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ABSTRACT

Observations of disk galaxies at z ∼ 2 have demonstrated that turbulence driven by gravitational instability can
dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly
available, that economically evolves these galaxies from z ∼ 2 to z ∼ 0 on a single CPU in a matter of minutes,
tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We
include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use
this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the
age–velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks
at z ∼ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas
forms the low velocity dispersion stars of the thin disk.
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1. INTRODUCTION

In the past decade, observations of galaxies near z ∼ 2 have
revealed compelling evidence for the importance of gravitational
instability in their dynamics and evolution. A whole class of
galaxies has been observed whose images are dominated by
large luminous clumps of gas (Elmegreen et al. 2004, 2005;
Förster Schreiber et al. 2009), while measurements of the
velocity dispersion of such massive star-forming galaxies have
found values near 50 km s−1 spread across the entire disk (Cresci
et al. 2009; Genzel et al. 2011). This is difficult to reproduce
with supernova feedback, which is strongest near the centers
of galaxies where the star formation rate peaks, and which is
only strong enough to drive velocity dispersions of ∼10 km s−1

(Joung et al. 2009). Other forms of stellar feedback may drive
turbulence (Thompson et al. 2005; Elmegreen & Burkert 2010),
but we will concentrate on the case where turbulence is driven
by gravitational instability in the disk.

To a first approximation, the gravitational stability of a thin
disk to axisymmetric perturbations is described by Toomre’s Q
parameter Q = κσ/(πGΣ), where κ is the epicyclic frequency,
σ is the one-dimensional velocity dispersion, and Σ is the
gas surface density. The disk is unstable when Q ! 1.
The importance of gravitational instability in high-redshift
galaxies arises from the high cosmological accretion rates they
experience, which drive up the value of Σ (Dekel et al. 2009).
This instability gives rise to clumps of the sort observed at high
redshift. The inhomogeneous and time-varying gravitational
field drives turbulence throughout the disk, regardless of the
stellar density or supernova rate. The energy source for these
random motions must ultimately be the gravitational potential
of the galaxy, so gas is transported inward.

Cosmological simulations with sufficiently high resolution
(Bournaud & Elmegreen 2009; Ceverino et al. 2010) success-
fully reproduce disks in which gravitational instability forms
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clumps and causes the inward migration of material through
galactic disks. Simulations of isolated galaxies (Bournaud et al.
2011; Dobbs et al. 2011a, 2011b) with initial conditions set such
that Q < 1 provide a higher resolution view of such galaxies
over a few outer orbits of the disk. These studies, while illu-
minating, are expensive, since they must solve the equations of
hydrodynamics in three dimensions over cosmological times.
The model we present here solves the hydrodynamical equa-
tions in the limit of a thin axisymmetric disk. Since quantities
vary only in the radial direction, the problem is computationally
much cheaper to solve, allowing us to explore parameter space
efficiently, while still solving the full one-dimensional equations
of fluid dynamics instead of relying entirely on semi-analytic
models (Dekel et al. 2009; Cacciato et al. 2012).

Past one-dimensional models of gravitational instability in
disks have a number of shortcomings. The rate at which mass
and angular momentum are transported inward is often param-
eterized and fit to the results of hydrodynamical simulations,
rather than being derived from first principles. The rotation
curves are only allowed to be either Keplerian or flat. Energy
is frequently assumed to be instantaneously equilibrated, which
neglects the possibility that it might be advected through the
disk. The pressure support of the disk is often treated as com-
ing from thermal pressure rather than supersonic turbulence.
Few models take into account the stellar component of the disk,
which becomes increasingly important as the galaxy evolves
toward the present day, and can ultimately provide a variety of
observable predictions.

In particular, the age–velocity-dispersion–metallicity correla-
tion of stars in the solar neighborhood (Nordström et al. 2004),
might well be explained by means of gravitational instability
in high-redshift disks (Bournaud et al. 2009). The high veloc-
ity dispersion in these disks means that the population of stars
formed in that epoch will start with a high velocity dispersion
(Burkert et al. 1992). The gas disk cools as a result of slowing
cosmological accretion rates, so younger stars are formed in
a thinner, more metal-rich disk. This mechanism of thick and
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thin disk formation contrasts with the more common story that
various secular processes and minor mergers heat thin disk stars
into a thick disk (e.g., Binney & Tremaine 1987).

Krumholz & Burkert (2010, hereafter KB10) found an ana-
lytic steady-state solution to the full equations of fluid dynamics
in the thin disk limit under the assumption that the disk self-
regulates to maintain Q = 1. To make the problem tractable
analytically, however, they required a handful of simplifying
assumptions: they use an analytic approximation to Q, which
becomes progressively worse at lower redshift as the ratio of
gas to stellar velocity dispersion deviates from unity. They also
assume that the velocity dispersion of stars and gas are equal,
and the gas fraction at all points in the disk remains constant
in radius and time. In this paper, we relax these assumptions
and include treatments of stellar migration, metallicity, the non-
zero thermal temperature of the gas, and evolution of individual
stellar populations. These improvements along with an efficient
simulation code allow us to realistically evolve disks from high
redshift to the present day at minimal computational expense.

In Section 2, we derive the equations governing the evolution
of the gas over time. Section 3 presents the derivation of
the equations governing the stellar dynamics. In Section 4,
we derive the evolution of metallicity in the gas and stars.
In Section 5 we discuss how these differential equations are
solved numerically, and in Section 6 we present the results for
fiducial parameters chosen to be similar to the Milky Way. We
conclude in Section 7. The code we describe, named GIDGET
for Gravitational Instability-Dominated Galaxy Evolution Tool,
is available at http://www.ucolick.org/∼jforbes/gidget.html.

2. GAS EVOLUTION EQUATIONS

2.1. Basic Equations

We first give a brief overview of the derivation of the
evolution equations for the gas column density Σ and velocity
dispersion σ . For more details, see KB10. The equations of
mass, momentum, and energy conservation for a viscous star-
forming fluid in a gravitational field are

∂ρ

∂t
= − ∇ · (ρv) − (fR + µ)ρ̇∗, (1a)

ρ
Dv
Dt

= − ∇P − ρ∇ψ + ∇ · T, (1b)

ρ
De

Dt
= − P∇ · v + Φ + Γ − Λ, (1c)

where ρ, v, e, and P are the gas density, velocity, specific internal
energy, and pressure, respectively. The star formation rate per
unit volume at an Eulerian point is ρ̇∗, with a mass loading factor
µ equal to the ratio of gas ejected in galactic-scale winds to
the star formation rate. We will be employing the instantaneous
recycling approximation (see Section 4), which approximates all
stellar evolution as occurring immediately. Of the mass which
forms stars, the gas will only lose the so-called remnant fraction,
fR, to stars, while the remaining (1 − fR) will be immediately
recycled into the interstellar medium (ISM). The gravitational
potential is ψ , T is the viscous stress tensor, Φ = T ik(∂vi/∂xk)
is the rate of viscous dissipation, and Γ and Λ are the rates of
radiative energy gain and loss per unit volume.

For a thin disk, we formally have ρ = Σδ(z) and vz = 0.
By expanding the fluid equations in cylindrical coordinates,

integrating over z, assuming axisymmetry and vr & vφ , and
dropping time derivatives of the potential and the circular
velocity, we can obtain evolution equations for the gas column
density and gas velocity dispersion. The evolution of column
density is given by

∂Σ
∂t

= 1
2πr

∂

∂r
Ṁ − (fR + µ)Σ̇SF

∗

= 1
2π (β + 1)rvφ

[
β(β + 1) + r(∂β/∂r)

(β + 1)r

(
∂T
∂r

)
− ∂2T

∂r2

]

− (fR + µ)Σ̇SF
∗ , (2)

where β = ∂ ln vφ/∂ ln r is the power-law index of the rotation
curve, T =

∫
2πr2Trφdz is the viscous torque, Σ̇SF

∗ is the star
formation rate per unit area, and

Ṁ = −2πrΣvr = − 1
vφ(1 + β)

∂T
∂r

(3)

is the mass flux. The second equality follows from the angular
momentum equation, which is in turn derived from the φ
component of the Navier–Stokes equation (Equation (1b); see
KB10).

The derivation of the velocity dispersion evolution equation
requires an equation of state, which we take to be P = ρσ 2. The
velocity dispersion has a thermal and a turbulent component. It
is a reasonable approximation to treat both as contributing to
the pressure so long as we average over scales much larger than
the characteristic size of the turbulent eddies, which will be of
order the disk scale height.

Taking the dot product of the velocity with the Navier–Stokes
equation and adding it to the internal energy equation yields an
equation for the total energy, i.e., internal energy, kinetic energy,
and gravitational potential energy. By decomposing the velocity
as v2 = v2

r + v2
φ + 3σ 2

nt, the kinetic plus thermal energy may be
rewritten

1
2
v2 + e = 1

2

(
v2

r + v2
φ

)
+

3
2

σ 2, (4)

where the velocity dispersion is taken to be the quadrature
sum of a thermal and non-thermal component, σ 2 = σ 2

t + σ 2
nt.

Neglecting the v2
r term as small compared to both σ 2 and v2

φ in
a thin, rotation-dominated, Q ∼ 1 disk, employing radial force
balance to set ∂ψ/∂r = v2

φ/r , assuming a constant potential
to set ∂vφ/∂t = 0, and integrating over z yields the evolution
equation:

∂σ

∂t
= G − L

3σΣ
+

1
6πrΣ

[

(β − 1)
vφ

r2σ
T

+
β2σ + σ

(
r dβ

dr
+ β

)
− 5(β + 1)r ∂σ

∂r

(β + 1)2rvφ

(
∂T
∂r

)

− σ

(β + 1)vφ

(
∂2T
∂r2

)]

. (5)

To fully specify the evolution of the gas, we need to set a rotation
curve, a prescription for radiative energy gain and loss per unit
area, and a procedure for finding the viscous torque. This will
allow us to specify vφ , β, G =

∫
Γdz, L =

∫
Λdz, and T .

The rotation curve is specified at run-time, and T is set by
our treatment of gravitational instability (see Section 2.2). We
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set G = 0, which is equivalent to requiring that the energy
balance in the gas is completely determined by the effects of the
viscous torque and radiative loss. We assume that the loss rate,
meanwhile, is proportional to the kinetic energy density per disk
scale height crossing time, in agreement with the decay rate of
turbulence observed in full three-dimensional MHD simulations
of supersonic turbulence (Mac Low et al. 1998; Stone et al.
1998):

L ≡ d

dt

(
3
2

Σσ 2
)rad

= d

dt

(
3
2

Σσ 2
nt

)rad

= η
Σσ 2

nt

H/σnt
, (6)

where η is a free parameter of the order of unity. If the
decay time is exactly the crossing time, η = 1.5, since the
kinetic energy surface density is (3/2)Σσ 2. In dropping the time
derivative of σt , we have assumed that the thermal velocity
dispersion is unaffected by radiative dissipation, i.e., that the
gas is isothermal.

The scale height H is approximated by taking the solution
to the equations of vertical equilibrium for a single component
disk, H1 = σ 2/πGΣ, and adopting it to multiple components:

H = σ 2

πG(Σ + f Σ∗)
, (7)

where f represents the relative importance of the stellar mass,
or the stellar mass within a gas scale height. Taking f = σ/σ∗
interpolates between two extreme cases: when σ/σ∗ & 1, the
scale height should approach the single-component value, i.e.,
f = 0. When σ ∼ σ∗, the two-component disk behaves (at
least in terms of vertical density) like a single fluid with surface
density Σ + Σ∗, i.e., f = 1. Note that the stellar scale height,
which does not directly affect the dynamics of the disk, is just
taken to be the single component solution,

H∗ = σ 2
∗

πG(Σ + Σ∗)
, (8)

which is reasonable for the small values of fg found within the
star-forming regions of the disk. In reality the vertical structure
of a self-gravitating disk in a dark matter halo is not this simple.
However, excluding the effects of dark matter introduces an
error of only 13%, even in the dark-matter dominated regions
of the outer disk (Narayan & Jog 2002). Given the uncertainty
in η, this approximation is adequate.

Substituting for the scale height and σ 2
nt = σ 2 −σ 2

t , we obtain
a radiative loss rate of

L = ηΣσ 2κQ−1
g

(
1 +

Σ∗σ

Σσ∗

)(
1 − σ 2

t

σ 2

)3/2

. (9)

In this form, the radiative loss rate is the gas kinetic energy
per dynamical time multiplied by a factor to account for the
effect of stars on the disk’s thickness and a factor to zero out the
radiative losses when there is no turbulence. As the gas velocity
dispersion falls toward the constant thermal velocity dispersion,
non-thermal motions die away, the gas no longer dissipates its
energy via shocks, and L → 0. The gas temperature used to
calculate σt is a free parameter of the model, but fiducially we
assume Tg = 7000 K, appropriate for the warm neutral medium
of the Milky Way. At high redshift when the gas is virtually all
molecular, T & 7000 K, but in that regime σt /σ & 1 anyway,
even if we use the higher-than-appropriate gas temperature. The

choice of σt therefore has virtually no effect on the high-redshift
evolution of the disk.

The governing equations for the gas (Equations (2) and (5))
are derived under the assumption that vz = 0. We therefore
implicitly neglect the gravitational potential energy of the disk
associated with its vertical extent, and the associated P dV
work that the gas performs when it changes its scale height.
Qualitatively, the effect of including these terms would be
to provide the gas with another place to store energy which
it gains when falling down the galaxy’s potential well, aside
from turbulent motion. Thus, with these effects the gas velocity
dispersion would be slightly lower, and hence so would the
dissipation rate, the gas column density, and the star formation
rate. The dissipation rate and star formation rate are each already
controlled by a free parameter which is uncertain at the factor
of two level, so we are content to neglect these additional
repositories of energy.

2.2. Gravitational Instability

The stability against gravitational collapse of a self-
gravitating disk is given by a Toomre Q-like parameter. Several
such fragmentation conditions exist in the literature. We adopt a
modified version of the condition determined by Rafikov (2001),
wherein the stability of a multi-component disk is considered
with the stars treated realistically as a collisionless fluid:

Q(q)−1 = Q−1
g

2q

1 + q2
+

∑

i

[
Q−1

∗,i

2
qφi

(
1 − e−q2φ2

i I0
(
q2φ2

i

))]
,

(10)

where i indexes an arbitrary number of stellar populations, φi

is the ratio of the ith stellar population’s velocity dispersion to
the gas velocity dispersion, I0(x) is a modified Bessel function
of the first kind, and the Q parameter for each component is
defined by

Qj = κσj

πGΣj

. (11)

The epicyclic frequency is κ =
√

2(β + 1)Ω, and q = kσ/κ
is the dimensionless wavenumber, where k is the dimensional
wavenumber of the perturbation. Values of q, or equivalently k,
for which Q(q) < 1 are unstable for an infinitely thin disk, and
q which minimizes Q(q) corresponds to the least stable mode.
It follows that if QRaf = min(Q(q)) < 1, the disk is formally
unstable, while if QRaf > 1, the disk is stable.

Computing the value of QRaf requires a minimization with
respect to q. Since Q and its partial derivatives must be calculated
frequently (see Equation (13) below), it is computationally
expedient to use an approximate formula which does not require
such a minimization. KB10 used Q−1 ≈ Q−1

WS ≡ Q−1
g + Q−1

∗ ,
as proposed by Wang & Silk (1994), but this approximation
becomes inaccurate when σg/σ∗ ! 0.5. Romeo & Wiegert
(2011) have proposed a more accurate approximation:

Q−1
RW =






W
Q∗T∗

+ 1
QgTg

if Q∗T∗ " QgTg,

1
Q∗T∗

+ W
QgTg

if Q∗T∗ # QgTg;
(12a)

W = 2σ∗σ

σ 2
∗ + σ 2

. (12b)

This formula includes corrections for the fact that the disk is
not razor-thin, T∗ and Tg. A disk of finite thickness is more stable
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against gravitational collapse because its mass is spread out
vertically, so larger values of the Tj increase the value of Q for a
given set of column densities and velocity dispersions. Romeo &
Wiegert (2011) give approximations to these correction factors,
Tj ≈ 0.8 + 0.7σz,j /σr,j . For simplicity we have assumed an
isotropic velocity dispersion, so T∗ = Tg = 1.5. QRW and
its partial derivatives are straightforward to compute and are
accurate over a wide range of σg/σ∗ and Qg/Q∗. The stability
parameter as determined by QRaf should also be modified to
include the effects of disk thickness, so our code can use either
Q ≈ QRafT or Q ≈ QRW.

Disks where gravitational instability dominates the dynamics
are expected to be self-regulated near Q = 1 (Burkert et al.
2010). A disk with Q ! 1 develops inhomogeneities in the
gravitational field, which exert random forces on gas in the
disk, driving turbulence. The ultimate source of this energy is
the gravitational potential of the galaxy, so mass must move
inward. If the disk had Q ! 1, more mass would gather into
inhomogeneities, thereby increasing the driving of turbulence,
which stabilizes the disk, driving Q upward. Meanwhile if
Q $ 1, mass transport through the disk slows even if the
cosmological accretion rate does not, which tends to add mass
and destabilize the disk. We therefore take as a hypothesis that
Q is a constant of the order of unity at all points in the disk at
all times. Thus, we can set

dQ

dt
= ∂Q

∂Σ
∂Σ
∂t

+
∂Q

∂σ

∂σ

∂t

+
∑

i

(
∂Q

∂Σ∗,i

∂Σ∗,i

∂t
+

∂Q

∂σ∗,i

∂σ∗,i

∂t

)
= 0. (13)

The evolution of the gas state variables Σ and σ , derived in the
previous section, depends on the viscous torque and its radial
derivatives, so we can recast Equation (13) in the form

dQ

dt
= f2

∂2T
∂r2

+ f1
∂T
∂r

+ f0T − F = 0, (14)

where the fi are coefficients which can be read off from the gas
evolution equations, and F encompasses all terms which do not
depend on the viscous torque, including all stellar processes,
discussed in the following section, and the rate of radiative
dissipation. In particular,

f2 = − σ

6πrΣvφ(β + 1)
∂Q

∂σ
− 1

2π (β + 1)rvφ

∂Q

∂Σ
, (15a)

f1 =
β2σ + σ

(
r ∂β

∂r
+ β

)
− 5(β + 1)r ∂σ

∂r

6π (β + 1)2r2vφΣ
∂Q

∂σ

+
β(β + 1) + r(∂β/∂r)

2π (β + 1)2r2vφ

∂Q

∂Σ
, (15b)

f0 = 1
6πrΣ

(β − 1)
vφ

r2σ

∂Q

∂σ
, (15c)

F = ηπ

3
GΣ

(
1 +

Σ∗σ

Σσ∗

)(
1 − σ 2

t

σ 2

)3/2
∂Q

∂σ

+ (fR + µ)Σ̇SF
∗

∂Q

∂Σ

−
∑

i

(
Σ̇∗,i

∂Q

∂Σ∗,i

+ σ̇∗,i

∂Q

∂σ∗,i

)
. (15d)

Usually F will be dominated by the first term, the radiative
dissipation of energy, which tends to destabilize the disk by
“cooling” the gas, making F > 0. In this case, one can interpret
Equation (14) as requiring the torques to move gas such that it
stabilizes the disk to counter the effects of this cooling.

Equation (14) is a second-order ordinary differential equation
(ODE) requiring two boundary conditions. At the outer edge
of the disk, we specify the accretion rate of gas onto the
disk, Ṁext according to a pre-calculated accretion history,
typically a fit to average accretion histories from cosmological
simulations (Bouché et al. 2010). The torque is related to Ṁ
through Equation (3), so by rearranging that equation, evaluating
quantities at the outer radius, and requiring a particular Ṁext, we
obtain the outer boundary condition

(
∂T
∂r

)

r=R

= −Ṁextvφ(R)(1 + β(R)). (16)

Here, R is a fixed outer radius of the disk. This condition
implicitly assumes that all gas is accreted at the outer edge
of the disk, which is not an unreasonable approximation as long
as gas accretes mostly through cold streams.

At the inner boundary, we require that the disk and bulge
exert no torques on each other:

(T )r=r0
= 0. (17)

The inner edge of the computational domain is r0, chosen for
numerical reasons to be non-zero. Note that this boundary
condition is somewhat different than the one used in KB10,
namely (T )r=r0 = −Ṁextvφ(R)(1 + β(R))r0 for a flat rotation
curve. This will approach the physically motivated value of
Equation (17) in the limit that r0 → 0, and was chosen to satisfy
a regularity condition at the inner boundary. However, since our
goal here is not to obtain an analytic solution, there is no need
to impose such a condition. In practice we have experimented
with both choices in our numerical calculations, and we find that
the choice of inner boundary condition has negligible effects at
radii r + r0, which is the great majority of the disk.

3. STELLAR EVOLUTION EQUATIONS

In addition to the gas, we would like to know how stellar
populations in the disk evolve with time. The stars will provide
most of the observable consequences of the model, in addition
to determining, along with the gas, whether the disk is gravi-
tationally unstable. Among the questions we are interested in
investigating is the cause of the age–velocity-dispersion corre-
lation, namely that older stars have higher velocity dispersions.
Therefore, it is useful to not only keep track of the stars as a
single population with a single column density Σ∗ and velocity
dispersion σ∗ (each a function of radius and time), but also to
bin the stars by age, so that Σ∗,i and σ∗,i describe the ith age bin.

The overall stellar population, along with each sub-
population, will be directly affected by two processes—star
formation and stellar migration. The two effects may be added
together, recalling that of the gas which forms stars, only a frac-
tion fR will remain in stars after stellar evolution has taken its
course:

Σ̇∗,i = fRΣ̇SF
∗,i + Σ̇Mig

∗,i . (18)

Evolution equations for each process will be derived separately
below.
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3.1. Star Formation

The rate of star formation will depend on the properties of the
gas from which stars form. In particular, in a sufficiently large
region of the disk, the star formation rate will be proportional
to the molecular gas mass divided by the free-fall time, defined
to be

√
3π/(32Gρ). In deriving the gas evolution equations, we

assumed that formally the density was given by Σδ(z), but this is
of course an approximation. The disk will have a finite thickness
of the order of the scale height (defined by Equation (7)), so we
take the density to be ρ = Σ/H . Thus, we can write the star
formation rate density

Σ̇SF
∗ = εfffH2 Σ

√
32Gρ/(3π )

= εfffH2 Σκ
√

32/3
(

1 +
Σ∗

Σ
σ

σ∗

)1/2

. (19)

For molecular gas, the efficiency of star formation per free-fall
time is εff ∼ 0.01 (Krumholz & McKee 2005; Krumholz & Tan
2007; Krumholz et al. 2012), though this may be significantly
higher or lower given observational uncertainties. Following
progress made by Krumholz et al. (2008, 2009a), McKee &
Krumholz (2010) have analytically approximated the molecular
fraction of the gas, fH2 as a function of metallicity and surface
density. We adopt this prescription with a slight alteration:

fH2 =






1 −
(

3
4

)
s

1 + 0.25s
if s < 388/203

0.03 otherwise
(20a)

s = ln(1 + 0.6χ + 0.01χ2)
0.6τc

(20b)

χ = 3.1
1 + 3.1(Z/Z,)0.365

4.1
(20c)

τc = 320 c (Z/Z,)(Σ/1 g cm−2), (20d)

where Z is the gas metallicity. We take the solar metallicity
to be Z, = 0.02, and c encapsulates the effects of clumping
in the gas when averaging over large regions. Since the model
presented in this paper takes averages over large areas of the
disk, we take c ∼ 5, as determined in Krumholz et al. (2009b).
The modification from McKee & Krumholz (2010) is that we
impose a lower limit on fH2 of 3%, motivated by the observation
that even extremely low total gas surface density regions form
stars at a rate consistent with a constant H2 depletion time (Bigiel
et al. 2011).

Equation (19) is used to update the stellar column density, and
it also enters into the gas column density equation (Equation (2))
through the conservation of mass. At any particular time in a
simulation, all but one of the Σ̇SF

∗,i = 0. Formally we can write
this as

Σ̇SF
∗,i = Σ̇SF

∗ Θ(A(t) − Ayoung,i) Θ(Aold,i − A(t)), (21)

where Θ(x) is a step function, one for x > 0 and zero for x < 0,
A(t) is the age that a star will be at redshift zero if it forms at
time t after the beginning of the simulation, and Ayoung,i and
Aold,i are the boundaries of the ith age bin.

To update the stellar velocity dispersion of a stellar popula-
tion, we require that the new kinetic energy of the population
be equal to the old kinetic energy plus the energy of the newly
formed stars:

(
Σ∗,iσ

2
∗,i

)
new =

(
Σ∗,iσ

2
∗,i

)
old + fR

(
dΣSF

∗,i

)
σ 2, (22)

where we have assumed that the newly formed stars have the
same velocity dispersion as the gas from which they form.
Setting Σ∗,new = Σ∗,old + fR(dΣSF

∗ ), we can rearrange, solve for
σ∗,new, and expand to first order in the small quantity dΣSF

∗ /Σ∗,old:

σ∗,i,new =

√√√√
(
Σ∗,iσ

2
∗,i

)
old + fR

(
dΣSF

∗,i

)
σ 2

Σ∗,i,old + fR

(
dΣSF

∗,i

)

≈ σ∗,i,old +
fR

(
dΣSF

∗,i

)

2Σ∗,i,oldσ∗,i,old

(
σ 2 − σ 2

∗,i,old

)
. (23)

Thus, in the limit that the time step and therefore the density
of new stars produced is small, we may use the definition of a
derivative to write

(
∂σ∗,i

∂t

)SF

≈ fR

1
2Σ∗,iσ∗,i

(
σ 2−σ 2

∗,i

)
Σ̇SF

∗,i for Σ∗,i > 0. (24)

We only need this derivative for its contribution to the torque
equation (Equation (13)), in which it will always be multiplied
by the term ∂Q/∂σ∗,i . To actually update the quantity σ∗,i , we
use the exact relation of Equation (22), which holds even if
Σ∗,i = 0. Note that when Σ∗,i = 0, this new population of stars
will have no effect on the torque equation, since ∂Q/∂σ∗,i = 0,
i.e., non-existent stars do not affect the stability of the disk.
Thus, Equation (24) need only be employed when Σ∗,i > 0.

3.2. Radial Migration

In addition to star formation, stars are subject to radial
migration. In particular, when Q∗ ! 2, transient spiral arms
form which attempt to stabilize the disk (Sellwood & Carlberg
1984; Carlberg & Sellwood 1985; Sellwood & Binney 2002).
N-body simulations (Sellwood & Carlberg 1984) suggest that
this heating is such that

∂Q∗

∂t

Mig

= max
(

Qlim − Q∗

TMig(2πΩ−1)
, 0

)
, (25)

where TMig is the timescale in local orbital times over which
this heating occurs, typically a few orbits, and Qlim is the value
of Q∗ above which the stars are stable to spiral perturbations.
Equation (25) assumes that this mechanism acts independently
of the torques which act on the gas as a result of the axisymmetric
instability described in Section 2.2. In z ∼ 2 galaxies with
morphologies dominated by clumps containing both gas and
stars, one might expect the axisymmetric instability to affect
both components equally, as assumed in the models of Cacciato
et al. (2012). However, it remains an open question whether
these clumps are disrupted on a dynamical timescale by a stellar
feedback process, just like giant molecular clouds (GMCs),
their low-redshift analogs (Krumholz & Dekel 2010; Genel
et al. 2012). Even if clumps are long-lived, they contain a
relatively small part of the total stellar population (Murray et al.
2010), and thus their impact on stellar migration might be small.
Moreover, in most realistic situations, the scale height of stars
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will be significantly greater than that of the gas, so an instability
dominated by the gas will have little traction on the stars. As
long as σ∗/σ is appreciably greater than unity, which it is in
our fiducial model (Section 6), we expect this treatment to be
reasonable.

The time derivative of Q∗ may be re-expressed in terms of
the time derivatives of Σ∗ and σ∗ using the definition of Q∗:

∂Q∗

∂t

Mig

= κ

πG

(
1

Σ∗

∂σ∗

∂t

Mig

− σ∗

Σ2
∗

∂Σ∗

∂t

Mig
)

= Q∗

(
1
σ∗

∂σ∗

∂t

Mig

− 1
Σ∗

∂Σ∗

∂t

Mig
)

. (26)

The partial time derivatives on the right-hand side will depend
on the mean velocity of stars in the radial direction, v∗,r , and
so the forcing imposed by Equation (25) will yield an ODE for
v∗,r . The value of v∗,r is then used to evolve Σ∗ and σ∗.

This approach assumes a single bulk velocity of stars in
the radial direction at each radius, v∗,r (r). It has been well
demonstrated (e.g., Bird et al. 2012) that the Sellwood &
Binney (2002) mechanism scatters stars in both directions, i.e.,
a star born at some galactocentric radius may end up with a
guiding center radius multiple kpc away. There are additional
scattering mechanisms, such as two-body scattering and the
resonant overlap between spirals and the bar (Minchev &
Famaey 2010; Brunetti et al. 2011), which will also redistribute
stellar angular momenta. Modeling this redistribution is critical
in explaining the detailed properties of Milky Way stellar
populations. However, there are no straightforward prescriptions
to model all of these effects. We therefore ignore for now the
effects of radial mixing and merely require conservation of mass
and energy, and that the stars will stabilize themselves if they
are subject to spiral instabilities.

The evolution of Σ∗ and σ∗ as a function of v∗,r is determined
by the continuity equations for mass and energy of the ith stellar
population:

∂Σ∗,i

∂t

Mig

+
1
r

∂

∂r
(rΣ∗,iv∗,r ) = 0 (27)

∂

∂t

[
Σ∗,i

(
v2

φ + 3σ 2
∗,i + 2ψ

)]Mig

+
1
r

∂

∂r

[
rΣ∗,iv∗,r

(
v2

φ + 3σ 2
∗,i + 2ψ

)]
= 0. (28)

Expanding the energy equation using the product rule and
employing the mass equation to cancel terms leaves

Σ∗,i

∂

∂t

[(
v2

φ + 3σ 2
∗,i + 2ψ

)]

+ Σ∗,iv∗,r

∂

∂r

[(
v2

φ + 3σ 2
∗,i + 2ψ

)]
= 0. (29)

The time derivatives of vφ and ψ are zero by assumption, so
expanding the surviving derivatives, setting ∂ψ/∂r = v2

φ/r and
∂vφ/∂r = βvφ/r , and rearranging yields

∂σ∗,i

∂t

Mig

= −v∗,r

(
(1 + β)v2

φ

3rσ∗,i

+
∂σ∗,i

∂r

)

. (30)

The corresponding equation for stellar column density follows
immediately from the continuity equation:

∂Σ∗,i

∂t

Mig

= −Σ∗,i

∂v∗,r

∂r
− v∗,r

∂Σ∗,i

∂r
− Σ∗,iv∗,r/r. (31)

Substituting the transport equations into Equation (26) and
imposing Equation (25) yields

2πr
v∗,r

vφ

(

−
v2

φ

σ 2
∗

(1 + β)
3r

− 1
σ∗

∂σ∗

∂r
+

1
Σ∗

∂Σ∗

∂r
+ 1/r

)

+
2πr

vφ

∂v∗,r

∂r
= max(Qlim − Q∗, 0)

TMigQ∗
. (32)

This is a first-order ODE (since at any particular time we treat
all variables as functions of radius only), requiring a single
boundary condition which we take to be v∗,r (r = R) = 0,
which means that no stars are allowed to migrate between the
outer edge of the disk and the intergalactic medium (IGM). This
boundary condition guarantees that the bulk velocity of stars in
the radial direction will be inward at all radii, which means this
method does not conserve angular momentum; to compensate
for a large mass of stars moving inward, a small mass of stars
would need to move outward. The error we make in conservation
of total angular momentum is about 2% in the fiducial case.

4. METALLICITY EVOLUTION

4.1. Advection of Metals in Gas

To describe the evolution of the metal content, we begin
by defining ΣZ , the surface density of metals, so locally the
metallicity of the gas is Z = ΣZ/Σ. The continuity equation for
ΣZ is

∂

∂t
ΣZ = 1

2πr

∂

∂r
ṀZ − Σ̇SF

Z + SZ, (33)

where Σ̇SF
Z = Σ̇SF

∗ Z is the rate at which metals are incorporated
into newly formed stars and SZ is a source term for metals
injected into the gas by supernovae and asymptotic giant branch
(AGB) stars. Note that in writing this equation, we neglect
transport of metals through the disk by either turbulent diffusion
or galactic fountains. The inward flux of metallic mass is

ṀZ = ṀZ = − Z

vφ(1 + β)
∂T
∂r

, (34)

which follows from Equation (3). The left-hand side of
Equation (33) can be re-expressed in terms of Z by noting
∂ΣZ/∂t = Z∂Σ/∂t + Σ∂Z/∂t . Equation (33) then becomes

Z
∂Σ
∂t

+ Σ
∂Z

∂t
= Z

2πr(1 + β)2vφ

(

(1 + β)
∂T
∂r

β/r

− (1 + β)
∂T
∂r

∂ ln Z

∂r
+

dβ

dr

∂T
∂r

− (1 + β)
∂2T
∂r2

)

− Σ̇SF
Z + SZ. (35)

Comparing this with the previously derived gas surface density
evolution equation, we can cancel most of the terms on the
right-hand side with Z∂Σ/∂t , leaving only

∂Z

∂t
= − 1

(β + 1)rΣvφ

∂ ln Z

∂r

∂T
∂r

+
SZ

Σ
. (36)
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Inflowing gas has some metallicity ZIGM, which we fix at
ZIGM = 0.1 Z, for the entire simulation. Simulations (Shen
et al. 2011) and observations (Adelberger et al. 2005) suggest
that the circumgalactic medium is enriched to this degree as
early as z = 3.

4.2. Metal Production

For simplicity, we adopt the instantaneous recycling approx-
imation, proposed by Tinsley (1980), to specify SZ , the produc-
tion rate of metals. First we recognize that metals are produced
in supernovae and AGB stars. To a first approximation, we can
assume that the lifetimes of stars that dominate metal produc-
tion are much smaller than the timescales with which we are
concerned in this paper, so metals enter the ISM at a rate pro-
portional to the star formation rate. Not all gas that forms stars
is returned to the ISM, since low-mass stars do not leave the
main sequence in a Hubble time and even high-mass stars form
remnants. Defining the remnant fraction fR as the fraction of
gas forming stars which will end up not being returned to the
ISM, the surface density of recycled gas appearing in the ISM
is (1 − fR)Σ̇SF

∗ . Supernovae and normal stellar evolution will
enrich a small fraction of this gas, namely yM , the yield. The
surface density of metal production is therefore

SZ = yMζ (1 − fR)Σ̇SF
∗ . (37)

Assuming a Chabrier (2005) initial mass function and a coarse
approximation for the ultimate fates of stars as a function of
mass, Krumholz & Dekel (2011) compute fR = 0.46. Assuming
in addition a production function, the fraction of a star’s initial
mass converted to a given element, from Maeder (1992), they
compute a yield of yM = 0.054 for Solar metallicity stars. The
effective yield may be somewhat smaller than this, since galactic
winds driven by supernovae tend to eject material that is richer
than average in metals. The factor of ζ ! 1 represents the ratio
of metallicity in the ISM to metallicity of ejected material. We
adopt ζ = 1, corresponding to an assumption that the ejecta are
well mixed with the ISM. This value will in principle depend
on the mass of the galaxy considered (Mac Low & Ferrara
1999). However, owing to the high resolution required, to date
no simulation has reliably calculated the degree to which metal-
rich gas is preferentially ejected. Changes in the exact value
of ζ roughly translate into the normalization of the metallicity
distribution in the gas, so our fiducial value of ζ was chosen to
give reasonable values for this normalization.

4.3. Diffusion of Metals

The metallicity gradients produced when accounting only for
metal production by stars and advection by inflowing gas are far
steeper than the observed gradient in the Milky Way. Metals are
formed in proportion to the star formation rate, which tends to
be high toward the center of the simulated galaxies. Meanwhile
the inflow of gas throughout the disk concentrates the metals
even further. To explain the relatively small observed metallicity
gradients, one must allow metals formed at small galactic radii
to reach large radii. This may occur either in the plane of the disk
(diffusion) or out of the plane (galactic fountains). By assuming
a fixed value of ZIGM = 0.1 Z,, we have already implicitly
assumed some sort of transport of metals from the galaxy into
its surrounding medium. However, rather than modeling this
transport in any detail, let us consider only the diffusion of
metals through the disk.

In general, a diffusion equation will have the form

∂

∂t
MZ = D

∂2

∂r2
MZ, (38)

where D is the diffusion coefficient and MZ = 2πr∆rΣZ is the
gas-phase metal mass in a given cell. At an order of magnitude
level D may be estimated by taking the typical velocity of gas
in the disk, σ , and multiplying by the typical length scale of
perturbations, namely the two-dimensional Jeans scale, σ 2/GΣ.
For simplicity we simply adopt D = kZvφ(R)R where kZ
and D will be constant at every time and location in the disk.
Numerically, we take kZ = 10−3 which is of the correct order
of magnitude and yields a metallicity gradient of the order of
0.1 dex kpc−1 (see Figure 2), which is comparable to observed
values in isolated spiral galaxies (e.g., Zaritsky et al. 1994).

4.4. Metals Locked in Stars

The metallicity of a given stellar population can be updated
when new stars are added to it by again assuming instantaneous
mixing. The new metallicity is just an average of the old
metallicity and the metallicity of the gas, weighted by the surface
density of the extant stellar population and the newly formed
population, respectively:

Z∗,i,new =
Z∗,i,oldΣ∗,i + fRZ

(
dΣSF

∗,i

)

Σ∗,i + fR

(
dΣSF

∗,i

) . (39)

Here, as in Equation (22), dΣSF
∗,i = Σ̇SF

∗,idt , is the surface density
of stars formed in a given time step in a given stellar age bin i.

Besides the formation of new stars, a given stellar popula-
tion is subject to migration through the disk, as discussed in
Section 3.2. Since the stars migrate through the disk with a
mean velocity set by Equation (32), the metallicity profile of a
given population of stars evolves under a continuity equation
for the metal mass:

∂

∂t

(
Σ∗,iZ∗,i

)Mig +
1
r

∂

∂r

(
rΣ∗,iZ∗,iv∗,r

)
= 0. (40)

Subtracting the continuity equation for total stellar mass
(Equation (27)), we obtain

∂Z∗,i

∂t

Mig

= −v∗,r

∂Z∗,i

∂r
(41)

for the evolution of stellar metallicity. Equations (39) and (41)
fully describe the evolution of the metallicity of the ith stellar
population. Note that these equations neglect radial diffusion of
stars, only taking into account the mean velocity v∗,r . Radial
mixing (Sellwood & Binney 2002; Roškar et al. 2011) is
required to explain the spread of metallicities in stars at a fixed
age and radius, and undoubtedly leads to a shallower stellar
metallicity gradient than what we obtain.

5. NUMERICAL METHOD

5.1. Computational Domain

In deriving the gas evolution equations, we assumed the disk
to be thin and axisymmetric. Thus, the disk is described by
variables which change only in radius and time. We therefore
define a mesh of radial positions ri with a fixed number of points,
nx, logarithmically spaced between the outer edge of the disk at
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a fixed radius R and a fixed inner cutoff r0, usually chosen to be
r0 = 0.01 R. Explicitly,

ri = R
( r0

R

)1−(i−1)/(nx−1)
. (42)

The highest spatial resolution is therefore given to the region
with the shortest dynamical times.

Time, tracked in units of the orbital period at radius R,
begins at zero when the simulations are started, typically at
z = 2, and reach a few tens of orbits at z = 0, depending on
the assumed radius and circular velocity. The size of the time
steps are calculated by first determining all timescales defined
by dividing each state variable at each position by its time
derivative, picking out the minimum timescale, and multiplying
it by a small number tol, usually taken to be 10−4. Larger values
of tol lead to numerical instabilities near the inner boundary,
which is especially susceptible to such issues because the local
dynamical timescale in the disk is Ω−1 ∝ r for a flat rotation
curve:

∆t = tol × mini

[
Σ

∂Σ/∂t
(ri),

σ

∂σ/∂t
(ri),

× Σ∗

∂Σ∗/∂t
(ri),

σ∗

∂σ∗/∂t
(ri),

0.01
tol

]

. (43)

A maximum time step of 0.01 outer orbits is imposed to prevent
systems extremely close to equilibrium from advancing too
quickly.

5.2. PDEs

At each time step, the code solves the equations in non-
dimensionalized form (see the Appendix) in the following order.
First, we solve Equation (32) to determine v∗,r at all radii. The
equation is of the form H = h0v∗,r + ∂v∗,r/∂r with

H = max(Qlim − Q∗, 0)vφ

2πrTMigQ∗
(44a)

h0 = −
v2

φ

σ 2
∗

(1 + β)
3r

− 1
σ∗

∂σ∗

∂r
+

1
Σ∗

∂Σ∗

∂r
+

1
r
. (44b)

The boundary condition specifies v∗,r at the outer edge of the
disk. Thus, rewriting the radial derivative as a finite difference
and employing a backward Euler step, we can write an explicit
updated equation,

v∗,r (ri−1) ≈ v∗,r (ri) − (ri − ri−1)H(ri−1)
1 − (ri − ri−1)h0(ri−1)

, (45)

which we solve iteratively by starting with the specified value
of v∗,r (rnx) = 0 and moving inward.

Using the value of v∗,r along with the current values of the
state variables, we calculate the coefficients of the torque equa-
tion (Equation (14)). To solve the resultant linear partial dif-
ferential equation (PDE), we employ a similar finite difference
method, which approximates

∂Ti

∂r
≈ Ti+1 − Ti−1

ri+1 − ri−1
(46)

∂2Ti

∂r2
≈ 1

ri+1/2 − ri−1/2

(
Ti+1 − Ti

ri+1 − ri

− Ti − Ti−1

ri − ri−1

)
. (47)

Since we are using a logarithmically spaced grid, ri+1/2 =√
riri+1. By plugging these approximations into the torque

equation, the problem reduces to the inversion of a tridiagonal
matrix.

The forcing term in the torque equation (15d) generally acts to
destabilize the disk, since its largest term comes from radiative
cooling of the gas and cooler gas is more prone to gravitational
collapse. The torque equation requires that the gravitational
torques exactly counteract this effect to maintain dQ/dt = 0.
However, in the event that the forcing term in the torque equation
becomes negative as a result of stellar migration and a reduced
rate of cosmological infall leading to L → 0, we set it to zero
so that the gas is not forced to destabilize the disk. This in turn
allows positive values of dQ/dt . We do not allow the forcing
term to return to the value given by Equation (15d) until that
value is again positive and Q has been allowed to rise and
then fall back down to Q = Qf . This allows the simulation
to follow disks that stabilize at least temporarily, for example,
because of a lull in the cosmological accretion rate, and then
return to a marginally unstable state. For the smoothed average
cosmological accretion history used in our fiducial run, parts of
the disk which stabilize remain that way because the accretion
rate is monotonically decreasing.

With T , ∂T /∂r , ∂2T /∂r2, and v∗,r , we can now evaluate the
derivatives of the state variables. Where radial derivatives of
the state variables or other quantities appear in the evolution
equations or the coefficients of the above differential equations,
a minmod slope limiter is used to evaluate them. In particular,
if L = (A(ri) − A(ri−1))/(ri − ri−1) and R = (A(ri+1) −
A(ri))/(ri+1 − ri)

∂A

∂r
(ri) =






L if |L| < |R| and LR > 0
R if |L| > |R| and LR > 0
0 otherwise,

(48)

where A is a stand-in for any quantity. This strongly suppresses
noise on the scale of the mesh separation by zeroing out rapid
variations in the derivatives.

With the time derivatives calculated at each point, we simply
take a forward Euler step to update the state variables, namely
Σ, σ , Z, Σ∗, σ∗, and for each age-binned stellar population,
Σ∗,i , σ∗,i , and Z∗,i . Typical runs have time steps limited by
the rate of change of the gas state variables near the inner
boundary of the disk where the dynamical timescale is shortest.
On a single processor, runs take about one day to complete
if we numerically evaluate Q(q) and its derivatives using the
full Rafikov (2001) formalism. We can shorten this by an
order of magnitude by using the approximation to Q suggested
by Romeo & Wiegert (2011). This approximation is much
more efficient because QRW and its partial derivatives may be
calculated as functions of the state variables alone, without the
need to minimize over a wavenumber or compute the partial
derivatives ∂Q/∂{Σ, σ, Σ∗,i , σ∗,i} numerically as required by the
full Rafikov Q.

5.3. Initial Conditions

By assuming a flat rotation curve, fixed gas fraction, equal
stellar and gas velocity dispersions, a simple analytic approx-
imation to Q, and ignoring stellar processes (formation and

8



The Astrophysical Journal, 754:48 (16pp), 2012 July 20 Forbes, Krumholz, & Burkert

migration), KB10 were able to compute an equilibrium solution
to the evolution equations. In particular,

σ = 1√
2

(
GṀext,0

ηfg

)1/3

(49)

Σ = vφ

πGr

(
f 2

g GṀext,0

η

)1/3

. (50)

Here, Ṁext,0 is the accretion rate of gas onto the outer edge of
the disk at the start of the simulation, and fg is the gas fraction,
assumed to be constant in radius. By assumption, σ∗ = σ and
Σ∗ = Σ(1 − fg)/fg .

If we relax the assumptions that the velocity dispersions of
both components are identical and Q = 1, add a factor to correct
for finite disk thickness, but retain the approximate form of Q for
an infinitely thin disk, Q−1 ≈ Q−1

g +Q−1
∗ , we obtain a modified

version of the equilibrium column density:

Σ = T

Qf

vφ

πGr

φ0fg

fg(φ0 − 1) + 1

(
GṀext,0

ηfg

)1/3

, (51)

where φ0 = σ∗/σ is a free parameter , T ≈ 1.5 is the thickness
correction, and Qf is the fixed value to which Q will be set
everywhere in the disk. To initialize the simulations, we use
Equations (49) and (51). We then adjust σ∗ = φ0σ keeping φ0
fixed until Q = Qf exactly at each cell of the grid. Finally,
we run the simulation with stellar processes turned off, i.e.,
εff = Qlim = 0, and with Ṁext fixed to its initial value, Ṁext,0,
to allow the gas to adjust to an equilibrium configuration. The
greatest effect of this adjustment occurs at the inner edge of
the disk, since these relations were derived using a different
inner boundary condition and under a more stringent set of
assumptions. Once the state variables are changing sufficiently
slowly, we have found our initial conditions and therefore return
εff , Qlim, and Ṁext(t) to their user-specified values.

6. FIDUCIAL MODEL

While our code is quite general, here we describe a simple
model run using it in order to demonstrate its capabilities. In
future work we will explore a much wider part of parameter
space, using more realistic cosmological accretion histories.

6.1. Setup

The formalism presented here requires a rotation curve,
accretion history, and fixed inner and outer radii to be specified
before the simulation is run. Since we employ a logarithmic
computational grid, there is little cost to extending the outer
radius out to 20 (as opposed to 10) kpc. This allows us to follow
the transition of the outer disk from somewhat molecular at high
redshift to atomic at low redshift. For the inner truncation radius,
we take r0 = 0.01 R = 200 pc. The exact value will affect the
quantitative results within a few kpc of the center of the disk,
but the exact results of the simulation in this region should be
taken with a grain of salt anyway. Here σ∗ reaches a similar
order of magnitude as the circular velocity, which we take to be
independent of radius, vφ(r) = 220 km s−1, so our treatment
of this region as a thin disk is not valid. Moreover, the inner
boundary value for the torque equation, which we take to be
zero—no torque is exerted by the region within the truncation

radius on the disk—could easily be some small but non-zero
value.

The accretion history employs the fitting formula from
Bouché et al. (2010), namely

Ṁ(t) = 7 εin fb,0.18 M1.1
h,12 (1 + z)2.2 M, yr−1, (52)

where Mh,12 is the halo mass in 1012 M,, fb,0.18 is the baryon
fraction of the accreting matter normalized to 18%, and εin is
zero for Mh,12 > 1.5 but varies linearly in time from 0.7 down to
0.35 between redshift 2.2 and 1. Before redshift 2.2, εin = 0.7,
and after redshift 1, εin = 0.35. We choose fb,0.18 = 1, and
an initial halo mass which will grow to be about 1012 M, at
redshift zero. The formula governing the growth of the halo
mass is given in the same paper:

Ṁh = 34.0 M1.14
h,12 (1 + z)2.4 M, yr−1, (53)

so an initial halo mass of Mh,12 = 0.27 at z = 2 produces a
Milky Way-analog galaxy with Mh,12 ≈ 1 at z = 0. We note
that some of the baryonic accretion may go into expanding the
outer radius of the disk, instead of being transported inward,
which would reduce the accretion rate below the estimate given
in Equation (52). However, since the baryonic mass of galactic
disks outside 20 kpc is generally a negligible fraction of the
total, this clearly cannot be a large effect, and the error we make
by neglecting it is small compared to the general uncertainty in
the cosmological accretion rate.

In addition to these functions, there are several free parame-
ters controlling various physical processes in the disk. The star
formation efficiency per free-fall time is εff = 0.01. The mass
loading factor of winds ejected from the galaxy in proportion to
the star formation rate is µ = 1, chosen to roughly correspond
to observations (Erb 2008). The fraction of turbulent energy
in the gas which will decay in a scale height crossing time is
η/1.5 = 1. The timescale for a Q∗ = Qlim − 1 population to
approach Q∗ = Qlim is TMig = 2 local orbital periods, and the
value of Q∗ below which the stars are subject to transient spiral
instabilities is Qlim = 2.5. For computational convenience, we
use Q ≈ QRW to evaluate the disk’s stability. We will explore
the sensitivity of the results to these parameter choices in future
work. Here our goal is merely to demonstrate the method and
its results.

The value of Q everywhere in the disk is fixed to Qf .
Theoretically Q is expected to be self-regulated to a value of
the order of unity. Formal stability criteria derived from the
perturbed equations of motion for infinitely thin disks find the
disks to be unstable when Q < 1, so the marginal stability that
we assume here would imply Q = 1. However, recent work
by Elmegreen (2011) has shown that for a realistically thick
disk where the gas cools on the order of a dynamical time, a
marginally stable value of Q is closer to 2 or 3. This is consistent
with the observational evidence compiled by Romeo & Wiegert
(2011) for nearby spiral galaxies, namely that when QRW for
these disks is calculated, the values typically fall between 2 and
3 for most galaxies at most radii. Thus, we adopt Qf = 2 as a
fiducial value.

Finally, to specify the initial conditions fully, one must choose
an initial gas fraction and a ratio of stellar to gas velocity
dispersion. Since the only way the stellar velocity dispersion
can decrease is by mixing it with a lower-velocity dispersion
population, it is reasonable to expect this ratio to be greater than
unity. The simplified models of gravitationally unstable galaxies
evolving from z + 1 discussed in Cacciato et al. (2012) suggest
that by z ∼ 2, this ratio φ0 is a few, so we adopt φ0 = 2.
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6.2. Disk-average Quantities

Before considering the radial structure of the disk, let us
consider the evolution of the galaxy as a whole between z = 2
and z = 0. Our model does not allow the rotation curve or
outer radius of the disk to evolve in time. However, over this
redshift range, the circular velocity (assuming a constant spin
parameter) will evolve by less than about 10% (e.g., Cacciato
et al. 2012). Meanwhile, the position of the outer edge of the disk
has a minimal effect on its evolution, so long as the outer edge
of the star-forming disk is resolved. At larger radii than this,
there is so little star formation that the gas is free to flow inward
at a constant rate and arrive at the edge of the star-forming disk
unaltered by its passage through the H i disk.

The primary changes in the disk are the steady decline in the
accretion rate, and the steady formation of stars. For the fiducial
model, Ṁext(t) drops smoothly from about 13 M, yr−1 at z = 2
to 2 M, yr−1 at z = 0. This falloff is mirrored in the drop in
total gas fraction, two-dimensional Jeans mass, and total star
formation rate (Figure 1). The star formation rate in particular
has almost the same numerical value as Ṁext(t), starting off
slightly higher and converging to the accretion rate. This is a
reflection of the fact that the formed stars can only come from
gas that started in the simulation or accreted at a later time, and
the initial gas reservoir is depleted in about 1 Gyr.

Stars, once formed, remain in the disk, while the mass of gas
in the disk falls with the cosmological accretion rate. This drives
a steady decrease in the gas fraction from its initial value, down
to 20%. Referring to the equilibrium solution for constant gas
fraction (Equations (49) and (50)), and noting that fg has dropped
by a factor of a few, while the accretion rate has dropped by a
factor of about six, we might expect σ to decrease by maybe a
factor of two, while Σ might decrease by more than a factor of
three.

The two-dimensional Jeans mass (Kim & Ostriker 2002) is
defined by

MJ = σ 4

G2Σ
. (54)

Physically this represents the characteristic mass of a clump
of gas that collapses under gravitational instability to form a
cluster of stars. Its steady decrease with time reflects the cooling
of the disk, which allows smaller regions to collapse. This
is the phenomenon that explains why z ∼ 2 galaxies contain
giant clumps far larger than the biggest GMCs in present-day
Milky Way-like galaxies. As a practical matter, this means
that the typical size of star clusters steadily decreases, thus,
coupled with the fact that a clump of gas can form stars with
at most tens of percent efficiency, clusters with M > 106 M,
are unable to form in today’s quiescent spirals. In the fiducial
model, MJ ∼ 2 × 107 M, at r = 8 kpc. The decrease in the
upper envelope of cluster mass with time is consistent with the
arguments made by Escala & Larson (2008).

6.3. Radial Structure of the Disk

We show the radial structure of our fiducial disk in
Figures 2–4. We can understand the qualitative behavior shown
in these plots by considering the processes that drive the evolu-
tion. The two most important drivers are that Q = Qf almost
everywhere at all times, and that stellar migration tends to self-
regulate the stars such that Q∗ = Qlim—recall that Qlim is a
free parameter, below which stars are subject to transient spiral
instabilities. If Q∗ > Qlim, stars will form and drive up Σ∗, de-
creasing Q∗, while if Q∗ < Qlim, the stars will migrate inward
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Figure 1. Time evolution from the beginning to the end of the fiducial simulation
of the radially integrated gas fraction, two-dimensional Jeans mass at r = 8 kpc,
and the radially integrated star formation rate.

increasing σ∗ and hence Q∗. These two restrictions set Qg to
a value somewhat less than Qlim, depending on the local ratio
σ/σ∗. These forces lead the simulations to form three qualita-
tively distinct regions: a stabilized stellar-dominated region, a
star-forming region, and an H i disk.

The radial extent of the star-forming region is more or less
set by where the gas is molecular, i.e., fH2 ≈ 1. This in turn
corresponds to where the gas column density is larger than
some metallicity-dependent critical value. For our fiducial initial
conditions, the disk is molecular out to r ≈ 15 kpc at z = 2.
Within this radius, almost the entire disk is vigorously star
forming. As time passes, a stellar-dominated central region
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Figure 2. Direct comparison of the gas and stellar components as a function of
radius at redshifts 2 (orange dotted), 1.5 (blue dot-dash), 1 (red dashed), and 0
(black solid). The gas cools and depletes, while the stars accumulate and heat.
The expanding stabilized region of the disk is evident in the dramatic decrease
in gas transport velocity, large Qg, and σ → σt . The outward movement of the
region where stars form and migrate follows the peak in gas column density—Q∗
approaches Qlim = 2.5, the stellar metallicity gradient steepens, and the stellar
scale height flattens.
(A color version of this figure is available in the online journal.)

begins to appear. This occurs because, toward the center of
the disk, the gas has short local dynamical times and hence
undergoes rapid star formation. In contrast, the inward mass
flux of gas required to maintain Q ≈ Qf is nearly independent
of radius. Star formation depletes this gas as it moves inward, so
by the time it reaches the inner region of the disk, not only is there
less gas than there would have been neglecting star formation,
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Figure 3. Radial profiles of quantities at redshift 2 (dotted), 1.5 (dot-dashed), 1
(dashed), and 0 (solid). The peak of fH2 and hence the star formation rate move
outward as the simulation evolves, as the gas further in has been depleted and
cannot be replenished.
(A color version of this figure is available in the online journal.)

but it is being consumed faster. In order to maintain a constant
Q, given that Q∗ ≈ Qlim, the gas must maintain Qg close to
constant. Star formation decreases the gas column density, so to
keep Qg roughly unchanged, the gas velocity dispersion must fall
proportionally. Thus, the gas velocity dispersion drops fastest in
the center of the disk.

By assuming a fixed gas temperature, we essentially set a floor
on the value of σ . When σ hits this floor, which happens first
at the inner edge of the computational domain (see Figure 2),
the radiative loss rate L approaches zero. The gas no longer
loses energy through shocks, and therefore ceases to move
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Figure 4. Radial profiles of quantities at redshift 2 (dotted), 1.5 (dot-dashed),
1 (dashed), and 0 (solid). Within the star-forming region, the size of the Jeans
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in the stellar-dominated component.
(A color version of this figure is available in the online journal.)

inward. In this situation that region of the disk ceases to become
gravitationally unstable, and Q is allowed to rise. Without any
means of mass transport, the gas simply depletes as it forms stars.
As the gas column density drops off, the stars dominate the local
stability of the disk. Since they are constrained to Q∗ ≈ Qlim
by our assumptions about stellar migration, the overall value of
Q/T of the disk in this region approaches Qlim as well.

The third qualitatively distinct region of the disk may be
thought of as the H i disk wherein fH2 is low enough that stars
form at a relatively slow rate, and gas flows in adhering even
more closely to the equilibrium conditions of Equations (49)
and (50), which were derived by neglecting star formation in

KB10, than in the star-forming region. In essence, the gas is
allowed to flow in with a constant mass flux at each radius, since
star formation is not depleting the gas significantly. Depending
on the initial conditions of the simulation, the column density
of stars may be low enough or the velocity dispersion of the
stars may be high enough that Q∗ > Qlim for the duration of
the simulation. In this situation the overall stability of the disk
is almost exclusively determined by the stability of the gas,
therefore the gas properties will correspond more closely to the
equilibrium values with the gas fraction set to unity.

Looking at the values for Σ and σ near the solar circle
(see Figure 2), we see that they are too high relative to their
observed values of approximately 13 M, pc−2 and 8 km s−1,
respectively, though not by more than a factor of two. Moreover,
the column density of gas near the center of the disk is lower than
observed in the Milky Way. Both of these problems stem from
the fact that when L → 0, mass transport due to gravitational
instability shuts off, whereas the real Milky Way has a number
of mechanisms to transport gas into its central regions even
when σ → σt . The gas could be transported by a bar instability
from larger radii, or the gas that we assume accretes at the edge
of the disk could be accreting directly into the central region
of the galaxy. Gas can also be recycled back to the ISM from
stars. We assume this occurs instantaneously, so we neglect gas
from stars that form farther out in the disk and migrate inward.
Nonetheless, our model qualitatively reproduces the structure
of z = 0 disk galaxies: a central stellar-dominated bulge, an
extended star-forming disk, and an outer H i-dominated disk
with very little star formation.

6.4. Stellar Populations

As the stars form in the fiducial simulation, one can treat them
as adding together into a single population for the purposes of
evaluating the torque equation, while at the same time evolving
a number of passive populations, binned by age, alongside the
single population. Only the active population affects the stability
of the disk, while the passive populations simply serve as tracers
of the stars formed during a particular epoch. This in turn is a
reflection of the state of the gas at that time, with the added
effect of gradual stellar heating through radial migration.

Stellar migration occurs locally as the result of star formation,
since it is star formation that drives Q∗ below Qlim. It is
therefore unsurprising that the stellar populations seem to have
very similar column density profiles (see Figure 5) to the
star formation rate profile shown in Figure 3. The primary
effect of migration is thus not mass transport inward so much
as an increase in the velocity dispersion. This can be quite
significant—the oldest stars near the center of the disk reach
nearly σ∗,i = 100 km s−1, which is significantly larger than the
gas velocity dispersion at any time in the simulation.

The state of these populations near the solar neighborhood
at z = 0 is of particular interest, since these populations
are well observed and display well-known correlations. The
velocity dispersions of stars in the solar neighborhood vary
from about 17 km s−1 for 1 Gyr-old stars to ∼10 Gyr-old
stars with σ∗ ≈ 37 km s−1 (Nordström et al. 2004; Holmberg
et al. 2009). The theoretical explanations for this correlation go
back to Spitzer & Schwarzschild (1953) and generally center
around the scattering of stars by molecular clouds and spiral
structure, which gradually heats the disk. Other explanations
have included minor or major mergers (e.g., Dierickx et al.
2010; Bekki & Tsujimoto 2011; Qu et al. 2011) and popping
star clusters (Assmann et al. 2011). All of these explanations
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Figure 5. All stellar populations produced in the fiducial model at redshift zero,
colored by their age with redder stars older. The ages are linearly spaced in time,
so each population is about 1 Gyr of star formation. The dotted lines represent
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dynamically colder, and has a steeper metallicity gradient than its older analogs.
(A color version of this figure is available in the online journal.)

are conceptually trying to do the same thing—form a thick disk
from a thin disk. However, a gravitationally unstable disk subject
to star formation and a decreasing accretion rate will start with
a high gas velocity dispersion that will decrease with time.
This will also naturally generate an age–velocity-dispersion
correlation. This is the scenario presented in the simulations
of Bournaud et al. (2009), and in the chemodynamical models
of Burkert et al. (1992).

The age–velocity-dispersion correlation produced in our
fiducial model may be explained as the combination of two
physical effects. First, the gas velocity dispersion decreases with
time as the disk cools. This may be understood from the fact
that if Q and Q∗ are self-regulated to constant values, then

Qg must remain close to constant, and thus if Σ decreases, so
must σ . As the gas cools, the stars it forms will be cooler
than previous generations of stars, leading to an age–velocity-
dispersion correlation. The second effect is the heating of stars
via transient spirals to maintain Q∗ = Qlim. Although this is a
scattering process which heats stars over time, there is never a
thin disk which gradually forms a thick disk.

To better discern the importance of each of these effects,
we can compare the stars produced by the fiducial model to
runs with certain effects artificially turned off. The high and low
constant accretion rate models shown in Figure 6 have Ṁext(t) =
12.3 M, yr−1 and Ṁext(t) = 2.34 M, yr−1, respectively,
corresponding to the accretion rates at the beginning and end
of the fiducial simulation. For simulations where migration is
turned off, we plot the properties of the stars at their epoch
of formation, rather than their properties at z = 0. Thus,
the dynamical effects of migration as it affects the stability
of the disk remain unchanged as compared with the fiducial
simulation. Figure 6 shows explicitly that the age–velocity-
dispersion correlation is strongly affected by the accretion
history and the presence of stellar heating. All of the scenarios
are able to generate some age–velocity-dispersion correlation.
Even the case with no stellar heating and a constant accretion
rate produces one as the result of a fall in Σ, and hence σ , as a
result of star formation.

7. DISCUSSION

Starting from conservation laws and simple assumptions
about the gravitational stability of the disk, we have derived
evolution equations for the radial profile of a two-component
disk. Compared to semi-analytic models, this approach has
the advantage that the vast variation in the state variables as a
function of radius is resolved rather than averaged over the whole
disk. This improvement comes with additional computational
costs; however, these are not severe–even using the full Rafikov
Q and multiple stellar populations, the code can evolve a disk
from z = 2 to z = 0 on a single processor in a few days, and
using the Romeo & Wiegert (2011) approximation to Q reduces
the computation time to under an hour.

This paper is primarily meant to introduce our methodology.
However, the fiducial model demonstrates a key point which
is often overlooked in galaxy evolution and studies of the
thick disk, namely that thick disks need not be formed from
thin disks. An age–velocity-dispersion correlation appears in
our simulation, not because of external perturbers, mergers, or
gradual heating of a thin disk, but because σ decreases with
time and newly formed stars induce transient instabilities in
the disk (see also Burkert et al. 1992). Both of these processes
are strongly dependent on the cosmological situation in which
the disk finds itself, that is, its accretion history. Simulations
of isolated thin disks that are gradually heated are therefore
unrealistic, in the sense that they are missing the most important
drivers of thick disk formation. The smooth increase in stellar
velocity dispersion with age produced in our simulations agrees
qualitatively with recent observations that demonstrate the lack
of a distinctive bimodality between thick and thin disk stars
(Bovy et al. 2012).

This approach has several further applications which we in-
tend to explore in future work. For Milky Way-like galaxies,
even modern chemodynamical models with sophisticated treat-
ments of stellar migration and evolution rely on highly parame-
terized treatments of gas inflow in the disk (Schönrich & Binney
2009; Spitoni & Matteucci 2011). If the gas evolves to keep the
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(A color version of this figure is available in the online journal.)

disk marginally gravitationally unstable, its movement in the
disk is not this simple–it depends on the evolution of the full
nonlinear set of equations we have derived here. By accounting
for the diffusion of stars in radius as the result of scattering
across corotation resonances (Sellwood & Binney 2002), our
model could be extended to model the Milky Way in detail
and compare directly with observations of the metallicity gra-
dient as a function of height above the disk (Cheng et al. 2012),

the age–velocity-dispersion correlation (Holmberg et al. 2009),
the age-metallicity relation or lack thereof (Edvardsson et al.
1993), and the radial and vertical stellar density distributions
(Bovy et al. 2011).

Galaxy bimodality—the separation of galaxies into a blue
cloud of star-forming galaxies and a red sequence of ellipti-
cals—is often viewed as an evolutionary sequence. Blue cloud
galaxies gradually accrete gas and smaller galaxies, which fuel
star formation. Some of these galaxies will undergo major merg-
ers, leaving red and dead elliptical galaxies. These early-type
galaxies can subsequently undergo dry mergers, which extend
the red sequence to include extremely massive galaxies. Beyond
this canonical view, Sánchez Almeida et al. (2011) have noted
the existence of a significant population of red spirals.

By taking more realistic accretion histories from cosmologi-
cal simulations, we expect that a certain fraction of disks in the
course of their lifetimes will experience a period of low accre-
tion during which they will exhaust their gas supply and become
redder, only to return to the blue cloud with the resumption of
higher accretion rates. Given a set of realistic non-smooth but
quiescent accretion histories, appropriate for a large fraction of
sub-L∗ galaxies, we may therefore be able to reproduce aspects
of phenomenology from the local universe out to z = 2 as semi-
analytic models do, but with the added benefit of a physical
treatment of the disk dynamics.
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APPENDIX

NON-DIMENSIONAL EQUATIONS

For the purposes of implementing the governing equations in a
numerical code, it is useful to non-dimensionalize the equations.
To do so is straightforward, and basically amounts to rescaling
lengths to the radius of the disk, velocities to the circular
velocity, and mass fluxes to the initial accretion rate of gas from
the IGM. We can make the following substitutions, following
KB10: r = xR, t = T [2πR/vφ(R)], T = τṀext,0vφ(R)R,
σj = sj vφ(R), and Σj = SjṀext,0/(vφ(R)R). Here, the subscript
j may refer to gas or one of possibly many stellar populations.
With these substitutions, the gas evolution Equations (2) and (5)
become

∂S

∂T
= (β2 + β + xβ ′)τ ′ − x(β + 1)τ ′′

(β + 1)2ux2
− (fR + µ)

∂S∗

∂T

SF

(A1)

∂s

∂T
= − s

3(β + 1)Sux
τ ′′ +

(β + β2 + xβ ′)s − 5s ′x(β + 1)
3(β + 1)2Sux2

τ ′

+
u(β − 1)

3sSx3
τ − 2π2

3
ηSK0

(
1 +

S∗

S

s

s∗

) (
1 − s2

t

s2

)3/2

.

(A2)
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Primes denote partial derivatives with respect to x, and as
with dimensional quantities, S and s with no subscript refer to
properties of the gas. The dimensionless initial accretion rate is

K0 = GṀext,0

vφ(R)3
. (A3)

The dimensionless thermal gas velocity dispersion is st.
Employing the same procedure for the evolution equations of

each stellar population’s column density, we obtain

∂S∗,i

∂T
= fR

(
∂S∗,i

∂T

)SF

+
∂S∗,i

∂T

Mig

, (A4)

∂S∗,i

∂T

SF

= 8π

√
2
3
fH2εffK0

S2

s

√

1 +
S∗

S

s

s∗
, (A5)

∂S∗,i

∂T

Mig

= − 2πy

(
S∗,i

y ′

y
+ S ′

∗,i +
S∗,i

x

)
, (A6)

where we have explicitly separated the effects of stellar migra-
tion and star formation. The dimensionless radial component of
the bulk stellar velocity is y = vr∗/vφ(R).

Similarly, the velocity dispersion evolution equations are

∂s∗,i

∂T
= ∂s∗,i

∂T

SF

+
∂s∗,i

∂T

Mig

, (A7)

∂s∗,i

∂T

SF

≈ fR

1
2S∗s∗

(s2 − s2
∗)

∂S∗

∂T

SF

, (A8)

∂s∗,i

∂T

Mig

= − 2πy

(
(1 + β)u2

3xs∗
+ s ′

∗

)
. (A9)

The change in velocity dispersion as a result of star formation
is only an approximate relation, since it relies on a first-order
Taylor series expansion of the exact change in s∗,i , which in turn
requires that S∗,i + (∂S∗,i/∂T )MigdT . This condition cannot be
satisfied when a completely new population of stars is formed
as the simulation crosses into a new age bin, at which time
S∗,i = 0. Therefore, we use the exact relation:

s∗,i,new =

√√√√
(
S∗,i s

2
∗,i

)
old + fR

(
dSSF

∗,i

)
s2

S∗,i,old + fR

(
dSSF

∗,i

) , (A10)

where dSSF
∗,i = dT (dS/dT )SF.

Finally, we have the equations describing the transport of
metals in the gas,

∂Z

∂T
= − 2π

(β + 1)xSu

∂ ln Z

∂x
τ ′ +

yM (1 − fR)
S

∂S∗

∂T

SF

(A11)

and in a stellar population,

∂Z∗,i

∂T

Mig

= −2πyS ′
∗,i . (A12)

The stellar metallicity change owing to the formation of new
stars can be computed exactly as

Z∗,i,new =
(S∗,iZ∗,i)old + fR

(
dSSF

∗,i

)
Z

S∗,i,old + dSSF
∗,i

. (A13)

These equations, given a torque τ and a radial stellar velocity
y, fully describe the evolution of the system. To obtain these two
quantities, we imposed conditions on the evolution of Q and Q∗
(Equations (13) and (25)). In dimensionless form these PDEs are

y ′ + y

(
−u2

s2
∗

(1 + β)
3x

− s ′
∗

s∗
+

S ′
∗

S∗
+

1
x

)

= max(Qlim − Q∗, 0)u
2πxTMigQ∗

(A14a)

g2 τ ′′ + g1 τ ′ + g0 τ = gF (A14b)

where the coefficients of the dimensionless torque equation are
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(A15d)

Both PDEs require an outer boundary condition, which
essentially specifies the flux of each type of material at the
edge of the disk. The mass flux of the gas is specified by some
accretion history Ṁext(t),

τ ′(x = 1) = −
(

Ṁext(t)

Ṁext,0

)
(1 + β(x = 1)), (A16)

while the flux of stars is set to zero via y(x = 1) = 0. The torque
equation also requires an inner boundary condition, which we
take to be τ (x = x0) = 0.

REFERENCES

Adelberger, K. L., Shapley, A. E., Steidel, C. C., et al. 2005, ApJ, 629, 636
Assmann, P., Fellhauer, M., Kroupa, P., Brüns, R. C., & Smith, R.
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