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ABSTRACT

We report a series of simulations of the formation of a star cluster similar to the Orion Nebula Cluster (ONC),
including both radiative transfer and protostellar outflows, and starting from both smooth and self-consistently
turbulent initial conditions. Each simulation forms >150 stars and brown dwarfs, yielding a stellar mass distribution
that ranges from <0.1 M" to >10 M". We show that a simulation that begins with self-consistently turbulent density
and velocity fields embedded in a larger turbulent volume, and that includes protostellar outflows, produces an initial
mass function (IMF) that is consistent both with that of the ONC and the Galactic field, at least within the statistical
power provided by the number of stars formed in our simulations. This is the first simulation published to date that
reproduces the observed IMF in a cluster large enough to contain massive stars, and where the peak of the mass
function is determined by a fully self-consistent calculation of gas thermodynamics rather than a hand-imposed
equation of state. This simulation also produces a star formation rate that, while still somewhat too high, is much
closer to observed values than if we omit either the larger turbulent volume or the outflows. Moreover, we show
that the combination of outflows, self-consistently turbulent initial conditions, and turbulence continually fed by
motions on scales larger than that of the protocluster yields an IMF that is in agreement with observations and
invariant with time, resolving the “overheating” problem in which simulations without these features have an IMF
peak that shifts to progressively higher masses over time as more and more of the gas is heated, inconsistent with
the observed invariance of the IMF. The simulation that matches the observed IMF also qualitatively reproduces
the observed trend of stellar multiplicity strongly increasing with mass. We show that this simulation produces
massive stars from distinct massive cores whose properties are consistent with those of observed massive cores.
However, the stars formed in these cores also undergo dynamical interactions as they accrete that naturally produce
Trapezium-like hierarchical multiple systems of massive stars.
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1. INTRODUCTION

The origin of the stellar initial mass function (IMF) is a classic
problem in astrophysics. Since the IMF is most easily measured
in young star clusters, and appears to be essentially the same
in such clusters and in the field (e.g., Bastian et al. 2010), this
problem is closely linked to the problem of how star clusters
form. There have been numerous theoretical attacks on these
twin problems (see the review by McKee & Ostriker 2007),
but a major breakthrough in the past few years has been the
realization that the answer is tightly linked to the question of
gas thermodynamics. An isothermal gas, even a magnetized one,
has no characteristic mass scale (McKee et al. 2010; Krumholz
2011). This implies that the problem of the origin of the IMF,
which is observed to be invariant in both its shape and its
characteristic scale, is a separable one.

Models that describe the behavior of a isothermal gas, such
as those based on turbulent fragmentation (e.g., Padoan &
Nordlund 2002; Hennebelle & Chabrier 2008) or competitive
accretion (e.g., Bonnell et al. 2001a, 2001b), can predict a
shape for the IMF, but in order to determine a characteristic
scale must either appeal to additional physics or must define
a fiducial “cloud,” whose mean density or other properties
(e.g., the normalization of its linewidth–size relation) then

determine the location of the IMF peak. In the latter approach,
however, it is not clear on what scale one should measure
cloud properties: an entire giant molecular cloud, with a mean
density n ∼ 102 cm−3 obeying the Larson (1981) linewidth–size
relation, a massive clump with a mean density n ∼ 105 cm−3

and a linewidth far above the Larson value (e.g., Shirley et al.
2003), or some other scale? Different choices yield wildly
varying characteristic masses. Moreover, cloud properties vary
in sufficiently extreme galactic environments, for example
showing different linewidth–size relations (e.g., Rosolowsky &
Blitz 2005). Despite this variation, however, there is no evidence
for a corresponding variation in the IMF. These problems
strongly suggest that the origin of the IMF peak cannot be found
in the physics of isothermal gas. Instead, models that seek to
explain any characteristic mass scale in the IMF must appeal to
departures from isothermality (Rees 1976; Low & Lynden-Bell
1976; Spaans & Silk 2000; Larson 2005; Krumholz 2011).

Simulations of star formation mirror these trends depending
on the physics they include. Isothermal simulations always
produce a characteristic stellar mass that is determined by the
initial conditions or the numerical resolution (e.g., Martel et al.
2006), and can always be rescaled to produce an arbitrary stellar
mass scale. In contrast, those that include non-isothermality
produce characteristic mass scales that are determined by the
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mechanism that causes them to depart from isothermality,
whether it be an imposed equation of state (e.g., Bate & Bonnell
2005; Jappsen et al. 2005) or the inclusion of radiative transfer,
either without (Bate 2009b, 2012) or with (Krumholz et al.
2007a, 2010, 2011; Offner et al. 2009; Urban et al. 2010) the
further step of including stellar radiation. Since comparisons
between approximate equations of state and radiative transfer
calculations show that the former offer only an extremely poor
approximation, progress toward an understanding of the IMF’s
characteristic peak therefore requires radiation-hydrodynamic
simulations.

The radiation-hydrodynamic simulations that have been con-
ducted thus far have demonstrated several promising features.
First, radiation feedback suppresses the formation of brown
dwarfs, reproducing the observed turn-down in the IMF at low
masses (Bate 2009b; Offner et al. 2009). Second, simulations
including radiation feedback are able to suppress fragmentation
in very dense regions, allowing the formation of massive stars
when the conditions are approaching those seen in real regions
of massive star formation (Krumholz et al. 2007a, 2010). Third,
radiative simulations produce an IMF that does not vary with the
properties of the star-forming cloud in low-mass, low-density
environments (Bate 2009b, 2012) nor with the gas metallicity
(Myers et al. 2011).

While these results are encouraging, these simulation efforts
have for the most part been limited either to single massive cores
or to clouds of low density and/or low mass. For example, Bate
(2012) simulates a cloud of mean volume density 3 × 104 cm−3

and column density 0.2 g cm−2, forming ∼80 M" of stars, none
larger than ∼3 M". Peters et al. (2010) do form massive stars,
but from a cloud with a mean density of 103 cm−3 and a column
density of 0.026 g cm−2, far below the column density at which
radiative effects become important (Krumholz & McKee 2008;
Krumholz et al. 2010)—so low, in fact, as to be optically thin in
the near-infrared. In contrast, the mean mass and radius of the
star-forming regions studied by Faúndez et al. (2004) implies a
volume density >105 cm−3, a mass of ∼5000 M", and a column
density of 2 g cm−2, such that multiple massive stars would be
expected, and their radiation would be trapped effectively by
the cloud’s high optical depth. Similar Galaxy-wide surveys by
Shirley et al. (2003) and Fontani et al. (2005) that target regions
of active star formation produce comparable properties. Indeed,
the observed cluster mass function is dN/dM ∝ M−2 (Lada
& Lada 2003; Fall et al. 2009; Chandar et al. 2010), implying
that a majority of stars form in clusters larger than 1000 M" in
mass, large enough to possess O stars. The Orion Nebula Cluster
(ONC), therefore, is a far more typical star-forming environment
than most of the regions explored with radiation-hydrodynamic
simulations thus far.

In Krumholz et al. (2011, hereafter Paper I), we reported
the first radiation-hydrodynamic simulations to probe this more
typical regime of star formation; that calculation followed the
collapse of a 1000 M" cloud with a column density of 1 g cm−2,
leading to the production of >500 M" worth of stars, with an
IMF extending from ∼0.05 M" brown dwarfs to ∼30 M" O
stars. This calculation identified a problem. Radiative suppres-
sion of fragmentation, which seems necessary to explain the
invariant peak in the IMF and avoid overproduction of brown
dwarfs, became too efficient. As the calculation proceeded, the
cloud underwent a global collapse, leading to extremely high
star formation rates (SFRs) and accretion luminosities. As a re-
sult, the gas heated up to the point where further star formation
was suppressed. The net result was an IMF that was not invari-

ant, but instead had a peak that moved to systematically higher
masses as the calculation proceeded. At early times, there were
too few massive stars, and at late times too many. Since there is
no plausible mechanism to guarantee that all star-forming clouds
would stop producing stars at the same point in this evolution,
this result was inconsistent with the observed universality of
the IMF.

In Paper I, we conjectured that the problem could be resolved
by lowering the SFR per free-fall time, which would in turn
lower the accretion luminosity. Such a change is required by
observations even in the absence of the problems rapid star
formation creates in the IMF, because observed SFRs per free-
fall time are always a few percent across a very wide range of
star-forming environments (Krumholz & Tan 2007; Evans et al.
2009; Krumholz et al. 2012). In this paper, we test that conjec-
ture by performing additional simulations of the formation of
ONC-like star clusters, with two extra pieces of physics that
should lower the SFR per free-fall time. First, rather than simu-
lating an isolated star-forming clump as in Paper I, we embed our
initial clump in a larger volume of turbulent gas, and we initialize
the simulations such that our clump has self-consistently gener-
ated turbulent density and velocity structure. Second, we include
protostellar outflows. A number of authors have shown that such
outflows can inject significant energy into a star-forming cloud,
driving its turbulence and lowering its SFR (Li & Nakamura
2006; Nakamura & Li 2007; Matzner 2007; Wang et al. 2010;
Cunningham et al. 2011). Ideally, a third piece of physics should
also be included: magnetic fields. These both lower the SFR by
themselves (e.g., Price & Bate 2009), and also enhance the ef-
fectiveness of protostellar outflows (Wang et al. 2010). We plan
to do so in future work.

The remainder of this paper is organized as follows. In
Section 2, we describe our numerical methods and simulation
setup. In Section 3, we report the simulation results, and finally
we discuss their implications and draw conclusions in Section 4.

2. NUMERICAL METHODS

We simulate star-forming clouds using the orion code,
which includes radiative transfer (Howell & Greenough 2003;
Krumholz et al. 2007b; Shestakov & Offner 2008), hydrodynam-
ics (Klein 1999), self-gravity (Truelove et al. 1998), accreting
sink particles (Krumholz et al. 2004), and a model for proto-
stellar evolution and feedback, including stellar radiation and
outflows (Offner et al. 2009; Cunningham et al. 2011). Here,
we briefly summarize the equations we solve, the code itself,
and the initial conditions for the simulations. For the first two
of these topics, we refer the reader to Paper I for more de-
tails, since the physics included and the numerical methods are
identical except where specified below.

2.1. Equations and Algorithms

orion solves the equations of gravito-radiation-
hydrodynamics in the two-temperature, mixed-frame flux-
limited diffusion approximation. These equations are (Krumholz
et al. 2007b)

∂

∂t
ρ = −∇ · (ρv) −

∑

i

Ṁa,iWa(x − xi)

+
∑

i

Ṁw,iWw(x − xi) (1)
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Table 1
Simulation Parameters

Name Winds? Mc #c or Rc σc 〈ρ〉M tff #box N0 L ∆xL

(M") (pc) (km s−1) (g cm−3) (kyr) (pc) (AU)

SmNW No 1000 0.26 2.9 1.4 × 10−18 56 1.9 256 5 49
TuNW No 1000 0.46 1.4 8.6 × 10−18 23 0.46 256 4 23
TuW Yes 1000 0.46 1.4 8.6 × 10−18 23 0.46 256 4 23

Notes. Column 3: cloud mass; Column 4: cloud radius (for run SmNW) or box size (for runs TuNW and TuW); Column 6: mass-weighted mean
density at time t = 0; Column 7: free-fall time computed using 〈ρ〉M ; Column 8: size of computational box; Column 9: number of cells per
linear dimension on the coarsest AMR level; Column 10: finest AMR level; Column 11: grid resolution on the finest AMR level.

∂

∂t
(ρv) = −∇ · (ρvv) − ∇P − ρ∇φ − λ∇E

−
∑

i

ṗa,iWa(x − xi) +
∑

i

ṗw,iWw(x − xi)

(2)

∂

∂t
(ρe) = −∇ · [(ρe + P )v] − ρv · ∇φ − κ0Pρ(4πB − cE)

+ λ
(

2
κ0P

κ0R
− 1

)
v · ∇E −

(
ρ

mp

)2

Λ(Tg) (3)

−
∑

i

Ėa,iWa(x − xi) +
∑

i

Ėw,iWw(x − xi) (4)

∂

∂t
E = ∇ ·

(
cλ

κ0Rρ
∇E

)
+ κ0Pρ(4πB − cE)

− λ
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2
κ0P
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)
v · ∇E − ∇ ·

(
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vE

)

+
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ρ

mp

)2

Λ(Tg) +
∑

i

LiW (x − xi) (5)

d

dt
Mi = Ṁi (6)

d

dt
xi = pi

Mi

(7)

d

dt
pi = −Mi∇φ + ṗi (8)

∇2φ = 4πG

[

ρ +
∑

i

Miδ(x − xi)

]

. (9)

In these equations, ρ, v, P, and e are the density, velocity,
pressure, and total (thermal plus kinetic) energy density of the
gas, E is the energy density of the radiation,φ is the gravitational
potential, κ0P and κ0R are the Planck and Rosseland mean
opacities of the dust-plus-gas fluid, λ is the flux-limiter, Λ is
the rate of non-dust cooling (via line and continuum processes
in gas at temperatures !103 K where the dust sublimes), and

mp is the proton mass. For more information on the flux-limiter,
hot gas cooling rate, and choice of dust opacities, we refer the
reader to Paper I.

Terms subscripted by i refer to stars; xi , Mi, and pi are the
position, mass, and momentum of the ith star; Ṁi , ṗi , and Ėi are
the rate at which those stars add or remove mass, momentum,
and energy from the gas; Li is the luminosity of star i; and Wi
is the weighting kernel that spreads the stellar interaction over
some number of computational cells. The equations we solve
here differ from those in Paper I in that, in addition to ac-
cretion (the terms subscripted with a), we also include pro-
tostellar winds (the terms subscripted with w). Stars accrete
gas from the computational grid following the sink particle
method of Krumholz et al. (2004), and each sink particle is
linked to a protostellar evolution code that computes the instan-
taneous stellar radius and luminosity based on the star’s accre-
tion history, following the method described in the Appendix
of Offner et al. (2009). In addition, during each time step,
each star returns a portion of the mass it accretes to the grid
in the form of a collimated protostellar wind. For details of
the numerical implementation, see Cunningham et al. (2011).
Our wind parameters are the same as in that paper, i.e., each
star ejects a fraction fw/(1 + fw) = 0.21 of the gas it ac-
cretes (so fw = 0.27), this material is launched with a velocity
fv = 1/3 that of the Keplerian speed at the stellar surface, and
the wind gas has a temperature of 104 K at launch. It is colli-
mated along the axis defined by the stellar angular momentum
vector.

Orion solves Equations (1)–(9) within an overall adaptive
mesh refinement (AMR) structure, in which the entire domain is
discretized onto a coarse grid of size N0 cells on a side, denoted
level 0. Sub-regions within the domain are then covered by
progressively finer grids. The grid on level # has a resolution a
factor of 2# better than that of the coarse grid, and evolves with
a time step a factor of 2# smaller. These grids are automatically
added and removed on the fly as the calculation proceeds, based
on user-specified criteria, up to some pre-specified maximum
level L.

2.2. Simulation Setup

We compare three different simulations, which we refer to
as smooth, no wind (SmNW), turbulent, no wind (TuNW), and
turbulent, with winds (TuW); in terms of physics these differ
in that the NW simulations have protostellar outflows disabled.
We summarize this and other properties of the simulations in
Table 1. All simulations consist of a mass Mc = 1000 M" of
gas with a mean surface density Σc = 1 g cm−2 (arranged
as described below). Throughout the cloud, we set the gas
temperature and the radiation energy density to Tg = 10 K
and E = aT 4

g = 7.56 × 10−11 erg cm−3, respectively.
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For run SmNW, we use a setup identical to run HR from
Paper I (though here we have continued the simulation further
in time than we described in that paper), so we only briefly
discuss its properties here, and refer readers to Paper I for a fuller
description. In run SmNW, the initial gas distribution is a sphere
with a radius Rc = 0.26 pc. The density distribution is smooth,
and consists of a central core of uniform density that extends
to half the cloud’s radius, surrounded by an outer region within
which the density falls off with radius as r−1.5, as suggested
by observations of massive clumps (e.g., Sridharan et al. 2005;
Beuther et al. 2006). The gas is given an initial turbulent velocity
field with a dispersion of σc = 2.9 km s−1 (one-dimensional),
corresponding to an initial virial ratio α = 5σ 2

c Rc/GMc = 2.5.
The velocity power spectrum is P (k) ∝ k−2, drawn without
imposing any bias in favor of solenoidal or compressive modes
following the procedure of Dubinski et al. (1995). Outside the
sphere of gas, we place a zero-opacity ambient medium with a
temperature 100 times larger and a density 100 times smaller
than that of the gas at the sphere’s edge. We emphasize that,
because the density gradient in the gas only extends to half
the initial radius, the overall center to edge density contrast is
only a factor of 2.8, substantially less than that induced by the
turbulent shocks. Thus, this initial condition is quite similar
to that adopted by other authors who have simulated isolated
clouds, e.g., Bonnell et al. (2003) and Bate (2012).5

In runs TuNW and TuW, we initialize so that, unlike in run
SmNW, both the initial density and velocity fields are self-
consistently turbulent. We set up a periodic domain of length
#c = 0.46 pc on a side, so that Σc = 1 g cm−2 averaged over the
box. To initialize the simulation, we impose the same turbulent
velocity field as in run SmNW, scaled to a velocity dispersion
σc = 1.4 km s−1, corresponding to α = 1/2 if we use #c/2
in place of Rc. Although this means the gas is less turbulent
initially than in run SmNW, as we see below, damping of the
turbulence in run SmNW brings the α values closer together as
the runs progress. To produce a density field consist with this
velocity field, we drive the turbulence and allow the simulation
to evolve for two crossing times. During this period we turn off
both gravity and radiation, and we hold the gas isothermal at a
temperature Tg = 10 K by setting the gas ratio of specific heats
to γ = 1.0001; since, in the absence of stellar sources, molecular
cloud gas is close to isothermal, this should be a very good
approximation, and ignoring radiation during this setup phase
significantly reduces the computational cost. During this setup
phase we also fix the computational resolution at 5123 cells, with
no further refinement. At the end of two crossing times, we turn
off driving, change the gas ratio of specific heats toγ = 5/3, turn
on gravity and radiation, and return to our normal refinement
criteria (see below). This state represents the initial condition for
runs TuNW and TuW. Note that, since the turbulence is driven

5 An additional difference between our setup and that of Bonnell et al. (2003)
and Bate (2012) is that we place an ambient medium outside our cloud that is
in thermal pressure balance with the material at the cloud edge, while the
smoothed particle hydrodynamics (SPH) simulations of Bonnell et al. and Bate
have a vacuum outside their clouds. However, this difference is almost
certainly negligible. The thermal pressure of our ambient medium is set equal
to the thermal pressure of the cloud, which is smaller than either the ram
pressure or the self-gravitational weight of the cloud by a factor of ∼100.
Thus, the extra pressure provided by the external medium will enhance the
collapse that would occur due to gravity alone by only ∼1%. Even this is
likely an overestimate of the difference between the two simulation methods,
because, while formally the SPH simulations have vacuum outside their
clouds, SPH creates an artificial surface tension at density discontinuities
(Price 2008), and this will act very much like a confining external pressure.
Our Eulerian simulation method does not suffer from this problem.

Figure 1. Column density distribution in the turbulent initial conditions used
for runs TuNW and TuW.
(A color version of this figure is available in the online journal.)

mostly on large scales, the result of this procedure is essentially
a single, dense, turbulent cloud, surrounded by lower density
turbulent material; we show this state in Figure 1. This clump
is therefore analogous to the isolated one in run SmNW, but is
surrounded by a realistic turbulent environment rather than an
artificial hot ambient medium.

In all simulations, the refinement criteria used to add higher
resolution grids are the same. Specifically, we add resolution in
any cell that satisfies one of the following three conditions: (1)
the density in the cell exceeds the local Jeans density (Truelove
et al. 1997), ρJ = J 2πc2

s /G∆x2
l , where J = 1/4 is the Jeans

number, cs =
√

kBT /µ is the isothermal sound speed, and ∆xl

is the grid spacing on AMR level l; (2) the radiation energy
gradient is sharp enough so that |∇E|/E > 0.15/∆xl (although
we sometimes temporarily reduce the coefficient below 0.15 for
stability reasons in the TuNW and TuW runs); and (3) the cell
is within a distance of 16∆xl of any star particle. We refine to
a maximum resolution of 49 AU (L = 5) in run SmNW, and
23 AU (L = 4) in runs TuNW and TuW. Finally, we note that
while the hydrodynamic and gravitational boundary conditions
are necessarily different in the smooth and turbulent runs, the
great majority of the star formation in the turbulent runs occurs in
sub-regions much smaller than the entire computational volume,
and thus the periodic boundary conditions have minimal impact.
We also impose Marshak boundary conditions on the radiation
in runs TuNW and TuW in order to let radiation escape the
computational volume (cf. Offner et al. 2009).

3. RESULTS

Before examining the results of our simulations, we first
mention two subtleties in the analysis that apply to the remainder
of this discussion. First, since we are comparing runs with
different initial conditions, it is important to normalize the
times so that differences between the runs reflect the underlying
physical behavior, and not simply that the dynamical time is
different in different cases. Moreover, in the runs with turbulent
initial conditions, the strong initial turbulence guarantees that
the majority of the mass is compressed into structures that
are significantly denser than the volume-averaged density.
Given these considerations, the most natural approach, which
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we adopt, is to measure times in units of the free-fall time
tff =

√
3π/32Gρ evaluated at a density equal to the initial

mass-weighted density 〈ρ〉M , since this is the dynamical time
appropriate to the bulk of the matter. This approach also has
the advantage that it is the most natural basis for observational
comparison, since an observation would detect the bulk of the
mass, and would be sensitive to the typical density at which
this mass resides. For this reason, in what follows, whenever we
refer to times, we normalize to tff defined in this manner. We
report this quantity in Table 1.6 The second subtlety is that, as
in Paper I, we only regard stars as collapsed objects once their
mass exceeds 0.05 M", based on one-dimensional calculations
of the mass at which second collapse to stellar densities occurs
(Masunaga & Inutsuka 2000). We allow smaller objects to merge
with one another and with more massive stars. We therefore
restrict our analysis to objects larger than this mass.

3.1. Overall Evolution and Morphology

In Figures 2–4, we show the large-scale column density and
density-weighted temperature distributions in for runs SmNW,
TuNW, and TuW, respectively. In all three, we observe the same
general trend: the turbulence creates an overdense region, which
then begins to collapse and form stars. The collapsing structures
are filamentary, and the stars are born along the filaments, and
particularly at the nodes where the filaments intersect. The
temperature is initially small, but as stars form, hot spots around
individual stars appear, and these gradually spread over time.7

There are a few interesting points to take from these plots.
One involves the morphology of the heated regions. In the
turbulent runs, even at late times the temperature distribution
looks more like a series of islands of heated gas surrounded by
a large medium that is either at or quite near to the background
temperature. In effect, one can discern something like individual
protostellar cores that are heated by the star or star system
embedded within them. In contrast, by the end of run SmNW
there is simply a single, concentrated region of heating, and
one cannot discern individual cores any more. As we show
below, this difference proves to be important in determining the
evolution of the IMF.

Another interesting point is that the overall morphology is
surprisingly similar in runs TuW and TuNW, despite the change
in whether we include protostellar winds or not. Partly, this
is a function of the fact that wind-blown bubbles are fairly
low column density structures, and that we are looking at
static slices. In an animation of the column density field, one
readily discern outflows driving shells of gas orthogonal to the
filaments. However, this clearly has a relatively small effect on
the large-scale morphology.

3.2. Star Formation Rate and History

In Figure 5, we show the star formation history of each
of our simulations. The most immediate and striking thing
about the figure is the difference in star formation histories
between the smooth and turbulent runs. Run SmNW starts off

6 Note that in Paper I we instead used the volume-weighted mean density to
compute the free-fall time for run SmNW; however, because the initial density
field is very smooth, the difference between volume- and mass-weighted mean
density free-fall times for this run is only ∼20%.
7 In runs TuNW and TuW, there are sometimes brief increases in the overall
background temperature level visible in some snapshots, but these are
short-lived and small, generally keeping the temperature <20 K. These flashes
are associated with brief increases in the accretion luminosity that are large
enough to heat the entire simulation volume above 10 K for short periods.

Figure 2. Column density (left) and density-weighted mean temperature (right)
in run SmNW. The times of each pair of images are indicated in the right
column, running from t/tff = 0 to 1.25 in steps of 0.25. In the column density
plot, white circles indicate the positions of star particles, with the size of the
circle indicating the mass of the star. In the right column, the temperature shown
is the radiation temperature Tr , defined implicitly by E = aT 4

r . We show this
rather than the gas temperature because the gas and radiation temperatures are
nearly equal everywhere in the cloud, except in the hot ambient medium outside
the cloud in run SmNW, and in material ejected by protostellar outflows in run
TuW. Using the radiation temperature provides a convenient means to filter this
contribution.
(A color version of this figure is available in the online journal.)

its star formation more slowly than TuNW or TuW, which is
not surprising since its initial density structure is smooth, and
possesses no high-density peaks that collapse quickly. However,
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Figure 3. Same as Figure 2, but for run TuNW. Note that the color scales are
the same, but the size of the region shown is slightly different.
(A color version of this figure is available in the online journal.)

star formation in that run accelerates dramatically as the time
approaches tff . Late in the simulation, the SFR approaches
∼1–2Mc/tff . In contrast, in runs TuNW and TuW the SFR is
roughly constant and fairly low. After a time tff , only about
10% of the mass has been turned into stars. There is no obvious
acceleration with time. Note that, although part of the difference
in SFRs comes from the difference in free-fall times between
the turbulent and smooth runs, even if we were to measure
in seconds rather than free-fall times, run SmNW would have
a much larger SFR than TuNW or TuW. We summarize the
dimensional and dimensionless SFRs in the simulations in

Figure 4. Same as Figure 3, but for run TuW.

(An animation and a color version of this figure are available in the online
journal.)

Table 2. Observationally, the dimensionless SFR (Krumholz
& McKee 2005)

εff ≡ Ṁ∗

(1/2)Mc/tff
, (10)

where the factor of 1/2 arises because half the cloud mass
is above the density 〈ρ〉M used to define tff , is ∼1%, with
roughly half a dex scatter, over a very wide range of den-
sities and galactic environments (Krumholz & Tan 2007;
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Figure 5. Total mass in stars (top) and total number of stars (bottom) as a
function of time in runs SmNW, TuNW, and TuW.
(A color version of this figure is available in the online journal.)

Evans et al. 2009; Krumholz et al. 2012).8 Compared to the
table, we see that εff in runs TuNW and TuW is still roughly an
order of magnitude too high compared to observations, but it is
roughly an order of magnitude lower than in run SmNW. We
discuss the origin of the remaining discrepancy between TuW
and the observations further in Section 4.3.

The difference in SFR between the runs may be understood
readily if we consider what happens to the turbulence, which, in
these runs with no magnetic fields, is the main mechanism for
regulating the SFR. In run SmNW, the initial turbulence present
in the gas decays, and after one crossing time, which is ∼tff ,
this decay gives rise to a global collapse and an accelerating
SFR. In contrast, for runs TuNW and TuW, the box crossing
time, and thus the turbulent decay time, is significantly longer
than the free-fall time at the mass-weighted mean density. It is
comparable to the free-fall time at the volume-weighted mean
density, which is much longer. The difference in star formation
history between the runs makes a critical point: it matters for
their SFRs that star-forming dense clumps like the one out of
which the ONC formed are not isolated objects. They are instead
the inner parts of larger turbulent structures, and the energy from
those larger scales is able to cascade down to smaller scales and
maintain the turbulence for longer than the dynamical times
of the small clumps. The turbulent decay timescale in a proto-
ONC gas clump is the crossing time of its parent molecular
cloud, not the crossing time of the small clump. This point has
previously been made by Falceta-Gonçalves & Lazarian (2011)
in the context of non-self-gravitating turbulence, and our work
strongly confirms their conclusion and extends it to the self-
gravitating case.

In contrast, the differences between the two turbulent runs
are relatively small. The SFR measured by mass (as opposed
to number of stars) is ∼20% lower in TuW than in TuNW.
Since our model for protostellar outflows prescribes that 27%

8 There is some subtlety in the observational comparison here, because real
observations usually have an upper limit on the density to which they are
sensitive, for example because the tracer being used depletes or becomes very
optically thick at high density. Since we include all the mass above 〈ρ〉M in our
computation of εff , we are not capturing this effect. However, the change in
mass it would induce is small, because both real star-forming clouds and our
simulated turbulent clouds have density probability distribution functions that
are sharply declining at densities above the peak. Thus, the amount of mass
missed due to the density upper limit in the observations is likely to be very
small.

Table 2
Simulation Outcomes

Name tfin/tff M∗,fin/Mc N∗ 103Ṁ∗ εff
(M" yr−1)

SmNW 1.25 0.70 540 16 1.78
TuNW 1.39 0.20 127 7.4 0.33
TuW 1.32 0.15 158 6.2 0.28

Notes. Column 2: time at which run was stopped; Column 3: total stellar mass
at the end of the run; Column 4: number of stars present at the end of the
run; Column 5: time-averaged star formation rate in the run, measuring from
formation of the first star to the end of the run; Column 6: dimensionless star
formation rate εff ≡ Ṁ∗/[(1/2)Mc/tff ].

of the mass that reaches a star particle (and thus the inner wind
launching region) be ejected in an outflow, this reduction in
the SFR is surprisingly small. This implies that there must be
very little entrainment of additional material by the outflows,
and even that some of the material that is entrained by outflows
must be rapidly stopped and recycled back into the star-forming
region. Visual inspection of the morphology of the outflows and
accretion flows confirms that this is in fact the case: outflow
shocks visible in the animations are generally traveling at right
angles to the filaments feeding the stars. This is not an accident.
Each star launches its bipolar outflow along the axis specified by
its angular momentum vector. If stars are being fed primarily by
filaments lying in a plane, as is the case in all our runs, then most
of their angular momentum vectors tend to be perpendicular to
that plane, producing relatively little entrainment. The minority
of outflows that do end up aligning with the filaments possess too
little momentum to significantly hinder the accretion flow, and
the matter they do eject is stopped by the greater ram pressure
of the infalling gas. As a result, it is re-accreted fairly rapidly.
Whether this behavior is actually realistic is a separate question,
one to which we return in Section 4.

3.3. The IMF

Another interesting feature in Figure 5 is that the mass in stars
in run TuW is ∼20% smaller than in TuNW at equal times, but
that the number of stars is ∼20% larger in TuW. This indicates
an important shift in the stellar IMF between the runs. Although
it is less obvious visually from Figure 5, there are also very
important differences in the IMF between run SmNW and the
other two runs. We now examine these.

For the purposes of quantitative comparison between differ-
ent simulations, and between simulations and observations, it is
helpful to examine percentiles in the cumulative mass distribu-
tion function for stars produced in the runs. We define the nth
percentile mass Mn implicitly via the equation

∑

m∗<Mn

m∗ = n

100

∑
m∗, (11)

where m∗ is the mass of each individual star, the first sum runs
over stars with masses m∗ < Mn, and the second sum rus over
all stars. Thus, for example, M50 is defined by the condition that
the sum of the masses of all stars smaller than M50 constitutes
50% of the total stellar mass. We also examine the mean stellar
mass, defined by

M =
∑

m∗

N∗
, (12)

where N∗ is the total number of stars. We can measure each
of these quantities directly from our simulations at every time.
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Figure 6. Evolution of the IMF over time in the three simulations. Thick lines
indicate the 50% percentile mass M50 (see the main text for formal definition),
while the shaded regions indicate the range between the 25th and 75th percentile
masses M25 and M75. Thin lines indicate the mean mass M . Colors indicate the
run, as described in the legend. Circles along the thick lines indicate the points at
which the stellar mass reaches 50 M", 100 M", 150 M", etc. For comparison,
thick gray unbroken horizontal lines show M25, M50, and M75 for a fully sampled
Da Rio et al. (2012) IMF (Equation (13)), and the thin gray unbroken horizontal
line shows M for this IMF. Dashed lines show the equivalent quantities for a
Chabrier (2005) IMF.

We can also compare the simulation IMFs to observed ones.
We select two observational IMFs for comparison. In ONC,
Da Rio et al. (2012) find for low-mass stars an IMF well fit
by a lognormal function with a width of σ = 0.44 in log m∗,
centered on log m∗,c = −0.45 (measured in M"; their Table 3).
The highest mass bin in Da Rio et al.’s sample is ∼2 M", so
to extend this to higher masses we adopt a Chabrier (2003)
functional form in which the lognormal at low mass has a power-
law tail of slope −1.35 at high mass. Thus, the observed ONC
IMF to which we compare is

dN

d log m∗
∝

{
e−(log m∗−log m∗,c)2/2σ 2

, m∗ < M"
e− log m2

∗,c/2σ 2
m−1.35

∗ m∗ " M",
(13)

where all masses are in Solar units, over a range from
0.05 to 150 M". For this IMF, M25 = 0.69 M", M50 = 1.8 M",
M75 = 7.6 M", and M = 0.86 M". The second comparison
IMF is the system IMF of Chabrier (2003, 2005) for the galac-
tic field, which also seems to fit other star clusters reasonably
well (Parravano et al. 2011). We use the system rather than
the single star IMF because we do not resolve tight binaries.
This IMF has the same functional form as Equation (13), but
with log m∗,c = −0.60 and σ = 0.55. The corresponding per-
centile and mean values are M25 = 0.63 M", M50 = 1.7 M",
M75 = 7.2 M", and M = 0.73 M". The Chabrier and Da Rio
et al. IMFs differ significantly in the number of brown dwarfs
and very low mass stars they predict, but converge at masses
above a few tenths of M". For a discussion of possible origins
of the discrepancy between the two IMFs, we refer readers to
Da Rio et al. (2012).

In Figure 6, we plot the time evolution of M25, M50, M75,
and M in each of our simulations, and for the observed Da Rio
et al. (2012) and Chabrier (2005) IMFs. The figure immediately
reveals some interesting results. First, we see that in run TuW the
IMF is in remarkably good agreement with the observed IMFs.
At the end of the simulations, the mean mass M agrees with the
observed Da Rio et al. value to better than 20%, and the 50th

percentile mass M50 to less than a factor of two; we show below
that this level of disagreement is consistent with coming simply
from statistical sampling variance. Moreover, and perhaps more
importantly, the agreement is good at almost all times when
there is a significant mass of stars present, because the IMF
in run TuW is very stable over time. From ∼0.7tff , when the
total stellar mass reaches 50 M", to ∼1.3tff , when it reaches
150 M", we find that M50, M25, and M stay constant to within
∼50%; M75 changes slightly more, almost certainly as a result of
undersampling the high end of the IMF when there are relatively
few stars. The change becomes even smaller at later times. From
the time when 10% of the mass is in stars (t ∼ 1.0tff) to when
15% is in stars, M50 changes by less than 5% and M by less
than 10%.

In contrast, for run TuNW, the mean mass is relatively stable,
but M50 rises systematically with time, increasing by a factor of
2.2 as the stellar mass grows from 50 to 200 M", corresponding
to times t/tff ∼ 0.7 to 1.4. This reflects more rapid growth of
the more massive stars in the run where winds do not suppress
accretion. Moreover, in this run, the rate at which new stars form
is lower than in run TuW. The agreement with observations in
this case is clearly weaker; the run produces an IMF that is too
top-heavy.

The changes with time in run TuNW, however, are small
compared to those that occur in run SmNW. There M50 and
M increase by nearly an order of magnitude in a time less than
0.5tff . Each increase in stellar mass of 50 M" is accompanied by
a factor of ∼2 gain in M50. This pattern of growth occurs due to
the “overheating” problem discussed in Paper I: in run SmNW,
star formation is much too rapid and too concentrated, and this
produces a rapidly rising accretion luminosity that heats the gas
mass to the point where the Bonnor–Ebert mass is too large for
stars for new small stars to form. Accretion continues, but it is
entirely captured by the existing stellar population, leading to
an IMF whose mean and median mass rise with time. Moreover,
since all the stars are growing in lockstep, the mass distribution
in this run is too narrow as well.

We can also make this comparison more quantitatively. In
Figures 7 and 8, we show the cumulative and differential mass
distributions produced in our simulations at various times, and
compare to observed IMFs. At each time in the simulations,
we can quantitatively described the level of consistency or
inconsistency between the simulated and observed IMFs using a
Kolmogorov–Smirnov (K-S) test. We plot the result in Figure 9.
Examining the figures, we see that run SmNW is strongly
inconsistent with both observed IMFs at most times. At early
times, the IMF is too bottom-heavy, but as time increases the
IMF peak shifts to higher masses. Around t/tff = 1, run
SmNW is fully consistent with the Chabrier IMF, and marginally
consistent with the da Rio one, but at later times the IMF peak
continues to shift to higher values and becomes inconsistent
with both once more. This is the overheating problem described
in Paper I. For run TuNW, the IMF peak does not shift
systematically with time, and so there is no overheating problem.
However, the absolute value of the mean mass is systematically
too high, as shown in Figure 6. As a result, the overall level
of agreement between the simulation and the observed IMFs
is poor. On the other hand, run TuW is generally statistically
consistent with both the da Rio and Chabrier IMFs at most times.

It is important to add some caveats to this result. First, the K-S
statistic does not account for the observational and systematic
uncertainties in the observed IMFs. Were these uncertainties
to be included, it is entirely possible that run TuNW would
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Figure 7. Cumulative mass functions in the simulations, compared to observations. The top set of panels shows the cumulative distribution by mass, and the bottom
shows the distribution by number. Within each set of panels, columns show the results from runs SmNW, TuNW, and TuW, as indicated. Rows correspond to times
t/tff = 0.75, 1.0, and 1.25, as indicated. In each panel, the colored line indicates the fraction of stellar mass fM (<m∗) or the fraction of the number of stars fN (<m∗)
in stars with mass less than m∗ in the simulation, and the gray band indicates the range from the 10th to 90th percentile resulting from drawing a large number of
clusters from the Da Rio et al. (2012) IMF. The hatched band is the 10th to 90th percentile range for a Chabrier (2005) IMF. For details on how this drawing is done,
see the Appendix to Paper I. The label in each panel indicates the total mass or number of stars at that time in that simulation.
(A color version of this figure is available in the online journal.)
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Figure 8. Same as Figure 7, but showing differential rather than cumulative mass distributions. The histogram value in each bin shows the total fraction of all stellar
mass (for the top panels) or the total fraction of the number of stars (for the bottom panels) falling within that bin. Thick colored lines indicate the simulation result,
and gray lines indicate the results of drawing an equal mass stellar population from the Da Rio et al. (2012) IMF. For the gray histogram, the histogram values give
the median result, and the vertical lines indicate the range from the 10th to the 90th percentile. We omit the Chabrier (2005) IMF here to reduce clutter.
(A color version of this figure is available in the online journal.)
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Figure 9. Level of statistical agreement between the simulation and observed
IMFs as a function of time. At each time, the quantity plotted is the result of a
K-S test comparing the three simulations (green for SmNW, blue of for TuNW,
and red for TuW) to the Da Rio et al. (2012, thick lines) and Chabrier (2005, thin
lines) IMFs. The right axis shows the P-value returned by the K-S test, where
1−P is the confidence level at which we can rule out the null hypothesis that the
simulation and observed IMFs are drawn from the same underlying distribution.
The left axis shows the equivalent confidence level measured in number of
standard deviations, which is related by Nσ =

√
2 erfc−1(P ), with erfc the

complementary error function. The dashed horizontal black line indicates a
confidence level of 2.5σ .
(A color version of this figure is available in the online journal.)

be consistent within them, and perhaps even that run SmNW
would be, at least for a longer period of time. Second, the K-S
test itself is an imperfect tool. It is most sensitive to differences
in distributions near the 50th percentile, and less sensitive to
differences on the tail of the distribution. Thus, for example,
Figure 8 shows that run SmNW has a slight excess of stars in
the ∼3–10 M" range that is clearly visible in a differential mass
function on a logarithmic axis. The K-S test does not regard this
excess as statistically significant, but it is conceivable that a more
sensitive statistical test might. Indeed, one can get a sense of the
level of statistical power that the K-S test provides when applied
to our simulations from the fact that, formally, our simulations
are consistent with both the da Rio and Chabrier IMFs. This
is partly because we are not performing a comparison in the
mass range 0.01–0.05 M" where the two distributions are most
different, but it is also partly because, with only 158 stars in run
TuW, there is significant sampling noise.

3.4. Gas Thermodynamics

The fragmentation of the gas is driven by its thermodynamics,
and we can gain insight into the differences in outcome between
the runs by examining the temperature structure of the gas.
In Figure 10, we show phase diagrams of the three runs at
three different times. Not surprisingly, each of the runs is quite
different. First examining run SmNW, we note that at time
t/tff = 0.75, the bulk of the gas in run SmNW is cooler than
in the other two runs. This reflects the fact that the total stellar
mass in run SmNW is comparable to that in runs TuNW and
TuW at this point. Since the free-fall time is longer in run
SmNW, this corresponds to a lower total accretion rate and
thus a lower accretion luminosity. However, as star formation in
run SmNW accelerates, the accretion luminosity rises and the
gas heats, while the gas in the other two runs stays relatively
cool. Quantitatively, at the final times shown in the bottom row
of Figure 10, 42% of all the gas is at temperatures above 50 K
in run SmNW (excluding the ambient medium); the equivalent

figures in both runs TuNW and TuW are 7%. It is important to
note that this difference is driven by accretion luminosity and
not by the intrinsic luminosity of massive stars. If we instead
examine run SmNW at time t/tff = 1.0, then the most massive
star present is 8.8 M", smaller than the most massive stars
present at time t/tff = 1.25 in runs TuNW (13.3 M") and TuW
(9.9 M"). Nonetheless, we still find that 23% of the mass is at
temperatures above 50 K, and 64% is above 30 K, i.e., there is
more hot gas in run SmNW even when the individual stars are
less massive.

The rapid heating in run SmNW gives rise to the overheating
problem identified in Paper I—bulk heating of all the gas makes
it impossible for small stars to form, thus shifting the IMF
systematically to higher mass as time goes on. Runs TuNW and
TuW clearly do not suffer from this problem. Even at late times,
the great majority of their gas is at temperatures of no more
than 10–15 K, and there is very little material at temperatures of
more than 50 K. Although there clearly is gas being warmed by
stars in these runs, there remain pockets of cold gas at densities
>10−15 g cm−3 and temperatures <15 K that is capable of
producing new stars with masses ∼0.01 M". These are visible
in Figure 10, where the phase diagram reveals the presence of
material for which the Bonnor–Ebert mass,

MBE = 1.18
c3
s√

G3ρ
, (14)

is below 0.01 M". In contrast, at late times in run SmNW, there
is no material for which MBE is this small. To be quantitative,
at the times shown in the final panel of Figure 10, run SmNW
contains only 1.8 × 10−3 M" of material in the density and
temperature region where MBE < 0.01 M", i.e., too little mass
to actually create a star. The corresponding figures for runs
TuNW and TuW are 0.49 and 1.0 M", respectively, making it
possible for new brown dwarfs to form. It is interesting to note
that the amount of cold, high-density gas is generally greater in
run TuW than in run TuNW. This is likely an effect of the reduced
accretion rate and changed IMF in run TuW compared to TuNW,
both of which serve to generally lower the accretion luminosity
and thus the heating rate. The spatial distribution of the star
formation may also play a role: in run SmNW, because there is
no pre-existing density structure at the start of the simulation
and because the turbulence decays rapidly, all the stars and
gas become concentrated in a single dominant cluster, where
stellar heating is very intense. In runs TuNW and TuW, the
combination of a pre-existing density structure present in the
initial conditions and the non-decay of turbulence throughout
the simulation serves to break star formation up into several
sub-clusters, within each of which stellar heating is less intense.

3.5. Massive Cores and Massive Stars

Run TuW is the first published simulation that includes
radiative and protostellar outflow feedback, produces an IMF
that is in good agreement with the observed IMF over a broad
mass range, and forms a large enough cluster for there to be
massive stars present. It is therefore important to pay particular
attention to the processes by which those massive stars form.
We turn now to the properties of the massive stars in run TuW.

There has been considerable discussion in the litera-
ture about whether massive stars form from distinct mas-
sive protostellar cores (Padoan 1995; Padoan & Nordlund
2002; McKee & Tan 2002, 2003; Krumholz et al. 2007a;
Hennebelle & Teyssier 2008; Hennebelle & Chabrier 2009)
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Figure 10. Phase diagrams of the three runs at different times. The three columns correspond to runs SmNW, TuNW, and TuW, as indicated. The three rows correspond
to times t/tff = 0.75, 1.0, and 1.25. In each panel, the color indicates the gas mass in a given bin of density and temperature; bins are 0.025 dex wide in both ρ and
T. The color scale is normalized so that the bin containing the largest amount of mass is 1.0. The long-dashed line indicates the locus in density and temperature at
which the code inserts sink particles. The short-dashed lines indicate the locus in density and temperature where the Bonnor–Ebert mass is 0.01 M", 0.1 M", and
1 M" as indicated. Note that gas in the winds is run TuW is heated to ∼104 K, well above the temperature range shown here, but there is relatively little mass at these
temperatures.
(A color version of this figure is available in the online journal.)

or whether all stars are born from cores with masses #1 M",
and massive stars subsequently grow from these small seeds
by Bondi–Hoyle accretion (Bonnell et al. 1997, 2001a, 2001b,
2004, 2006; Bonnell & Bate 2002, 2006; Bate & Bonnell 2005;
Smith et al. 2009a, 2009b). A number of authors have also pro-
posed hybrid models, in which massive stars form from gravita-
tionally bound gas structures, but these structures are assembled
and fed from larger scales at the same time as they form mas-
sive stars (Peretto et al. 2006; Wang et al. 2010). To address
this question, we examine the four most massive stars present
at the end of run TuW; these have masses of 10.8, 9.8, 8.8, and
8.3 M", respectively, and thus each is large enough that, even
if it were to accrete no further, it would be expected to end its
life as a supernova. For comparison, we also examine the four
stars whose masses are closest to the median mass at the end
of the simulation, 0.34 M". For each of these stars, we identify
the point in space and time at which that star first appeared in
our simulations, and examine the gas density distribution in its
vicinity.

We show the results in Figure 11 for the high-mass cores
and Figure 12 for the low-mass cores. To facilitate comparison
with observations, in addition to showing the true gas density
distribution, we show the distribution smeared with a 1700 AU
Gaussian beam; we choose this size scale because it is approxi-
mately the spatial resolution of the highest published resolution

maps of massive cores (e.g., Beuther & Schilke 2004; Bon-
temps et al. 2010), though the Atacama Large Millimeter Array
(ALMA) will soon produce images at significantly higher res-
olution. Figure 11 demonstrates that the massive stars in our
simulation form in distinct, massive overdensities that can be
identified as cores. Their characteristic sizes, determined from
visual inspection, are roughly 0.01 pc. Comparing the gravita-
tional and kinetic energies in this structures shows that they are
roughly gravitationally bound and virialized. The flows within
them are highly supersonic, producing a filamentary morphol-
ogy. Nonetheless, these objects are not highly sub-fragmented.
There are at most one or two density maxima in each one, not
many density maxima. These structures look much like the tur-
bulent cores posited in the McKee & Tan (2003) theory for
massive star formation. When smeared on a resolution of 1700
AU, distinct centrally condensed structures remain visible for
three of the four massive stars, indicating that these objects
would be detectable as massive cores in an observation.

It is important to understand that our analysis says nothing
about the Lagrangian trajectories of the fluid elements that
eventually coalesce to form the massive stars in our simulations,
a topic that has previously received extensive investigation by
Bonnell et al. (2004) and Smith et al. (2009a, 2009b), among
others. It may well be that particular fluid elements that are
present in the cores at the time shown in Figure 11 do not accrete
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Figure 11. Images of the initial cores that produced the four most massive stars in simulation TuW. In each column, the upper image shows the column density
distribution, centered on the ∼0.05 M" protostars that will grow to be massive stars. The lower image shows the same column density distribution, smeared with a
1700 AU Gaussian beam. In the upper panels, we indicate the mass of the core (defined as the projected mass within a radius of 0.01 pc, as indicated by the dashed
circles) and the time at which the snapshot is taken. In the lower panels, we indicate the core mass that would be inferred from the beam-smeared image and the final
mass of the resulting star. Note that the second and fourth columns are nearly identical because two of the final massive stars both form in the same core.
(A color version of this figure is available in the online journal.)

Figure 12. Same as Figure 11, but for the four stars closest to the median of the final mass distribution.
(A color version of this figure is available in the online journal.)

onto the final star and are instead accreted by other stars or torn
off by turbulent motions, while fluid elements not present in
the core at the time shown are eventually accreted into the final
star. Indeed, McKee & Tan (2003) predicted in their analytic
model that turbulent cores should over the course of their lives
interact with a surrounding gas mass comparable to that which
eventually ends up in their central stars. However, the fact that
the Lagrangian elements making up a core change with time is
irrelevant to the question of whether, as a massive star forms, it
sits at the center of a gravitationally bound Eulerian structure.
Figure 11 shows that it does.

We can make the link between the massive cores and the
stars they form more quantitative by comparing to the massive
core evolution model of McKee & Tan (2002, 2003) and Tan &
McKee (2004). This model predicts that the accretion rate onto
a star as a function of its mass should be

ṁ∗ = 1.2 × 10−3
(

m∗f

30 M"

)3/4

Σ3/4
cl

(
m∗

m∗f

)1/2

M" yr−1,

(15)

where m∗ is the star’s instantaneous mass, m∗f is its final mass,
and Σcl is the surface density of the molecular clump from which
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Figure 13. Accretion rate vs. stellar mass for the four most massive stars present
at the end of run TuW. Colored unbroken lines indicate the measured simulation
accretion rates, while the dashed black line is the prediction of the McKee &
Tan (2003) model (Equation (15)). The simulation accretion rates have been
smoothed over 500 yr timescales to reduce scatter.

it forms, and we have used McKee & Tan’s fiducial parameter
choices, with the exception that we have increased the accretion
rate by a factor of 2.6 to include subsonic contraction, following
Tan & McKee (2004). To evaluate this equation and compare it to
our simulations, we take m∗f ≈ 10 M", since this is roughly the
mass of our four most massive stars at the end of the simulation.
For Σcl, we note that in the simulation, the core is better-defined
than the clump, so we adopt McKee & Tan’s result with Σcl
replaced by Σcore. In their fiducial model, these agree to within
a factor .1.2, so this does not significantly affect the accretion
rate. As shown in Figure 11, our cores have masses of the
order of 10 M" in radii of order 0.01 pc, which corresponds to
Σcl = 6.6 g cm−2. With these parameter choices, in Figure 13
we plot the accretion rate as a function of stellar mass for the
four most massive stars at the end of the simulation, whose
cores are shown in Figure 11, and compare to the McKee &
Tan prediction. As the plot shows, the simulation accretion rates
agree quite well with the analytic predictions.

In contrast, the cores that give rise to low-mass cores
(Figure 12) are quite noticeably different from the high-mass
ones. In three of the four cases (the first, third, and fourth
columns in the figure), they are also centrally condensed
lumps of gas. However, unlike the massive cores, they are
highly sub-fragmented and show many density maxima. Clearly
these objects are not single cores, but instead tightly packed
agglomerations of many smaller cores. For the final low-mass
core (shown in the second column of Figure 12), the point at
which the star forms is a slight overdensity in the middle of
a filament, and there is no centrally concentrated object at all.
Thus, massive cores and low-mass cores have clearly distinct
properties. However, we also find that these differences are
completely indistinguishable in the smeared images, indicating
that it is not possible to distinguish true high-mass cores from
agglomerations of low mass ones with the resolution available in
pre-ALMA telescopes, at least for objects at the ∼kpc distances
typical of massive star-forming regions. This conclusion is
consistent with that of Offner et al. (2012).

It is important to note that the differences between high- and
low-mass stars is not simply a function of formation time. It
is certainly true that the most massive stars at the end of the
simulation preferentially began forming early. However, their
greater masses are far less a reflection of this than it is of their

different formation environments. The four massive stars grow
at time-averaged rates of (3.6–4.6) × 10−4 M" yr−1, compared
to (1.7–8.8) × 10−5 M" yr−1 for the low-mass stars. At the
accretion rates typical of the low-mass stars, it would require
∼10tff for one of them to grow to the ∼10 M" typical of the
massive stars. The massive stars are not simply those that form
first; they are those that form surrounded by coherent, bound,
non-sub-fragmented structures that provide high accretion rates.
This is somewhat similar to the competitive accretion model
in that massive stars’ preferred locations at the centers of
collapsing regions that provides their high accretion rates.
However, it differs from competitive accretion in that these cores
are non-subfragmented and have masses at the same order of
magnitude as the final stars, ∼10 M", and therefore intermediate
between that of the entire star cluster, ∼103 M" and the thermal
Jeans mass, ∼1 M". In the competitive accretion model, such
structures should be absent, because everything fragments down
to the thermal Jeans mass (Bonnell et al. 2004; Bate & Bonnell
2005) and some objects subsequently grow to larger masses by
Bondi–Hoyle accretion. There are no ∼10 M" objects that do
not sub-fragment in competitive accretion.

Finally, we note that both the high-mass and the low-mass
cores are above the column density threshold Σ > 1 g cm−2

for massive star formation posited analytically by Krumholz &
McKee (2008) and confirmed numerically by Krumholz et al.
(2010). This means that both the high-mass and low-mass cores
have the potential to form massive stars; indeed, in one of the
four cases shown in Figure 12, the low-mass star is in fact
forming in a core that puts most of its mass into a single high-
mass star. That does not appear to be the case for the other
three low-mass stars shown in the figure, however. Thus, a
high column density is clearly a necessary but not a sufficient
condition for massive star formation. A high column density
allows radiative heating to suppress the growth of gravitational
instabilities that would lead to fragmentation and prevent a
massive star from forming. However, if the turbulent density
field present before a star begins radiating is already highly
nonlinearly fragmented, as is the case for several of the low-
mass cores shown in Figure 12, radiative heating will not undo
this fragmentation and prevent the core from forming a small
cluster of low-mass stars rather than a few massive ones.

3.6. Stellar Multiples

It is also illuminating to consider the properties of the stellar
multiples that form in run TuW, since producing the correct
multiplicity fraction has been proposed as test for star formation
models in addition to producing the correct IMF (e.g., Bonnell
et al. 2007). We therefore examine the final time slice for this
run.9 Extracting the fraction of stars in multiple systems from the
simulation requires some care, as pointed out by Bate (2009a).
Many of the stars in our simulation form a bound cluster,
and thus many stars are bound to many other stars, often in
hierarchical structures consisting of dozens of individual stars;
for example a binary and a triple system may orbit one another,
and these in turn may have additional stars orbiting them.
Such agglomerations would be extremely unlikely to survive
dynamically even for the lifetime of a massive star, and would
break up if we could continue the simulation further.

9 In this section of the paper alone, we do not exclude stars smaller than
0.05 M" from consideration, but we consider them only as companions to
larger stars. We allow them to count in this capacity because to omit them
would artificially make it impossible for stars near our 0.05 M" cut to have
companions.
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Figure 14. Multiplicity fraction f as a function of system primary mass mprim
in run TuW. The thick red line shows f as a running average. The light red
boxes show f computed over discrete bins in mprim. In each case, the width
of the box shows the primary mass range for that bin, the asterisk shows the
mean multiplicity fraction for stars in that bin, and the vertical extent of the box
shows the statistical uncertainty on that value, computed as described in the text.
Finally, black crosses indicate observational results, with the horizontal width
indicating the mass range for the observations and the vertical range showing
the stated uncertainty. The two highest mass observational data points are lower
limits, indicated by the upward arrows. The data shown are taken from, from left
to right, Basri & Reiners (2006) and Allen (2007) (shown as a single combined
point), Fischer & Marcy (1992), Raghavan et al. (2010), Preibisch et al. (1999),
and Mason et al. (2009); the data compilation shown here is the same as that in
Bate (2012).
(A color version of this figure is available in the online journal.)

Thus, we follow Bate in defining stellar multiplicity via
the following algorithm. We first compute the total energy
(gravitational plus kinetic in the center of mass frame) pairwise
for each pair of stars in the simulation. We find the most bound
system and replace it with a single point mass, with a mass
equal to the sum of the two components, a position located at
their center of mass, and a momentum equal to the sum of their
two momenta. We then continually repeat this process, with the
exception that we do not create aggregates consisting of more
than four individual stars; should the most bound system contain
five or more stars, we proceed to the next most bound pair with
fewer than five members instead.10 We terminate the process
once there are no more bound pairs consisting of fewer than
five individual stars. At the end, we are left with a list of star
systems, some single and some containing up to four individual
stars.

Given this list, we can compute the fraction of multiple
systems as a function of primary star mass. For a set of star
systems, we define the multiplicity fraction

f = B + T + Q

S + B + T + Q
, (16)

where S, B, T, and Q and the numbers of single, binary, triple,
and quadruple systems, respectively.11 We choose our sets of

10 The results are not particularly sensitive to the choice of four as the
maximum size of a system, as long as we stop at some point well short of
allowing the entire cluster to be considered a single large star system.
11 Following Bate (2009a) and Hubber & Whitworth (2005), we measure this
quantity rather than either the companion star fraction (B + 2T + 3Q)/
(S + B + T + Q) or the fraction of stars in multiple systems (2B + 3T + 4Q)/
(S + 2B + 3T + 4Q) because it is more robustly determined observationally. If
a new member of a multiple system is found, for example leading to a binary
being reclassified as a triple, then f does not change, while the companion star
fraction and the fraction of stars in multiple systems does.

Figure 15. Semimajor axis vs. primary star mass for all the binaries in our
simulations. For triple and quadruple systems, we plot them only once, showing
the properties of the most bound pair of stars. Points are coded by the mass ratio
of the system: purple stars for q < 0.1, red squares for q = 0.1–0.25, green
triangles for q = 0.25–0.5, and blue circles for q > 0.5.
(A color version of this figure is available in the online journal.)

star systems in two ways. The first is as a running average; for
a primary mass mprim, we compute f considering all systems
for which the primary mass is within half a dex of mprim. The
second is in discrete bins, chosen to roughly match the mass
ranges selected in observational surveys. We consider primary
mass bins in the range 0.05–0.1 M", 0.1–0.2 M", 0.2–0.5 M",
0.5–0.8 M", 0.8–1.2 M", 1.2–3 M", and >3 M". In addition
to the mean value, we compute the statistical uncertainty in this
value for each bin.12

We plot the results in Figure 14. We see that the simulations
generally agree well with the observational constraints, with the
multiplicity fraction reaching near unity for stars larger than
a few M", and declining to below 0.5 for stars smaller than
∼0.5 M". Our simulations somewhat underproduce binaries at
the lowest masses, which is likely a resolution effect, arising
because low-mass binaries must be very close in order to remain
bound, and our simulation resolution makes this difficult. In
our simulation, we soften particle–particle gravity forces on a
scale of 0.25 cells, or 5.8 AU, and gas–particle gravity forces
are necessarily smoothed on the grid scale of 23 AU. Thus,
we cannot easily make binaries tighter than ∼10 AU. At this
distance, the Keplerian speed around a 0.05 M" object is only
2 km s−1, comparable to the velocity dispersion in the cluster.
Thus, low-mass binaries formed in our simulation will tend to
be broadened and disrupted, and we cannot resolve the tighter
binaries that will tend to be hardened. This leads to an artificial
reduction in the binary fraction at low masses, a phenomenon
also noted by Bate (2012).

In Figure 15, we illustrate some of the properties of our
multiple systems. Systems with more massive primaries tend to
have the smallest separations, as a result of dynamical hardening
and, in some cases, of a companion having been born in the disk
of the primary. The companions to the most massive stars also

12 We determine the statistical uncertainty by assuming that there is a true
multiplicity fraction ftrue for stars in that bin, and that our sample of systems in
that bin represent a series of random drawings that follow a binomial
distribution. From these assumptions, we can compute the probability
distribution for ftrue given the measured multiplicity fraction in the simulations
fsim and the number Nsys of systems in that mass bin. We compute the
uncertainty by finding the range of values for ftrue that enclose the central 68%
of the probability distribution. Note that this range is not in general symmetric
about fsim.
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Figure 16. Accretion rate vs. time for a sample of 12 randomly-selected stars in run TuW. Thick pale lines show accretion luminosities averaged over 200 yr timescales,
while thin darker lines show the accretion luminosity computed over 10–20 yr timescales, the finest available given the frequency with which we output simulation
data. There is no distinction between red and blue curves; we simply use two different colors to make the two stellar accretion histories shown in each panel more
easily distinguishable. Note that the time axes are different for the left and right sides. All times are relative to the instant when a star first appears in the simulations,
and plots continue to the end of the simulation.

tend to be fairly massive, with mass ratios of 0.25–0.5; this is
inconsistent with their having been drawn randomly from the
IMF. These are often triple or quadruple systems. Thus, we see
that the massive stars in our simulation tend to form Trapezium-
like structures. In contrast, at near-solar masses, the range of
semimajor axes and mass ratios is extremely broad.

3.7. Accretion Variability and Outbursts

A final useful datum to be extract from run TuW is the amount
of accretion variability for low-mass stars, which is of interest
for its relevance to the protostellar luminosity problem and the
origin of FU Ori outbursts, although due to the duration of our
simulation we can only address these issues as they apply to
class 0 and I objects, not class II sources. To characterize the
degree of luminosity variability we find, we select 12 stars at
random at the end of our simulation. The final masses of these
stars range from 0.055 to 1.9 M". For each star we measure its
accretion luminosity, which in our code is taken to be

Lacc = 0.75
Gm∗ṁ∗

r∗
, (17)

where m∗, ṁ∗, and r∗ are the star’s instantaneous mass, accretion
rate, and radius, and the factor of 0.75 accounts for the energy
used to drive protostellar outflows (for details see the Appendix
of Offner et al. 2009). Our simulation outputs are spaced roughly
10–15 yr apart, so this represents the minimum timescale on
which we can study variability. Outputs are 80 fine grid time
steps apart, so this timescale is numerically well resolved.

In Figure 16, we show the accretion history of each of
our 12 stars, both at the maximum temporal resolution of the
simulations, and smoothed over 200 yr timescales. In the figure,
the zero of time is the point at which a given star forms, and we
plot the accretion history for the remainder of the simulation.
The figure demonstrates several interesting results. First, the
majority of stars have relatively smooth luminosity histories
when averaged over 200 yr timescales. For only a few examples
do order of magnitude variations in the luminosity occur on less
than timescales of several kyr. The variability is somewhat larger
when measured at the maximum temporal resolution of the
simulation, but for most stars this is not a large effect. However,
there are three exceptions: the star shown in blue in the upper
right panel, the star shown in blue in the lower left panel, and
the star shown in red in the lower right panel. All of these stars
experience sudden increases in luminosity on timescales below
our ability to resolve given the frequency of our output. During
these spikes, the luminosity rises by 1–2 dex compared to the
long-term average. These are plausibly FU Ori-type outbursts,
although we caution again that these outbursts are occurring in
class I sources, not true T Tauri stars.

4. DISCUSSION AND CONCLUSION

4.1. The Role of Protostellar Outflow Feedback

In our simulations, we find that protostellar outflow feedback
is not particularly effective. Including outflows reduces the SFR
by only ∼20%, comparable to the mass fraction that is ejected
from young stars by out subgrid model for protostellar winds.
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This result at first appears to contradict those of previous studies,
including Li & Nakamura (2006), Nakamura & Li (2007),
Matzner (2007), Wang et al. (2010), and Cunningham et al.
(2011), all of whom find that outflow feedback is important. Our
results also contradict those of Hansen et al. (2012), who find
that outflow feedback greatly reduces the efficacy of radiative
feedback, because it reduces the accretion rate and thus the
protostellar luminosity.

Some of our differences from previous results are a function
of what effects are included in our simulations and in previous
work. Wang et al. (2010) note that outflow feedback is only
effective as a long-term driver of turbulence in the presence of
magnetic fields. Fields facilitate transfer of momentum between
gas parcels, while in their absence most of the momentum
injected into a protocluster by outflows is simply lost, as the
outflows break out of the cloud and deposit their momentum
and energy outside its boundaries. Since our simulations lack
magnetic fields, we likely suffer from a similar underestimate
of outflow efficacy.

A second source of difference is likely to be our choice of
parameters. We have simulated a fairly massive, high surface
density cloud representative of the typical Galactic star-forming
region, but with properties quite distinct from those of the
star-forming regions closest to the Sun. All of the previous
simulations mentioned above have chosen properties typical
of these lower density regions. Analytic models suggest that
protostellar winds are only able to eject significant mass from
clusters with escape velocities below vesc ∼ 7 km s−1 (Matzner
& McKee 2000; Matzner 2007). In run TuW, the escape velocity
is vesc ≈

√
GMc/(#c/2) = 4.3 km s−1, within a factor of

two of the analytic estimate. The comparable figure for the
cluster simulated by Wang et al. (2010), which is modeled after
NGC 1333, is a factor of two lower: vesc ≈ 2.6 km s−1. For
Hansen et al. (2012), who adopt initial conditions modeled after
ρ Ophiuchus, it is vesc ≈ 1.6 km s−1. Thus, it is not surprising
that outflows should be much more effective in those simulations
than in run TuW. Indeed, placing the cluster masses and surface
densities of these simulations on Fall et al.’s (2010) diagnostic
diagram for where different sorts of feedback are effective (their
Figure 2) immediately predicts this dichotomy.

Given that our simulations likely differ from previous work
on the importance of outflow feedback due to both a physical
deficiency (lack of magnetic fields) and a choice of parameters
that is closer to the typical region than most previous work, it
is hard to draw general conclusions about the importance of
outflow feedback in regulating star formation. Resolution of
this question will have to await future magnetohydrodynamic
simulations that probe the higher density regime we have
explored in this work.

4.2. Implications for Massive Star Formation

The picture of massive star formation that emerges from our
simulations is generally consistent with the turbulent core model
proposed by McKee & Tan (2002, 2003). The massive stars form
at the centers of well-defined, turbulent, centrally concentrated
structures, and these structures feed mass onto them at a rate that
is consistent with the predictions of the McKee & Tan model. In
contrast, the regions from which low-mass stars form are quite
noticeably different. They are either messy regions consisting
of many small density peaks and no clear central concentration
or they are small regions of filaments. Thus, the basic core to
star mapping proposed in the turbulent core model appears to
describe our simulation fairly well.

However, we also do see elements of the alternative com-
petitive accretion model (Bonnell et al. 2007, and references
therein) operating as well. In particular, our massive stars do all
form as part of small sub-clusters and experience significant dy-
namical interactions. These interactions appear to be important
in shaping the multiplicity properties of the resulting stars, and
in producing the Trapezium-like systems in which most of our
massive stars find themselves at the end of the simulation.

4.3. Implications for the IMF and the Star Formation Rate

Run TuW represents the first simulation published to date that
reproduces the observed IMF in a cluster like the ONC that is
large enough to contain massive stars, and where the peak of the
mass function is determined by a fully self-consistent calculation
of gas thermodynamics. Previous simulations that have had
success in reproducing the IMF have either examined small,
low-density star-forming regions that would not be expected
to produce massive stars (Offner et al. 2009; Bate 2009b,
2012; Urban et al. 2010; Hansen et al. 2012), or have relied
on a parameterized, non-self-consistent equation of state to
determine the location of the IMF peak (e.g., Bate & Bonnell
2005; Jappsen et al. 2005).

The success of run TuW, in contrast to the failures of runs
SmNW and TuNW, suggests that obtaining the correct IMF
from a self-consistent simulation of a typical star-forming
environment is not as simple as some authors have posited
(e.g., Bonnell et al. 2007). While a lognormal function with
a power-law tail at high masses appears to be a fairly generic
result regardless of what physics is included in the simulations,
getting the peak of the lognormal to lie at the correct position
in a calculation where it is determined self-consistently rather
than through a hand-imposed equation of state requires careful
attention to the thermodynamics of the gas, which is in turn
determined primarily by the accretion luminosity of protostars.

This requires several ingredients to work correctly. As conjec-
tured in Paper I, the SFR cannot be too high, and star formation
cannot become too centrally concentrated; if it is, then the re-
sulting accretion luminosity becomes so high that formation
of low-mass stars is suppressed and the IMF peak marches to
ever-increasing mass with time. In addition, outflows appear
to make a small but significant contribution by both reducing
the masses of individual accreting protostars, reducing the ac-
cretion luminosity, and ejecting mass from the warm regions
near accreting stars, increasing fragmentation. The combination
of these effects shifts the mean mass downward by a factor of
∼2. Our results suggest that future simulations of gas collapse
and fragmentation, if they are to reproduce the observed IMF
while treating the gas thermodynamics self-consistently, must
at a minimum include these ingredients.

We obtain a reduction in the rate and degree of concentration
of star formation in run TuW mainly because we started our
simulations with a self-consistent density and velocity field
and by embedding the protocluster gas clump in a realistic
surrounding turbulent molecular cloud that continually feeds
energy into it via a turbulent cascade, rather than simulating a
smooth, isolated clump as in most previous work. However, the
SFR per free-fall time we obtain is still an order of magnitude
too high compared to observations, likely as a result of other
mechanisms we have not included. For example, Price & Bate
(2009) and Padoan & Nordlund (2011) both find that magnetic
fields with strengths comparable to those in observed molecular
clouds reduce SFRs by a factor of a few to ∼10. Depending
on protocluster properties, ionized gas and radiation pressure
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may also contribute to reducing the SFR (e.g., Fall et al. 2010;
Lopez et al. 2011). Ultimately, since accretion luminosity plays
a critical role in regulating the IMF, the problems of determining
the SFR and the IMF cannot be fully separated. A truly accurate
simulation must reproduce both.
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