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ABSTRACT

A number of authors have argued that the Sun must have been born in a cluster of no more than several thousand
stars, on the basis that, in a larger cluster, close encounters between the Sun and other stars would have truncated the
outer solar system or excited the outer planets into eccentric orbits. However, this dynamical limit is in tension with
meteoritic evidence that the solar system was exposed to a nearby supernova during or shortly after its formation;
a several-thousand-star cluster is much too small to produce a massive star whose lifetime is short enough to
have provided the enrichment. In this paper, we revisit the dynamical limit in the light of improved observations
of the properties of young clusters. We use a series of scattering simulations to measure the velocity-dependent
cross-section for disruption of the outer solar system by stellar encounters, and use this cross-section to compute the
probability of a disruptive encounter as a function of birth cluster properties. We find that, contrary to prior work, the
probability of disruption is small regardless of the cluster mass, and that it actually decreases rather than increases
with cluster mass. Our results differ from prior work for three main reasons: (1) unlike in most previous work,
we compute a velocity-dependent cross-section and properly integrate over the cluster mass-dependent velocity
distribution of incoming stars; (2) we recognize that ∼90% of clusters have lifetimes of a few crossing times,
rather than the 10–100 Myr adopted in many earlier models; and (3) following recent observations, we adopt a
mass-independent surface density for embedded clusters, rather than a mass-independent radius as assumed many
earlier papers. Our results remove the tension between the dynamical limit and the meteoritic evidence, and suggest
that the Sun was born in a massive cluster. A corollary to this result is that close encounters in the Sun’s birth cluster
are highly unlikely to truncate the Kuiper Belt unless the Sun was born in one of the unusual clusters that survived
for tens of Myr. However, we find that encounters could plausibly produce highly eccentric Kuiper Belt objects
such as Sedna.
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1. INTRODUCTION

It is very likely that our Sun, like most stars, was born as part of
a star cluster. The birth cluster environment is a self-gravitating
system of gas and dust that collapses at a multitude of points
to create its membership of stars. This process is inefficient,
converting only 10%–30% of the mass to stars while leaving
70%–90% as gas (Lada & Lada 2003). As long as the gas
remains, the stars are gravitationally bound and orbit chaotically
throughout the cluster. This motion continues until the winds and
ionizing radiation of the newborn stars blow away the remaining
gas. At that point the cluster is no longer self-gravitating, it
disperses, and the stars are free to move about the Galaxy.

By examining the state of our solar system as it exists today,
we can place limits on the birth cluster’s properties (i.e., mass,
surface density, radius, etc.) and thus have a better understanding
of the environment in which our solar system was born.

Meteorites provide one line of evidence. Samples taken
from meteorites that solidified not long after the solar system
formed show daughter products of multiple radioactive isotopes.
These radioactive isotopes most likely originated from stellar
nucleosynthesis, and their presence suggests that there was
a nearby supernova that enriched the solar nebula (Thrane
et al. 2006; Wadhwa 2007; Allen et al. 2007; Connelly et al.
2008; Duprat & Tatischeff 2008; Adams 2010). Such early
exposure is likely only if the birth cluster includes a star
!25 M# in mass. This consideration suggests a birth cluster
with at least 1000 members (Adams 2010). A priori such a
large cluster is not unlikely. The young cluster mass function is
(dN/dM) ∝ M−2 over the range from ∼101 to 106 M# (Lada

& Lada 2003; Chandar 2009; Fall et al. 2010), which implies
that ∼(1/2)− (2/3) of stars are born in clusters larger than this.1

On the other hand, several authors have attempted to obtain
upper limits on the birth cluster size by considering the effects
of close encounters with other stars on the young solar system.
Close encounters would perturb the solar nebula during its
formation. Any such perturbation must still permit the formation
of a solar system like the one we see today, with eight planets
that all lie close to the same plane (inclination angles "3.◦5) and
have small eccentricities (less than 0.2, or less than 0.09 if we
exclude Mercury, whose eccentricity is pumped by perturbations
from other planets).

Adams & Laughlin (2001) determined an upper bound on
the birth cluster size by performing Monte Carlo scattering
simulations of close encounters between the solar system and
passing stars. They found that the maximum number of stars the
birth cluster could have had without causing a Jovian planet to
be excited to an eccentricity greater than 0.1 is 2200 ± 1100.
However, observations of the properties of young, embedded

1 We do caution here that the observations do not completely establish the
existence of a mass function dN/dM ∝ M−2 over this full mass range. This
power law is seen in both the Galactic sample of Lada & Lada (2003) and the
extragalactic samples of Chandar (2009) and Fall et al. (2010). However, the
Lada & Lada (2003) sample only includes clusters within 2 kpc of the Sun, the
most massive of which is ∼103 M#. The Chandar (2009) and Fall et al. (2010)
samples only go down to a mass of ∼104 M#. Thus, the data do not rule out
the possibility that there is a break in the mass function in the range
103–104 M#. However, it would be quite a coincidence for this discontinuity
to coincide exactly with the mass range where the observations are incomplete.
A simpler hypothesis is that dN/dM ∝ M−2 over the full mass range.
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star clusters were at the time quite limited, and they were forced
to make a variety of assumptions about cluster properties. First,
the relative velocities of the stars in their simulations were
chosen randomly from a Maxwellian distribution with a standard
deviation of 1 km s−1; thus they had very few simulations
done with higher velocities, and the velocity distribution was
implicitly assumed to be independent of the cluster mass.
Second, they assumed that the cluster’s lifetime, and thus the
time the Sun was exposed to close encounters, was on the
order of 100 cluster crossing times. Last, they assumed that
the cluster’s radius was fixed and independent of its mass. This
last assumption would lead a high-mass cluster to have very
high surface densities.

More recent observations have shown that most of these
assumptions are not satisfied in typical embedded clusters.
Compiling observations of embedded clusters from Shirley et al.
(2003), Faúndez et al. (2004), and Fontani et al. (2005), Fall
et al. (2010) find that embedded clusters form a sequence of
roughly constant surface density, not constant radius. Similarly,
current observations favor cluster lifetimes closer to one to four
crossing times (Elmegreen 2000; Hartmann et al. 2001; Lada &
Lada 2003; Tan et al. 2006; Jeffries et al. 2011; Reggiani et al.
2011), not 100. After ∼10 Myr, 90% of the stars born in clusters
have dispersed into the field, and by ∼100 Myr roughly 99%
have done so (Allen et al. 2007; Fall et al. 2009; Chandar et al.
2010). We do not know the lifetime of the Sun’s birth cluster,
but in obtaining limits on its size it is important to consider the
possibility both that the lifetime was very short, and that it was
tens of Myr, rather than assuming the latter as was done in most
previous work.

In this paper we show that retaining the same theoretical
framework as Adams & Laughlin (2001), but using these
more recent observations to set the properties of the embedded
clusters leads to a dramatic relaxation of the Adams & Laughlin
(2001) limit on the size of the Sun’s birth cluster. In turn, this
greatly eases the tension between the meteoritic and dynamical
constraints. In particular, the lifetime of a 25 M# star before it
goes supernova is ∼7.54 Myr, longer than most clusters survive.
A 75 M# star, however, has a lifetime of ∼3.64 Myr. Adams
(2010) finds that to have a reasonable probability of producing
such a star, a birth cluster of membership size >104 is needed.
Again, such a large cluster is not a priori unlikely, given the
observed young cluster mass function.

Close encounters within the Sun’s birth cluster have also been
theorized to be responsible for other aspects of the solar system’s
present-day architecture, particularly the drastic drop in object
density in the Kuiper Belt at ∼45 AU, and the Kuiper Belt
object (KBO) Sedna. Both of these phenomena are difficult to
understand in our current picture of solar system formation. The
existence of Neptune, with its size and orbit, suggests that the
surface density of the solar nebula should have been high enough
to produce KBOs out to distances greater than 50 AU with a
gradually declining object density. An unperturbed solar nebula,
which tends to produce objects with low eccentricities, is hard to
reconcile with Sedna’s eccentricity of 0.84 and semimajor axis
of 542 AU. A close encounter with another star could produce
a disk truncation (Ida et al. 2000; Kobayashi & Ida 2001) and
scatter objects into high eccentricity orbits to produce Sedna
(Brasser et al. 2006).

Close encounters could also affect other putative objects
orbiting the Sun: the proposed companion brown dwarf Nemesis
(Raup & Sepkoski Jr. 1984; Whitmire & Jackson IV 1984) or
the more recently proposed Tyche (Matese 1999; Matese et al.

2005; Matese & Whitmire 2011). Tyche has been proposed to
have an orbit just inside the Inner Oort Cloud (a semimajor axis
of ∼5000 AU) with a mass of 1–4 Jupiter masses. Given the low
probability of capturing such a companion (Tohline 2002), if
either Nemesis or Tyche exists, they must have formed with the
Sun. To date, there has been no research on whether Nemesis or
Tyche could survive the dynamics of the birth cluster.

In this paper we address all of these issues. We have
constructed simulations similar to those of Adams & Laughlin
(2001). We use these together with updated observational data
on the properties of embedded clusters to determine an upper
limit of our birth cluster’s membership size and the effects of
a close encounter on both the truncation on the Kuiper Belt
and production of a Sedna-like object. In addition, we will use
this data to determine the likelihood of Tyche staying bound to
the Sun during its time within the birth cluster. Adams et al.
(2006) have undertaken similar calculations, but survey a much
more limited part of parameter space. In particular, they do not
consider clusters of more than 103 stars. In Section 2, we will
look at the simulation and method used in our experiment. In
Section 3, we will then analyze the results of the simulation and
finally in Section 4 we will make our conclusions.

2. METHODS

To determine an upper limit on the birth cluster membership
size, we want to determine the probability of a disruptive
encounter as a function of cluster surface density and mass.
By disruptive event, we mean a close encounter in which any of
the Jovian planets are excited to an eccentricity greater than 0.1.
In the process, we will also determine whether encounters with
passing stars could be responsible for truncating the Kuiper Belt
at ∼50 AU, for producing a Sedna-like object, or for stripping
any distant brown dwarf companion.

2.1. Determining Probability

To obtain the probability of an event occurring, we first per-
form numerical scattering simulations to determine the velocity-
dependent cross-section for that event, 〈σ 〉. We then calculate the
average cross-section times velocity, 〈σv〉. We defer a descrip-
tion of our simulations to Section 2.2. Simulations of star clus-
ters suggest that the distribution of encounter velocities within
a embedded stellar cluster is Maxwellian (Proszkow & Adams
2009), so

〈σv〉 = 1
σ 3

v

√
2
π

∫ ∞

−∞
〈σ 〉v3e

−v2

2σ2
v dv, (1)

where σv is the standard deviation of the velocity distribution.
If we then multiply this by the stellar number density of the
cluster, n, we obtain the encounter rate,

Γ = n〈σv〉. (2)

If we multiply Γ by the total time the Sun was exposed in the
cluster, we will have the expected number of events, Λ. This
time will be roughly the time for which the cluster survives
before mass evaporation leads it to disperse, tlife. Thus, we have

Λ = Γtlife. (3)

To compute the overall probability that an event will occur, we
will assume that events follow a Poisson distribution, in which
case the probability that an event will occur at least once is

Pevent = 1 − e−Λ. (4)
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The calculation is slightly more complicated for the Kuiper
Belt, where there are many KBOs, and varying numbers can be
affected by a single encounter. In our simulations, we represent
particular radial bins of the Kuiper Belt with a number Nt of test
particles. We use our simulation to determine 〈σ 〉k , the velocity-
dependent cross-section for an event (e.g., excitation or ejection
from the solar system) to affect k of these Nt test KBOs. Using
Equation (1), we can then calculate 〈σv〉k for each value of k.
The rate at which the KBO population undergoes events is then
given by

Γ = n

Nt∑

k=1

k

Nt

〈σv〉k, (5)

where n is the number density determined in Equation (7). Once
Γ has been determined, we use Equation (3) to compute Λ. The
expected fraction of KBOs that undergo a certain even is then

〈f 〉 = 1 − e−Λ. (6)

The initial conditions of the birth cluster are unknown to us,
so we cannot directly compute all of these quantities. However,
we can estimate them in terms of the cluster surface density,
Σc, and cluster mass, Mc. For a spherical cluster, the number
density, velocity dispersion, and crossing time are

n = 3π1/2Σ3/2
c

4mM
1/2
c

= 700 M
−1/2
4 Σ3/2

−1 pc−3 (7)

σv =
(

3
5
αvir

)1/2

G1/2(πΣcMc)1/4= 3.2α1/2
vir M

1/4
4 Σ1/4

−1 km s−1

(8)

tcross = M
1/4
c

G1/2(πΣc)3/4
= 0.62M

1/4
4 Σ−3/4

−1 Myr, (9)

where αvir is the virial parameter, m is the mean stellar
mass, which we take to be 0.2 M# (Chabrier 2005) for our
calculations, M4 = Mc/104 M#, and Σ−1 = Σc/0.1 g cm−2.
Equations (7) and (8) provide estimates of the number density
and velocity dispersion that we can use in our estimates. The
relationship between the cluster lifetime tlife and the crossing
time, however, is somewhat uncertain. As discussed in the
Introduction, most clusters disperse rapidly, although exactly
how rapidly is debated. For example, the best-studied cluster
containing O stars is the Orion Nebula Cluster (M4 = 0.46,
Σ−1 = 1.2 – Hillenbrand & Hartmann 1998), for which
tcross = 0.44 Myr. Estimates of its age spread range from
∼1 to 3 Myr (e.g., Reggiani et al. 2011; Jeffries et al. 2011),
corresponding to ∼1–6 tcross, depending on the technique used to
estimate protostellar ages and similar systematic uncertainties.
On the other hand, ∼10% of clusters survive for more than
10 Myr. We therefore consider two possible scenarios for the
lifetime. The more likely one is that the Sun was born in one
of the rapidly dispersing clusters, and in this case we take
tlife = tcross; the true lifetime may be a factor of a few larger,
but, as we will see below, this factor of a few is relatively
insignificant. The other possibility is that the Sun was born in
the minority of clusters with a longer lifetime. To represent this
case, we take tlife = 30 Myr, typical of this class.

Finally, note that, in the rapidly dispersing cluster scenario,
for massive and high surface density clusters the cluster lifetime
may be significantly less that the main-sequence lifetime even
of a very massive star. This is certainly the case in the ONC,

for example, where star formation is complete and the cluster
is likely in the process of dispersing, but Θ1 Ori C is still alive.
This is not necessarily a problem for enrichment, however. Even
for a dispersing cluster, the relatively low-velocity dispersion of
the stars implies that stars will not spread that far before the
most massive stars go supernova.

2.2. Simulations

The simulations we use to measure 〈σ 〉 consist of the solar
system and the scattering star system. The solar system includes
the Sun, the four Jovian planets, Tyche, and 320 KBOs all
within the same plane. We only place Tyche in the simulation
because the semimajor axis of Nemesis is so large that we cannot
reasonably evaluate it behavior with scattering simulations.
Instead, a full (and much more expensive) N-body simulation
of the entire birth cluster would be required. We treat the Jovian
planets and KBOs as massless to conserve computing power.
This means that we are unable to model secular processes
produced by planet–planet interactions. However, since such
processes generally take much longer than that ∼0.01 Myr
covered by our simulations, we could not model these in any
event. We consider Tyche masses of zero, 0.02 M# and 0.08 M#.
We set the orbital properties of the Jovian planets to their
present-day values and we randomize the initial orbital phases.
We give Tyche a semimajor axis of 1000 AU,2 an eccentricity
randomly between 0.0 and 0.4, and a random argument of
periastron. We set up the Kuiper Belt up such that all objects
are placed in 32 concentric circles ranging from 35 AU to
500 AU, in 15 AU intervals. Each circle has 10 objects equally
spaced in angle, and all objects have a zero eccentricity. For our
statistical analysis, we then divide the KBOs into eight distance
bins (35–80 AU, 95–140 AU, 155–200 AU, 215–260 AU,
275–320 AU, 335–380 AU, 395–440 AU, and 455–500 AU),
each bin containing four concentric circles.

The incoming star systems consist of either a solo star or
a binary star system. We first select the mass of the primary
incoming star by drawing from a Chabrier (2005) initial mass
function (IMF). We then determine if the primary has a com-
panion. We set the probability of there being a companion to

fbinary =






0.2 : m < 0.5 M#
0.2 + 0.8

(
m−0.5

1.5

)
: 0.5 M# " m " 2.0 M#

1.0 : m > 2.0 M#

(10)

based on a rough fit to the mass-dependent companion fraction
reported by Lada (2006). If a companion exists, we also select
its mass from the IMF, rejecting and redrawing if the mass ex-
ceeds the primary’s mass. Finally, we select the orbital period
of the binary by drawing from the distribution observed for field
G star binaries (Duquennoy & Mayor 1991)

p(log τ ) = 1
√

2πσ 2
log τ

e

−(log τ−log τ )2

2σ2
log τ , (11)

where τ is the period in days, σlog τ = 2.3, and log τ = 4.8.
We determine the impact parameter of the encounter, b,

randomly with probability proportional to b, with a maximum,

2 While this is closer than the 5000 AU proposed by Matese et al. (2005) and
Matese & Whitmire (2011), the use of a similar but smaller distance greatly
reduces the computational cost by allowing us to consider a smaller range of
incoming star impact parameters.
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Figure 1. Log of the probability of a close encounter exciting each Jovian
planet’s eccentricity to greater than 0.1, in one crossing time, as a function of
cluster mass Mc and surface density Σc .
(A color version of this figure is available in the online journal.)

bmax, of 2000 AU. We randomize the relative orientations of the
incoming star, the solar ecliptic, and the binary orbital plane.
Finally, for each incoming system, we run the simulation for a
series of relative velocities between the system and the Sun. We
use velocities of v = 0.1–2.5 km s−1 at intervals of 0.1 km s−1

and v = 3.0–20.0 km s−1 at intervals of 0.5 km s−1. Over
2.1 million runs were preformed in total.

3. RESULTS

In Sections 3.1–3.3, we first examine the effects of encounters
on the Jovian planets, on the Kuiper Belt, and on Tyche in the
more likely scenario where the Sun was born in a cluster with
a lifetime tlife = tcross. In Section 3.4, we examine how these
results change in the scenario where the Sun’s parent cluster
was one of the ∼10% that reach ages of tlife = 30 Myr.

3.1. Effects of Close Encounters on the Jovian Planets

Figure 1 shows the probabilities of each Jovian planet being
excited to an eccentricity greater than 0.1 as a function of
Mc and Σc in a fully relaxed embedded cluster (i.e., αvir =
5/3 corresponding to σv =

√
((GMc)/Rc). We use a range

of 10−1–100.5 g cm−2 for Σc because this covers the range of
embedded cluster properties complied by Fall et al. (2010).
Similarly, we use masses from 102 to 106 M# because this covers
the range of cluster masses seen in nearby galaxies and in the
Milky Way (Lada & Lada 2003; Fall et al. 2009; Chandar et al.
2010). Looking at the four graphs, we see that the probability is
very low for all four planets in almost all combinations of Σc and
Mc within the plausible range of mass and surface density. The
probability is less than 1% for all four Jovian planets when the
mass of the cluster is greater than 104 M#. Neptune, the furthest
planet from the Sun and thus the most likely to be excited, has
excitation probabilities <1% over most of parameter space, and
reaches a high of 8.7% at Mc = 102 M#, Σc = 100.5 g cm−2.

A curious feature of Figure 1 is that as the mass of the
cluster increases, the probability of an event decreases. To
understand this, we first must realize that the number of
encounters is independent of Mc at fixed Σc. This is because Λ ∝
(nctcross/σ

3
v )Mc ∝ M0

c . Next, looking at Equation (8) we see that
as Mc increases, so does the velocity dispersion. Figure 2 shows
the velocity dependence of the cross-section obtained though
our simulation. We see that, at low velocities around 1 km s−1,
the cross-section is high, comparable to the values obtained
by Adams & Laughlin (2001). However, at slightly higher
velocities the cross-section dramatically decreases, dropping
under (200 AU)2 at around 3 km s−1. Thus, at higher Mc the
velocity dispersion increases yet the number of encounters does
not. This explains the result in Figure 1: higher mass clusters
are less likely to increase a Jovian planet’s eccentricity because
they produce no more encounters (at fixed Σc), but reduce the
effective cross-section per encounter.

Recent observational and theoretical evidence indicates that
young embedded clusters can be sub-virial (Fűrész et al. 2008;
Tobin et al. 2009; Offner et al. 2009) and thus we make the same
calculations for a cluster with a virial parameter that is one-fifth
the value of a fully relaxed cluster, αvir =1/3. Figure 3 shows
probability of exciting a Jovian planet to an eccentricity greater
than 0.1 in a sub-virial cluster. We see that the probability is

Figure 2. Effective impact parameter, b =
√

((σv)/π) for exciting a Jovian to eccentricity greater than 0.1 vs. velocity of incoming star. The gray band indicates, given
then number of trials at a given velocity, the smallest value of b we can measure with 99% confidence. The increase in the minimum b with velocity is a result of ours
having somewhat more simulations at low than at high velocity. The right panel shows a zoomed in portion of the full graph shown on the left.
(A color version of this figure is available in the online journal.)
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Figure 3. Log of the probability of a close encounter exciting each Jovian
planet’s eccentricity to greater than 0.1, in one crossing time, as a function of
cluster mass Mc and surface density Σc in a sub-viral cluster (αvir =1/3).
(A color version of this figure is available in the online journal.)

higher than that of a relaxed cluster, which makes sense due
to the lower velocity dispersions, but the overall probability
is still small. Again, Neptune is the likeliest to be excited
with ∼15% probability at the high Σc, low Mc extreme, but
as in a relaxed cluster, a majority of parameter space produces
probability below 1% for all of the Jovian planets. This agrees
with Proszkow & Adams (2009) who show that the interaction
rate in a sub-virial cluster is greater than that in a virialized one,
but not by much.

3.2. Effects of Close Encounters on the Kuiper Belt

We next check if close encounters could truncate the Kuiper
Belt or excite an object to a Sedna-like orbit. To determine if the
a close encounter could truncate the Kuiper Belt, we compute
the expected fraction of the KBOs in each of our eight initial
distance bins (see Section 2.1 for derivation). The resulting
expected fractions in the 35–80 AU and 455–500 AU bins,
which represent the extremes of our initial Kuiper Belt, are
show in Figure 4 for relaxed clusters and Figure 5 for sub-virial
clusters. We find that the expected fraction of KBOs stripped in
the 35–80 AU bin is less than 1% for most of parameter space,
only going above 1% in the high Σc, low Mc extreme, where
the maximum is ∼4%. The expected fraction of KBOs stripped
in the 455–500 AU bin reaches 88% in the high Σc, low Mc
extreme. As we move away from this extreme, the probability
decreases drastically. This appears to suggest that a birth cluster
with Σc and low Mc could explain the truncation of the Kuiper
Belt. However, comparing Figure 4 with Figure 1 we note that
any cluster capable of destroying the outer Kuiper Belt while
leaving the inner Kuiper Belt undisturbed would also disrupt
Neptune’s orbit. There is no part of parameter space where
the Kuiper Belt is truncated but Neptune is not also perturbed.
This is most likely because no single encounter can truncate
the Kuiper Belt. Instead, multiple close stellar passes would be
required, and the number required is sufficiently large so as to

Figure 4. Log of the expected fraction of KBOs that will become unbound in
one cluster crossing time in a given distance bin. In all cases, the inner bin and
the outer bin represent the extreme values.
(A color version of this figure is available in the online journal.)

Figure 5. Log of the expected fraction of KBOs that will become unbound in
a sub-viral cluster (αvir =1/3) in one cluster crossing time in a given distance
bin. In all cases, the inner bin and the outer bin where the extreme values.
(A color version of this figure is available in the online journal.)
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Figure 6. Log of the expected fraction of KBOs that will be excited to an
eccentricity greater than 0.5 but less that 1.0 in one cluster crossing time in a
given distance bin. In all cases, the inner bin and the outer bin represent the
extreme values.
(A color version of this figure is available in the online journal.)

make it extremely likely that one of those encounters would be
close enough to perturb Neptune.

To see if a close encounter could produce a Sedna-like object,
we compute the expected fraction of the KBOs excited to an
eccentricity between 0.5 and 1.0 in a given distance bin. We
show the result in Figure 6 for relaxed clusters and Figure 7 for
sub-virial clusters. Again, we see that the greatest probability is
found in the high Σc, low Mc extreme, with a significant drop-
off as we move away from this part of the parameter space.
Since Sedna has a semimajor axis of 542 AU and there is only
one such object known, we focus on the 455–500 AU distance
bin, and we only need a relatively small probability. We see
reasonable probabilities exist over much of our parameter space.
We conclude that it is plausible that a close encounter could
produce a Sedna-like object.

3.3. Effects of Close Encounters on Tyche

To determine if Tyche could survive the birth cluster, we
compute the cross-section for Tyche becoming unbound. We
first check to see if there was any difference in the cross-section
depending upon which Tyche mass was used (see Section 2.2).
Using a χ2 test, we find that our measurements of the number of
Tyche losses as a function of incoming star velocity at our three
different Tyche masses are consistent with each other to ∼98%
confidence, and thus there is no reason to reject the hypothesis
that the probability of Tyche becoming unbound is independent
of its mass. Thus, we use a combination of data from all three
masses. Looking at Figures 8 and 9, as before, the highest
probability, ∼44%, is in the high Σc, low Mc extreme, with the
probability decreasing as we move away from this extreme. The

Figure 7. Log of the expected fraction of KBOs that will be excited to an
eccentricity greater than 0.5 but less that 1.0 in a sub-viral cluster (αvir =1/3)
in one cluster crossing time in a given distance bin. In all cases, the inner bin
and the outer bin represent the extreme values.
(A color version of this figure is available in the online journal.)

Figure 8. Log of the probability that, in one crossing time, Tyche becomes
unbound.
(A color version of this figure is available in the online journal.)

probability is ∼10% for moderate Σc and Mc. Given this, there is
a small likelihood that Tyche would be stripped away. However,
recall that we place Tyche at 1000 AU, while it is theorized to
have a semimajor axis of ∼5000 AU. Thus, the probability of
stripping likely exceeds our estimate by a considerable factor.
Even with this increased, though, stripping seems unlikely in a
cluster with mass >104 M#.
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Figure 9. Log of the probability that, in one crossing time, Tyche becomes
unbound in a sub-viral cluster (αvir =1/3).
(A color version of this figure is available in the online journal.)

Figure 10. Log of the probability of a close encounter exciting each Jovian
planet’s eccentricity to greater than 0.1 as a function of cluster mass Mc and
surface density Σc with cluster lifetime of 30 Myr.
(A color version of this figure is available in the online journal.)

3.4. Encounter Effects in Long-lived Clusters

Finally, we consider the possibility that the natal cluster did
not disperse at the point where its gas was expelled, and instead
lived on as an open cluster. As discussed above, about 10% of
embedded clusters experience this fate. In this scenario, the Sun
would be exposed to many more close encounters. To study the
effects of this scenario, we use tlife = 30 Myr in Equation (3)
instead of using Equation (9) and repeat our analysis from the
previous sections.

Figure 10 shows the probability of the Jovian planets being
excited to an eccentricity greater than 0.1 in such a cluster. As
we found for the more typical short-lived cluster population,
the probability of disruption is smallest for clusters of high-
mass and low surface density. Not surprisingly, excitation of

Figure 11. Log of the expected fraction of KBOs that will become unbound
with cluster lifetime of 30 Myr in a given distance bin. In all cases, the inner
bin and the outer bin represent the extreme values.
(A color version of this figure is available in the online journal.)

the Jovians is much more likely in a long-lived cluster, and the
only part of parameter space that has low probabilities is the
high-mass, low surface density extreme. Outside this regime all
the Jovian planets are likely excited to an eccentricity greater
than 0.1. Thus we conclude that the low eccentricities of the
planets are consistent with the long-lived cluster scenario, but
only if the cluster in question was both quite massive and of low
surface density.

Figures 11 and 12 show the expected fraction of KBOs lost
and excited, respectively, in a long-lived cluster. We see that the
expected fraction lost is very high for KBOs in all distance bins
except in clusters of very high mass and low surface density.
There is a fairly narrow strip of parameter space that allows the
outer Kuiper Belt to be destroyed but leaves the inner Kuiper Belt
relatively untouched. However, comparing to Figure 10, we see
that in this parameter regime it is also very likely that Neptune
would be driven to high eccentricity. The underlying reason is
the same as for short-lived clusters: it takes many encounters
to truncate the outer Kuiper Belt, and any cluster capable of
producing that many encounters is also likely to supply one
close enough to disturb Neptune. The behavior of Sedna is also
similar to that seen in the case of short-lived clusters: there is
a reasonably large part of parameter space where the Jovian
planets would not be disturbed, but there is a reasonable change
of exciting a distant KBO to Sedna-like eccentricities.

4. DISCUSSION

Our conclusion that encounters in the Sun’s natal cluster are
likely to have very little effect on the architecture of the solar
system, even for very massive clusters, is at odds with much
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Figure 12. Log of the expected fraction of KBOs that will be excited to an
eccentricity greater than 0.5 but less that 1.0 with cluster lifetime of 30 Myr in
a given distance bin. In all cases, the inner bin and the outer bin represent the
extreme values.
(A color version of this figure is available in the online journal.)

previous work, which Adams (2010) summarizes to conclude
that dynamical arguments imply that the Sun’s birth cluster
could not have contained more than several thousand stars. This
conclusion, however, is based on work that assumed the cluster
lifetime was much greater than current observational evidence
shows, that the surface density of a cluster varies linearly
with the cluster’s mass, and that only simulated encounters at
fairly low velocities. Each of these assumptions increases the
probability of disruption encounters. For example Laughlin &
Adams (1998) estimated 〈σ 〉 = (230 AU)2 for disruption of
Jovian planets due to interactions with binary stars in the birth
cluster through scattering simulations similar to ours. To obtain
this value, they randomly chose the velocity of the incoming
star from a normal distribution with σ = 1 km s−1. From this,
they determined the rate of disruptive encounters is ∼0.13 per
100 Myr. Adams & Laughlin (2001) used the same velocity
distribution and obtained similar results. We can immediately
identify the effects of changing observational data which lead
us to different conclusions. First, consulting Equation (8), we
note that a cluster of mass 104 M# and surface density 1 g cm−2

will have a velocity dispersion of 7 km s−1 (if it is virialized)
or 3 km s−1 (for αvir = 1/5). As a result most encounters will
be at significantly higher velocities than Laughlin & Adams
assumed; consulting Figure 2, we see that this will reduce the
cross-section by roughly an order of magnitude. The earlier
work was also based on a lifetime of 100 Myr, while modern
observations tell us that only ∼1% of stars remain in a cluster for
that long, and only ∼10% survive to even 10 Myr (Lada & Lada
2003; Fall et al. 2009; Chandar et al. 2010). Again, switching to
modern values leads to a one-to-two-order-of-magnitude drop

in the disruption probability. Together the decrease in cross-
section and in exposure time are sufficient to explain why we
find no dynamical limit on the size of the Sun’s parent cluster.

Changing the assumed cluster velocity dispersion and lifetime
also explains why our conclusions on the Kuiper Belt differs
from that of earlier research. Lestrade et al. (2011) concluded
that it was possible to truncate a debris disk around a main-
sequence star in an open cluster by a close encounter. To reach
this conclusion, however, they assumed parabolic, coplanar
encounters over a 100 Myr cluster lifetime, compared to
our observationally favored scenarios of mostly hyperbolic,
non-coplanar encounters over a ∼1 Myr cluster dissolution
timescale. Jimenez-Torres et al. (2011) created a simulation that
was able to produce Sedna-like objects but assumed incoming
star velocities of 1–3 km s−1, closest approach distances of
200 AU, and cluster lifetimes of 100 Myr. We concur with these
authors that it is possible to truncate the Kuiper Belt in a cluster
that lives 30 Myr, and that it may be possible to produce Sedna
even in a shorter lived cluster. That the Sun might have been born
in a long-lived cluster is by no means impossible, since ∼10%
of stars are. We simply point out that such a scenario is not
typical. Moreover, we find that, regardless of the cluster lifetime,
it is very difficult to truncate the outer Kuiper Belt without
simultaneously disrupting the orbit of Neptune, a problem not
considered in earlier work.

Some other authors who have used the current observational
data about cluster lifetime and velocities have partially antic-
ipated the results presented here. Bonnell et al. (2001) argue
that planet formation is unaffected in open clusters, and that it
was possible for a the Sun to be born within a cluster whose
density is greater than 103 stars pc−3 if the cluster dissolves
within ∼10 Myr. Using a cluster membership size of 1000 and
a cluster lifetime of 10 Myr, Adams et al. (2006) showed that
typical stellar passes are not close enough to appreciably en-
hance the eccentricity of Neptune. Their main conclusion was
that planet-forming disks and newly formed solar systems gen-
erally survive their aggregates with little disruption. Spurzem
et al. (2009) constructed an N-body simulation of the Orion
Nebula Cluster, an environment containing massive stars simi-
lar to the hypothetical progenitors of the supernova(e) that pro-
duce the isotopes we see in meteorites. Their conclusion was
that the critical threshold for the survival of wider orbit planets
(those similar to our Jovian planets) is a cluster lifetime less
than 108 yr.

We note that Brasser et al. (2006) have shown through N-body
simulations that both close encounters and cluster tidal effects
have a reasonable probability of creating a Sedna-like object
if the object begins at a semi-major axis !300 AU, consistent
with our conclusions (see Figures 6 and 7). They hypothesize
a two-step formation process for Sedna in which the outward
migration of Neptune scatters a KBO into an orbit with large
semimajor axis, and the object is scattered again by passing
stars. Our work is not inconsistent with this scenario.

5. CONCLUSION

In this paper, we revisit the tension between meteoritic and
dynamical constraints on the size of the solar system’s parent
star cluster. The meteorite evidence suggests that a supernova
deposited short-lived radioactive isotopes near the forming solar
system. However, based on dynamical arguments about the
likelihood of a close encounter disrupting the outer solar system,
Adams & Laughlin (2001) and Adams (2010) argue that the
birth cluster could not have had more than several thousand
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members. The probability of having a supernova within the
range needed in a cluster of that size is only about 2%. Given
that we have only a single example (the Sun) of a star system
that simultaneously has supernova enrichment and outer planets
in circular orbits, this is not necessarily impossible. It could
simply be that our solar system is quite unusual. However,
we find that no such conclusion is warranted. We show that
repeating the calculations of Adams & Laughlin (2001) but with
embedded cluster properties drawn from recent observations, we
can update the upper limit on birth cluster size to values where
supernova pollution is much more probable.

Indeed, we show that as the mass of the birth cluster increases,
the relative velocities of the constituents increases and the
effective impact parameters for solar system-disrupting events
decreases, yet the number of expected encounters is constant.
Our result differs from previous work because we are using
current observational evidence that suggests that the cluster’s
surface density is independent of its mass, and its lifetime is
much shorter than previously believed. The removal of the upper
bound from dynamics allows the cluster size to be large enough
to be able to produce a massive star that can go supernova to
seed the solar system with the observed short-lived radioactive
isotopes. Indeed, at cluster sizes of 104–105 stars, multiple
supernovae are likely, allowing each supernova to be further
away and exposing the solar system to less mass loss.

A close encounter within the birth cluster has also been pro-
posed to explain the existence of Sedna. We find that this is
within reason, showing that it is possible to produce a small frac-
tion of KBOs at ∼500 AU with eccentricity between 0.5 and 1.
However, we find that it is highly unlikely that encounters in the
birth cluster could be responsible for truncation of the Kuiper
Belt. There is only a small region of parameter space that allows
for the destruction of the outer Kuiper Belt while leaving the in-
ner Kuiper Belt intact, and any cluster capable of disrupting the
outer Kuiper Belt would also be very likely to excite Neptune
to a higher eccentricity than we observe.

Finally, we caution that disruption of planetary orbits by the
gravity of passing stars may not be the only limiting factor when
it comes to cluster size. Adams (2010) argues that in a cluster
of more than ∼104 stars, the ultraviolet radiation produced by
massive stars would photoevaporate the Sun’s protoplanetary
disk, preventing formation of the outer planets. However, this
conclusion is highly sensitive to the rate of mass loss due to
photoevaporation, which is highly uncertain. The 104 star limit
is based on a loss rate taken from Adams et al. (2004), but
Ercolano et al. (2009) show that this rate is uncertain at the
order of magnitude level. Moreover, it is not entirely clear that
photoevaporation inhibits planet formation; instead, by raising
the dust-to-gas ratio, it may trigger gravitational instability
(Throop & Bally 2005). Due to these uncertainties, the question
of whether photoevaporation might provide a limit on the cluster
size remains an open one for future research.
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