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ABSTRACT

We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a
uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the
point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the
boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high
spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation
from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the
dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate
in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak
magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of ∼2 as magnetic
flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor
of ∼0.2 β1/2 compared to the Bondi value, where β is the ratio of the gas pressure to the magnetic pressure. We give
a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results
are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state
accretion for the case of strong magnetic fields.
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1. INTRODUCTION

Accretion of a background gas onto a central gravitating
body is of central importance in astrophysics. Examples range
from protostellar accretion from molecular cores to accretion of
interstellar gas in galactic nuclei. The classical late-time solution
for the case of a central point of mass M∗ immersed in a uniform,
initially static, unmagnetized gas was given by Bondi (1952) as

ṀB = 4πλrB
2ρ∞c∞ (1)

rB = GM∗
c2∞

, (2)

where c∞ and ρ∞ are the sound speed and density of the back-
ground gas, ṀB is the steady-state rate of accretion onto the
central particle, rB is the Bondi length which characterizes
the dynamical length of the inflow, and λ is a dimensionless
parameter that depends on the equation of state of the back-
ground gas. For the isothermal case, λ = exp(1.5)/4. The
Bondi time tB = rB/c∞ defines the dynamical time for this
accretion process. This basic model has been extended to more
general cases by numerous authors. These generalizations in-
clude non-stationary central particles (Bondi & Hoyle 1944;
Shima et al. 1985; Ruffert 1994; Ruffert & Arnett 1994), the
cases of ambient gas with net vorticity (Krumholz et al. 2005a),
turbulent ambient gas (Krumholz et al. 2006), magnetized ac-
cretion from ambient gas threaded by both large (Igumenshchev
& Narayan 2002; Pang et al. 2011) and small (Shapiro 1973;
Igumenshchev 2006) scale magnetic field topologies, the case of
a turbulent, magnetized ambient gas (Shcherbakov 2008), and
the case of accretion onto magnetized stars (Toropin et al. 1999;

Ustyugova et al. 2006; Kulkarni & Romanova 2008; Romanova
et al. 2008; Long et al. 2011; Romanova et al. 2011) to name
a few.

Stars form via gravitational collapse, at least initially (McKee
& Ostriker 2007). Thereafter, gas may accrete onto the star
from the ambient medium. If the star has a supersonic motion
relative to the ambient medium, this subsequent accretion is
negligible (Krumholz et al. 2005b), but if the star is moving
slowly, the accretion can be significant, which forms the basis
for the competitive accretion model for star formation (e.g.,
Bonnell et al. 1997). There exists ample evidence that the gas in
molecular clouds and cores is threaded by strong magnetic fields
(Crutcher 1999; McKee & Ostriker 2007). Furthermore, star-
forming molecular clouds are well characterized as “radiatively
efficient” in that gas heating due to compressional motion
is rapidly radiated by thermally excited dust and molecules.
These considerations thus motivate the study of Bondi-type
accretion of an isothermal gas threaded by an initially uniform
magnetic field onto a point mass. We address this problem
with the RAMSES magnetohydrodynamic (MHD) code (Teyssier
2002) and conduct a parameter study over a range of magnetic
field strengths thought to be relevant to star formation. Our
simulations leverage the adaptive mesh refinement (AMR)
capability of the code to retain high spatial resolution close
to the accreting object while keeping the boundaries of the
computational domain far from the accreting object. We discuss
the results of mesh convergence studies and compare our
numerical results against analytic calculations in the limiting
case of a dynamically weak magnetic field to verify our
calculations. We also compare our numerical results against
simple analytic approximations in the case of a strong magnetic
field.
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2. NUMERICAL SETUP

Our numerical models consist of a Cartesian computational
domain that extends from −25rB to 25rB in each direction.
The domain is initialized with an isothermal, perfectly conduct-
ing, uniform collisional gas with initial magnetic field in the
ẑ-direction. We consider the cases with an initial thermal to
magnetic pressure ratio, β = 8πPo/B2, of 1000, 100, 10, 1,
0.1, and 0.01. The RAMSES code has been used to evolve this
state forward according to the equations of ideal, isothermal
MHD,

∂ρ

∂t
+ ∇ · ρv = −SM (3)

∂ρv
∂t

+ ∇ · (ρvv) + ∇
(

P +
B2

8π

)
− (B · ∇)B

4π

= −GM∗ρx̂
x2

(4)

∂B

∂t
− ∇ × (v × B) = 0 (5)

P = ρc2, (6)

where ρ is the gas density, v is the velocity, B is the magnetic
field, P is the thermal pressure, and c is the isothermal sound
speed. These equations include the gravitational force due to a
point particle of mass M∗ of Fg = −GM∗ρx̂/x2.

The key assumption we make in our treatment is that the point
mass accretes mass, but not flux. Observations show that the
magnetic flux in young stellar objects is orders of magnitude
less than that in the gas that formed these objects, implying
that flux accretion is very inefficient, presumably due to non-
ideal MHD effects, including reconnection (McKee & Ostriker
2007). We model mass accretion onto the central point mass by
including a mass sink term but no flux sink term inside a radius,
racc = 4Δx, equal to four grid zones on the finest AMR level.
The effect of the accreting particle is coupled to the dynamical
equations through the source term,

SM =

⎧⎪⎪⎨
⎪⎪⎩

1

Δt
max

(
ρ − B2

4πv2
A,max

, 0

)
if |x| < racc

0 otherwise,

(7)

where Δt is the time step on the finest AMR grid level and vA,max
is the maximum Alfvén speed, B/(4πρ)1/2, within a radius of
6Δx around the accreting particle. Under this construction, the
accreting particle absorbs all but enough of the mass entering
the accreting particle radius so that the local Alfvén speed never
exceeds vA,max. Thus, the accreting particle always absorbs the
largest quantity of mass in the local region possible without
introducing new local extrema in the Alfvén speed. This prevents
the accretion source from imposing a stringent (or vanishingly
small) constraint on the maximum numerically stable time step
at the expense of some artificial clipping of the Alfvén speed in
the inner few zones around the accreting particle. We note that in
all of the models considered in this paper, the initial gas density
is sufficiently low that the total mass accreted onto the central

Table 1
Simulation Parameters

β rB/Δx rAB/Δx tend/tB

∞ (hydro) 328 N/A 3
1000 82 41000 22
100 82 4100 15
10 328 1640 3
1 328 164 3
0.1 328 16.4 3
0.01 328 1.64 1.5

particle is negligible compared to M∗ and that self-gravity in the
ambient medium may be neglected.

We discretize the numerical domain onto a base level
grid of 643. For the purposes of describing the initial mesh
we will denote this level as l = 0. We note, however, that
the RAMSES AMR implementation uses an oct-tree data struc-
ture for level traversals that always denotes level indices by the
base 2 logarithm of their resolution. In our models, lRAMSES =
log264 + l = 6 + l. Successive levels are chosen for refinement
by an increment of 23 in grid zone density in a geometrically
nested fashion according to the criterion

rl <
25rB

2l
, (8)

where rl indicates the radius of the spherical refined region on
the level l. We further impose the additional criterion that any
zones containing steep density gradients ∇ρ · �x/ρ > 1/2 are
also refined, independent of location. This second refinement
criterion is met only at late times after non-axisymmetric flow
patterns have set in, and it triggers only on transient flow
features. Most of the models were refined to a maximum level
l = 8 for an effective resolution of 64 × 28/50 � 328 zones
per thermal Bondi radius on the finest level. In the cases with
a strong initial magnetic field, it is also useful to consider the
numerical resolution on the scale of the “Alfvén–Bondi” radius,

rAB = GM∗
v2

A

= 1

2
βrB. (9)

The finest mesh resolution per Bondi radius, mesh resolution per
Alfvén–Bondi radius, and total simulated time for each model
are tabulated in Table 1. We note that the magnetic length
scales are well resolved for all but the case of β = 0.01.
We therefore will consider only the models with β � 0.1
for the majority of the analysis presented in this paper. The
β = 0.01 model is used only to extract an estimate of the steady
accretion rate over a wider range of magnetic field strengths.
We do note, however, that numerical mesh convergence studies
have shown our models to be within the range of asymptotic
convergence with a Richardson-extrapolation error estimate on
the average accretion rate of 14% or less at late times. A
detailed discussion of the numerical convergence properties of
our models is presented in Appendix A. Each of the models was
run to a final time tend sufficiently long to attain a statistically
steady accretion rate onto the central particle.

3. RESULTS

3.1. Morphology

We begin by discussing the gross morphological flow features
and their development for each of the numerical models.
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Figure 1. Slices in the y–z plane showing the inner (2rB)2 of the numerical
models with initial magnetic field strengths of β = 100, β = 10, β = 1, and
β = 0.1 from top to bottom. The state of the numerical models are shown at
the times t = 0.5, 1.5, and 3.0tB from left to right. The color map indicates
log10(ρ/ρo), green lines represent magnetic flux tubes drawn from equidistant
footpoints in the midplane, and the white arrows indicate the flow pattern in the
plane of the slice.

(A color version of this figure is available in the online journal.)

These flows are well illustrated by slices in the y–z plane
of density, the direction of magnetic flux, and velocity as
shown at several times for each model in Figure 1. Initially
parallel magnetic fields are amplified as they are dragged
inward by the global accretion flow, eventually suppressing
accretion in the equatorial plane. Inflow along magnetic field
lines, on the other hand, is uninhibited by magnetic pressure.
This flow configuration leads to the evacuation of gas from the
poleward directions into a thin, dense, irrotational disk in the
midplane.

Accumulation of mass in the midplane is accompanied by
a corresponding increase in the inward gravitational attraction.
The magnetic flux tubes that thread the disk are gradually pulled
further toward the accreting particle as the accumulation of
mass in the midplane continues. We support this picture more
quantitatively in Figure 2. We use � to denote the cylindrical
radius and plot the ratio of the mass influx in the equatorial
direction

ΦM,� =
∫

S

ρv · �̂ sin θdθdφ (10)

Figure 2. Ratio of the mass influx in the equatorial direction to the mass influx
in the polar direction for several magnetized models at t = tend, scaled so that
uniform spherical inflow takes a value of unity.

to the mass influx in the polar direction

ΦM,z =
∫

S

ρv · ẑ sin θdθdφ (11)

along a spherical control surface S of radius r for each of the
magnetized models at t = tend. The curves in Figure 2 have
been scaled by a constant 2/π so that uniform spherical inflow
takes a value of unity. At large distances (|x| > rB), the flows
become increasingly dominated by polar inflow with increasing
initial magnetic field strength. However, at smaller distances
(|x| < rB), the cylindrical to polar influx asymptotes toward ∼2
with increasing magnetic field strength. On smaller scales where
magnetic forces break spherical symmetry, the mass influx is
predominantly along the equator.

As infall in the midplane proceeds, flux tubes that reach the
accreting particle are instantaneously liberated from the accreted
mass and accompanying gravitational force anchoring them.
This causes episodic releases of strong, outward propagating
flow. This configuration of outflow driven by magnetic buoyancy
is known as the magnetic interchange instability (Bernstein et al.
1958; Furth et al. 1963). In the models with moderate or strong
initial magnetic fields strengths, corresponding to β = 10,
β = 1, and β = 0.1, interchange unstable flows originating at
racc � rB lead to episodes of net outflow out to radii comparable
rB in the equatorial plane. Flux tubes that are outwardly released
by resistive accretion are prevented from escaping completely
by the continued accretion pressure of the surrounding gas. The
net mass inflow in these models is therefore mediated by the
rate at which inflowing material percolates through this non-
axisymmetric network of magnetically buoyant flow close to
the accreting particle.

The models attain magnetic forces that balance Fg at r ∼ rB/2
in the midplane by the time steady accretion sets in, independent
of the initial β. The weak magnetic field lines in the β = 100
case become highly stretched before they are strong enough to
provide any resistance to being swept further inward as shown
in the top row of Figure 1. This flow leads to the development
of strong, thin current sheets and oppositely directed magnetic
field lines that closely approach each other in the midplane. This
configuration is unstable to reconnection in magnetic resistive
tearing modes (Furth et al. 1963; Rutherford 1973). In the case
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Figure 3. Isosurfaces showing the innermost (1.5rB)3 of the magnetic shear
parameter χmag at t = tend for the β = 100 model indicating regions of
magnetic reconnection due to tearing mode instability. Blue curves represent
magnetic field lines with footpoints evenly spaced along the y-coordinate axis.

(A color version of this figure is available in the online journal.)

of our numerical code (and all ideal MHD codes), resistive re-
connection occurs when oppositely directed magnetic flux tubes
become separated by �Δx and unresolved. While the size scale
of the “magnetic islands” generated through this process is de-
termined by the numerical zone size, our numerical resolution
is adequate to be sure that this size scale is small compared
to dynamical scale associated with thermal (Δx � rB) and
magnetic (Δx � rAB) force gradients. Furthermore, we have
carried out resolution studies to ensure that the resolution used
in our models is sufficient to yield a converged late-time ac-
cretion rate. Ultimately, mass inflow is limited by the rate
of production of magnetically isolated islands by tearing
mode reconnection in regions characterized by thin, strong cur-
rent sheets. These islands continue toward the accreting particle,
unconnected to the global magnetic field structure. As a means
to visualize flows that are most susceptible to reconnection by
numerical resistivity, we define the magnetic shear parameter

χmag = Δx · (∇ × B)

|B| . (12)

Regions near or exceeding a magnetic shear parameter of ∼1
are highly susceptible to reconnection via magnetic tearing
modes. Figure 3 gives a three-dimensional sense of the geometry
and scale of the flows subject to numerical reconnection by
plotting isosurfaces of the magnetic shear parameter at t = tend,
indicating efficient numerical reconnection on scales of r �
rB/2. Reconnection events release magnetic tension that leads
to magnetically tangled, non-axisymmetric flow in this region.

3.2. Comparison to Analytic Predictions for High β Flow

Analytic predictions of the behavior of the accretion flows
for the limiting case of dynamically weak magnetic field are
derived in Appendix B. The focus of this section is to compare
the results of the β = 100 numerical model with these analytic

predictions. Equations (B16), (B23), and (B25) give predictions
of the steady-state gas density, radial magnetic field, and non-
radial magnetic field, respectively. (Results for the accretion rate
will be discussed in Section 3.3.) It should be emphasized that
r0 in these expressions is the initial position of gas that is at
r at time t, and it must be evaluated numerically through the
transcendental equation (B8). In Figure 4, we compare these
analytic predictions to the results of each of the magnetized
numerical models at t = tend. The gas density, ρ, and the
non-radial magnetic field, Bθ , are extracted from the numerical
models as azimuthal averages in the midplane of the numerical
domain where the sine term appearing in Equation (B25) is
unity. Likewise, the radial magnetic field Br is extracted from
the numerical models along the x = y = 0 axis where the cosine
term in Equation (B23) is unity. The assumption of dynamically
weak magnetic field is met for r � rB in the β = 1000 model
and we find good agreement between the β = 1000 model and
the analytic prediction at distances not too close to the origin.
The analytic theory also agrees with the results for stronger
fields for r � 4rB.

In Appendix B.1, Equation (B22), we derive an analytic
prediction for the total magnetic flux that reaches the accretion
zone, Φa , under the assumption of dynamically weak magnetic
fields and neglecting any possible reconnection that occurs near
the accretion zone. We have assumed that this flux escapes
from the accretion zone. Even with reconnection, this method
accurately tracks the amount of escaping flux, although the time
at which the flux escapes may be altered by the reconnection.
Let Φesc(r) be the magnetic flux that is inside a radius r and
that has escaped from the accretion zone. This quantity is well
defined only for ideal MHD, so that r must be outside the
region where magnetic reconnection occurs. At large values
of r, Φesc(r) → Φa , the total flux released during accretion. As
discussed above, reconnection occurs in the inner regions of the
flow, where it becomes very turbulent. Outside this region, the
flow is approximately axisymmetric. There we can define r0 as
the initial radius of the gas and magnetic flux, which at time t is
located in the midplane at radius r < r0. The initial flux inside
r0 is then the sum of the flux inside r(r0) plus the flux that has
escaped beyond r,

Φ0[r0(r)] = Φ(r) + [Φa − Φesc(r)], (13)

where Φ0[r0(r)] = |Bo|πr2
0 . Equation (B8) gives t as a function

of r and r0; this can be inverted numerically to obtain r0(r, t).
We note that Equation (13) applies only outside the reconnection
zone. If we had not assumed that the flux could escape from the
accretion zone after losing some of its mass, flux would be
conserved and both Φa and Φesc would vanish.

We can use our numerical models to test the predicted value
of Φa and to determine the radial distribution of the escaped
flux. To do this, we extract Φ(r) from our numerical result at a
late time (t = 15tB), and we compare to the analytic result by
rewriting Equation (13) as

δΦ = Φa − Φesc(r)

Φ0[r0(r)]
= 1 − Φ(r)

Φ0[r0(r)]
, (14)

which is the fraction of the escaped flux that is beyond r. In
the left panel of Figure 5, we show the above expression for
the high β models. In this case, the assumption of dynamically
weak magnetic fields used to derive the analytic estimate for
r(r0) is well met at r � rB. We expect that Φ(r) ≈ Φ0[r0(r)] for
r � rB, and this is confirmed to within 10% for r > 4rB. Given
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Figure 4. Top left: azimuthally averaged density in the z = 0 plane. Top right: azimuthally averaged radial component of the magnetic field in the z = 0 plane, scaled
inversely to the square of r0. Bottom left: perpendicular component of the magnetic field along the x = 0, y = 0 axis, scaled by r0, and inversely to the density. Each
plot shows the analytic prediction for the limiting case of weak magnetic field with β = 1000. All of the plots are taken at time t = tend.

(A color version of this figure is available in the online journal.)

Figure 5. Left: radial distribution of escaped flux in the β = 100 and β = 1000 models at time tend. Right: the radial extent of the magnetically dominated region
compared to the analytic prediction.

(A color version of this figure is available in the online journal.)

our assumption of a resistive accreting particle, we expect that
Φ(r) → 0 as r → 0, and Figure 5 confirms this expectation by
showing δΦ → 1 as r → 0. Furthermore, the accumulated flux
near the accreting particle shows strong evidence of escape for
r � 1, consistent with the scale of reconnection-driven tearing
modes shown in Figure 3 and discussed in Section 3.1. The fact
that δΦ is greater than unity at large radii is presumably due
to the approximation made in determining r0(r). In the case of
β = 100, it appears that a significant fraction of the escaped
flux (�20%) has moved outside rB.

In Appendix B.1, we also predict the radius rΦ out to which the
magnetic forces associated with the accumulated flux strongly
affect the flow. The analytic estimate of rΦ for high β flow
is given by Equation (B39). In the right panel of Figure 5,
we plot this prediction against the radius where the median
plasma β exceeds unity along the perimeter of a control circle in
the midplane of the high β models. At the latest time shown, the
prediction agrees with the simulation to within about 20% for the
β = 100 case. Note that at late times, the analytic approximation
has rΦ ∝ t1/3, but it is not known whether the numerical results
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Figure 6. Accretion rate as a function of time for each of the numerical models compared to the analytic prediction for the time-dependent accretion rate for the purely
hydrodynamic case. In the right plot, the time tss is indicated by a gray vertical line when the accretion rate is midway between the maximum accretion rate and the
final steady-state accretion rate, representing the characteristic time for the flow to transition from Bondi accretion to a magnetically mediated steady state.

(A color version of this figure is available in the online journal.)

will continue to increase for t > tend. It is not entirely clear
why the β = 1000 results do not agree with the approximate
model as well as the β = 100 results. The model predicts that
rΦ should be very close to (and slightly less than) rΦ,1, given by
Equation (B35) for β = 1000, whereas the simulations show
that it is between rΦ,1 and rΦ,2, given by Equation (B38). This
may be associated with the fact that the escaped flux has gone
well beyond the sonic point at tend for β = 1000 (see the left-
hand panel of Figure 5), so that the conditions are closer to those
assumed in deriving rΦ,2 than for rΦ,1.

3.3. Accretion Rate

Figure 6 shows the rate of accretion onto the central particle
as a function of time for each of the numerical models. The left
plot also includes the result of a purely hydrodynamic control
model for comparison. As discussed in Section 3.1, the mag-
netized models reach a statistically steady accretion rate with
inflow mediated by reconnection and/or the interchange insta-
bility, whereas the purely hydrodynamic model asymptotically
approaches the truly steady, spherical Bondi flow. The high fre-
quency modes in Figure 6 have been smoothed using a box-car
smoothing width of 0.02tB. The red dashed curve shows the
analytic approximation for the time-dependent accretion rate
without magnetic fields from Appendix B.1, Equation (B15).
The analytic estimate is in excellent agreement with the purely
hydrodynamic numerical model.

An interesting aspect of the results shown in Figure 6 is that
the weak magnetic field models (β = 100 and β = 1000)
undergo an initial transient of rapid accretion before settling
into a steady accretion rate. The reason for this is that enough
time must elapse for sufficient magnetic flux to accumulate
close to the accreting particle for the accretion to the surface of
the particle to become magnetically dominated, whereas ther-
mal pressure dominates close to the particle during the initial
development of the flow. We can use Equation (B8) to estimate
the time required for the flow to settle into a magnetically me-
diated steady-state accretion regime. Specifically, we estimate
the time to reach this steady state, tss, as the time required for
enough magnetic flux to accumulate inside the thermal sonic
radius, rsonic = rB/2 (Bondi 1952), so that the average magnetic
field within r < rsonic in the midplane corresponds to β = 1
(i.e., B̄ = (8πρ0c

2)1/2 for r < rsonic at t = tss). Neglecting any

Figure 7. Analytic estimate of the time required for enough magnetic flux to
accumulate inside of the thermal sonic radius for the flow to reach a state of
magnetically mediated accretion. Black circles indicating the time when the
β = 102 and β = 103 simulations transition from Bondi to magnetically
mediated flow are in good agreement with the analytic prediction.

flux that has escaped beyond rsonic, this then implies

πr0(r = rsonic, t = tss)
2 = πr2

sonicβ
1/2. (15)

Solving this for tss using the transcendental expression for
r0 in Equation (B8) determines tss(β), as shown in Figure 7.
The simulations match with this prediction with the β = 100
and β = 1000 models transitioning toward the magnetically
dominated steady-state accretion rate at t ∼ tss as shown in
Figure 6.

Figure 8 shows the average accretion rate over the last tB of the
simulated time for each of the β = 10−1 −β = 103 models as
black circles. The β = 10−2 model was run only to tend = 1.5tB
and for that case we average over the last tB/2 of the simulated
time. The vertical bars on each point indicate the standard
deviation of the accretion rate over the same time interval. It
should be noted that these should be interpreted as a measure of
the effect of small-scale departure from steady accretion flow
due to MHD flow instability and not as “error bars” in the usual
sense of measurement uncertainty. The accretion rate data are
presented in tabular form as well in Table 2.

We can obtain a simple analytic model for the accretion flow
in the magnetically dominated case by assuming that the gas
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Figure 8. Average accretion rate as a function of the plasma-β parameter. Error
bars show the standard deviation in the accretion rate due to interchange and
tearing mode unstable flows near the accreting particle. The solid line shows
Equation (17) with the best-fit coefficients βch = 5.0 and n = 0.42.

flows in from the Alfvén radius rAB at the Alfvén velocity
after collapsing vertically from a distance of order the Bondi
radius, rB

Ṁ ∝ 2πrAB · 2rAB · ρ∞vA ∝ ṀB(c/vA) ∝ ṀBβ1/2(β � 1),
(16)

where the second expression follows from Equation (B17). We
note that Toropin et al. (1999) have shown similar accretion
rate dependence with magnetic pressure close to the accretor
for the case of the accretion onto a magnetized star. We estimate
the constant of proportionality in the above expression that is in
rough agreement with our numerical results by a more thorough
analytic consideration of the problem in Appendix C.2. Since
Ṁ → ṀB at large β, a simple relation that captures the limiting
behavior in both cases is

Ṁ

ṀB
=

([
βch

β

]n/2

+ 1

)−1/n

. (17)

The solid line in Figure 8 is based on a least-squares fit in
log β − log Ṁ space for the parameters βch = 5.0 and n = 0.42.
In this notation, βch = 5.0 gives the characteristic value of β for
the transition from the high and low β limiting cases to occur.

Sub-grid particle accretion methods have been employed
to model protostellar accretion in numerical simulations of
protostellar cores and clouds by several authors (Bate et al.
1995; Krumholz et al. 2004; Federrath et al. 2010; Wang et al.
2010; Padoan & Nordlund 2011). Equation (17) should be of
particular utility for extending the sub-grid accretion model for
embedding Lagrangian sink particles on an Eulerian mesh of
Krumholz et al. (2004, 2007) and Offner et al. (2009) to the
magnetic case for particles moving subsonically through the
ambient medium.

It is noteworthy that the qualitative behavior we find at late
times is remarkably similar to that discovered by Krumholz
et al. (2005a) for the case of hydrodynamic Bondi accretion of
a gas with vorticity. The Kelvin circulation theorem for a non-
viscous flow is analogous to flux-freezing in ideal MHD (Shu
1992), and in the problem of accretion from a vortical fluid, the
dimensionless vorticity parameter ω∗ ≡ |∇ ×v|/(c/rB) defined
by Krumholz et al. (2005a) is analogous to β−1/2 in the present
work.6 In both cases, the accretion flow causes a buildup of

6 The −1/2 power arises because the magnetic flux at infinity varies as
β−1/2, while the vorticity at infinity scales as ω∗.

Table 2
Accretion Rates

β Ṁ/ṀB σṀ/ṀB

1000 0.48 0.043
100 0.35 0.015
10 0.24 0.043
1 0.13 0.26
0.1 0.060 0.083
0.01 0.024 0.031

Notes. Second column: normalized mean accretion rate
for the isothermal equation of state models. Third col-
umn: standard deviation of the isothermal accretion rate.

vorticity/flux near the accreting object, which produces regions
where the outward centrifugal/magnetic force is able to balance
gravity and inhibit accretion. For Bondi accretion with vorticity,
flows with strong vorticity (ω∗ � 1) have steady-state accretion
rates that scale as roughly ω∗/ ln ω∗, nearly identical to the β−1/2

scaling we find for the strongly magnetized case (β � 1). For
the weak vorticity case (ω∗ � 1), the accretion rate initially rises
to nearly ṀB , but then declines as vorticity builds up, reaching
an asymptotic value <ṀB after a transient whose duration is
proportional to ω−1

∗ . The high β cases here behave in precisely
the same way.

The only difference we can identify is that, in the vortical
case, Krumholz et al. (2005a) find the accretion rate converges
to a value slightly less than ṀB in finite time, even in the limit
ω∗ → 0, as long as it is not so small as to place the circu-
larization radius within the physical size of the accretor. Here
we find that the accretion rate at time t > tss appears to con-
verge to ṀB as β → ∞.7 The origin of the difference is not
entirely clear, but one possibility has to do with mechanisms
for removing excess vorticity/flux. Both can be removed by
advection, but magnetic flux can also be rearranged by recon-
nection, as occurs in our simulations. In addition, magnetic
buoyancy tends to cause regions of high flux to rise away
from the accretor. (Similar effects are seen in simulations by
Vázquez-Semadeni et al. 2011.) In a non-viscous flow, there
are no analogous processes capable of rearranging the vortic-
ity. In real astrophysical systems, non-ideal MHD and magnetic
buoyancy effects almost always occur at larger scales than those
on which molecular viscosity becomes important, and this may
lead to a real difference in behavior at late times in the weak
vorticity/field cases.

4. COMPARISON TO ADIABATIC MODELS

It is illustrative to compare our accretion rates to those of
earlier works that considered the accretion of magnetized gases
with a similar field topology but an ideal gas law equation of state
(γ = 5/3) appropriate for accretion without radiative losses.
Pang et al. (2011) found that for 1 < β < 100, the accretion
rate in the adiabatic case depends explicitly on the size of the
accreting particle with vanishing accretion rate as the particle
size → 0. In contrast, for the isothermal case, we find asymptotic
convergence toward a finite accretion rate with decreasing grid
spacing and particle size, even for cases with very strong large-
scale fields (see Appendix A). In the case of adiabatic flow,
the results of Pang et al. (2011) and Igumenshchev & Narayan

7 However, it is not clear from our simulations if the accretion rate would
converge to ṀB or some lower accretion rate in the limit of large β at t = ∞
since then a finite flux could in principle buildup near the particle.
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Figure 9. Convergence properties of the accretion rate of selected models as a function of time.

(2002) show that mass accumulation in the midplane is limited
by thermal pressure. In addition, magnetic reconnection leads
to thermal pressure-driven convective flows that also inhibit
mass accumulation in the adiabatic case. The work of Pang
et al. (2011) has shown that at sufficiently small scale, these
effects completely halt accretion. Because both of these effects
are driven by thermal pressure, neither of them appear in our
simulations for the isothermal regime. Consequently, radiatively
efficient Bondi-type flows threaded by large-scale magnetic
fields converge to a finite accretion rate in the limit of vanishing
accreting particle size.

5. CONCLUSIONS

We have carried out a numerical study of the effect of large-
scale magnetic fields in an isothermal gas on the rate of accretion
onto a resistive point mass—i.e., for the case in which only
mass, not magnetic flux, accretes onto the point mass. The
assumption of isothermality is approximately satisfied in regions
of star formation, where the cooling time of the molecular gas
is generally much shorter than the dynamical time for accretion.
The simulations for this study use simple, very general initial
conditions that avoid complications arising from boundary
conditions by keeping the boundaries far from the accreting
object. At the same time, our simulations leverage the AMR
methodology to retain high spatial fidelity close to the accreting
object. Contrary to the adiabatic case (Pang et al. 2011), our
simulations show convergence toward a finite accretion rate
as the radius of the accreting object vanishes, regardless of
magnetic field strength. We find that magnetic fields reduce the
Bondi accretion rate in an isothermal medium by about a factor
of two for weak magnetic fields (plasma-β parameter �100) at
late times, when the magnetic field near the point mass builds
up to the point that it can impede accretion. For strong fields
(β � 1), the accretion rate is reduced by a factor ∼β1/2/4. We
have developed approximate fitting formulae for the accretion
rate as a function of β. The Appendices give analytic results for
the time-dependent accretion rate of a point mass in the limit
of negligible magnetic field and for the steady-state accretion
rate for the case of a strong magnetic field; both are in good
agreement with the results of the simulations.
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APPENDIX A

NUMERICAL CONVERGENCE

The mean steady-state accretion rate at late time is the prin-
ciple quantity of interest from the numerical models presented
in this paper. In this section, we demonstrate that our models
provide well-converged estimates for this result. As discussed
in Section 2, the Alfvén–Bondi radius rAB in our models be-
comes less resolved as β decreases, for a fixed numerical reso-
lution scale. Additionally, our numerical models at β = 103 and
β = 102 use a coarser resolution than the lower β models owing
to the computational constraints imposed by the longer simu-
lation time required to achieve steady accretion. We therefore
focus on demonstrating convergence for the set of models that
are least resolved in rAB, namely, the model with the strongest
magnetic field (β = 10−2) at resolution Δx = 328 zones/rB
and the model with the strongest magnetic field (β = 102) at
the resolution of Δx = 82 zones/rB. Figure 9 shows the time-
dependent accretion rate for each of these models at their native
resolution, with the resolution and effective sink particle radius
coarsened by a factor of two and with the resolution and ef-
fective sink particle radius coarsened by a factor of four. The
convergence properties of the instantaneous accretion rate at
any particular time are difficult to assess owing to the stochastic
nature of the accretion rate. However, we can assess the con-
vergence properties of the accretion rate averaged over a time
interval that is sufficiently long to diminish the impact of these
stochastic effects. We choose tB/2 for the β = 10−2 model and
tb for the β = 102 model.

We find that the late-time averaged accretion rates at the
resolutions shown in Figure 9 exhibit asymptotic convergence
with an implied order of accuracy

p = 1

ln(2)
ln

(
Ṁ2x − Ṁ4x

Ṁ − Ṁ2x

)
(A1)

8
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Table 3
Convergence Properties

β Ṁ4x Ṁ2x Ṁ p ε

100 0.0513 0.0400 0.0351 1.20 0.14
0.01 0.0380 0.0258 0.0243 2.46 0.062

that is better than first-order accurate. In Equation (A1), Ṁ is the
time-averaged accretion rate at the native resolution, Ṁ2x is the
time-averaged accretion rate at a resolution that is coarsened by
a factor of two, and Ṁ4x is the time-averaged accretion rate at a
resolution that is coarsened by a factor of four. Given the shock-
capturing nature of the RAMSES code, we cannot guarantee
that better than first-order convergence would continue at even
higher resolution. We therefore estimate the numerical grid
convergence error using Richardson-extrapolation under the
conservative assumption of a first-order rate of convergence
as

ε =
∣∣∣∣Ṁ − Ṁ2x

Ṁ

∣∣∣∣ . (A2)

Table 3 summarizes the convergence properties for each of the
models considered in this section. We find that the time-averaged
accretion rates given by our native resolution numerical models
are accurate to within 14% of the Richardson-extrapolation
estimate of the asymptotically converged result.

APPENDIX B

BONDI FLOW WITH A WEAK MAGNETIC FIELD

B.1. Dynamics

Here, we calculate Bondi flow under the assumption that the
gas density is initially uniform and then evolves into a steady
state. This initial condition corresponds to that in our numerical
simulations, but would be difficult to realize in practice (for
example, an approximation to this situation might result when
gas flowing supersonically past an object is suddenly brought
to rest by a strong shock). We assume that the magnetic field is
weak so that it does not affect the flow. As we shall see below,
this approximation breaks down sufficiently close to the central
mass or at sufficiently late times. The flow is then spherically
symmetric, and in a steady state the accretion rate is

Ṁ = 4πλrB
2ρ∞c, (B1)

where

rB ≡ GM∗
c2

(B2)

is the Bondi radius associated with a star of mass M∗ and λ � 1.1
for isothermal flow. For a steady accretion flow, we then have

4πr2ρv = 4πrB
2ρ∞c. (B3)

At large radii (r � rB), we have ρ � ρ∞ so that

v

c
� rB

2

r2
. (B4)

Henceforth, we shall normalize lengths to rB, velocities to c,
and times to rB/c; Equation (B4) then becomes v = r−2. If we
assume that the mass element is initially at rest at r0, then at
small radii or at early times, the gas is in free fall, so that

v = √
2

(
1

r
− 1

r0

)1/2

. (B5)

An approximation for the flow everywhere is

1

v
� 1√

2

(
1

r
− 1

r0

)−1/2

+ r2. (B6)

It should be noted that, although we used the approximation of
steady flow to estimate the velocity at large radii, Equation (B6)
for the velocity is time dependent: r0 is a function of both r and
t, so ∂v/∂t �= 0. In Equation (B15) below, we shall give the
time-dependent result for Bondi flow that occurs in an initially
stationary medium.

How long does it take a particle to reach a point r when it
starts at r0? Integration of Equation (B6) gives

t =
∫ r0

r

dr

v
, (B7)

= r
3/2
0√

2

{
[x(1 − x)]1/2 + arctan

(
1 − x

x

)1/2
}

+
1

3
r3

0 (1 − x3), (B8)

where x ≡ r/r0. The time at which the gas is accreted at the
origin (x = 0) is

ta =
( π

23/2

)
r

3/2
0 +

1

3
r3

0 . (B9)

Note that this result is approximate, since it depends on the
harmonic mean approximation in Equation (B6). We have found
better agreement with the numerical results if we approximate
ta as the root mean square of the two terms in Equation (B9):

ta =
(

π2

8
r3

0 +
1

9
r6

0

)1/2

. (B10)

The solution of this equation shows that gas accreting at time t
originated from a radius r0a given by

r3
0a =

(
9π2

16

)
τ 2

1 + (1 + τ 2)1/2
, (B11)

where

τ ≡
(

16

3π2

)
t = 0.540 t. (B12)

For late times (t � 1), this reduces to

r0a → (3t)1/3. (B13)

The accretion rate onto the origin is

Ṁ = 4πλr2
0aρ∞

dr0a

dt
× rB

2c, (B14)

where the final factor gives Ṁ the correct dimensions. Eval-
uating the time derivative from Equation (B11), we obtain an
approximation for the time-dependent accretion rate,

Ṁ(t) � 4πrB
2ρ∞c

τ

(1 + τ 2)1/2
. (B15)

Thus, at early times the accretion rate increases linearly with
time, whereas at late times it approaches the steady-state value
given in Equation (B1) (although here we have set λ = 1).

9
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Consider now the particular case of steady flow. Since the
initial location of a mass element, r0, depends on both r and t,
the steady flow approximation is valid only if the r−1

0 term
in Equation (B6) is negligible. This is true for r � r0 or
for sufficiently large r0 provided r is not too close to r0. As
a check on the accuracy of Equation (B6) in this case (i.e.,
when r−1

0 is negligible), note that the actual sonic point is at
rB/2 (Shapiro & Teukolsky 1983), whereas Equation (B6) gives
0.65 rB; the approximation is thus accurate to within about 30%.
Equation (B3) gives the density for a steady flow, which requires
that the r−1

0 term in Equation (B6) be negligible:

ρ

ρ∞
= 1

vr2
� 1 +

1√
2r3/2

(steady flow). (B16)

B.2. The Magnetic Field

When gas accretes onto the central object, both its mass and
its pressure are removed from the ambient medium. In the case
of the magnetic field, we assume that the flux is not accreted
by the central star. As a result, the flux associated with the
accreted matter, Φa , builds up and distorts the flow close to the
central object. When a flux tube loses mass, it becomes buoyant
and drives an interchange instability. However, gas continues
to accrete along this flux tube so it may eventually fall back to
the center. We therefore expect that the innermost region will
become turbulent. We begin with a discussion of the magnetic
field in the absence of the effects of the accretion flux and then
estimate its effect at the end.

B.2.1. The Field in Smooth Inflow

Just as the gravitational force due to the star becomes impor-
tant at radii less than the Bondi radius, rB, in the hydrodynamic
case, so we expect it to become important at radii less than the
Alfvén–Bondi radius,

rAB ≡ GM∗
v2

A

= 4πGM∗ρ∞
B2

0

, (B17)

= 3.32 × 1015 M∗/M�
(vA/2 km s−1)2

cm, (B18)

in the MHD case. The ratio of the Alfvén–Bondi radius to the
standard Bondi radius is

rAB

rB
= c2

v2
A

= 1

2
β, (B19)

where β ≡ 8πρ∞c2/B2
0 is the plasma β. Our assumption that

the field is weak implies β � 1. There is an important relation
between rAB and the magnetic critical mass

MΦ = Φ
2πG1/2

, (B20)

which also determines the relative importance of self-gravity
and magnetic fields:

rAB

r0
= 4πGM∗ρ∞

r0B
2
0

= 3

4

(
M0M∗
M2

Φ

)
, (B21)

where M0 = 4πρ∞r3
0 /3. The magnetic field is dominant for

r0 > rAB. In the purely gaseous case, the mass is subcritical

for M0 < MΦ; in the Bondi case, we see that the gas mass
M0 is replaced by the geometric mean of the gas mass and
the stellar mass (ignoring the factor of 3/4). Shu et al. (2004)
obtained a similar result for the case in which the gas is in a
disk; they showed that it was possible for the field to be so
strong that it could “levitate” the gas above a star in the process
of formation. Note that the fact that it is the geometric mean
mass that determines whether the gas is sub- or super-critical
has an important consequence: in the purely gaseous case, a
sufficiently large uniform cloud is always supercritical, since
M0 ∝ r3

0 and Φ ∝ r2
0 . However, in the Bondi case, the opposite

occurs: a sufficiently large cloud is always subcritical, since now
(M0M∗)1/2 ∝ r

3/2
0 increases more slowly than Φ.

We assume that the field is initially uniform, so that Bφ0 = 0;
for spherical inflow, Bφ will remain zero. For a spherical inflow,
the radial flux through any surface r2dΩ remains constant, so
that

r2BrdΩ = r2
0 Br0dΩ, (B22)

which implies

Br = Br0

( r0

r

)2
= B0 cos θ

( r0

r

)2
. (B23)

To evaluate Bθ , consider a spherical shell of thickness dr and
radius r. The flux in the shell at θ is proportional to Bθrdr .
The mass in the shell is 4πr2ρdr . Since each of these remains
constant in the inflow, we have

rBθdr ∝ ρr2dr, (B24)

which implies

Bθ = Bθ0

(
ρr

ρ∞r0

)
= −B0 sin θ

(
ρr

ρ∞r0

)
, (B25)

where the sign corresponds to the case in which the initial field
is B0 = B0ẑ.

How does the magnetic force compare with the gravitational
one? First, we note that the radial field by itself exerts no force;
we therefore consider the pressure exerted by Bθ and the tension
force. We consider times late enough so that rt � (3t)1/3 and
thus that r0 is approximately independent of r. For the pressure
force, the relative importance of the magnetic field and gravity
in the midplane (θ = π/2) can be assessed from the ratio

v2
A

v2
K

= B2
θ r

4πρGM
=

(
ρ

ρ∞

)
r3

rABr2
0

. (B26)

At large radii, we have ρ � ρ∞; initially (r � r0) the magnetic
field dominates for r > rAB, as expected. At small radii,
ρ/ρ∞ ∝ r−3/2 so that magnetic effects ∝ v2

A/v2
K ∝ r3/2 become

negligible.
Next consider the tension in the radial direction,

1

4π
(B · ∇B)r = 1

4π

(
Bθ

r

∂Br

∂θ
− B2

θ

r

)
. (B27)

The ratio of this force in the midplane to the gravitational force
is

Ftension

Fg

= (B · ∇B)r
4πGMρ/r2

= r0

rAB

(
1 − ρr3

ρ∞r3
0

)
(B28)
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→ r0

rAB

[
1 − r3

r3
0

(
1 +

1√
2r3/2

)]
, (B29)

where the last expression applies to steady flows. Provided
r0 � 1, the density-dependent term becomes negligible for
r � r0, so that in this case the force ratio becomes

Ftension

Fg

� r0

rAB
. (B30)

Since r0 � (3t)1/3 at late times (Equation (B13)), it follows
that the tension force will eventually dominate and render the
accretion anisotropic at

tanis � r3
AB

3crB
2

= rB

3c

(
β

2

)3

, (B31)

where we have explicitly included the factors of rB and c. This
is to be expected, since as noted above a sufficiently large cloud
is subcritical.

B.2.2. Effects of the Accretion Flux

The accretion flux, Φa , is the magnetic flux associated with
the mass that has accreted onto the central mass. We expect this
flux to be buoyant and to therefore lead to turbulence. Here we
estimate the size of region affected by the accretion flux.

At a time t, the accretion flux is the flux inside the initial
radius r0a given in Equation (B11),

Φa

πrB
2B0

= r2
0a =

(
9π2

16

)2/3
τ 4/3[

1 + (1 + τ 2)1/2
]2/3 . (B32)

We estimate the radius, rΦ, out to which this flux extends by
assuming that the field associated with Φa is uniform and that
the flow at rΦ is steady. The latter assumption requires that rΦ
be small compared to the starting radius, r0, since as discussed
below Equation (B6), r0(r, t) introduces time-dependent effects.
We consider two limiting cases: (1) rΦ � 1, where the accretion
flux interacts with supersonic inflow and (2) rΦ > 1, where the
accretion flux interacts with the pressure in the ambient medium.

Case 1: Supersonic inflow (early and intermediate times).
We estimate rΦ, 1, the value of rΦ in this case, by determining
where the pressure due to the accretion field balances the ram
pressure of the accreting gas. Since we are assuming that
rΦ, 1 � 1 and rΦ, 1 � r0, Equations (B6) and (B16) imply

B2
a

8π
= ρv2 =

√
2ρ∞c2

r
5/2
Φ, 1

. (B33)

Flux conservation implies Bar
2
Φ, 1 = B0r

2
0a , so that

rΦ, 1 = r
8/3
0a

21/3β2/3
, (B34)

= 1

21/3β2/3

(
9π2

16

)8/9
τ 16/9[

1 + (1 + τ 2)1/2
]8/9 . (B35)

This expression is valid for both τ < 1 (early times) and τ > 1
(intermediate times). At late times, the flow is dominated by
thermal pressure.

Case 2: Pressure-confined flow (late times). In this case the
magnetic pressure associated with the accretion flux balances
the thermal pressure of the ambient medium,

B2
a

8π
= ρ∞c2 ⇒ Ba

B0
= β1/2. (B36)

Flux conservation then implies

rΦ, 2 = r0a

β1/4
, (B37)

= 1

β1/4

(
9π2

16

)1/3
τ 2/3[

1 + (1 + τ 2)1/2
]1/3 . (B38)

In order to obtain an approximation valid at all times, we
write

1

rΦ
� 1

rΦ, 1

(
1 +

r2
Φ, 1

r2
Φ, 2

)1/2

. (B39)

Note that rΦ is less than either rΦ,1 or rΦ,2 corresponding to the
fact that in this simple model the pressure due to the escaped flux
has to balance both the thermal pressure and the ram pressure.
Since r2

Φ, 1/r2
Φ, 2 exceeds unity only at late times, this can be

approximated as

rΦ � 3.6τ 16/9

β2/3
[
1 + (1 + τ 2)1/2

]8/9 · 1(
1 + 4.0β−5/6τ 10/9

)1/2 .

(B40)
At early times, rΦ ∝ τ 16/9; at intermediate times (1 � τ �
0.3β3/4), rΦ ∝ τ 8/9; and at late times rΦ ∝ τ 1/3.

APPENDIX C

MAGNETIC BONDI FLOW IN A STRONG
MAGNETIC FIELD

C.1. Initial Transient

A striking feature of Figure 2 for strong fields is that the
flow is isotropic beyond some radius, but then predominantly
aligned along the axis inside that, until the flow is very close to
the center. This makes sense, since initially the field is straight
and therefore exerts no force; thus, at sufficiently early times,
the flow for a strong field is almost identical to that for no field.
We focus on the region inside rB, where we neglect pressure
forces. Let r = r0 − δ, where δ � r0 since we are considering
early times. Then Equation (B5) implies

v = dδ

dt
= c

(
2rBδ

rr0

)1/2

� c
(2rBδ)1/2

r0
, (C1)

where we have written the equation in dimensional form.
Integration gives

δ = rBc2t2

2r2
0

. (C2)

The ratio of the tension force to the gravitational force at early
times is given by Equation (B28) with ρ = ρ0. For small δ, this
is

Ft

Fg

= 3δ

rAB
. (C3)
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The magnetic field will begin deflecting the flow from a radial
trajectory to an axial one when this ratio is of order unity, which
occurs at

r0

rB
=

(
3

β

)1/2
t

tB
. (C4)

We have found that the growth of the region deflected from a
radial trajectory in our numerical simulations with β = 0.1
and β = 0.01 follow this functional form very well but
that the deflection from spherical flow occurs somewhat later
than predicted. We extract a good empirical fit to the low β
simulations with

r0

rB
=

(
2.0

β

)1/2
t

tB
. (C5)

C.2. Magnetic Bondi Flow in a Strong Magnetic Field
(β � 0.1) at Late Times

For a very strong field, the gas will attempt to settle into
vertical hydrostatic equilibrium,

ρ = ρ∞e−mφ/kT = ρ∞erB/r , (C6)

where m is the mass per particle and φ = −GM∗/r is
the gravitational potential. Henceforth, we shall normalize all
lengths to the Bondi radius, as in the previous section. Outside
the Bondi radius, this expression gives only a modest increase
in density, but for small radii the increase can be very large—so
large that it takes a long time to reach equilibrium. Let � be
the cylindrical radius, so that r = (� 2 + z2)1/2, where z is the
height above the disk. The density at the midplane (r = � ) is
then

ρ0 = ρ∞e1/� . (C7)

For small radii, � � 1, the density distribution near the
midplane is approximately Gaussian,

ρ � ρ0e
−z2/h2

, (C8)

where ρ0 is the midplane density and the scale height is

h = √
2� 3/2. (C9)

In equilibrium, the total surface density of the gas near the
midplane is then

Σeq � 2ρ0h = ρ∞rB(2� )3/2e1/� , (C10)

where we have used Equation (C7) to eliminate ρ0.
When do magnetic forces balance gravity? For a thin disk,

magnetic tension dominates magnetic pressure (Shu & Li 1997).
For an axisymmetric field, the net radial tension is

Ft = 1

4π
(B · ∇)B� = 1

4πrB
Bz

∂B�

∂z
. (C11)

Integrating through the disk, we find that the forces balance
when

1

4π
Bz(2B� ) = GM∗Σ

rB� 2
, (C12)

where B� is measured just above the disk.
To obtain an accurate solution beyond this point, we would

have to solve for the structure of the field. This is a challenging
problem even when the system is in equilibrium. Here, however,
we are assuming that the system is in equilibrium outside some

critical radius, �cr, but that there is an unknown accretion
flow inside that radius. We therefore content ourselves with
attempting to infer the scaling for the solution. We assume that
Bz in the disk is proportional to the ambient field, B∞, and that
the radial component of the field, B� , is proportional to Bz.
Equation (C12) then implies that

Σ ∼ ρ∞rB

(
� 2

β

)
. (C13)

For a given location in the disk, gas will accrete along the field
lines until the surface density reaches this value. The field is
unable to support more gas than this, so this value represents an
upper limit on Σ; any additional gas will accrete onto the central
star. However, we have determined another maximum value for
the surface density in Equation (C10), which is the value the
surface density has in hydrostatic equilibrium. Equating these
two surface densities determines the critical radius, �cr: the gas
can be supported by the field outside �cr, but inside �cr gas that
exceeds the surface density in Equation (C13) must fall onto the
central star. Equations (C10) and (C13) imply that this critical
radius satisfies

� 1/2
cr e−1/�cr ∼ β. (C14)

A good approximation for the solution of this equation for
β � 0.15, corresponding to �cr � 0.6, is

�cr � 1

ln β−1 − 0.5 ln ln β−1
(β � 0.15). (C15)

In the regime of greatest interest, 10−3 < β < 0.15, the solution
can be approximated by the simpler form

�cr � 0.85β1/4 (10−3 � β � 0.15). (C16)

The accuracy of this solution in the prescribed range is about
10%, which is much better than the accuracy of the underlying
equation.

We are now in a position to estimate the accretion rate onto
the central star. We assume that the accretion flow is primarily
along the field lines and that it is initiated by a rarefaction wave
propagating at the sound speed, c. After an initial phase during
which the surface density just inside �cr becomes large enough
that it distorts the field so much that it can accrete, the accretion
rate on both sides of the disk becomes

Ṁ � 2
(
πrB

2� 2
∞, cr

)
ρ∞c, (C17)

where �∞, cr is the cylindrical radius of the critical field lines
far from the star. If we assume that �cr ∝ �∞, cr, then in the
range 10−3 � β � 0.1 we have Ṁ ∝ � 2

cr ∝ β1/2, and we can
write

Ṁ = 4πλlow βrB
2ρ∞cβ1/2, (C18)

where λlow β is a numerical constant. Note that the β1/2 scaling is
the same as that implied by the crude argument in the text. Were
we to assume that �∞, cr = �cr and that Equation (C16) were
accurate, then λlow β would equal 0.36. This estimate is within a
factor of 1.6 of the numerical results. Setting λlow β = 0.24 gives
an accretion rate that agrees with the results of the simulations
for β = 0.1, 0.01 to within 8%.
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