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ABSTRACT

The pressure exerted by the radiation of young stars may be an important feedback mechanism that drives turbulence
and winds in forming star clusters and the disks of starburst galaxies. However, there is great uncertainty in how
efficiently radiation couples to matter in these high optical depth environments. In particular, it is unclear what
levels of turbulence the radiation can produce, and whether the infrared radiation trapped by the dust opacity can
give rise to heavily mass-loaded winds. In this paper, we report a series of two-dimensional flux-limited diffusion
radiation-hydrodynamics calculations performed with the code orion in which we drive strong radiation fluxes
through columns of dusty matter confined by gravity in order to answer these questions. We consider both systems
where the radiation flux is sub-Eddington throughout the gas column, and those where it is super-Eddington at
the midplane but sub-Eddington in the atmosphere. In the latter, we find that the radiation–matter interaction
gives rise to radiation-driven Rayleigh–Taylor instability, which drives supersonic turbulence at a level sufficient
to fully explain the turbulence seen in Galactic protocluster gas clouds, and to make a non-trivial contribution to
the turbulence observed in starburst galaxy disks. However, the instability also produces a channel structure in
which the radiation–matter interaction is reduced compared to time-steady analytic models because the radiation
field is not fully trapped. For astrophysical parameters relevant to forming star clusters and starburst galaxies, we
find that this effect reduces the net momentum deposition rate in the dusty gas by a factor of ∼2–6 compared
to simple analytic estimates, and that in steady state the Eddington ratio reaches unity and there are no strong
winds. We provide an approximation formula, appropriate for implementation in analytic models and non-radiative
simulations, for the force exerted by the infrared radiation field in this regime.
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1. INTRODUCTION

The idea that the pressure exerted by stellar radiation might
have significant dynamical effects on the gas in galaxies is an
old one (O’dell et al. 1967; Chiao & Wickramasinghe 1972;
Elmegreen 1983; Ferrara 1993; Scoville et al. 2001; Scoville
2003), but it has received significant renewed attention in recent
years as a possible explanation for various phenomena in star
clusters and galaxies. On galactic scales, Thompson et al. (2005)
and Murray et al. (2005) propose that the force exerted by
radiation from newly formed stars both sets an upper limit on the
star formation rate in ultraluminous infrared galaxies (ULIRGs)
and drives the highly supersonic motions that are ubiquitously
observed in these systems. Andrews & Thompson (2011) extend
this analysis and propose that radiation pressure limits on the
star formation rate even in normal galaxies. Murray et al.
(2005, 2011) argue that radiation pressure is also responsible
for launching galactic winds (see also Zhang & Thompson
2012). On subgalactic scales, Krumholz & Matzner (2009) and
Fall et al. (2010) argue that radiation pressure is the dominant
feedback mechanism for massive young star clusters, and that
winds driven by radiation momentum set the star formation
efficiency in clusters and the cluster mass function. Murray et al.
(2010) also argue that radiation pressure is the primary feedback
mechanism in massive star clusters, and that it is responsible for
limiting the star formation efficiency of giant molecular clouds
across a wide range of galactic environments at low and high
redshifts.

This renewed theoretical attention has given rise to a number
of approximate implementations of radiation pressure feedback
in simulations of galaxy evolution. The earliest of these is
the “momentum-driven wind” model of Oppenheimer & Davé
(2006), in which they inject momentum into star-forming gas in
their cosmological simulations at a rate that depends on both the
star formation rate and the depth of the galactic potential well;
the latter dependence is an attempt to approximate the increase
in radiative momentum imparted to gas that occurs when the
optical depth is high, so every photon is absorbed and re-emitted
multiple times. More recently, Hopkins et al. (2011a); Hopkins
et al. (2011b, 2012a); Hopkins et al. (2012b) have implemented
a more sophisticated model for radiation feedback into their
isolated galaxy simulations. In their approach, the code identifies
contiguous star-forming clumps and then applies an outward
radiation force to the gas in them. The force is proportional to
the product of the luminosity produced by all stars in the clumps
and the gas column density; as with the momentum-driven wind
model, the latter dependence is an attempt to capture the effects
of force amplification due to radiative trapping.

However, both the analytic models and the resulting semi-
analytic implementations of feedback in the simulations contain
significant uncertainties. At a basic level, it is unclear whether
the radiation is actually able to drive winds from gravitationally
bound galaxies or gas clumps. The opacity of dusty material
varies with temperature as roughly κ ∝ T 2 (at temperatures
�150 K; Semenov et al. 2003), and the high optical depths of
dusty ULIRGs or star-forming clumps ensure that their central
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temperatures are higher than the temperatures at their edges. For
such objects it is often the case that the Eddington ratio (defined
as the ratio of the radiative and gravitational forces per unit
mass) is larger than unity for the warm material near the center,
but less than unity for the cooler material near the edge. In this
case, it is unclear whether radiation will launch a wind at all.
Thompson et al. (2005), Murray et al. (2010), and Andrews &
Thompson (2011) argue that such a configuration will produce
a wind if the temperature and thus the Eddington ratio at the
center is sufficiently high, while Krumholz & Matzner (2009)
argue that a wind will occur only if the Eddington ratio exceeds
unity at the edge of the object.

If there is a wind, a second uncertainty is in how much
momentum the radiation deposits in the matter. Consider a
source of radiation of luminosity L, such as a young star,
surrounded by dusty gas. If every photon is absorbed once,
the radiation will deposit its full momentum flux L/c in the
gas. However, if the medium is so optically thick that each
photon is absorbed and re-emitted multiple times, the amount
of momentum deposited in the matter could be significantly
larger. In the limit where every photon is absorbed many times,
all the energy of the radiation field is transformed into kinetic
energy of the gas, and the momentum transfer approaches L/v,
where v is the gas characteristic velocity, and the exact pre-
factor will depend on the gas velocity and density distribution.
The two limiting cases of L/c and L/v may be referred to as
the momentum- and energy-driven limits, respectively, since
in the former case the momentum deposited is limited by the
momentum of the radiation field, while in the latter case it is
limited by the energy of the radiation field.

Different authors have come to differing conclusions about
where between these limits systems will fall. Krumholz &
Matzner (2009) argue that the momentum deposited will never
exceed a few L/c, while Thompson et al. (2005), Murray et al.
(2010), and Andrews & Thompson (2011) argue that in optically
thick systems it will be τIRL/c, where τIR is an appropriately
defined mean infrared optical depth, which can be �1.3 Which
argument turns out to be correct has important implications
for questions like whether radiation pressure is the dominant
mechanism for disrupting most molecular clouds (Murray et al.
2010) or only those forming the most luminous star clusters (Fall
et al. 2010), and whether giant clumps in z ∼ 2 galaxies survive
for long times (Krumholz & Dekel 2010) or are rapidly disrupted
by stellar feedback (Hopkins et al. 2011a; Genel et al. 2012).

The strength and nature of radiation–matter coupling is un-
certain because the matter distribution in real galaxies and star
clusters is highly non-uniform, leading to complex density fields
through which the radiation must pass. Moreover, there are nu-
merous instabilities that can occur when radiation exerts strong
forces on matter, such as the photon bubble instability (Blaes &
Socrates 2003) and the radiation Rayleigh–Taylor (RRT) insta-
bility (Krumholz et al. 2009; Jacquet & Krumholz 2011), and
these alter the distribution of both matter and radiation. The
question of radiation–matter coupling therefore requires model-
ing the fully nonlinear development of radiation-hydrodynamic
instabilities, which in turn requires simulations capable of treat-
ing both the radiation field and the matter. Both calculations of
radiative transfer through fixed density fields and calculations

3 Note that L/c � τIRL/c � L/v, so models with τIR are intermediate
between the pure momentum- and energy-driven limits. However, in the
literature feedback models with τIR are still referred to as momentum-driven to
distinguish them from models in which the energy of hot supernova-shocked
gas dominates feedback.

of the density field in which the radiation field is taken to be
uniform (as is assumed, e.g., in Hopkins et al. 2011b feedback
prescription) are inadequate to the task. To date no simulations
capable of answering this question have been reported.

In this paper, we explore a simple model system that nonethe-
less contains many of the essential features required to study
nonlinear matter–radiation coupling. We use this system to un-
derstand the nature of this coupling, and to derive estimates for
current unknowns such as the ability of radiation pressure to
drive turbulence and winds, and the efficiency with which radi-
ation deposits momentum in the gas. In Section 2 we describe
our model system and the equations that govern it, obtain its
important dimensionless numbers, and determine under what
circumstances it has an equilibrium state. In Section 3 we de-
scribe the numerical methods we use to simulate our model
system, and in Section 4 we describe the results of our numeri-
cal simulations, the limitations of our calculations, and caveats
to our conclusions. Finally, in Section 5 we discuss the implica-
tions of our results, and in Section 6 we summarize.

2. MODEL SYSTEM

2.1. Description and Basic Equations

We will treat a section of a galactic disk or a young star
cluster as an idealized model system, which allows us to isolate
the physics of the radiation–matter interaction without worrying
about the complexity of a real disk or cluster. We consider a slab
of gas with total surface density Σ filling the domain z > 0. It
is subject to a constant gravitational force per unit mass −gẑ
that is independent of the position x. A vertical radiation flux
F = F0ẑ enters the domain of interest at z = 0. We neglect the
self-gravity of the gas and assume that all radiation is injected
at z = 0 (i.e., there are no internal sources of radiation at z > 0
except the thermal emission of the gas itself).

For simplicity, we adopt the two-temperature flux-limited dif-
fusion (FLD) approximation. This allows us to interpolate be-
tween the optically thin and optically thick limits approximately
without the need to track the radiation spectrum at each point,
while not forcing the gas and radiation temperatures to reach
equality instantaneously in low optical depth regions where the
matter and radiation are weakly coupled. In this approximation,
the radiation flux F and energy density E are related by

F = − cλ

κRρ
∇E, (1)

where κR is the Rosseland mean opacity (which can in general
be a function of the gas temperature, the radiation energy
density, and the gas density), ρ is the gas density, and λ
is the dimensionless flux limiter, given in detail below. The
equations of radiation hydrodynamics applicable to this case
are (Krumholz et al. 2007)

∂

∂t
ρ = − ∇ · (ρv), (2)

∂

∂t
(ρv) = − ∇ · (ρvv) − ∇P − λ∇E − ρgẑ, (3)

∂

∂t
(ρe) = − ∇ · [(ρe + P )v] − κP ρ(4πB − cE)

+ λ

(
2
κP

κR

− 1

)
v · ∇E − 3 − R2

2
κP ρ

v2

c
E

− ρgvz, (4)
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∂

∂t
E = ∇ ·

(
cλ

κRρ
∇E

)
+ κP ρ(4πB − cE)

− λ

(
2
κP

κR

− 1

)
v · ∇E

+
3 − R2

2
κP ρ

v2

c
E − ∇ ·

(
3 − R2

2
vE

)
, (5)

where v is the gas velocity, Tg is the gas temperature, P =
ρkBTg/μ is the gas pressure, e = (γ − 1)−1kBTg/μ + v2/2 is
the gas specific energy, μ is the mean mass per gas particle, γ is
the gas ratio of specific heats, B = caT 4

g /4π is the frequency-
integrated Planck function, κP is the Planck mean opacity, and
R2 is the Eddington factor. For convenience we also define the
radiation temperature by Tr = (E/a)1/4. The above equations
are written in the mixed frame, so κP and κR are to be evaluated
in the frame comoving with the gas but all other quantities are
evaluated in the lab frame, so that total energy is conserved.
The functions λ and R2 have the property that λ → 1/3 and
R2 → 1/3 in the optically thick limit, and λ → κRρE/∇E and
R2 → 1 in the optically thin limit. We adopt the flux limiter
and Eddington factor of Levermore & Pomraning (1981) and
Levermore (1984):

λ = 1

R

(
coth R − 1

R

)
, (6)

R = |∇E|
κRρE

, (7)

R2 = λ + λ2R. (8)

2.2. Non-dimensionalization

In order to characterize the problem better, and under-
stand what dimensionless numbers control it, we now non-
dimensionalize Equations (2)–(5). We first note that, in any
steady-state configuration, the energy entering the slab at z = 0
must match the energy escaping to z = ∞. As z → ∞ the
density must approach 0 for any physically reasonable configu-
ration, so for some sufficiently large z the gas must be optically
thin, and thus as z → ∞ the flux and radiation energy density
must approach the relationship F∞ = cE∞ẑ. This motivates
us to non-dimensionalize the equations by defining a reference
temperature

T∗ =
(

F0

ca

)1/4

. (9)

In steady state, both Tr and Tg must approach T∗ as z → ∞.
From this temperature we also define

cs,∗ =
√

kBT∗
μmH

, h∗ = c2
s,∗
g

, ρ∗ = Σ
h∗

(10)

as the associated sound speed, scale height, and density; here, μ
is the mean mass per particle in hydrogen masses.4 With these
definitions, we make a change of variables

ξ = x/h∗, s = t/t∗, t∗ = h∗/cs,∗, (11)

4 Note that this scale height is the value we would expect in the limit of
negligible radiation forces, but even if h∗ does not describe the actual gas
configuration, it still provides a convenient reference length.

and Equations (2)–(5) become

∂

∂s
b = − ∇ξ (ρu), (12)

∂

∂s
(bu) = − ∇ξ · (ρuu) − ∇ξ (bΘg) − fE,∗

τ∗
λ∇ξ Θ4

r − bξ̂z,

(13)

∂

∂s
(bq) = − ∇ξ [b(q + Θg)u] − 1

3
fE,∗k0kP b

(
Θ4

g − Θ4
r

)
+

fE,∗
τ∗

λ

(
2k0

kP

kR

− 1

)
u · ∇ξ Θ4

r

− 3 − R2

2
βsfE,∗k0kP bu2Θ4

r − buz, (14)

∂

∂s
Θ4

r = 1

βsτ∗
∇ξ ·

(
λ

kRb
∇ξ Θ4

r

)
+ τ∗k0kP b

(
Θ4

g − Θ4
r

)
− λ

(
2k0

kP

kR

− 1

)
u · ∇ξ Θ4

r

+
3 − R2

2
τ∗βsk0bu2Θ4

r

− ∇ξ

(
3 − R2

2
uΘ4

r

)
, (15)

where ∇ξ indicates spatial differentiation with respect to ξ rather
than x, and we have defined the non-dimensional variables

b = ρ

ρ∗
= ρ

c2
s,∗

Σg
, u = v

cs,∗
, (16)

Θg = Tg

T∗
, Θr = Tr

T∗
, (17)

kP = κP

κP (ρ∗, T∗)
, kR = κR

κR(ρ∗, T∗)
, (18)

q = e

c2
s,∗

= Θg

γ − 1
+

u2

2
. (19)

These are, respectively, the dimensionless density, velocity,
gas temperature, radiation temperature, Planck mean opacity,
Rosseland mean opacity, and gas specific energy. The dimen-
sionless ratio R that determines the flux limiter is given by

R = 4

τ∗

∣∣∇ξ Θr

∣∣
bkRΘr

. (20)

The dimensionless ratios appearing in Equations (12)–(20) are

fE,∗ = κR,∗F0

gc
, (21)

βs = cs,∗
c

= 1

c

√
kB

μ

(
g

aκR,∗
fE,∗

)1/8

, (22)

τ∗ = ΣκR,∗, (23)
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k0 = κP,∗
κR,∗

, (24)

where κR,∗ = κR(ρ∗, T∗) and similarly for κP,∗. These quantities
have simple physical interpretations: for matter and radiation at
the reference density (ρ∗) and temperature (T∗), fE,∗ is the ratio
of the radiative and gravitational forces, βs is the ratio of the
sound speed to the speed of light, τ∗ is the Rosseland mean
optical depth of the slab of gas, and k0 is the ratio of the Planck
and Rosseland mean opacities. Finally, the condition that the
flux at z = 0 be F0 combined with the FLD approximation
(Equation (1)) requires that

dΘr

dξz

= −τ∗kRb

4λΘ3
r

(25)

at z = 0.
An additional simplification is possible if we limit ourselves

to the static diffusion or streaming limits, meaning that we
require that βsτ∗ � 1.5 This is likely to hold in any real galactic
disk or star cluster, since τ∗ is never more than a few tens, while
βs is generally of the order of 10−5. In this case we can drop the
terms proportional to βsτ∗ in Equations (14) and (15), and these
equations simplify to

∂

∂s
(bq) = − ∇ξ

[
b(q + Θg)u

] − 1

3
fE,∗k0kP b

(
Θ4

g − Θ4
r

)
+

fE,∗
τ∗

λ

(
2k0

kP

kR

− 1

)
u · ∇ξ Θ4

r − buz, (26)

∂

∂s
Θ4

r = 1

βsτ∗
∇ξ ·

(
λ

kRb
∇ξ Θ4

r

)
+ τ∗k0kP b

(
Θ4

g − Θ4
r

)
− λ

(
2k0

kP

kR

− 1

)
u · ∇ξ Θ4

r

− ∇ξ

(
3 − R2

2
uΘ4

r

)
. (27)

The above analysis demonstrates that for a given functional
form of the dimensionless opacities kP and kR, the behavior
of the fluid in this simplified setup is dictated by only three
dimensionless numbers6: the optical depth τ∗, the Eddington
ratio fE,∗, and the dimensionless ratio βs . The first of these
determines how effectively radiation is trapped in the slab,
the second determines the dynamical importance of radiation
pressure relative to gravity, and the third determines the relative
importance of radiation advection to radiation emission and
absorption in matter–radiation coupling, though its precise value
is unlikely to matter as long as βs � 1. Thus, in practice, τ∗ and
fE,∗ determine the parameter space of interest. Given values for
the dimensionless parameters, the dimensionless solution can
then be scaled to physical units by a choice of the mean particle
mass μ and the two-dimensional parameters Σ and g.

2.3. Equilibrium Solutions

To understand the behavior of the equations, it is helpful
to first search for equilibrium solutions, in which all time
derivatives vanish and u = 0. Examination of Equation (14)

5 Formally, the product βsτ∗ determines whether the system is described by
static or dynamic diffusion. For more discussion, see Krumholz et al. (2007).
6 The opacity ratio k0 also enters, but it is always of the order of unity for
physically reasonable continuum opacity sources.

immediately indicates that such solutions must obey Θr =
Θg = Θ. Inserting this condition and u = 0 into the remaining
equations reduces the problem to a pair of coupled, nonlinear
ordinary differential equations (ODEs)

d

dξz

(bΘ) + 4
fE,∗
τ∗

λΘ3 dΘ
dξz

+ b = 0, (28)

d

dξz

(
λΘ3

kRb

dΘ
dξz

)
= 0. (29)

Note that this system of equations depends only on fE,∗ and
τ∗, not on βs or k0. The latter two quantities are relevant only
when the radiation field is out of equilibrium. These equations
are to be integrated from z = 0 to ∞, subject to the boundary
conditions

dΘ
dξz

∣∣∣∣
z=0

= − τ∗kRb

4λΘ3

∣∣∣∣
z=0

(30)

lim
z→∞ Θ = 1, (31)

which are equivalent to requiring that the flux be F0 at z = 0
and ∞. The third boundary condition required to specify this
third-order system comes from the integral constraint that∫ ∞

0
b dξz = 1, (32)

which is equivalent to demanding that
∫

ρ dz = Σ.
We can analytically integrate Equation (29) once, and doing

so and using the boundary condition (30) allow us to rewrite the
system in the somewhat more transparent form

d

dξz

(bΘ) = − (1 − fE,∗kR)b, (33)

dΘ
dξz

= − τ∗kRb

4λΘ3
. (34)

These equations have a simple physical interpretation. The
quantity bΘ is the dimensionless gas pressure, and fE,∗kR is
the dimensionless version of the Eddington ratio κRF/gc at
a given point in the disk. Since the flux is invariant with z,
this in turn is just the Eddington ratio at infinity, fE,∗, scaled
by kR, the ratio of the local opacity to the opacity at infinity.
Thus, Equation (33) simply asserts that the gas pressure gradient
balances the force of gravity, diluted by radiation pressure, at
every point. Equation (34) asserts that the temperature gradient
is such that the radiation flux is constant with height.

For a given value of fE,∗ and τ∗, and a specified functional
form of kR, we can solve Equations (33) and (34) via a double
iteration procedure. We begin by guessing values for b(0) (which
must be <1) and Θ(0) (which must be >1) at z = 0, and using
these boundary conditions to integrate the system of ODEs from
z = 0 up to a value of z large enough so that dΘ/dξz ≈ 0, or
until we encounter a singular point where Θ → 0 at finite z. In
general, the resulting solution will not satisfy the constraint that
Θ → 1 at large z (Equation (31)). We therefore hold b(0) fixed
and iterate on Θ(0) until we find the value of Θ(0) that does give
Θ → 1 at large z. However, this will still not generally satisfy the
integral constraint on b (Equation (32)), and we must therefore
iterate again to find a value of b(0) such that Equation (32) is

4
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Figure 1. Equilibrium values for b (blue) and Θ (red) as a function of ξz,
computed for an opacity law kR = Θ2, with fE,∗ = 0.3 and τ∗ = 1 (solid) and
fE,∗ = 0.03 and τ∗ = 10 (dashed). The Eddington ratios at ξz = 0 for these
solutions are 0.82 and 0.49, respectively.

(A color version of this figure is available in the online journal.)

satisfied. For each value of b(0) we must again iterate on Θ(0),
giving rise to a double iteration.7

Figure 1 shows two sample solutions, both computed with
kR = Θ2, the functional form that approximately describes dust
opacity in the infrared (Semenov et al. 2003). The two solu-
tions shown correspond to fE,∗ = 0.3, τ∗ = 1 and fE,∗ = 0.03,
τ∗ = 10. These choices do not map to a unique set of phys-
ical parameters, but as an example choice we can consider
the same flux value and opacity law that we will use in
our numerical experiments below. The flux is F0 = 2.6 ×
1013 L� kpc−2, appropriate for a bright ULIRG; the correspond-
ing value of T∗ = 82 K, and this gives κR,∗ = 2.1 cm2 g−1.
With this opacity and radiation flux, the remaining dimen-
sional parameters are Σ = (0.47, 4.7) g cm−2, g = (2.5 ×
10−6, 2.5 × 10−5) dyne g−1, h∗ = (3.8 × 10−4, 3.8 × 10−5) pc,
and ρ∗ = (4.0 × 10−16, 4.0 × 10−14) g cm−3, where the first
numerical value given in parentheses is for τ∗ = 1, fE,∗ = 0.3,
and the second is for τ∗ = 10, fE,∗ = 0.03.

The qualitative behavior of the solutions is straightforward
to understand. At large ξz where the gas is optically thin, the
equilibrium dimensionless temperature approaches a constant
value Θ = 1. However, the temperature at the midplane (ξz = 0)
is higher because the gas is optically thick. The increase in
temperature at the midplane is the largest for the case τ∗ = 10,
since a higher optical depth leads to more effective trapping
of the radiation. In both cases, the increased temperature leads
to a decreased density b at ξz = 0 compared to b = 1, the
value that would be produced if the gas were isothermal. In
addition, the density declines much more slowly with ξz than
would be the case for a simple isothermal atmosphere; the
scale height is ∼5–10, compared to 1 for a simple isothermal
atmosphere. The more gradual falloff in the density arises from
two effects. First, since the Eddington ratio near the midplane
is a significant fraction of unity, radiation pressure force helps
support the atmosphere against gravity. Second, the gas near
the midplane is hotter than for a simple isothermal atmosphere,
further increasing the scale height. Both of these effects are

7 In principle, we could eliminate one iteration by adopting Θ = 1 at some
large z as a boundary condition and integrating in the −z direction. In this
direction, however, the system of ODEs is stiff, and thus it is more
computationally efficient to integrate in the +z direction and iterate on both
b(0) and Θ(0).

Figure 2. fE,crit, the maximum value of fE,∗ at the slab surface for which
equilibrium is possible, as a function of slab optical depth τ∗, using an opacity
law kR = Θ2. Circles indicate the values of τ∗ for which we numerically
determined the values of fE,crit.

larger in the fE,∗ = 0.03, τ∗ = 10 case due to the greater optical
depth of the atmosphere, even though the radiation pressure
force at the top of the atmosphere in this case is smaller than
in the fE,∗ = 0.3, τ∗ = 1 case. Both of these effects are the
strongest at small values of ξz where the temperature, radiation
energy density, and radiation force are elevated. At larger ξz,
where Θ ≈ 1, radiation pressure force becomes weak, the gas
is close to isothermal, and the density falls off rapidly, returning
to the behavior expected for a normal isothermal atmosphere.

The iteration procedure we use to generate these solutions is
not guaranteed to converge because an equilibrium profile for
which the density and temperature remain finite as z → ∞ is
not guaranteed to exist for an arbitrary combination of fE,∗, τ∗,
and kR. In particular, note that if fE,∗ � 1, then since kR → 1 as
ξz → ∞, it follows that the right-hand side of Equation (33) is
non-negative as ξz → ∞. In this case

∫
b dξz diverges, and there

is no solution possible that satisfies condition (32). Moreover,
even if fE,∗ < 1, there may still be no solution that obeys both
the constraint Equations (31) and (32). In practice, the maximum
value of fE,∗ for which an equilibrium solution exists, which we
refer to as fE,crit, must be determined numerically for a given
functional form of kR and optical depth τ∗. Figure 2 shows the
results of such a calculation for kR = Θ2.

3. NUMERICAL SIMULATIONS

Now that we have identified the important dimensionless
numbers and found equilibria whenever they exist, we turn to
a full numerical simulation that will allow us to explore the
behavior of non-equilibrium systems.

3.1. Numerical Method

Our simulations use the orion radiation-hydrodynamics code
(Klein 1999; Fisher 2002; Krumholz et al. 2007); the properties
of this code may be found elsewhere in the literature, so
we simply summarize them here. orion solves the equations
of radiation-hydrodynamics (Equations (2)–(5)) in the two-
temperature FLD approximation. The code uses the conservative
operator-splitting scheme of Krumholz et al. (2007) to separate
the implicit radiation and explicit hydrodynamic updates. The
latter uses a high-order Godunov method that requires very little
artificial viscosity (see Klein 1999 for details). The former uses
the Shestakov & Offner (2008) pseudo-transient continuation
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Table 1
Simulation Physical Parameters

Dimensionless Parameters Dimensional Parameters

Run Name τ∗ fE,∗ fE,∗/fE,crit Σ g h∗ t∗
(g cm−2) (10−6 dyne g−1) (10−4 pc) (kyr)

T10F0.02 10 0.02 0.51 4.7 37 0.25 0.045
T03F0.50 3 0.5 3.8 2.9 3.7 2.5 0.46
T10F0.25 10 0.25 6.4 4.7 2.9 3.2 0.57
T10F0.50 10 0.5 12.8 4.7 1.5 6.3 1.1
T10F0.90 10 0.9 23.1 4.7 0.83 11 2.1

Notes. All simulations use βs = 1.8 × 10−6 and k0 = 101/2, which correspond to dimensional parameters
T∗ = 82 K and F0 = 2.6 × 1013 L� kpc−2. Dimensionless and dimensional parameters are related by using
the opacity law given by Equation (35), and adopting a mean particle mass μ = 2.33, as expected for a gas of
molecular hydrogen and helium mixed in the standard cosmic abundance. Values of fE,crit have been computed
numerically; for τ∗ = 3, fE,crit = 0.13, and for τ∗ = 10, fE,crit = 0.039.

method to solve the implicit radiation system. For the purposes
of the simulations here, we do not use orion’s additional
capabilities for self-gravity and sink particles, and instead we
impose a constant gravitational acceleration in the −z direction,
per Equation (3). Although orion has adaptive mesh refinement
(AMR) capability, we do not use the AMR in these simulations
because we find that in most simulations the dense gas occupies
a large fraction of the simulation volume for much of the
computation time. This negates the computational advantage
from using AMR.

3.2. Choice of Simulation Parameters

In all simulations we adopt an opacity law

κ(R,P ) = (10−3/2, 10−1)

(
T

10 K

)2

cm2 g−1, (35)

which is roughly in accord with the model of Semenov et al.
(2003) at temperatures �150 K. We choose not to use the full
Semenov et al. opacity function (which orion includes) in order
to keep the problem as pure and simple as possible.8 We note that
this approximation will, if anything, lead us to overestimate the
strength of matter–radiation coupling, since we are not including
the flattening of the opacity at high temperatures.

For our choice of other parameters, we pick values that span an
interesting physical range, and that overlap with observations.
On the latter point, observations of ULIRGs and the models
to fit them provided by Thompson et al. (2005) give typical
fluxes of 1013–1014 L� kpc−2, typical surface temperatures of
T ∼ 50–100 K, and typical Rosseland mean optical depths
at this temperature are τ∗ ∼ 1–10. The corresponding surface
densities are ∼1–10 g cm−2, and the corresponding gravitational
acceleration is g = 2πGΣ ∼ 10−6 to 10−5 dyne g−1, where we
have computed g as for an infinite slab, and we have not included
stellar mass. Combining these estimates we find the values of
fE,∗ in the range 0.01–1. If we focus on young clusters we find
similar surface densities and fluxes, but with a somewhat larger
range, so that fE,∗ > 1 in some cases (e.g., Krumholz & Matzner
2009). Physically, the most interesting range to explore is the
one where fE,crit < fE,∗ < 1. (Note that this regime exists only
if τ∗ � 1, since fE,crit is significantly less than unity only if

8 For numerical reasons we cap the opacity at the value corresponding to
T = 10T∗, and we set κ(R,P ) = 0 in material with density <10−10ρ∗. These
choices allow us to introduce a hot, zero-opacity ambient medium that can act
as a constant pressure boundary condition at high altitudes.

Table 2
Simulation Numerical Parameters

Run Name Δx/h∗ [Lx × Lz]/h∗ [Nx × Nz] trun/t∗
T10F0.02 0.5 512 × 256 1024 × 512 78
T03F0.50 0.5 512 × 1024 1024 × 2048 217
T10F0.25 0.5 512 × 2048 1024 × 4096 210
T10F0.50 0.5 512 × 2048 1024 × 4096 215
T10F0.90 0.5 512 × 4096 1024 × 8192 205
T10F0.25_LRa 1.0 512 × 2048 512 × 2048 276

Notes. Column 2: grid spacing; Column 3: size of the computational domain in
the x and z directions; Column 4: number of computational cells in the x and z

directions; Column 5: time for which the simulation was run.
a Physical parameters for this run are identical to those given for run T10F0.25
in Table 1.

the gas is optically thick.) These are the cases where there is
no stable equilibrium, but the radiation force is not so strong
that all the gas is certain to be ejected; instead the outcome
will depend on how the radiation and matter couple. The
majority of ULIRGs and some young, bright clusters are in this
regime.

Based on these considerations, we select a set of run pa-
rameters described in Table 1. These parameters have a range
of optical depths τ∗ and Eddington factors fE,∗. We include
one case in the stable regime, fE,∗ < fE,crit, as a control, and
the remaining runs are in the unstable, fE,∗ > fE,crit, regime.
We do not include runs with fE,∗ > 1. Partly this is because
the outcome in this case seems almost certain to be large-scale
ejection, and partly because this regime does not appear to be
reached in observed ULIRGs, although the latter statement is
subject to significant uncertainties on the dust opacity and the
CO to H2 conversion factor in ULIRGs, both of which affect
estimates of fE,∗.

3.3. Simulation Setup

All our simulations are two-dimensional (2D) Cartesian,
taking place in the (x, z) plane. The force of gravity is in the −z
direction. The numerical resolution and other run parameters
are described in Table 2, and we describe a resolution study
we conducted to ensure that the resolution is adequate in
the Appendix. Our boundary conditions are periodic in the x
direction. At z = 0, we use reflecting boundary conditions on
the hydrodynamic variables, and Neumann boundary conditions
on the radiation field, with the radiation flux into the box set to
the value corresponding to the parameters indicated in Table 1.
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At the upper z boundary, for our hydrodynamic boundary
condition we place immediately outside the computational
domain a low-density ambient medium with density 10−13ρ∗,
velocity 0, and temperature 103T∗; this places it in pressure
balance in the initial condition (see below), but allows dense
matter with an upward velocity to leave the computational
domain freely. For the radiation, we impose a Dirichlet boundary
condition that the radiation energy density is E = aT 4

∗ .
We initialize all runs with a gas density distribution

ρ = [1 + Ap sin(2πx/λp)]

{
ρ∗e−z/h∗ , e−z/h∗ > 10−10

10−10ρ∗, e−z/h∗ � 10−10 ,

(36)
a temperature T = T∗, and a velocity of 0, where Ap and λp are
the amplitude and wavelength of a perturbation we introduce
to seed instability. In all simulations, we use Ap = 0.25 and
λp = 256h∗. We initialize the radiation energy density to
E = aT 4

∗ at all points. Thus, in the absence of a radiation
flux entering the domain at z = 0, and for Ap = 0, the region
with density >10−10ρ∗ would simply be a stable, isothermal
atmosphere. Setting Ap to a non-zero value but leaving the
temperature and radiation field fixed would result in a series
of stable gravity waves propagating through the atmosphere.

4. SIMULATION RESULTS

4.1. The Stable Case

We first examine run T10F0.02 (recall our naming convention
that T10 means τ∗ = 10, and F0.02 means fE,∗ = 0.02),
which we may think of as a sort of control, in the sense
that fE,∗/fE,crit < 1. This simulation therefore has a stable
configuration toward which it is able to converge. Figure 3
shows a series of snapshots of the density and temperature
distribution in the run. As the plot shows, the gas is initially
pushed upward by radiation pressure. This is not surprising
because the initial configuration is an equilibrium appropriate
to the case of an isothermal gas with no radiation pressure. Once
radiation is injected into the simulation domain, the temperature
near z = 0 reaches ∼4–5T∗. Since the opacity varies as κR ∝ T 2,
this means that the opacity and the radiative force felt by this gas
is increased by a factor of ∼20 compared to gas at a temperature
T∗, and the local Eddington ratio in this gas approaches ∼0.5.
This accounts for the upward movement. Since radiation is
trapped more effectively at horizontal locations where the initial
density is somewhat higher, due to the initial perturbation, the
upward motion is the strongest there. This amplifies the initial
perturbation, so that the horizontal variation visible at t/t∗ = 10
and 20 is much larger than that present in the initial conditions.
After the initial transient however, the gas settles back down,
and the horizontal fluctuations damp out. There is little change
past t/t∗ ∼ 50.

In Figure 4, we compare the state of the system at late times
to the equilibrium configuration for τ∗ = 10 and fE,∗ = 0.02.
As the plot shows, the density and temperature converge to
the equilibrium solution very well. There is some oscillation at
high altitudes as the system rings down, but the convergence
is clear. It is worth noting that, even though fE,∗/fE,crit < 1
and fE,∗ = 0.02, radiation pressure is non-negligible in the
equilibrium configuration. Since κR ∝ T 2, the peak temperature
of T ≈ 4T∗ at the base of the simulation domain corresponds to
a local Eddington ratio fE ≈ 1/3.

Figure 3. Time series showing the density (top) and radiation temperature
(bottom) as a function of time in run T10F0.02. Gas temperatures are nearly
identical to radiation temperatures everywhere except where ρ/ρ∗ < 10−10,
where the opacity is set to zero. Note that the simulation domain extends to
256h∗ in the vertical direction, but we show only the region from 0 to 64h∗.

(A color version of this figure is available in the online journal.)

4.2. Unstable Cases: Morphology and Overall Evolution

We now turn to runs T10F0.25, T03F0.50, T10F0.50, and
T10F0.90, for which no equilibrium solution exists. Figures 5
and 6 show the time evolution of the gas and radiation energy
density distributions in each of them. As in run T10F0.02, the gas
is initially flung upward by radiation pressure. The gas is driven
into a thin shell, with high radiation temperature beneath it and
low radiation temperature above it. As time passes, however, the
shell begins to buckle, developing fingers of gas that penetrate
down into the radiation-dominated lower region. The buckling
is evident by t/t∗ ∼ 5, fingers appear by t/t∗ ∼ 10–20, and
by t/t∗ ∼ 50 a clear nonlinear instability has set in. The dense
fingers of gas reaching into the radiation-dominated region have
much smaller upward velocities than the rest of the gas, and at
late times they begin to fall back toward z = 0.

As the instability develops the gas becomes turbulent. It
also develops a clear channel morphology, with most of the
gas mass in dense, nearly vertical filaments, and most of the
volume filled by low-density gas between the filaments. Gas in
the dense filaments is predominantly falling rather than rising.
As a result, in runs T03F0.50 and T10F0.25 none of the mass
reaches the upper boundary of the computational domain. In
runs T10F0.50 and T10F0.90 some mass does reach the top
of the computational domain, but it is a small fraction of the
total, and most of it is simply coasting from the initial launch
at early times, rather than being actively driven upward. By
t/t∗ ∼ 100–150, the upward motion has completely halted and
the gas has fallen back to the midplane. Thereafter the system
exhibits continuous turbulent motion with a roughly constant
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Figure 4. Comparison between run T10F0.02 and the analytic solution for τ∗ = 10, fE,∗ = 0.02, computed via the procedure described in Section 2.3. The top panel
shows density and the bottom panel shows radiation temperature; gas temperature is nearly identical. In both panels, the solid line is the analytic equilibrium solution,
and asterisks show the mean density/temperature at a given vertical position in the simulation, with the mean computed over all horizontal positions and all simulation
times t/t∗ > 70. The gray band shows the range of values found at a given vertical position over all times and horizontal positions. The dashed lines show the initial
conditions in the simulation.

velocity dispersion and gas scale height. This appears to be the
final, statistical steady state.

4.3. Turbulence

One of the important questions regarding radiation instabil-
ities is whether they can explain, or at least contribute to, the
large turbulent velocity dispersions seen in radiation-dominated
galactic disks. To address this question we compute the mass-
weighted horizontal and vertical velocity dispersions σx and σz

as a function of time in our simulations. We define these by

σ(x,z) =
[

1

M

∫
ρ(v(x,z) − v(x,z))

2 dV

]1/2

, (37)

v(x,z) = 1

M

∫
ρv(x,z) dV, (38)

where M is the amount of mass in the simulation domain and
the integrals are over the full simulation volume.

Figure 7 shows the result, and Table 3 summarizes what is
shown in the figure. Not surprisingly, in the stable run T10F0.02,
after the initial transient the velocity dispersion is highly sub-
sonic. It is dominated by the horizontal component, and oscil-
lates up and down as the system rings down toward equilibrium.
In the other runs we see that, after the initial transient, the veloc-
ity dispersion approaches a roughly constant, supersonic value.
The vertical component of the velocity dispersion is somewhat
larger than the horizontal one. The highest Mach numbers we
reach are ∼10.

Table 3
Simulation Outcomes

Run Name σx/cs,∗ σz/cs,∗ σ/cs,∗ 〈fE〉 ftrap ftrap,w κ(Tmp)Σ ≈ τIR

T10F0.02 0.22 0.13 0.27 0.18 88 35 160
T03F0.50 3.2 2.6 4.1 1.0 5.0 2.5 15
T10F0.25 4.8 3.3 5.8 1.0 39 25 93
T10F0.50 6.5 5.9 8.8 1.1 22 13 120
T10F0.90 5.7 17.1 18.1 1.2 12 7.0 64
T10F0.25_LRa 4.2 2.9 5.1 1.0 40 24 110

Notes. All quantities shown represent time averages over all times t/t∗ > 175
in all runs except T10F0.02, where the average is over t/t∗ > 50. The quantity
ftrap is the trapping factor considering all material (as defined by Equation (42)),
while ftrap,w is the trapping factor computed considering only material with
vz > 0. The quantity κ(Tmp)Σ ≈ τIR is the average optical depth at the end of
the calculation, computed using the mass-weighted mean midplane temperature.
(Volume weighting gives a nearly identical result.) Values of τIR at the start of
the calculation are very similar.
a Physical parameters for this run are identical to those given for run T10F0.25
in Table 1.

4.4. Eddington Ratio and Trapping Factor

Another quantity of interest is the net force applied by the
radiation to the gas, and how this compares to the force of
gravity. A closely related question is how much momentum the
gas is able to extract from the radiation field and transfer into a
wind. Recall that the radiation force per unit volume exerted on
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Figure 5. Gas density distribution as a function of time in simulations T03F0.25, T10F0.25, T10F0.50, and T10F0.90, as indicated. Each row represents a simulation,
and each column is at a fixed time, as indicated. Blank panels indicate that the simulation was halted before the indicated time. For run T03F0.25, the top of the
computational domain only extends to 1024h∗, indicated by the dashed line. For run T10F0.90, the computational domain extends to 4096h∗, i.e., twice the vertical
extent shown. Note that the dynamic range of densities in the simulation is much larger than the range 10−4 to 10−1ρ∗ that we show. We pick this range because ∼95%
of the mass in the simulation volume lies within it at most times.

(An animation and a color version of this figure are available in the online journal.)

9



The Astrophysical Journal, 760:155 (20pp), 2012 December 1 Krumholz & Thompson

Figure 6. Same as Figure 5, but showing the radiation temperature Θr = Tr/T∗. The gas temperature distribution is very similar everywhere except at very high
altitudes and low densities.

(A color version of this figure is available in the online journal.)
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Figure 7. Velocity dispersion σ vs. time in runs T10F0.02, T03F0.50, T10F0.25,
T10F0.50, and T10F0.90, as indicated in each panel. We show the x and z

components σx and σz (thin dashed and solid lines, respectively), and the total
velocity dispersion σ = (σ 2

x + σ 2
z )1/2 (thick solid line).

the matter is

frad = κRρF
c

= −λ∇E, (39)

where F is the radiation flux, and the second equality follows
from the FLD approximation. The mean vertical radiation force
per unit area applied to the gas in the simulation domain is

〈frad,z〉 = 1

Lx

∫
frad · ẑ dV , (40)

where Lx is the horizontal length of the computational domain,
and the integral is over the full simulation volume. It is useful to
compare this force to two other quantities. One is the mean force
exerted by gravity, fg = −Σgz. We define the mean Eddington
ratio of the computational volume by

〈fE〉 = 〈frad,z〉
Σgz

. (41)

The bulk of the matter can be ejected by radiation pressure only
if 〈fE〉 > 1, although a wind containing a small fraction of the
matter may be driven even if 〈fE〉 < 1.

The second useful comparison is between the force exerted
by the radiation and the momentum flux carried by the radiation
field, which is F0/c. As discussed in Section 1, if the medium is
optically thick enough to ensure that every photon is absorbed
at least once (as is the case for our simulations), we expect
the radiation field to transfer at least this much momentum to
the gas. However, the amount of momentum extracted could
be significantly larger if every photon is absorbed many times,

Figure 8. Mean Eddington ratio 〈fE〉 (left axis) and trapping factor ftrap (right
axis) as a function of time for runs T10F0.02, T03F0.50, T10F0.25, T10F0.50,
and T10F0.90, as indicated in each panel. The solid line is the radiation force
applied to all the matter in the computational domain, and the dashed line is
the force applied only to matter with vz > 0. The dotted horizontal line marks
〈fE〉 = 1. Note that all simulations begin with 〈fE〉 = 0 because we initialize
the simulation with no gradient in the radiation energy density; the rapid rise of
〈fE〉 to its initial plateau is the result of the radiation field reaching equilibrium
rapidly, on a timescale that is not resolved in the plot.

up to a maximum value of order F0/v, where v is the gas
characteristic velocity. To quantify where between these two
limits our simulations fall, we follow Krumholz & Matzner
(2009) and define the trapping factor ftrap by

〈frad,z〉 = (1 + ftrap)
F0

c
. (42)

In the limit of one absorption per photon we expect ftrap = 0,
and for infinitely many absorptions we expect ftrap ≈ c/v.
Models that assume strong trapping generally adopt ftrap ∼ τIR,
where τIR is a fiducial optical depth that depends on the mean
gas temperature. For example, in their numerical simulations
Hopkins et al. (2011b) adopt ftrap = max(0, κ0Σ − 1), where
κ0 = 5 cm2 g−1 and Σ is the gas surface density; values of κ0Σ
in the simulations range from � 1 up to ∼50. Finally, note that
〈fE〉 and ftrap are related by

〈fE〉 = (1 + ftrap)
fE,∗
τ∗

. (43)

We show 〈fE〉 and ftrap for our simulations in Figure 8,
and summarize the mean values in Table 3. There are several
interesting points to be taken from this plot. First, in the stable
run T10F0.02, 〈fE〉 < 1 at all times. This is not surprising,
since the run parameters were chosen to have this feature. In
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contrast, in all of the unstable runs the pattern is that 〈fE〉 > 1 at
early times before the instability sets in. Once the instability is
established, 〈fE〉 drops to less than unity, and the gas falls back.
Finally, at late times when the instability is in steady state, 〈fE〉 is
very close to unity. The value of 〈fE〉 in this steady state does not
depend on fE,∗ or τ∗. Thus we see that, even though τ∗fE,∗ > 1
in all three of the unstable runs, the actual force applied to the
matter by the radiation field saturates at the Eddington limit.
Thus there is no large-scale ejection of matter, despite the fact
that fEdd is much larger than unity at the midplane at the start of
the calculation.

A similar effect is apparent if we consider the trapping factor
ftrap. In the stable run, T10F0.02, ftrap ∼ 100. This is because
the radiation field is effectively trapped by the uniform matter
distribution, so every photon is absorbed and re-emitted many
times. In contrast, in the unstable runs ftrap is significantly smaller
once the instability develops. Roughly half of this force is
applied to material with an upward velocity, simply because
roughly half of the gas has a positive velocity at any given time.
However, the identity of individual upward- and downward-
moving pockets of gas is continually changing, so no material
has a sustained positive velocity and is launched into a wind.
A reasonable conjecture based on the simulation results is that
in the regime where fE,∗ < 1 < τ∗fE,∗, the gas self-adjusts
to ensure 〈fE〉 ≈ 1, and that ftrap goes to whatever value is
required to make this happen. In this case we would predict that
ftrap ≈ τ∗/fE,∗ − 1. However, all of this momentum is delivered
to bound gas, and does not produce a wind.

4.5. Conversion of Radiative Power to Kinetic, Thermal, and
Gravitational Potential Energy

A final quantity of interest is how much radiative power is
converted to the kinetic, thermal, and gravitational potential
energy of the gas. At late times, once the turbulence has reached
a steady state, the net power transfer rate between the various
energy reservoirs must be zero. This conclusion follows simply
from the fact that σ , the mean gas temperature, and the gas scale
height all approach statistically constant values at late times,
implying that the kinetic, thermal, and gravitational potential
energies of the gas must be statistically constant as well. In
practice, the system produces this effect via a balance between
two processes. The radiation exerts forces on the gas, doing
work; this effect is represented by the equal and opposite terms
proportional to v and E in Equations (4) and (5). Once the gas
becomes turbulent, however, regions of compression appear, and
in these regions kinetic energy is converted to thermal energy,
which in turn is turned back into radiative energy, a process
described by the terms ±κP ρ(4πB − cE) in Equations (4)
and (5). (Both exchanges can go in the opposite direction too:
gas can do work on the radiation field, and cool gas can be
radiatively heated. In our problem, these effects are generally
smaller than their opposites, however.) These rates of exchange
are on average equal and opposite, and the level of turbulence
self-adjusts to ensure that they remain so.

In this respect a system that does not drive a wind, as we find
in all our simulations, is fundamentally different from one that
does drive a wind. In a system with a wind, the baryons that
reach infinity carry kinetic, thermal, and gravitational potential
energy, and thus some non-zero fraction of the radiant energy
must be converted to other forms in the process of driving the
wind. Without a wind, once the system reaches steady state the
time-averaged net conversion of radiant energy to other forms

is necessarily zero.9 This analysis leaves open, however, the
related question of what level of turbulence must be created so
that this steady state is achieved. Clearly, the equilibrium value
of σ/cs,∗ must be a function of τ∗ and fE,∗. In this work we have
sampled the (τ∗, fE,∗) plane only sparsely, and so we are not yet
in a position to construct a model for this mapping. However,
we plan to revisit this topic in future work.

5. DISCUSSION

5.1. What is the Nature of the Instability?

The instability that appears in our simulations is almost
certainly the RRT instability, first described in simulations by
Krumholz et al. (2009) and formally analyzed by Jacquet &
Krumholz (2011). The instability occurs when an interface
forms in a gravitational field between a low-density radiation
pressure-dominated medium on the bottom and a higher density,
less radiatively dominated medium on top. We can calculate
the instability’s growth rate and most unstable wavelength in
the linear regime using Jacquet & Krumholz’s formalism. The
dispersion relation for the instability in the adiabatic, local limit
(their Equation (77)) in our non-dimensionalized units becomes

− C

Θg

ω6 +

[
C(C − B)

Θ2
g

+ k2

]
ω4 + B

k2ω2

Θg

− k4 = 0, (44)

where

x = aT 4
r

3ρc2
s

= fE,∗
3τ∗

Θ4
r

bΘg

, (45)

fE = κRF

gc
= fE,∗kR

(
F

F0

)
, (46)

D = 16x2 + 20x +
γ

γ − 1
, (47)

C = 1

D

(
12x +

1

γ − 1

)
, (48)

B = 1

D

[
16(fE − 1)x2 + (24fE − 8)x

+ fE

(
5 +

γ

γ − 1

)
− 1 +

γfE

4(γ − 1)x

]
. (49)

Here the wavenumber k is measured in units of h−1
∗ and angular

frequency ω is measured in units of g/cs,∗. The quantities x and
fE are the local ratio of radiation pressure to gas pressure and
the local Eddington ratio, respectively, both computed in the gas
immediately above the interface. The conditions of adiabaticity
and locality are satisfied only if (their Equation (82))√

min

(
1 + x,

x

fE

)
>

F/cs

aT 4
r + ρc2

s /(γ − 1)

= F/F0

βsΘg

[
Θ4

r + bΘgτ∗
(γ−1)fE,∗

] . (50)

9 One might object that in a planar geometry such as ours a wind can never
occur, since the gravitational potential energy of a gas parcel diverges at large
ξz, unlike in a spherical geometry. This is true in principle but turns out to be
irrelevant in practice. As we discuss in Section 5.5.2, inserting realistic
astrophysical scalings into our dimensionless problem shows that the gas in
our simulations reaches such small heights that curvature effects are
negligible, and a planar approximation is in fact valid. Gas in our simulations
is not launched into a wind not because we have placed it in a gravitational
well that is infinitely deep, but because the radiation force is weak enough that
it could not escape a potential well of finite, astrophysically reasonable size.
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To evaluate these quantities, we note that before the onset of
instability F is very close to F0 everywhere in the computational
domain, and the values of b, Θr , and Θg as the base of the layer
that goes unstable can be read off from the simulation results.
Depending on the exact time we choose to examine, we find
that in run T03F0.05, b ≈ 0.1–0.15 and Θr ≈ Θg ≈ 1.8.
The corresponding figures in runs T10F0.25 and T10F0.50 are
b ≈ 0.15–0.2, Θr ≈ Θg ≈ 2.7 and b ≈ 0.3, Θr ≈ Θg ≈ 2.7.
Unfortunately, inserting these quantities into Equation (50)
indicates that the inequality is not satisfied, indicating that
we cannot regard the modes as adiabatic, and that diffusion
is significant. Nonetheless, we can still use the dispersion
relation (44) to obtain an upper limit on the growth rate. Inserting
these figures into Equation (44) and numerically solving for ω,
we find characteristic growth rates Im(ω) ∼ 1, indicating that,
if not damped by diffusion, the initial seed perturbation we
insert should amplify on a timescale comparable to cs,∗/g. In
practice, we see that growth is significantly slower than this,
almost certainly as a result of diffusive damping. Unfortunately,
Jacquet & Krumholz (2011) were unable to obtain an analytic
estimate of the instability growth rate in the regime where
diffusive damping is significant.

We can also ask whether the instability we observe in our
simulations might correspond to any of the other types of
radiation-hydrodynamic instability that have been described in
the astrophysical literature. A number of authors have studied
instabilities in radiation pressure-driven flows in the context of
clouds near quasars (Mathews & Blumenthal 1977; Krolik 1977;
Mathews 1986). These are quite different from the situation we
consider in that the opacity comes from resonant absorption of
ionizing photons, which is therefore linked to the recombination
rate and hence the density of the gas; instabilities arise due to
this coupling. Clearly that is not the case for the situation we
consider, since dust opacity is to good approximation density-
independent. Blaes & Socrates (2003) conduct a general analysis
of local radiative instabilities in optically thick media applicable
to a wide variety of environments. They find that local instability
occurs only when there is a magnetic field present or when
the opacity contains an explicit density dependence, similar to
that which applies in the quasar case. Our simulations meet
neither condition, and, indeed, the RRT instability described
by Jacquet & Krumholz (2011) that appears to take place in
our simulations is an interface instability rather than a local
one. In the real interstellar medium (ISM) the dust opacity is,
as noted before, density-independent. However, the real ISM
does contain magnetic fields, and it is conceivable that adding a
magnetic field to our simulations would produce an additional
local instability on top of or instead of the interface one that we
find. We discuss this issue further in Section 5.5.1.

Perhaps the closest analog in the literature to our situation
is that analyzed by Shaviv (2001), who studies instabilities in
atmospheres with a constant, Thomson, opacity. He finds that
such instabilities can arise when the gas is near the Eddington
limit, with the instability growth rate depending on the boundary
conditions (Blaes & Socrates 2003). The primary difference
between our work and his work is the radiation temperature
dependence of the dust opacity of the ISM. This leads to an
Eddington ratio that is non-constant with height, which in turn
means that our instability tends to take the form of gas at
the bottom of the atmosphere where the radiation temperature
and opacity are high being driven upward into a thin shell
that collides with gas at larger altitudes that experiences a
lower radiation temperature and opacity. It is this behavior that

produces an interface and an interface instability. In the absence
of radiation temperature dependence in the opacity, radiative
accelerations are height-independent, and thin shells should
not form. In this context the global, non-interface instability
of Shaviv (2001) can occur. The nonlinear outcome of the two
instabilities is likely to be different as well. In the case of an
ISM with dust opacity, turbulence is driven by the circulation
of material falling deep into the atmosphere, encountering a hot
radiation field, finding itself super-Eddington, and then being
blasted upward; once at height the radiation field pushing on the
gas is at lower temperatures, the gas falls back, and the cycle
repeats. This mechanism obviously cannot operate for a gray
opacity.

5.2. Why Is Radiative Trapping Ineffective?

The relatively low values of 〈fE〉 and ftrap we find in our
simulations are surprising. For a laminar matter distribution,
even if all the gas were at a temperature T∗ and thus had
opacity κR,∗, we would have ftrap = τ∗ − 1. Considering the
higher opacities produced by higher temperatures, we might
expect ftrap ∼ 100, as in run T10F0.02, and 〈fE〉 � 1. In
the last column of Table 3, we give the value of the midplane
optical depth τIR calculated at the end of the simulation using
τIR ≈ κ(Tmp)Σ. Values at the start of the calculation are very
similar. In the three unstable cases, the value of ftrap is a factor
of ∼3–6 smaller than τIR, with the largest difference occurring
in the most unstable run. How is it possible to have such a small
value of ftrap with respect to the naive estimate? To answer this
question, it is helpful to examine the distribution of radiation
flux. We do so in Figure 9, using run T10F0.50 at time t/t∗ = 50
as an example. Other time slices and runs when ftrap is small
give similar results, but this time slice, when the instability is
nonlinear but has not yet dissolved into complete turbulence,
provides a particularly clear illustration. As the plot shows, the
radiation flux is both highly non-uniform and strongly anti-
correlated with the matter distribution. Within the fingers of gas
projecting downward, the flux is ∼0.1F0, while in the narrow
channels between the fingers the flux is ∼10F0. This explains
how there can be so little radiation force exerted on the matter:
the radiation flux is highly concentrated in low-density, low
optical depth channels that contain little mass, so the effective
optical depth is much less than the true optical depth.

It is important to note, however, that this does not mean
that the system is effectively optically thin, or that an external
observer would be able to see directly down to the radiation
source with little interfering material. As the plot shows, even
along the vertical paths through the simulation domain with
the lowest column densities and optical depths, corresponding
to the channels through which most of the flux is focused,
the Rosseland mean optical depth is always at least ∼5, and
the column density is always at least ∼0.2Σ. The significant
point is not that the value of ∼5 is particularly special, it is
that the effective momentum imparted by the radiation field to
the gas can be reduced compared to an estimate based on τIR
without there being optically thin channels that would allow
direct optical observation of the stars providing the radiation
flux. The absence of such transparent channels does not imply
that radiation–gas coupling is efficient.

While the channeling of the radiation is easiest to see early
in the development of the instability, as shown in Figure 9, it
continues at later times as well. Figure 10 shows the density, tem-
perature, velocity, and radiation flux distribution in T10F0.50
at the last time slice, t = 215t∗. At this point the radiation
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Figure 9. Two images show the gas density distribution (left) and magnitude of the radiation flux F (right) at time t/t∗ = 50 in run T10F0.50. The line plots above
them show the surface density Σ(x) and Rosseland mean optical depth τR(x) computed along vertical paths at a fixed horizontal position x, i.e., Σ(x) = ∫ ∞

0 ρ(x, z) dz

and τR(x) = ∫ ∞
0 ρ(x, z)κR(x, z) dz.

(A color version of this figure is available in the online journal.)

pressure-driven turbulence is fully developed, and 〈fE〉 ≈ 1. As
the plot shows, the radiation flux continues to be highly non-
uniform. The structure of this atmosphere and its dependence
on model parameters will be the subject of a future paper.

5.3. The Origin of Turbulence in ULIRGs and Dense Clusters

We find that radiation pressure-driven instabilities can pro-
duce significant turbulence, and thus the hypothesis that radia-
tion pressure might be responsible for at least some turbulence
in dense protoclusters and in the disks of ULIRGs seems to be
valid. The typical Mach numbers in Galactic protoclusters are
∼10 (e.g., Shirley et al. 2003), comparable to what we obtain in
the simulations, so radiation pressure-driven instabilities may
fully explain the turbulence there. (Of course we cannot rule
out that other effects might contribute as well.) For ULIRGs,

however, the problem is harder. Even in the most unstable run
we consider, T10F0.50, the Mach number is still only ∼10. This
is roughly an order of magnitude less than the Mach numbers
seen in real ULIRGs and those needed to maintain a Toomre Q
parameter near unity (Thompson et al. 2005).

What then does this imply about the origin of the turbu-
lence in ULIRGs? One possibility is that, given the observa-
tional uncertainties, ULIRG surface densities have been over-
estimated or ULIRG luminosities underestimated, and in fact
they have fE,∗ ≈ 1 over large areas. In this case, it seems
likely that radiation pressure could be responsible for driv-
ing the turbulence, although the problem of how this process
picks out Q = 1 would still exist. A closely related possibil-
ity that answers the question of how Q = 1 is maintained is
that the turbulence is driven by a limit cycle whereby episodes
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Figure 10. Density distribution and Mach number vectors (top) and temperature distribution and flux vectors (bottom) in the last time slice (t/t∗ = 215) of run
T10F0.50, showing a snapshot of the atmosphere’s structure after 〈fE〉 → 1.

(A color version of this figure is available in the online journal.)

of star formation produce brief periods where fE,∗ > 1 and
the bulk of the gas does begin to be ejected. This halts star
formation, and after ∼4 Myr when massive stars begin to die,
fE,∗ drops below unity and the gas falls back. This ejection
could either be over a large area of the disk, or it could oc-
cur locally in within forming clusters. For example, Murray
et al. (2010) suggest a cycle in which Toomre-mass clumps re-
peatedly form, undergo gravitational collapse, and then are dis-
rupted by star clusters that rapidly reach luminosities such that
fE,∗ > 1. The ejecta from these disrupting clusters provide the
turbulence.

Alternately, the turbulence in ULIRGs might not be radia-
tively driven at all. Instead, it might be driven by gravitational
instabilities in ULIRG disks (Krumholz & Burkert 2010; Forbes
et al. 2012), and be maintained by the energy of inward gas
mass through the galactic potential rather than by stellar feed-
back. The turbulence could also be driven by cosmic ray rather
than radiation pressure (Ipavich 1975; Breitschwerdt et al. 1991;
Jubelgas et al. 2008; Socrates et al. 2008).

5.4. Implications for Analytic and Numerical Models of
Radiation Pressure Feedback

Our work suggests that radiation pressure alone is unlikely
to be able to eject much matter or drive significant winds when
κ(Tmp)ρF/c � Σg � κ(Tedge)ρF/c, i.e., the regime where
the radiation flux is sub-Eddington at the top of the disk where
the temperature is low, but super-Eddington at the midplane

where the temperature is high. In this regime, we find that even
a very laminar initial density field will spontaneously rearrange
itself, via RRT instability, into a configuration whereby the
mean Eddington ratio is unity or slightly smaller. The final-
state structure we obtain for T10F0.5 is shown in Figure 10. In
this limit a small amount of mass could conceivably be blown
off as a wind, though this does not occur in our simulations,
but it is not possible to eject enough matter to materially
reduce the star formation efficiency. Bulk ejection appears likely
only when the radiation field exerts enough force to be super-
Eddington even using the lower opacity present at the top of the
atmosphere. This condition is expected to be met under many
circumstances, particularly in young star clusters (Thompson
et al. 2005; Krumholz & Matzner 2009; Fall et al. 2010; Murray
et al. 2010), and thus radiation pressure may still be a significant
factor in limiting star formation efficiencies. However, models
that rely on a large enhancement of the radiation force due to
higher opacities in the warmer regions (e.g., Murray et al. 2010,
2011) may need to be re-evaluated. In particular, in the three
unstable models considered here, the ratio of τIR � κ(Tmp)Σ
to ftrap is � 3–6 (Table 3). Similarly, the models of Krumholz
& Matzner (2009) and Fall et al. (2010) may also need to be
reconsidered since they assume ftrap ∼ 1. We find that ftrap
can significantly exceed unity, which suggests that, if radiation
does overcome gravity and eject matter, these models might
underestimate the total momentum input to the gas by a factor
as large as ∼5–40. However, since none of our runs successfully
launch a wind, the question is not yet settled of how much
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momentum will be transferred to the gas if 〈fE〉 > 1 and a wind
is launched.

For subgrid models of radiative pressure feedback in numeri-
cal simulations, the main implication of our work is that the true
value of ftrap is likely to be somewhat lower than τIR, and that
ftrap will not increase in direct proportion to the total gas column
density, or some proxy for it. Instead, we find that a reason-
able estimate is that when fE,∗ > fE,crit, the system will adjust
to give

ftrap ≈ τ∗
fE,∗

− 1. (51)

Note that with this scaling ftrap still increases in direct proportion
to Σ, as assumed in many models, but that there is an additional
dependence on the flux, the opacity, and the gravitational force
holding the gas together that ensures that the mean Eddington
ratio 〈fE〉 saturates at unity. Simulations based on subgrid
models in which ftrap is allowed to reach values such that 〈fE〉
is larger than unity need to be recomputed with lower values of
ftrap to check which results are robust.

It is illuminating to compare our result to both the fiducial
estimate of ftrap adopted by Hopkins et al. (2011b), and to the
alternative models presented in Appendix B of their paper,
where they attempt to take into account photon leakage (see
also Murray et al. 2010). As noted above, in their fiducial
models Hopkins et al. take ftrap = τIR − 1. In the alternative
models, they consider media with a variety of column density
distributions motivated from observations of molecular clouds
and simulations of turbulence. For the case that produces
the most deviation from their fiducial estimate, that of an
exponential distribution of column densities with a power-law
tail, they find that for large optical depth the effective value
of ftrap approaches ftrap ≈ √

σ/2Γ[1/σ ]τ 1/2σ

IR − 1, where Γ is
the Γ function, τIR here is the optical depth that the medium
would have if it were uniform, and σ is the standard deviation
of the column density distribution. Hopkins et al. consider the
values of σ from 0.2 to 1.0, and for the largest value of σ
they consider, at high τIR this prescription therefore reduces
to ftrap ≈ √

τIR/2 − 1. Thus, for ftrap � 1, the ratio of Hopkins
et al.’s estimates of ftrap to the upper limit we measure in our
simulations (Equation (51)) is

ftrap,Hopkins

ftrap,lim
= τIR

τ∗
fE,∗ or

√
τIR

2τ 2∗
fE,∗, (52)

where the first quantity is for Hopkins et al.’s fiducial estimate,
and the second is for their alternative model with σ = 1. Similar
estimates for ftrap in a turbulent medium were made by Murray
et al. (2010).

Hopkins et al.’s fiducial estimate for τIR is τIR = 5(Σ/g cm−2),
whereas, for a normal galaxy in which T∗ ∼ 40 K, we will have
τ∗ ∼ τIR/10. Taking this as a rough estimate, Equation (52)
becomes

ftrap,Hopkins

ftrap,lim
≈ 10fE,∗ or

√
τIR

50
fE,∗. (53)

Thus, we find that the Hopkins et al. (2011b) estimate of ftrap
exceeds the limit we measure whenever fE,∗ > 0.1 for their
fiducial estimate, or when fE,∗ >

√
50/τIR for their lowest

alternative estimate. The first condition is likely met in many
places in their simulations. The second is somewhat harder to
satisfy, but it still likely to be met at the highest optical depth
locations in their simulations.

The primary reason Hopkins et al. and Murray et al. estimate
larger effective trapping factors than we measure is that while
their models consider the possibility that the gas might be non-
uniform, they do not consider that the radiation might also be
non-uniform, and that its non-uniformity might be correlated
with that of the gas. Figures 9 and 10 show that, once the
instability is fully established, this radiation–matter correlation
is an essential feature of the radiation–gas coupling that these
analytic models do not capture.

5.5. Caveats and Future Work

5.5.1. Magnetic Fields

It is important to point out some potential limitations of
our results, which suggest avenues for future investigation.
The first is that we have omitted magnetic fields, which are
clearly present in the real ISM. Simulations of mechanical
feedback from both protostellar outflows (Li & Nakamura 2006;
Nakamura & Li 2007; Wang et al. 2010) and photoionization-
driven “champagne” flows from molecular clouds (Gendelev
& Krumholz 2012) show that strong, ordered magnetic fields
can significantly enhance the effects of feedback by providing a
mechanism to transfer momentum between parcels of gas, and
thus distribute energy and momentum more broadly through a
gas cloud. This effect could conceivably operate here, and raise
〈fE〉 and ftrap.

However, the effect is only likely to be important if the mag-
netic fields are dynamically strong; otherwise, field lines will
bend rather than exert significant forces. In ULIRGs, indirect ar-
guments based on observations of synchrotron emission suggest
that the magnetic energy density is sub-equipartition compared
to the turbulent or gravitational energies (Thompson et al. 2009;
Lacki et al. 2010; Batejat et al. 2011), which suggests that mag-
netic effects are unlikely to be important there. The situation
is less certain for massive star clusters in normal galaxies like
the Milky Way. In star-forming clouds in the Milky Way and
nearby galaxies, Zeeman and polarization observations indi-
cate that there are ordered magnetic fields in rough equiparti-
tion with turbulence (Crutcher 1999; Troland & Crutcher 2008;
Chapman et al. 2011; Li & Henning 2011; however, see Padoan
et al. 2004 for a contrasting view), in which case magnetic
effects could conceivably alter 〈fE〉 and ftrap. However, all of
the regions studied thus far are far from the regime of mas-
sive clusters forming at high volume and column density where
radiative forces might be important, and it is unknown if the
magnetic fields in such regions are also in equipartition. In any
event, in future work it would be useful to investigate whether
the inclusion of magnetic fields allows larger values of 〈fE〉
and ftrap, and, if so, how large the field must be to achieve this
effect.

Another possible effect of magnetic fields is that they might
make the gas subject to the local photon bubble instability of
Blaes & Socrates (2003), as discussed in Section 5.1. In this
case a local instability might exist on top of, or in place of, the
interface one that occurs in our non-magnetic simulations. It
seems unlikely that this additional instability would strengthen
matter–radiation coupling, but it is conceivable that it could
weaken it even further relative to what we have found.

5.5.2. Planar versus Spherical Geometry

For simplicity we have chosen to examine a planar geometry,
since a spherical geometry would introduce a third parameter
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(which we could take to be the radius of curvature measured
in units of h∗) to our description of the system. The main
disadvantage of our planar approach is that in a planar geometry
the escape speed is not well defined, and this precludes one
possible mechanism for launching a wind. We find that, in steady
state, 〈fE〉 reaches unity. However, there is a transient phase
before the instability develops when 〈fE〉 is larger than unity.
In a planar geometry this makes little difference because the
momentum the gas absorbs during this transient is insufficient
to escape, and the matter will always fall back. For a spherical
geometry, however, it is conceivable that the gas could reach
escape speed during the initial transient when 〈fE〉 > 1,
allowing it to escape even though 〈fE〉 falls back to unity once
steady state is reached.

This is unlikely to be a significant effect for the parameter
regime we have explored. For galactic disks, non-spherical
effects become significant only on scales comparable to the
radial scale length, which is of the order of kiloparsecs. For
comparison, for the ULIRG-like scalings shown in Table 1, all
our simulation boxes are <1 pc in size. Thus, we can be confident
that non-planar effects are unimportant in the galactic case
unless the Eddington ratio, and thus the typical height to which
matter is carried by radiation, is far larger than in the parameter
regime we have explored. For the case of individual star clusters,
which can be ∼1 pc in size, the highest Eddington ratio case may
be marginally in the regime where curvature effects become
significant. However, even in this case most matter only reaches
∼0.3 pc before turning around. Moreover, in a real star cluster
where the initial matter distribution is not laminar, and where
the radiation flux rises smoothly rather than turning on instantly
as in our simulations, the amount of momentum deposited
during the initial transient is likely to be less than in our
simulations.

Thus, we conclude that curvature effects are unimportant
for the parameter regime we have explored, and are only
likely to become important for systems with Eddington ratios
significantly above 0.5.

5.5.3. 2D versus 3D

For reasons of computational efficiency we have conducted
2D rather than fully three-dimensional (3D) simulations. While
the dimensionality does not change the growth rate of the RRT
instability in the linear regime (Jacquet & Krumholz 2011), it
may affect the nonlinear growth rate and fully saturated state
of the instability. Even for simple fluid Rayleigh–Taylor (RT)
instability the relationship between 2D and 3D results is still
not fully understood, though numerical results indicate that the
nonlinear growth rate is a factor of ∼2 faster in the 3D case
(e.g., Young et al. 2001 and references therein). No comparable
study exists for RRT, nor have we conducted such numerical
experiments. However, it seems unlikely that the difference
between 2D and 3D will be astrophysically important. The time
required for the instability to reach full nonlinear saturation in
our simulations is smaller than essentially any other timescale
relevant on galactic or star cluster scales, and a factor of the
order of unity change in the nonlinear growth rate would not
alter this. Moreover, the nonlinear saturated state we obtain is
defined, as is the case for many saturated instabilities, by the
system self-regulating to a state of marginal stability, 〈fE〉 ≈ 1.
It also seems unlikely that this self-regulation will fail in 3D.
Thus, the differences between 2D and 3D are unlikely to be
astrophysically significant.

5.5.4. Dependence on the Choice of Initial Conditions
and Simulation Box Size

Our computations use an idealized initial setup and compu-
tational box size chosen to allow us to follow the growth of the
instability through its linear and then nonlinear development,
while ensuring that the smallest important size scale h∗ was al-
ways at least marginally resolved. It is fair to ask how the results
might change for a more realistic setup that would correspond
more closely to a real star cluster or ULIRG. In considering
this question, it is helpful to separate the question of the initial
horizontal and vertical structures.

In the horizontal direction, our initial conditions are char-
acterized by a fairly small amplitude initial perturbation with
power only at a single horizontal wavelength whose physical
size is very small compared to real astrophysical systems—for
example, run T10F0.25 has only a 25% density perturbation
at a physical size of 0.082 pc. Moreover, in the horizontal di-
rection our entire computational box is only a factor of two
larger than this. Since real protoclusters and ULIRGs are both
supersonically turbulent and much larger than this, a real system
would have much larger amplitude perturbations on much larger
horizontal size scales. How would this affect our results?

In the linear regime, the analytic treatment discussed in
Section 5.1 is a helpful guide. The linear analysis shows
that modes with short horizontal wavelengths are damped
by horizontal diffusion of the radiation, which reduces the
linear growth rate of the instability. Perturbations with longer
horizontal wavelengths would be less damped, and thus should
grow faster, with the growth timescale approaching t∗ ∼ 1 at
long wavelengths, rather than t∗ ∼ 10–100 as found in our
simulations.10 Moreover, with larger initial perturbations, fewer
e-foldings would be required to reach the nonlinear regime.
Thus, we conclude that in a real astrophysical system, the
transition to the nonlinear regime is likely to be significantly
faster than in our simulations. Once in the nonlinear regime, it
seems likely that the same argument we made in considering
2D versus 3D applies: the nonlinear state is characterized by
the system self-regulating to a state of marginal stability, and it
seems unlikely that this self-regulation depends on the size of the
computational box or the initial state. Thus, in the saturated state
we do not expect the result that 〈fE〉 ≈ 1 would be different.
However, the density structure might well extend to larger size
scales in a larger computational domain. For ordinary fluid RT
instability, in the nonlinear regime the dominant mode is always
on the largest scale permitted by the computational domain
or experimental apparatus, and since RRT instability begins to
behave like ordinary RT instability at very long wavelengths,
this would likely be true for our problem too.

Our initial state is also very thin in the vertical direction, since
it corresponds to a gas layer supported only by thermal pressure
at constant temperature. In a real ULIRG or protocluster, the
turbulent velocity greatly exceeds the thermal sound speed, and
puffs up the gas to a much larger height, which is comparable
to or larger than the vertical height we reach at the end of our
simulations when the RRT instability is fully saturated. If we
started with such a turbulent, vertically extended state but did
not include any mechanism to drive the turbulence other than the
RRT instability itself, then it seems likely that the result would be

10 Conversely, shorter wavelength perturbations than those we have used
would grow more slowly or not at all; indeed, in some low-resolution
simulations we conducted using even smaller horizontal box sizes, we did not
see the development of RRT instability. However, no real astrophysical system
is this small horizontally.
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that the turbulence would decay until the gas reached the velocity
dispersion dictated by the instability. The timescale for this to
occur would likely simply be the turbulent decay time, which
would be comparable to the crossing time in the initial vertical
distribution. On the other hand, if there were some driving to
maintain the turbulence, it is likely that this would dictate the
gas structure. This probably could not cause 〈fE〉 to exceed
unity, since this would imply that radiation rather than the other
mechanism had become dominant. However, extra structure in
the gas produced by turbulent driving could cause gas–radiation
coupling to change in unexpected ways, and might conceivably
lead to either stronger or weaker coupling of radiation and matter
than would have occurred without the extra driving.

5.5.5. Nature of the Radiation Source

Another caveat is that we have explored the effects of a
radiation source that is steady, uniform, and located just below
a gas layer, whereas in reality the young stars that provide
radiation pressure in a young cluster or a ULIRG are spatially
clustered, time variable (as new stars form and old ones die),
and are mixed with the gas. It seems highly unlikely that any
of these effects would increase 〈fE〉 or ftrap, since making the
radiation field even less uniform would only further weaken
matter–radiation coupling. On the other hand, as noted in
Section 5.3, it seems possible that such non-uniform radiation
source could produce larger turbulent velocities than we find in
our simulations with a uniform radiation source. Again, follow-
up simulations are needed to check this effect.

5.5.6. Numerical Treatment of the Radiative Transfer Problem

A final concern is the quality of the two-temperature FLD
approximation we use to treat the radiative transfer problem.
One significant concern is our treatment of the direct (as opposed
to dust-reprocessed) radiation field. The direct radiation field
possesses two properties that are not well captured by the FLD
approximation. First, its spectrum is at much higher frequencies
than would be predicted by our blackbody approximation; this
is significant because dust opacities increase strongly with
frequency. Second, the radiation field is highly directional, as
opposed to the diffuse field assumed in the FLD approximation.
In the case of the formation of a single massive star from an
initially laminar protostellar core, Kuiper et al. (2012) show that
omitting the direct radiation field can lead to an underestimate
of the expansion rate of radiation pressure-driven cavities, and
that this in turn can affect whether a cavity goes RRT unstable
before it blows out of its parent core.

This effect is unlikely to be important for the simulations we
report here, simply because, by construction, the direct radia-
tion pressure force is unimportant. The strength of the direct
radiation pressure force relative to gravity can be characterized
by the mean Eddington ratio considering only direct photons,
which is given by Equation (43) evaluated with ftrap = 0:

〈fE,dir〉 = fE,∗
τ∗

. (54)

This gives 〈fE,dir〉 = 0.002, 0.17, 0.025, 0.05, and 0.09 for
runs T10F0.02, T03F0.50, T10F0.25, T10F0.50, and T10F0.90,
respectively. Thus, we see that the direct radiation force is an
order of magnitude or more weaker than gravity in our runs, and
its omission is therefore not likely to produce significant effects.

It is important to note that the relative unimportance of the
direct radiation field compared to gravity in our simulations is a

direct result of our parameter choices, which are somewhat dif-
ferent from those appropriate to the single massive protostellar
cores studied by Kuiper et al. (2012). To see why these systems
are in a somewhat different regime than ULIRGs or star clus-
ters, it is helpful to re-express 〈fE,dir〉 in terms of dimensional
parameters: 〈fE,dir〉 = F0/Σgc = L/Mgc, where in the second
step we have multiplied through by a fiducial area to turn F0
into a luminosity L and Σ into a mass M. If the gravitational
field comes predominantly from the self-gravity of the object
question, then g ≈ GΣ, and we have

〈fE,dir〉 ∼ f∗
L/M∗
GΣc

= 4.8 × 10−4

(
f∗

1/2

)
(L/M∗)0Σ−1

0 , (55)

where (L/M∗)0 = (L/M∗)/(L�/M�), Σ0 = Σ/1 g cm−2, and
for convenience we have defined f∗ as the stellar mass fraction,
i.e., the fraction of the object’s mass that is in luminous stars
rather than gas. Note that this equation for the importance of
direct radiation forces is, up to factors of the order of unity, the
same as the result derived by Fall et al. (2010, their Equation (5)).
Individual massive protostellar cores, massive protoclusters,
giant clumps in high-redshift galaxies, and ULIRG disks all
have similar surface densities Σ ≈ 1 g cm−2, but they have very
different stellar light-to-mass ratios. For example, a 100 M�
star on the zero-age main sequence (ZAMS) has L/M∗ =
1.3 × 104 L�/M� (Tout et al. 1996), so 〈fE,dir〉 can easily
be significantly greater than unity, particularly in a rotating
system where rotational flattening lowers the surface density
in certain directions. In contrast, a cluster of ZAMS stars
drawn from a fully sampled initial mass function will have
L/M∗ ≈ 103 L�/M� (Murray & Rahman 2010), an order of
magnitude lower. Since L/M∗ declines as a stellar population
ages, 〈fE,dir〉 will likely be smaller than unity in ULIRG disks
or in the giant clumps in high-redshift galaxies with dynamical
times longer than ∼4 Myr (Krumholz & Dekel 2010), although
〈fE,dir〉 might still exceed unity in subregions where the stellar
population is predominantly young. We can therefore conclude
that, even if the direct radiation field can be dominant for single
massive stars and cores, it is at most an order of unity effect for
massive star clusters and ULIRGs (but see Murray et al. 2010
and Krumholz & Dekel 2010 for more discussion).

Furthermore, as Socrates et al. (2008) point out, the above
calculation may overestimate the importance of the direct
radiation force if the geometry of the emitters is uniform because
it does not consider the fact that the direct radiation forces
supplied by stars can cancel. A single massive star supplies a
radially outward radiation field, but the many stars in a cluster or
disk will push the gas with which they are intermingled in many
different directions, and thus there will be some cancellation,
with the exact amount depending on the geometry. However,
note that Hopkins et al. (2011b) argue that the effects of
cancellation are not strong in simulations of radiation pressure
feedback in simulations of whole galaxies.

Even if the omission of the direct radiation field is not
problematic in our physical situation, one can still worry about
other aspects of the FLD approximation. FLD requires that the
region of interest be optically thick, and our simulation domain
certainly satisfies that criterion: τIR exceeds 10 in all the runs
and exceeds 100 in three of them (see Table 3). However, since
FLD discards information on the directionality of the radiation
field, it underestimates beaming of the radiation field in localized
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patches that may be optically thin. Quantifying the net effect of
this error is difficult, and generally requires direct comparison
of FLD results with more accurate methods such as variable
Eddington tensor, discrete ordinates, or Monte Carlo. One
such comparison, done in the context of a radiation-dominated
accretion disk by Davis et al. (2012), suggests that FLD tends to
overestimate the vertical force exerted by the radiation because
it underestimates the ability of the radiation to stream in the
horizontal direction. If this were true of our problem it would
suggest that we have overestimated ftrap. However, we caution
that Davis et al.’s problem is not completely analogous to ours
(e.g., the dominant opacity for Davis et al. is the scattering
opacity of free electrons, rather than the absorption opacity of
dust), and it is not clear if the same would be true for our case.

6. CONCLUSIONS

We present numerical simulations of a strong radiation flux
passing through a column of gas confined by gravity. This
configuration is a reasonable proxy for a galactic disk or a
section of a young star cluster in which the radiation from
young, massive stars passes through the dusty ISM and exerts
dynamically significant forces. This system is characterized by
two dimensionless numbers, τ∗ and fE,∗. The former describes
the optical depth of the gas column computed using the
temperature at its surface, and the latter describes the ratio of
radiation pressure force to gravitational force in this gas. We
use these simulations to study whether radiation is able to drive
turbulence or produce winds in the regime where the radiation
force is sub-Eddington for the cool gas at the top of the disk/the
edge of the young cluster (fE,∗ < 1), but the gas is optically thick
(τ∗ > 1), so that the higher temperatures make the gas super-
Eddington near the disk midplane/cluster center. The disks of
ULIRGs and some young star clusters in non-ULIRG galaxies
are in this regime.

We find that, in this regime, radiation forces drive the matter
into a thin sheet which then breaks up due to RRT instability
(Figures 5, 9, and 10). Once this instability reaches its full
nonlinear development, it taps a fraction of the radiation energy
and uses it to drive supersonic turbulent motions in the gas. In
the parameter regime appropriate to ULIRGs and young clusters
the velocity dispersion can approach Mach 10, sufficient to fully
explain the turbulence observed in young protocluster gas clouds
in the Milky Way. ULIRGs show significantly greater velocity
dispersions, which suggest that either radiation pressure-driven
instabilities cannot drive turbulence at the required levels, or
that ULIRGs are closer to the Eddington limit at the cool tops
of their atmospheres than current observations suggest; this is
entirely possible, given the observational uncertainties.

We also find that RRT instability leads to a configuration in
which the matter is concentrated in filaments, while the radiation
flux is concentrated in low-density channels (Figures 9 and 10).
In this configuration radiation is not fully trapped by the gas. As a
result, the actual mean force applied to the gas never exceeds that
applied by gravity, despite the fact that gas near the midplane is
super-Eddington. We find that radiation passing through slabs of
matter with fE,∗ < 1 does not drive significant mass ejection or a
noticeable wind even if τ∗fE,∗ � 1. The ratio of the momentum
transferred to the gas to that carried by the radiation field,
defined as 1 + ftrap where ftrap is the trapping factor, reaches
a value (given by Equation (51)) that ensures that the mean
Eddington ratio is unity. These numerical results are in conflict
with the assumptions built into analytic models and sub-grid
implementations of radiation pressure feedback in numerical

simulations, which either limit ftrap ∼ 1 or allow substantially
larger values of ftrap. Simulations based on these assumptions
should be recomputed using our improved determination of ftrap.
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dation, the NSF through grant CAREER-0955300, and NASA
through Astrophysics Theory and Fundamental Physics Grant
NNX09AK31G, and a Chandra Space Telescope Grant. T.A.T.
acknowledges support from the Alfred P. Sloan Foundation and
NASA grant NNX10AD01G.

APPENDIX

RESOLUTION STUDY

To check the dependence of our results on the numerical
resolution of the simulations, we rerun simulation T10F0.25 at
half-resolution; we call this run T10F0.25_LR, and describe its
properties in Table 2. Since the instability in its fully saturated
state is chaotic, we do not expect the results of runs T10F0.25
and T10F0.25_LR to be identical in more than a statistical
sense in the nonlinear regime. Figure 11 shows a comparison
of the time evolution of the gas velocity dispersion, Eddington
ratio, and trapping factor in the two runs, and Table 3 gives the
quantitative results. As the figures and table show, the results are
in line with what one would expect for a converged calculation.
At early times, before the instability becomes nonlinear, σ , 〈fE〉,
and ftrap are nearly identical in the two runs. As time goes on,
the instability goes nonlinear, and the flow becomes chaotic, the
two runs diverge, but they remain statistically nearly identical.
In particular, the primary result that the mean Eddington ratio
self-regulates to unity at late times once the instability is fully
saturated is found at both resolutions. The time-averaged values
of σ and τIR differ by ∼10% between the two runs, but these
differences are smaller than the fluctuations in time in these
quantities found in each run, and thus are consistent with simply
being the results of random sampling of the chaotic flow pattern.

Figure 11. Comparison of the total velocity dispersion σ (top panel), mean
Eddington ratio 〈fE〉 (bottom panel, left axis), and trapping factor ftrap (right
axis) in runs T10F0.25 (thick lines) and T10F0.25_LR (thin lines). The results
are clearly quite similar. To avoid clutter, we do not show σx , σz, or the trapping
factor considering only material with vz > 0, as we do in Figures 7 and 8, but
these lines are also very similar in the two runs.

19



The Astrophysical Journal, 760:155 (20pp), 2012 December 1 Krumholz & Thompson

REFERENCES

Andrews, B. H., & Thompson, T. A. 2011, ApJ, 727, 97
Batejat, F., Conway, J. E., Hurley, R., et al. 2011, ApJ, 740, 95
Blaes, O., & Socrates, A. 2003, ApJ, 596, 509
Breitschwerdt, D., McKenzie, J. F., & Voelk, H. J. 1991, A&A, 245, 79
Chapman, N. L., Goldsmith, P. F., Pineda, J. L., et al. 2011, ApJ, 741, 21
Chiao, R. Y., & Wickramasinghe, N. C. 1972, MNRAS, 159, 361
Crutcher, R. M. 1999, ApJ, 520, 706
Davis, S. W., Stone, J. M., & Jiang, Y.-F. 2012, ApJS, 199, 9
Elmegreen, B. G. 1983, MNRAS, 203, 1011
Fall, S. M., Krumholz, M. R., & Matzner, C. D. 2010, ApJ, 710, L142
Ferrara, A. 1993, ApJ, 407, 157
Fisher, R. T. 2002, PhD thesis, Univ. California, Berkeley
Forbes, J., Krumholz, M., & Burkert, A. 2012, ApJ, 754, 48
Gendelev, L., & Krumholz, M. R. 2012, ApJ, 745, 158
Genel, S., Naab, T., Genzel, R., et al. 2012, ApJ, 745, 11
Hopkins, P. F., Keres, D., Murray, N., Quataert, E., & Hernquist, L. 2011a,

MNRAS, in press (arXiv:1111.6591)
Hopkins, P. F., Quataert, E., & Murray, N. 2011b, MNRAS, 417, 950
Hopkins, P. F., Quataert, E., & Murray, N. 2012a, MNRAS, 421, 3488
Hopkins, P. F., Quataert, E., & Murray, N. 2012b, MNRAS, 421, 3522
Ipavich, F. M. 1975, ApJ, 196, 107
Jacquet, E., & Krumholz, M. R. 2011, ApJ, 730, 116
Jubelgas, M., Springel, V., Enßlin, T., & Pfrommer, C. 2008, A&A, 481, 33
Klein, R. I. 1999, J. Comput. Appl. Math., 109, 123
Krolik, J. H. 1977, Phys. Fluids, 20, 364
Krumholz, M. R., & Burkert, A. 2010, ApJ, 724, 895
Krumholz, M. R., & Dekel, A. 2010, MNRAS, 406, 112
Krumholz, M. R., Klein, R. I., McKee, C. F., & Bolstad, J. 2007, ApJ,

667, 626
Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., & Cunningham,

A. J. 2009, Science, 323, 754

Krumholz, M. R., & Matzner, C. D. 2009, ApJ, 703, 1352
Kuiper, R., Klahr, H., Beuther, H., & Henning, T. 2012, A&A, 537, A122
Lacki, B. C., Thompson, T. A., & Quataert, E. 2010, ApJ, 717, 1
Levermore, C. D. 1984, J. Quant. Spectrosc. Radiat. Transfer, 31, 149
Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321
Li, H.-B., & Henning, T. 2011, Nature, 479, 499
Li, Z.-Y., & Nakamura, F. 2006, ApJ, 640, L187
Mathews, W. G. 1986, ApJ, 305, 187
Mathews, W. G., & Blumenthal, G. R. 1977, ApJ, 214, 10
Murray, N., Ménard, B., & Thompson, T. A. 2011, ApJ, 735, 66
Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569
Murray, N., Quataert, E., & Thompson, T. A. 2010, ApJ, 709, 191
Murray, N., & Rahman, M. 2010, ApJ, 709, 424
Nakamura, F., & Li, Z.-Y. 2007, ApJ, 662, 395
O’dell, C. R., York, D. G., & Henize, K. G. 1967, ApJ, 150, 835
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