surface density rather than the volume density
(Dukes & Krumholz 2012). Second, observations of cluster-
forming gas clumps appear to indicate that while clusters span
a very wide range of volume densities and radii, they form a
sequence of relatively constant surface density (Fall et al. 2010
and references therein). Thus in discussing embedded clusters
that have until recently been dominated by the potential of the
gas, it is also natural to work in terms of surface rather than
volume density.

Our base case is a cluster with Q = 0.75 and D = 2.2; this
value of virial ratio corresponds approximately to a cluster that
has just expelled its residual gas but has not been completely
unbound by the process, and the fractal dimension describes a
cluster with a moderate degree of substructure. This is consistent
with observations which have typically found that D goes from
1.9 to 2.5 (Falgarone et al. 1991; Vogelaar & Wakker 1994;
Elmegreen & Falgarone 1996; de La Fuente Marcos & de La
Fuente Marcos 2006; Sánchez et al. 2010). These runs generally
result in a majority of the stars escaping promptly, but some
remaining as a bound structure for long times. Our second case
is Q = 1.25 and D = 2.2, corresponding to a cluster that has
been completely unbound by gas expulsion, or that was never
bound in the first place. In these runs, essentially all the stars
disperse. Our third case is a model with D = 1.6 and Q = 0.75,
corresponding to a case like the base model but with more
substructure. In our fourth model, we explicitly include a phase
in which the stars are confined by an external potential, which
we rapidly remove after four crossing times, where the crossing
time is

tc = M
1/4
c

G1/2(πΣc)3/4
. (1)

Our motivation for this choice is that observations indicate that
the lifetime of the embedded phase of star cluster formation is
roughly four crossing times (Tan et al. 2006), or possibly even
less (Elmegreen 2000). We should note here that substructure
is typically erased after several crossing times in a confined
potential (Smith et al. 2013). The first three cases assume that
the gas is expelled very early while the substructure still remains.
While it is present, we describe the gas potential by a Plummer
model,

Φ(r) = −GMgas

rc

1√
1 +

(
r
rc

)2
, (2)

and we choose Mgas = (0.7/0.3)Mc, so that the gas mass is
70% of the total gas plus stellar mass. This cluster has Q = 0.3
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Table 1
Model Parameters

Name Q D Gas?

Q0.75D2.2 0.75 2.2 No
Q1.25D2.2 1.25 2.2 No
Q0.75D1.6 0.75 1.6 No
Gas 0.3 2.2 Yes

Table 2
Number of Realizations for Model Q0.75D2.2

Σc log(Mc/M�)

(g cm−2) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

3.0 600 150 40 8 5 2 0
1.0 1000 200 50 15 5 4 3
0.5 1500 300 75 20 10 5 3
0.1 4000 800 150 40 20 5 4

Table 3
Number of Realizations for Model Q1.25D2.2

Σc log(Mc/M�)

(g cm−2) 1.5 2.0 2.5 3.0 3.5

3.0 300 100 20 10 3
1.0 500 175 30 15 4
0.5 700 175 40 15 4
0.1 1000 275 75 30 10

Table 4
Number of Realizations for Model Q0.75D1.6

Σc log(Mc/M�)

(g cm−2) 1.5 2.0 2.5 3.0 3.5

1.0 500 100 15 5 0
0.5 500 100 30 6 0
0.1 500 150 40 8 5

and D = 2.2 initially. We should note that this value of the
virial ratio is computed using only the potential energy due to
the interactions between stars, not the coupling of the stars to
the gas. The total potential energy is

Utot = U∗,∗ + U∗,g = −
N∑

i=1

N∑
j=i+1

Gmimj

rij

−
N∑

i=1

miΦ(ri), (3)

where N is the number of stars, rij is the distance between
the ith and j th stars, and ri is the radial position of the ith
star. This means that the real virial ratio is then T/Utot. The
gas mass term dominates, which leaves us with Q < 0.1, an
extremely subvirial case. This effectively gives us a bound on
how important the effect of gas might be on the evolution of the
cluster.

We summarize the model parameters in Table 1, and the
number of independent realizations we perform at each (Mc, Σc)
combination in Tables 2–5. The numbers of runs for each
(Mc, Σc) value are chosen so that the number of interactions, and
thus the statistical error on our results, is roughly constant. This
implies a large number of runs for small, low surface density
cases, and a smaller number of runs for more massive, higher
surface density cases. As we will see below when we discuss
our error budget, this does limit our accuracy to some extent in
the high mass and surface density regime. Unfortunately, this

Table 5
Number of Realizations for Model Gas

Σc log(Mc/M�)

(g cm−2) 1.5 2.0 2.5 3.0 3.5 4.0

3.0 175 50 15 6 3 0
1.0 225 75 25 8 4 2
0.5 275 100 30 10 5 3
0.1 350 125 40 12 6 4

Table 6
Cluster Mass and Number of Stars

log(Mc/M�) N = Mc/m̄

1.5 54
2.0 170
2.5 540
3.0 1707
3.5 5400
4.0 17077
4.5 54003

regime is too computationally costly to allow a significantly
larger number of simulations. The relatively small number of
simulations limits our accuracy, but even with this limitation we
show below that the errors on our measured encounter rates are
typically no more than ∼10%.

2.2. Initial Conditions

We initialize our clusters using the fractal initial condi-
tions model with slight modifications (Scally & Clarke 2002;
Goodwin & Whitworth 2004). We refer the reader to the second
paper for full details of the method, which we briefly summa-
rize below. To generate the cluster, we start by defining a cube
with sides of length 2 (in arbitrary units, which will be scaled
later to give the correct physical units), centered at the origin.
This cube is subdivided into the 8 Cartesian sectors, and a first
generation particle is placed at the center of each subcube. Each
of these first generation cubes is then subdivided again, with
second generation particles placed at the center of each sec-
ond generation subcube. We repeat this subdivision procedure,
with one additional constraint for the second and subsequent
generations: each parent particle only has a probability 2D−3 of
producing offspring. When D = 3, this ensures that all posi-
tions are equally populated and there is no substructure, but for
D < 3 parts of the cube will be empty, yielding substructure.
At each generation g, we also add a random displacement of
position of magnitude 2−g−1 to prevent the development of an
overly gridded structure.

We repeat this procedure until the number of particles
generated greatly exceeds the number we will actually use in
the simulation. We then randomly select a subset of the points
with radius less than 1 (in our arbitrary units) to be the initial
locations of our stars. The radial positions of the stars are then
multiplied by a factor

rc =
√

Mc

πΣc

, (4)

so that the average surface density of the cluster is Σc. The
number of stars is simply Mc/m̄, where m̄ is the mean stellar
mass for our chosen initial mass function (IMF; see below).
Table 6 gives the correspondence between the cluster mass and
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Figure 1. Asterisks indicate the positions of stars in an example cluster projected onto the xy-plane; colors indicate stars’ z velocities. Notice that velocities and
positions are correlated.

(A color version of this figure is available in the online journal.)

the number of stars N. Note that this means that for a given
Mc, the actual cluster mass may be slightly larger or smaller,
depending on drawing from the IMF. We therefore interpret Mc
as the expectation value of the cluster mass, though deviations
from this value are small as long as Mc � m̄.

We assign initial velocities to the stars using a recursive pro-
cedure to ensure that positions and velocities are correlated, as
suggested by observations and simulations. At each generation,
we assign a random scalar velocity drawn from a Maxwellian
distribution to each particle

p(v, g) ∝ v2 exp

(
−22g v2

2σ 2
v,0

)
. (5)

The direction of the velocity vector is chosen randomly. A
particle’s velocity is the value produced by this drawing added
to the velocity of its parent. Since the magnitude of the velocity
perturbation decays with generation, the positions of the stars
are then highly dependent on the velocities of the first few
parents. Note that the choice of σ 2

v,0 is arbitrary, since we scale
the final speeds so that the cluster has a specified virial ratio (see
below). Figure 1 shows an example of a cluster generated via
this procedure.

Finally, we assign stellar masses by randomly drawing from
an extended version of the Kroupa (2002) IMF,

p(m) ∝
⎧⎨
⎩

m−0.3, 0.08 � m/M� < 0.1
m−1.3, 0.1 � m/M� < 0.5
m−2.3, 0.5 � m/M� � 120

. (6)

This IMF yields a mean stellar mass m̄ ≈ 0.59 M�. Once we
have drawn all the stellar masses, positions, and velocities, we
scale the velocities by a constant factor so that the initial virial
ratio is the desired value.

2.3. Simulations and Analysis

We simulate the evolution of each cluster for five crossing
times, except for the Gas runs, which we compute for nine

crossing times (i.e., five crossing times after the gas potential
is removed). Since we are interested in close encounters for
solar-like stars, we track every instance in which a star of mass
0.8–1.2 M� passes within 1000 AU of another star and the pair
has a non-negative center of mass energy; the latter condition
excludes cases where the two stars form a binary. In addition,
once we have found a pair of stars that meet this criterion, we
also check for any other star passing within 1000 AU of either
body.

The raw data we obtain from NBODY6 is a list of two-body
and three-body interactions with positions, masses, velocities,
indices, and the time. Almost all interactions are recorded as a
time series, since the stars involved are within 1000 AU of one
another for more than a single simulation time step. Our end
goal is to use these time series to calculate the distribution of
impact parameters b and relative velocities at infinity v∞ for
encounters in clusters. For a given pair of particle positions and
velocities, it is straightforward to compute what values of b and
v∞ would be required to produce that particular separation and
relative velocity. However, in practice, interactions are often
complex, particularly in the high surface density cases where
stars are tightly packed, and the values of b and v∞ that one
computes in this manner are not constant over the time series of
positions and velocities that describes a particular interaction.
For this reason, we must first classify interactions in order to
decide how to analyze them. Our classification scheme is as
follows.

1+1 interactions. These are true single star-by-single star
scattering events. Two bodies are said to be well-described as
a 1+1 interaction if, for that pair of particles, the set of impact
parameters bk and relative velocities v∞,k we compute from our
time series satisfy the condition that

σb

b̄
< T1+1,

σv∞

v̄∞
< T1+1, (7)

where σb and b̄ are the standard deviation and mean of the
time series bk and similarly for σv∞ and v̄∞, and T1+1 = 0.1 is
the tolerance ratio we adopt for 1+1 interactions. This value
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is somewhat arbitrary, but provides a reasonable separation
between cases where two interacting stars have their orbits
perturbed slightly by the potential of other stars during the
interaction, and cases where another nearby star provides a
large perturbation to the orbits. For 1+1 interactions, we record
b̄ and v̄∞ as the impact parameter and relative velocity of the
encounter.

1+2 interactions. These are events in which a single star
scatters off a binary. We label an encounter involving three stars
within 1000 AU of one another as a 1+2 interaction if two
conditions are met. First, exactly one pair of the three stars must
be gravitationally bound, while the other pairs are unbound.
Second, if we replace this gravitationally bound pair by a single
star at the center of mass position and velocity of the pair, and
with a mass equal to the sum of the pair’s masses, and we
compute a set of impact parameters bk and relative velocities
v∞,k between this binary and the remaining star, then we find
that

σb

b̄
< T1+2,

σv∞

v̄∞
< T1+2, (8)

where T1+2 = 0.3. We set the tolerance somewhat higher than
in the 1+1 case because even in the absence of perturbations
from external stars, tidal forces exerted by the binary on the
single star may lead to some exchange of energy and angular
momentum between the binary’s internal energy and angular
momentum and that of the orbit of the binary and the single star
about one another. For 1+2 interactions, we record b̄ and v̄∞ as
the impact parameter and relative velocity of the encounter.

1+1+1 interactions. These are events in which three unbound
stars encounter one another. We classify an event as 1+1+1 if
no pair composed of two of the three stars involved is mutually
gravitationally bound. We decompose encounters of this type
into three 1+1 events; since these 1+1 events clearly will not
satisfy the tolerance criteria for 1+1 events, we simply calculate
b and v∞ in these cases using the positions and velocities the
stellar pairs have at their point of closest approach.

Complex interactions. These are events that do not fall into
one of the above categories. They may, for example, be cases
where a metastable hierarchical multiple star system forms and
then dissolves some time later. These interactions do not have
well-defined orbital elements. We do not attempt to define an
impact parameter or relative velocity in these cases, and we do
not include them in our statistical distributions of b and v∞. We
do, however, record such interactions and include them in our
total counts of events.

2.4. Statistical Distributions

For each set of simulations, we are interested in three
quantities. The first is simply the expected number of encounters
Nenc within 1000 AU. The other two are the distributions
of impact parameters p(b) and relative velocities p(v∞) that
describe these encounters. For a fully relaxed cluster, we expect
these to follow

p(b) ∝ b, (9)

and

p(v∞) ∝ v2
∞ exp

(
− v2

∞
2σ 2

v

)
, (10)

but they need not follow this for fractal, dispersing clusters that
have not had time to relax. To evaluate the distributions from our
simulations, we bin all our encounters into Nbin = 20 equally
spaced bins of impact parameter from 0 to 1000 AU, and into
Nbin equally spaced bins of relative velocity from 0 to 20 km s−1.

Table 7
Encounter Statistics for Model Q0.75D2.2

log(Mc/M�) Σc Nenc σPoisson σsample vmedian∞ σr

(g cm−2) (km s−1)

1.5 0.1 0.85 0.01 0.00 1.88 0.01
1.5 0.5 3.82 0.03 0.00 2.71 0.01
1.5 1.0 7.08 0.04 0.01 3.20 0.01
1.5 3.0 9.64 0.07 0.01 4.23 0.01
2.0 0.1 1.78 0.01 0.00 2.48 0.01
2.0 0.5 8.25 0.05 0.02 3.62 0.01
2.0 1.0 13.69 0.08 0.04 4.18 0.01
2.0 3.0 30.21 0.14 0.10 5.25 0.01
2.5 0.1 2.87 0.02 0.01 3.06 0.01
2.5 0.5 13.63 0.07 0.08 4.60 0.01
2.5 1.0 23.83 0.12 0.20 5.13 0.01
2.5 3.0 76.39 0.23 0.89 6.79 0.01
3.0 0.1 3.46 0.03 0.04 3.41 0.01
3.0 0.5 17.92 0.09 0.54 5.34 0.03
3.0 1.0 34.59 0.15 0.77 6.25 0.02
3.0 3.0 129.41 0.38 10.25 7.37 0.08
3.5 0.1 4.82 0.03 0.06 4.02 0.01
3.5 0.5 31.00 0.10 1.22 6.65 0.04
3.5 1.0 77.44 0.22 4.58 7.58 0.06
3.5 3.0 160.27 0.31 6.49 9.92 0.04
4.0 0.1 5.72 0.03 0.42 4.35 0.07
4.0 0.5 47.44 0.09 3.88 7.72 0.08
4.0 1.0 92.48 0.15 8.95 9.09 0.10
4.0 3.0 367.63 0.43 60.44 11.59 0.16
4.5 0.1 9.01 0.03 0.10 5.47 0.01
4.5 0.5 46.39 0.07 3.65 8.29 0.08
4.5 1.0 71.23 0.09 10.13 8.87 0.14

Notes. Nenc is the mean number of encounters within 1000 AU per star for a
Sun-like star over the full duration of the simulation. σPoisson and σsample are the
Poisson and parameter space sampling errors on Nenc, and σr is the total relative
error δNenc/Nenc considering both sources; see Equations (17)–(19). vmedian∞ is
the median encounter velocity.

3. RESULTS

3.1. Base Case (Q0.75D2.2)

We first describe the results of our base case, model
Q0.75D2.2, and then in subsequent sections describe how the
results change for the other models. We report the quantitative
results for all models in Tables 7–10.

3.1.1. Distributions of Encounter Velocities and Impact Parameters

Figure 2 shows the distributions of impact parameters for two
example runs, one at low and one at high surface density. We find
that the distribution of impact parameters follows Equation (9),
p(b) ∝ b, very closely for many of our cases, and in all cases
the distribution of 1 + 1 events follows a linear trend. We find
a deviation from linearity with the 1 + 1 + 1 events. This is not
terribly surprising since we have made a rather large assumption
that we can reliably describe a three-body event as three two-
body events. As three-body interactions become more prevalent
with higher mass (for reasons to be discussed later), the deviation
of the overall distribution from linearity tends to increase (blue
in the figures). However, even for the highest surface density
cases we consider, the overall distribution of impact parameters
summed over all 1 + 1, 1 + 2, and 1 + 1 + 1 events remains
reasonably linear.

While the distribution of impact parameters is close to
what one would expect for a relaxed cluster, we find that the
distribution of relative velocities is strongly non-Maxwellian in
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Figure 2. Distribution of impact parameters for run Q0.75D2.2, with Mc = 101.5 M�, Σc = 0.1 g cm−2 (top), and for Mc = 104.5 M�, Σc = 1.0 g cm−2 (bottom).
The black plus signs show the 1 + 1 encounters, the orange triangles the 1 + 1 + 1 encounters, the purple stars 1 + 2 encounters, and the blue squares are the sum of all
interactions with a well-defined impact parameter. In all cases, data points show the results of the simulation, with error bars indicating the 1σ Poisson error, and lines
show linear best fits to the data.

(A color version of this figure is available in the online journal.)

all our simulations. We show some examples of the distributions
p(v∞) from our simulations in Figure 3. The deviation from
Maxwellian is not surprising, given the correlated position-
velocity distribution with which we begin, and that is observed
in young clusters.

3.1.2. Number of Encounters

We now turn to the question of the number of encounters
and their typical velocities as a function of Mc and Σc. First,
we note that nearly all of the events for these clusters occur
in the first crossing time. Figure 4 shows an example of the
temporal distribution of encounters in one of our cases; other
combinations of mass and surface density are similar or even
more heavily weighted toward encounters occurring during the
first crossing time. These results are similar to those of Parker &
Quanz (2012), who note that the stripping rate of planets from
parent stars decreases with time, and Parker & Meyer (2012),
who find that the surface density decreases rapidly after one
crossing time.

For a relaxed, bound cluster, the mean number of encounters
per star per crossing time (and thus over the cluster’s entire life
for a dispersing cluster) is a function of the cluster surface
density alone, and does not depend on the mass (Dukes &
Krumholz 2012). We find that this is not the case for unrelaxed
fractal clusters. Figure 5 shows the number of encounters per
solar-mass star as a function of the cluster mass and surface
density; clearly, the number increases with both mass and
surface density.

We can understand this result by realizing that the manner
in which our fractal clusters are generated leads to an implicit
dependence of the surface density on the mass of the cluster. This
dependence arises because, although the mean surface density of
the cluster averaged over its entire face is mass-independent, as
the cluster mass increases at constant Σc and D the stars become
packed into smaller and smaller substructures. In the Appendix,
we derive an expression for the effective surface density Σc,eff
as a function of Mc and D. Figure 6 shows the same data as
Figure 5, but plotted using this effective surface density rather

6
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Figure 3. Distributions of encounter relative velocities in model Q0.75D2.2, for the cases (Mc, Σc) = (101.5, 0.1; top), (103.5, 3.0; middle), and (4.5, 1.0; bottom),
where masses are in M� and Σc in g cm−2. The plus signs show data measured from the simulations, and the lines show the best-fitting Maxwellian distribution.
Typical reduced χ2 values are of the order of 100, reflecting the poor fits. Notice the deviation is largest where the relative frequency of complex interactions is higher.

(A color version of this figure is available in the online journal.)
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Figure 4. Probability distribution of encounters in time in model Q0.75D2.2 for the case Mc = 101.5 M�, Σc = 0.1 g cm−2. The crossing time for this model is
tcr = 0.15 Myr, so the initial peak is less than one crossing time in duration.

(A color version of this figure is available in the online journal.)

Figure 5. The number of encounters a typical solar-mass star can expect to experience after five crossing times in a fractal cluster, for the model Q = 0.75 and
D = 2.2 as a function of the cluster mass and surface density.

(A color version of this figure is available in the online journal.)

than the nominal one. As shown in the figure, the number of
encounters is in fact nearly independent of Mc and fixed Σc,eff .

One should regard this result with caution, since it is not clear
that it remains valid for real clusters, which may or may not be
truly fractal in their stellar distributions. Any attempt to define
either Σc or the volume density ρc for a fractal cluster necessarily
requires specifying an averaging scale over which the quantity
is to be measured. Σc,eff is best considered as the surface density
obtained by a process which averages over the initial clumps of
the substructure, as opposed to the entire cluster. Alternately, one
could envision Σc,eff as being closer to a mass-weighted surface
density, as opposed to Σc, which is an area-weighted surface
density. Our result simply shows that if clusters are fractal,

then more massive ones will produce more encounters than one
might guess from their surface densities averaged over large
scales. This is because in a fractal cluster, the surface density
increases as one averages over smaller and smaller scales in the
vicinity of individual stars.

It is also interesting to compare our measurements to the
results of a naive analytic estimate. For a uniform, spherical,
virialized cluster of mass Mc and surface density Σc, the expected
number of encounters with impact parameter b or less in a single
crossing time is

Nenc,exp ≈ 2πb2 Σc

m̄
= 1.2b2

3Σ0, (11)

8
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Figure 6. Same as Figure 5, but with the effective surface density Σc,eff .

(A color version of this figure is available in the online journal.)

Table 8
Encounter Statistics for Model Q1.25D2.2

log(Mc/M�) Σc Nenc σPoisson σsample vmedian∞ σr

(g cm−2) (km s−1)

1.5 0.1 0.47 0.01 0.00 1.85 0.02
1.5 0.5 2.04 0.03 0.00 2.73 0.01
1.5 1.0 3.55 0.04 0.01 3.17 0.01
1.5 3.0 9.93 0.10 0.03 4.30 0.01
2.0 0.1 1.08 0.02 0.00 2.31 0.02
2.0 0.5 5.34 0.05 0.02 3.51 0.01
2.0 1.0 8.50 0.07 0.03 4.17 0.01
2.0 3.0 21.40 0.13 0.10 5.19 0.01
2.5 0.1 2.27 0.03 0.02 2.93 0.02
2.5 0.5 8.31 0.08 0.09 3.65 0.01
2.5 1.0 14.05 0.12 0.38 4.80 0.03
2.5 3.0 63.96 0.30 1.44 6.52 0.02
3.0 0.1 2.16 0.03 0.03 3.10 0.02
3.0 0.5 9.31 0.08 0.19 4.65 0.02
3.0 1.0 28.44 0.13 1.35 5.53 0.05
3.0 3.0 68.52 0.25 3.64 7.16 0.05
3.5 0.1 3.30 0.03 0.08 3.70 0.03
3.5 0.5 22.07 0.13 2.62 5.79 0.12
3.5 1.0 30.12 0.15 0.98 6.11 0.03
3.5 3.0 136.55 0.36 9.19 8.89 0.07

Note. See Table 7 for definitions of quantities.

where b3 = b/103 AU, Σ0 = Σc/1 g cm−2, and we have used
the mean stellar mass from our chosen IMF. Clearly, the actual
number of encounters we measure exceeds this value by a large
margin.

3.1.3. Encounter Velocities

The typical encounter velocity also depends on Mc and Σc.
Since we found that the distribution of relative velocities was
non-Maxwellian, rather than reporting a velocity dispersion we
instead compute the median v∞ of the encounters as a function
of Mc and Σc. We plot the result in Figure 7. The dependence on
Mc and Σc is somewhat unexpected. For a relaxed cluster, the

Table 9
Encounter Statistics for Model Q0.75D1.6

log(Mc/M�) Σc Nenc σPoisson σsample vmedian∞ σr

(g cm−2) (km s−1)

1.5 0.1 2.69 0.04 0.00 2.13 0.01
1.5 0.5 8.01 0.06 0.01 3.23 0.01
1.5 1.0 12.86 0.08 0.02 3.66 0.01
2.0 0.1 7.56 0.07 0.03 3.02 0.01
2.0 0.5 22.05 0.14 0.12 4.46 0.01
2.0 1.0 34.47 0.17 0.18 4.99 0.01
2.5 0.1 14.03 0.10 0.12 3.57 0.01
2.5 0.5 60.88 0.23 0.66 5.25 0.01
2.5 1.0 132.85 0.50 5.88 6.76 0.04
3.0 0.1 34.22 0.19 1.45 4.58 0.04
3.0 0.5 136.45 0.43 4.86 6.53 0.04
3.0 1.0 275.40 0.71 16.94 8.52 0.06
3.5 0.1 50.70 0.16 2.02 5.66 0.04

Note. See Table 7 for definitions of quantities.

stellar velocity dispersion obeys

σv ∝ (McΣc)0.25. (12)

For our non-relaxed clusters, we do see a general increase in the
relative velocity with mass and surface density, as predicted by
Equation (12). The increase is not as fast as expected, however.
Figure 8 shows v∞ versus Mc at Σc = 0.1 g cm−2—effectively a
horizontal cut through Figure 7. The slope of the best-fit line is
approximately 0.15 rather than 0.25, and this is true for each of
the other surface density bins as well. As with the overall non-
Maxwellian distribution, this slower than expected increase is a
result of the correlated positions and velocities.

3.2. Unbound Case (Q1.25D2.2)

In the case of an unbound cluster, the shapes of the distribu-
tions of b and v∞ are quite similar to those found in the base case
Q0.75D2.2, so we do not discuss them further. The number and
median velocity of encounters, however, differ from the base

9
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Figure 7. Median v∞ as a function of Mc and Σc for run Q0.75D2.2.

(A color version of this figure is available in the online journal.)

Table 10
Encounter Statistics for Model GAS

log(Mc/M�) Σc Nenc σPoisson σsample vmedian∞ σr

(g cm−2) (km s−1)

1.5 0.1 2.79 0.05 0.01 2.24 0.02
1.5 0.5 13.08 0.12 0.04 3.12 0.01
1.5 1.0 23.42 0.17 0.07 3.78 0.01
1.5 3.0 53.34 0.30 0.20 4.92 0.01
2.0 0.1 3.70 0.05 0.02 2.91 0.01
2.0 0.5 19.62 0.14 0.11 4.29 0.01
2.0 1.0 35.84 0.21 0.23 5.20 0.01
2.0 3.0 134.21 0.51 1.61 6.55 0.01
2.5 0.1 4.97 0.06 0.06 3.59 0.02
2.5 0.5 25.96 0.17 0.46 5.48 0.02
2.5 1.0 57.29 0.27 0.66 6.74 0.01
2.5 3.0 250.26 0.70 4.70 9.27 0.02
3.0 0.1 5.47 0.07 0.13 4.26 0.03
3.0 0.5 29.04 0.18 0.74 6.98 0.03
3.0 1.0 88.33 0.32 2.91 8.53 0.03
3.0 3.0 318.47 0.77 27.18 10.79 0.09
3.5 0.1 6.40 0.06 0.25 5.21 0.04
3.5 0.5 46.90 0.17 2.96 8.54 0.06
3.5 1.0 99.66 0.28 9.34 9.67 0.09
3.5 3.0 559.00 0.79 16.66 14.13 0.03
4.0 0.1 9.62 0.05 0.44 6.25 0.05
4.0 0.5 63.91 0.14 4.20 9.30 0.07
4.0 1.0 95.96 0.22 3.08 11.94 0.03

Note. See Table 7 for definitions of quantities.

case in interesting ways. Figure 9 shows the mean number of
encounters per solar-type star for the case of an unbound cluster.
As expected, there are fewer encounters in this model than there
are in the case where at least some of the cluster remains bound.
Figure 10 shows the median v∞. Rather surprisingly, the veloc-
ities tend to actually be slower in this model than in the case of
Q = 0.75, despite the fact that the initial velocities are larger
at the same Mc and Σc than in the base case. This behavior is
a result of the initially correlated velocity structure. In the base
case, the cluster tends to relax toward equilibrium, destroying

Figure 8. Median v∞ as a function of the cluster mass at a fixed surface density
Σc = 0.1 g cm−2 in run Q0.75D2.2. The crosses are the simulations results and
the line is the best linear fit, which has slope 0.15.

(A color version of this figure is available in the online journal.)

the velocity substructure in the process. Once the substructure is
destroyed, the velocity vectors are randomized, producing larger
v∞ values than during the period when the velocity structure is
coherent. In contrast, an unbound cluster tends to blow apart
before substructure can be erased, leading us to a lower median
velocity for those encounters that do occur.

3.3. High Substructure (Q0.75D1.6)

The case of high substructure is the most extreme case we
study in this paper, although it turns out qualitatively to be
similar to the base case. Figures 11 and 12 show the encounter
statistics for this case. Both the number of encounters and the
relative velocity are higher for this case than for the base case.
This is consistent with the interpretation of D as an increase
in the effective surface density. However, when we plot the
number of encounters with Σc,eff , the number of encounters in
the D = 1.6 cluster is typically higher than the corresponding
point in the base case, and the contours are still largely vertical
rather than horizontal. Thus our model for Σc,eff is not fully
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Figure 9. Average number of encounters for a solar-mass star in an unbound cluster (model Q1.25D2.2) as a function of Mc and Σc (top), Σc,eff (bottom).

(A color version of this figure is available in the online journal.)

capturing the increase in encounters that occurs for very highly
substructured clusters containing large numbers of stars.

3.4. Gas Case (Q0.3D2.2)

Since our gas runs are extremely subvirial, we expect these
clusters to relax and destroy substructure extremely quickly.
Figure 13 shows the temporal distribution of encounters for this
model, which is consistent with this expectation. For the first
crossing time, there is a highly elevated encounter rate as stars
fall toward the center of the potential well and interact. After
this they revirialize and the encounter rate drops and becomes
roughly constant. Once gas is removed after four crossing times,
the cluster disperses and the encounter rate drops to very small
values.

The results of Parker & Goodwin (2012) suggest that the
distribution function of impact parameters (Equation (9)) could
be significantly altered even in relaxed clusters due to the
presence of intermediate separation binaries. To investigate this
possibility, in Figure 14 we show the ensemble distribution
of impact parameters for our gas model, considering only
encounters that occur at times from 1–4tc. During this phase, the
cluster is well-relaxed, since it is old enough to have lost most of
its initial substructure but we have not yet removed the confining
gas potential. As the figure shows, the distribution function still
follows P (b) ∝ b for 1+1 interactions, although some evidence
of stochastic behavior is observed for the 2+1 encounters. We
have typically seen such deviations for 2+1 encounters (such
as Figure 2), and this is probably more due to the difficulty
of assigning orbital elements when a binary interacts with the
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Figure 10. Same as Figure 7, but for Q = 1.25 and D = 2.2.

(A color version of this figure is available in the online journal.)

single star, as opposed to the conditions within the cluster more
broadly.

The number of encounters is shown in Figure 15, and is
larger than the number of encounters in the base case (shown
in Figure 5), but only slightly—certainly by less than the factor
of four difference in times for which the cluster survives before
dispersing. Contours of encounter number in the (Σc,Mc)-plane
are somewhat flatter for the gas case than the base case, and are
much flatter in the plane of (Σc,eff,Mc). Comparing Figures 16
and 7, we see that median encounter velocities are larger in
the gas case than in the base case. Figure 17 shows the results
of taking a horizontal slice to see how the median encounter
velocity behaves as a function of Mc at fixed Σc. We find that
the median encounter velocity is increasing more quickly with
mass in the gas case than the base case, but not quite as quickly
as for a fully relaxed cluster.

We can summarize all of these results by saying that the gas
case represents a compromise between the case of a fully relaxed
cluster and the substructured clusters we have considered thus
far; the first crossing time, which produces a significant fraction
of the encounters due to the elevated encounter rate during
the relaxation phase, looks much like the substructured clusters.
After a crossing time, the stars revirialize, and the evolution from
that point until gas expulsion looks like that in a dynamically
relaxed cluster. Because a significant fraction of the encounters
occur during the early, subvirial relaxation phase, the overall
number of encounters and encounter velocity distribution ends
up being intermediate between the substructured and fully
relaxed cases. A lifetime of four crossing times before gas
expulsion is not long enough for the overall statistics to be
dominated by the relaxed phase rather than the unrelaxed one.

4. DISCUSSION AND IMPLICATIONS

4.1. Error Analysis

How certain are the values of Nenc derived above, given
the number of simulations we have run and the number of
encounters they produce? This question requires some care.

There are two distinct sources of error, and each dominates in
a different regime of our simulations. One source of error is
simply counting statistics on the total number of events at a
given (Mc, Σc). At low values of Mc and Σc, even when we have
a large number of runs, the total number of events recorded
over all simulations may be small, producing a significant
statistical error. The second source of error arises from our
limited sampling of all possible realizations of fractal clusters
at a given (Mc, Σc). At large (Mc, Σc), the number of events
in a given run may be quite large, producing small Poisson
errors, but the numbers of events may be quite different for
different realizations at the same (Mc, Σc). For example, we
might have three realizations that produce 8000, 10,000, and
12,000 events, respectively. In this case, the Poisson error on
each of these numbers is of the order of 100, much smaller
than the difference between them, indicating that our error is
dominated by our limited sampling of possible clusters at a given
(Mc, Σc). A reasonable estimate of the error in this regime is the
standard deviations of the mean values for each run, neglecting
the Poisson errors on each individual run. To interpolate between
these two limits, we take the total error to be the quadrature sum
of these two types of error. This is approximate, but should be
roughly correct.

To make the above analysis precise, let Nrun be the number
of simulations run for a given set of parameters (Mc, Σc,Q,D).
Let Si and Ei be the number of solar-mass stars and encounters
in the ith realization, respectively. Then, we define

Nevents =
Nrun∑
i=1

Ei, (13)

N∗ =
Nrun∑
i=1

Si, (14)

so that

Nenc = Nevents

N∗
(15)
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Figure 11. Same as Figure 5, but for D = 1.6.

(A color version of this figure is available in the online journal.)

is our best estimate of the number of encounters per Sun-like
star. From these definitions we can express the error on Nenc as

δN2
enc = δN2

events

N2∗
= σ 2

Poisson + σ 2
sample, (16)

where

σPoisson =
√

Nevents

N∗
(17)

is the error due to counting statistics2 and

σsample =
[∑Nrun

i=1 (Ei − Ē)2/Nrun

]1/2

N∗
(18)

2 Note that this expression assumes the Gaussian limit, and therefore
becomes invalid when Nevents � 10.

is the error introduced by a lack of ability to fully sample the
parameter space by having enough realizations of initial clusters.
Here Ē is the mean number of events per run. We report σPoisson
and σsample separately in Tables 7–10, along with the total relative
error

σr = δNenc

Nenc
. (19)

4.2. The Sun’s Birth Environment

One of the primary applications of the statistics we have
measured is constraining the environment in which the Sun
was born. To do so, we make use the velocity-dependent cross
sections for perturbing the orbits of the outer planets measured
by Dukes & Krumholz (2012) from their simulations. In deriving
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Figure 12. Same as Figure 7, but for D = 1.6.

(A color version of this figure is available in the online journal.)

Figure 13. The temporal distribution of encounters for a typical gas case. This particular model has Mc = 102.5 m�, Σc = 0.5 g cm−2, so the crossing time is
tcr = 0.078 Myr. Gas removal occurs at 4tcr = 0.31 Myr.

(A color version of this figure is available in the online journal.)

these values, Dukes & Krumholz implicitly integrated over the
distribution of impact parameters under the assumption that this
distribution follows p(b) ∝ b, and we have found that this is
generally a good assumption.

If σi(v∞) is the cross section for a particular event to occur for
stars approaching with a particular relative velocity v∞, then the
expected number of occurrences of that event in a cluster within
which there are expected to be Nenc encounters with impact
parameter less than bmax = 1000 AU is

Λi = Nenc

πb2
max

∫ ∞
0 σi(v∞)v∞p(v∞) dv∞∫ ∞

0 v∞p(v∞) dv∞
. (20)

Assuming the events are Poisson in nature (i.e., that they are
independent), the probability of an occurrence is simply

Pi = 1 − exp(−Λi). (21)

Figure 14. The distribution of impact parameters for the gas case with
Mc = 103.0 M� and Σc = 0.5 g cm−2. Here we include only events which
occur between one and four crossing times (the relaxed phase of our model).
Black crosses are 1+1 events and purple stars are 2+1 events.

(A color version of this figure is available in the online journal.)
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Figure 15. Same as Figure 5, but for the gas case.

(A color version of this figure is available in the online journal.)

Following Dukes & Krumholz (2012), we examine the possibil-
ity that a close encounter with a passing star might excite one
of the Jovian planets to a highly eccentric (e > 0.1) orbit.3 To
evaluate Λi , we combine the measured values of σi(v∞) from
Dukes & Krumholz with velocity distributions p(v∞) obtained
in the previous section.

Figure 18 shows the probability of exciting a Jovian planet to
eccentricity e > 0.1 in a cluster with Q = 0.75, D = 2.2,
as a function of Mc and Σc. Overall, our conclusions are
consistent with those of Dukes & Krumholz (2012): even for

3 Alternately, since the Jovian planets are likely not fully formed during the
early phases of evolution we are considering, we can regard these probabilities
as describing the chances that an encounter with another star might severely
perturb the protoplanetary disk at the radii where the Jovian planets are located
now.

clusters of quite high masses and surface densities (even up to
Σc,eff = 20 g cm−2), it is extremely unlikely that a Sun-like
star would have an encounter with another star close enough to
significantly perturb the orbit of a planet like Neptune. However,
we also find that the probability of excitation is independent of
Mc at fixed Σc,eff , but that it increases with Mc at fixed Σc. This
is the opposite of the trend found by Dukes & Krumholz (2012),
and the difference is easy to understand: for a relaxed cluster,
as assumed by Dukes & Krumholz, the number of encounters
is independent of Mc at fixed Σc, while the typical encounter
velocity increases with mass as M0.25

c , reducing the effective
cross-section per encounter. For unrelaxed clusters, on the other
hand, we find that the number of encounters increases with Mc
and fixed Σc, and that the typical encounter velocity increases
with Mc more slowly than is the case for a relaxed system. These
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Figure 16. Same as Figure 7, but for the gas case.

(A color version of this figure is available in the online journal.)

Figure 17. The log of the median v∞ vs. the log of Mc at Σc = 0.1 g cm−2. The
red crosses are our data points with the best-fit line drawn in black. The slope
in this case is 0.17.

(A color version of this figure is available in the online journal.)

two changes reverse the trend predicted by Dukes & Krumholz.
However, while the direction of trend with mass is reversed, the
trend remains rather weak. As a result, the qualitative conclusion
that encounters in dispersing clusters should have no significant
impact on the solar system, even if those clusters are quite
massive, continues to hold.

In the unbound case, we find similar results to the base case.
The combined results of a significant drop in the number of
encounters, with a slight decrease in the median relative velocity,
leads to a slightly lower excitation probability. Figure 19 shows
the probability of exciting Neptune’s orbit. Qualitatively the
results are similar to those in Figure 18. The same is true for the
high substructure case, model Q0.75D1.6, shown in Figure 20.
Compared to the base case, the effect of an increased number
of encounters is much stronger than the increase in relative
velocities, leading us to higher excitation probabilities. Again,
the shape is similar, but slightly more extreme than the base case.
The overall probability remains low at low masses, but seems
likely to become significant at masses above ∼104 M�, provided
that nominal (as opposed to effective) surface densities remain

roughly constant. Whether such highly substructured, massive
clusters exist in nature is uncertain.

The most interesting effects are seen in the gas case. Due to
the destruction of substructure because of the subvirial nature
of the cluster, this case approaches that of Dukes & Krumholz
(2012). Figure 21 shows the probability of exciting Neptune’s
orbit in such a cluster. The increase in probability of disruptive
events with cluster mass is very weak in this case, and when we
consider the effective surface density we are able to reproduce
the trend of Dukes & Krumholz. Namely, at constant (effective)
surface density, we find that the probability of a disruptive event
actually decreases with the cluster mass. This implies that there
is no dynamical limit on the number of stars in the stellar birth
cluster. The overall disruption probabilities are slightly higher
than those of the base case, but this is to be expected since the
cluster undergoes an initial period of highly elevated encounter
rate before relaxing and then dispersing.

We can also estimate the errors on these probabilities as
follows. The error on the probability of any event (e.g., excitation
of a Jovian planet) is given by

δPi = exp(−Λi)δΛi . (22)

With a little algebra one may show that

(δΛi)
2 = Λ2

i

[(
δNenc

Nenc

)2

+

(
δI1

I1

)2

+

(
δI2

I2

)2
]

, (23)

where I1 and I2 are the integrals in the numerator and denomi-
nator of Equation (20), respectively.

The errors on I1 and I2 may be obtained by differentiation of
the Riemann sum approximating the integral:

(δI1)2 =
∑

i

v2
i σ

2
i p2

i

[
(δσi)2

σ 2
i

+
1

pi

]
(Δvi)

2. (24)

For the sake of compactness of the expression, we omit the ∞
subscript on the velocity. I2 is given by a similar expression,
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Figure 18. The log of the probability that a Jovian planet is excited to an eccentricity e > 0.1 as a function of Σc (top 4) and Σc,eff (bottom 4) and Mc, for model
Q = 0.75, D = 2.2. Within each set of four, we have Jupiter (top left), Saturn (top right), Uranus (bottom left), and Neptune (bottom right).

(A color version of this figure is available in the online journal.)

17



The Astrophysical Journal, 769:150 (21pp), 2013 June 1 Craig & Krumholz

Figure 19. The log of the probability of exciting Neptune to an eccentricity
e > 0.1 as a function of Σc (top) and Σc,eff (bottom) and Mc, for model
Q = 1.25, D = 2.2. Notice that the probabilities are lower than those in the
unbound case. The other Jovian planets have similar plots to these.

(A color version of this figure is available in the online journal.)

except that the cross section is absent. Given the errors on Nenc
(see Section 4.1), I1, and I2, we can compute the overall errors
on our probabilities from Equation (22).

To keep this analysis as simple as possible, we assume that
the relative errors on the integrals are very small, so that the
relative error on the number of encounters dominates. Then we
have

δΛi = Λi

δNenc

Nenc
. (25)

Typically, Λi � 1 (all cases except one have ΛNeptune < 10−2,
and all of the other Jovian planets have smaller values) and in
this case we can expand Equation (22) to first order in Λi to
obtain

δPi ≈ Λi

δNenc

Nenc
= Λiσr . (26)

Since typical values of Λi are O(10−2) or smaller, and typical
values for σr are also O(10−1) or smaller, this means that the
absolute error on the percentages calculated through this method
are less than 0.1%, and the relative error, of the order of σr , is
at most ∼10%. Thus we can be fairly confident in our major
results.

Finally, there a few additional sources of error that we mention
here, but do not quantify explicitly. The IMF used in Dukes &
Krumholz (2012) is slightly different than ours, and yields a
mean stellar mass of approximately 0.2 M� instead of 0.59 M�.
This implies that we would expect the value of the probabilities

Figure 20. Same as Figure 19, but in the case of high substructure (D = 1.6,
Q = 0.75). The other Jovian planets have similar plots, but with a lower
excitation probability.

(A color version of this figure is available in the online journal.)

to be slightly higher, although the shape of the constant
probability curves would not change (Figure 18). Similarly, the
fact that there is slight deviation from the distribution P (b) ∝ b,
especially at high Σc, is a source of error. At low surface density,
however, this error should be minimal. To obtain an entirely
correct result for Λi , one should repeat the calculations of Dukes
& Krumholz (2012) using the same IMF and distribution of
impact parameters as found in these simulations.

4.3. Free-floating Planets

Ever since their discovery by Sumi et al. (2011), there has
been considerable debate about the origin of planetary mass
objects that are either completely unbound or very distant from
their parent stars. Models for the origin of these objects include
planet-planet scattering leading to ejection in a young planetary
system (e.g., Nagasawa & Ida 2011; Boley et al. 2012), escape
caused by mass loss during late stages of stellar evolution (e.g.,
Veras et al. 2011), direct formation from the interstellar medium
(Strigari et al. 2012), and dynamical stripping of planets from
stars in clusters (e.g., Boley et al. 2012; Veras & Raymond
2012; Ovelar et al. 2012). While a full discussion of this topic is
beyond the scope of this paper, we do note that our simulations
provide new insight into the latter mechanism.

Our results from the previous section show that significant
orbital disturbance for a planet at 30 AU, the distance of Nep-
tune, is likely to be a relatively rare event. Only for clus-
ters whose masses exceed ∼104 M� and are very highly sub-
structured (D = 1.6) do orbital excitations become common.
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Figure 21. Same as Figure 19, but for the case where we include an external
(gas) potential for four crossing times, and then allow the cluster to disperse.

(A color version of this figure is available in the online journal.)

Complete ejection will be even rarer. This suggests that un-
less the planet formation process is capable of producing large
numbers of planetary mass objects at radii significantly beyond
30 AU by internal mechanisms (e.g., planet–planet scattering),
cluster stripping cannot be a significant source of free-floating
planets. A more precise and quantitative version of this state-
ment may be obtained by combining the orbital element distri-
butions we have obtained here with population synthesis models
for star clusters and planets.

Finally, it is interesting to compare the results of our simu-
lations with those of Parker & Quanz (2012). They find large
orbital excitations only in their Q = 0.3 case, which includes no
gas potential term. This will lead to a tightly bound final cluster.
This fact together with their long simulation times (10 Myr, or
∼30 crossing times) means that it is not surprising that there
is a large fraction of planets becoming unbound. In addition,
they consider orbital excitations of planets from stars of any
mass, and numerically the majority of stars are smaller than the
0.8–1.2 M� mass range that we consider. The binding energy
of planets in such systems will be smaller than is typical of the
planetary systems we consider.

The closest match in parameters between our simulations and
those of Parker & Quanz is between our Q = 0.75,D = 2.2
runs and their Q = 0.7,D = 2.0 runs. Their Figure 8
corresponds roughly to clusters with Mc = 102–103 M� and
Σc = 0.1 g cm−2. They find that ∼10% of planets at 30 AU
are stripped from their parent star in this case, whereas we find
typically that ∼2%–3% of orbits are excited in such a case.
These differences are most likely due to the issue of binding
energies mentioned above. For the IMF used by Parker & Quanz,

and their assumption that planets are equally likely to occur
around stars of any mass, only ∼20% of planets orbit stars of
mass >1 M�, while ∼40% are born around stars with mass
<0.5 M�. Thus, it is not surprising that they find a higher rate
of orbital perturbation and stripping. Which model will more
accurately predict numbers of free-floating planets is unclear,
due to the lack of reliable estimates of planet fractions around
stars with mass �1 M�.

5. SUMMARY AND CONCLUSIONS

We have conducted a series of simulations of the evolution
of dispersing young star clusters that possess a high degree of
substructure. These simulations cover a wide range of masses
(30–30,000 M�), surface densities (Σc = 0.1–3.0 g cm−2),
dynamical states (supervirial but bound, unbound, and subvirial
but then unbound by gas expulsion), and degrees of substructure
(fractal dimension D = 1.6 and 2.2). These parameters are
chosen to reproduce the range of properties for young star
clusters suggested by both observations and star formation
simulations. We provide tabulated distributions of the number
of encounters, impact parameters, and relative velocities as a
function of these properties. These may be used as inputs in
population synthesis models of planet formation.

Our calculations produce a number of interesting conclusions.
First, during the ∼1 crossing time it takes for the initial sub-
structure to be erased by dynamical interactions, the number
of encounters is significantly elevated compared to what one
would expect for a relaxed system. The amount of elevation de-
pends on the amount of substructure and other cluster properties.
Regardless of its strength, though, the enhancement is transient.
Either the substructure dissolves (if the cluster is not confined
or mildly bound), or the cluster disperses (if it is strongly un-
bound). Thus for moderate degrees of substructure the overall
enhancement in the number of encounters is only a factor of a
few for clusters that do remain bound for some period before
gas dispersal. Only if the gas has extremely strong substructure
(fractal dimension D = 1.6) is the enhancement larger.

Second, early in the evolution of a substructured cluster,
before the cluster has dispersed or the substructure has been
erased, the distribution of encounter impact parameters is not far
off from the expectation for a relaxed cluster, but the distribution
of velocities is significantly non-Maxwellian. Because this early
phase contributes an appreciable fraction of all encounters even
in clusters that remain bound for four crossing times, the overall
distribution of encounter velocities is non-Maxwellian even in
such clusters. Compared to a Maxwellian, our clusters show
both a sharper peak at moderate encounter velocities and a
longer tail extending to higher velocities. The overall median
velocity increases with cluster mass more slowly than one would
expect in a relaxed cluster, and scales with the virial velocity
ratio. Clusters with larger virial ratios, and thus larger velocity
dispersions, actually tend to produce lower median encounter
velocities because they are less effective at dissolving the
velocity substructure and randomizing stellar relative velocities.

Third, even with the enhanced encounter rates that we find, we
conclude that planetary systems or protoplanetary disks around
stars in dissolving clusters are unlikely to experience significant
dynamical perturbations from other stars in the cluster, at least
for planets that are within tens of AU of their parent star. Such
planets are simply too tightly bound and have cross sections that
are too small for many of them to be disturbed. This remains true
even in our most highly substructured cases, which produce the
largest number of encounters, up to cluster masses of 103.5 M�.
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This means that there is no dynamical constraint on the size of
the Sun’s parent cluster, and that cluster stripping is unlikely
to be an important contributor to the population of free-floating
planets in the Milky Way.
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lyzing the data, and S. Aarseth for assistance with NBODY6.
M.R.K. acknowledges support from the Alfred P. Sloan Foun-
dation, the NSF through grant CAREER-0955300, and NASA
through Astrophysics Theory and Fundamental Physics Grant
NNX09AK31G, and a Chandra Space Telescope Grant.

APPENDIX

DERIVATION OF AN EFFECTIVE SURFACE
DENSITY FOR FRACTAL STAR CLUSTERS

We can define an effective surface density Σc,eff by consider-
ing the process by which the fractal cluster is generated. Let the
cube out of which the fractal is built have a volume given by
V0, with a characteristic radius rc. The process of building the
fractal can be thought of as removing chunks of the volume from
this initial value. Since the first generation particles are always
parents, the volume loss starts at the second generation. The
volume lost after the second generation is, on average, Vloss,2 =
V0(1−2D−3). The volume remaining after the second generation
is then Vremain,2 = V0 −Vloss,2 = V02D−3. Similarly, the volume
lost after the third generation is Vloss,3 = Vremain,2(1−2D−3), the
remaining volume is Vremain,3 = V0(2D−3)2, and so forth. The
volume remaining after g generations is simply

Vremain,g = V02(D−3)(g−1). (A1)

We can thus define an effective radius by

rc,eff = rc2
1
3 (D−3)(g−1). (A2)

Here we have implicitly assumed that we have taken enough
generations of the fractal that when we make the distribution of
positions spherical, that the volume loss remains the same. By
using dimensional scaling arguments, we see that the effective
surface density is then

Σc,eff(D, g) = Σ0
c2− 2

3 (D−3)(g−1), (A3)

where Σ0
c is the surface density of a cluster with constant

density of stars and radius rc. The effective initial surface
density therefore depends on how we choose the number of
generations for our fractal, which in turn is determined by the
mass of the cluster, since the number of generations required
is determined by the condition that there be enough potential
sites to accommodate the number of stars in the cluster. We
approximate this condition by

g(N ) ≈ ln(2N )

ln(8)
+ 1 + s2(D), (A4)

where N = Mc/m̄ is the number of stars in the cluster and s2(D)
is 1 if D < 2 and 0 otherwise. This choice comes from the fact
that at D = 2, Pparent = 0.5. The average number of generations
required to generate the fractal as a function of the mass is

Table 11
Number of Generations versus Cluster Mass

D log(Mc/M�)

1.5 2.0 2.5 3.0 3.5 4.0 4.5

2.2 3.02 4.00 4.99 5.42 6.01 7.00 7.98
1.6 3.99 4.98 5.99 7.01 8.00 . . . . . .

Note. The average number of generations required to generate a cluster of mass
Mc, for D = 2.2 and D = 1.6.

displayed in Table 11. We obtained this result by averaging over
a random sample of 100 different fractals for each mass bin.
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