
Star Formation in Molecular Clouds
Mark R. Krumholz

Department of Astronomy & Astrophysics, University of California, Santa Cruz

Abstract. Star formation is one of the least understood processes in cosmic evolution. It is difficult
to formulate a general theory for star formation in part because of the wide range of physical
processes involved. The interstellar gas out of which stars form is a supersonically turbulent plasma
governed by magnetohydrodynamics. This is hard enough by itself, since we do not understand
even subsonic hydrodynamic turbulence very well, let alone supersonic non-ideal MHD turbulence.
However, the behavior of star-forming clouds in the ISM is also obviously influenced by gravity,
which adds complexity, and by both continuum and line radiative processes. Finally, the behavior of
star-forming clouds is influenced by a wide variety of chemical processes, including formation and
destruction of molecules and dust grains (which changes the thermodynamic behavior of the gas)
and changes in ionization state (which alter how strongly the gas couples to magnetic fields). As a
result of these complexities, there is nothing like a generally agreed-upon theory of star formation, as
there is for stellar structure. Instead, we are forced to take a much more phenomenological approach.
These notes provide an introduction to our current thinking about how star formation works.
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1. FORWARD

These proceedings are based on a series of lectures given at the XVth Special Courses of
the National Observatory of Rio de Janeiro, the overall goal of which is to provide a crash
course in star formation for beginning graduate students or advanced undergraduates.
Because this text is meant to be pedagogic, it is generally much more explicit about the
algebra and methods behind calculations than a standard journal article. Due to limits
of space, these notes are necessarily incomplete, and they are biased in places by the
author’s opinions (both about what is interesting and about what is correct). Caveat
lector. For a more comprehensive overview of the field, the best source is the recent
review by McKee & Ostriker [1]. A much more extensive pedagogic introduction, which
is unfortunately also fairly dated at this point, may be found in the textbook by Stahler &
Palla [2]. Some of the material included in these lectures also covers basics of radiative
transfer and fluid dynamics, and students looking for more information on these topics
may consult standard textbooks such as Rybicki & Lightman (for radiation) and Shu (for
both fluid dynamics and radiation).

In these proceedings, each section corresponds to a single lecture. The first section
discusses how we observe star-forming clouds, also known as molecular clouds (at least
in the Milky Way) and determine their properties. The second begins to investigate
the physical processes that govern the behavior of the clouds. In the third we discuss
why molecular clouds collapse and what happens when they do, including the critical
problems of how energy, angular momentum, and magnetic flux are transported. Finally,
the fourth section focuses on perhaps the two major unsolved problems of star formation:
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the star formation rate and the initial mass function. It is in this section that the reader
should be particularly aware of author biases, since the material in the first three sections
is generally (though not always) non-controversial, while the material in the final section
is far from it.

2. OBSERVING STAR-FORMING CLOUDS

2.1. Observational Techniques

We will begin with a discussion of the important observational techniques that we
use to obtain information about the star-forming ISM. This will naturally lead us to
review some of the important radiative transfer physics that we need to keep in mind to
understand the observations. Because the interstellar clouds that form stars are generally
cold, most (but not all) of these techniques require on infrared, sub-millimeter, and radio
observations.

2.1.1. The Problem of H2

Hydrogen is the most abundant element, and when it is in the form of free atomic
hydrogen, it is relatively easy to observe. Hydrogen atoms have a hyperfine transition
at 21 cm (1.4 GHz), associated with a transition from a state in which the spin of the
electron is parallel to that of the proton to a state where it is anti-parallel. The energy
associated with this transition is � 1 K, so even in cold regions it can be excited. This
line is seen in the Milky Way and in many nearby galaxies.

However, at the high densities where stars form, hydrogen tends to be molecular rather
than atomic, and H2 is extremely hard to observe directly. To understand why, we must
review the quantum structure of H2. A diatomic molecule like H2 has three types of
excitation: electronic (corresponding to excitations of one or more of the electrons),
vibrational (corresponding to vibrational motion of the two nuclei), and rotational (cor-
responding to rotation of the two nuclei about the center of mass). Generally electronic
excitations are highest in energy scale, vibrational are next, and rotational are the lowest
in energy.

For H2, the first excited state, the J = 1 rotational state, is 100− 200 K above the
ground state. This energy gap between the ground state and the first excited state is far
larger than for any other simple molecule, and the underlying reason for this large energy
is the low mass of hydrogen. For a quantum oscillator or rotor the level spacing varies
with reduced mass as m−1/2. Since the dense ISM where molecules form is often also
cold, T ∼ 10 K (as we discuss later), almost no molecules will be in this excited state.
However, it gets even worse: H2 is a homonuclear molecule, which means that it has
zero electric dipole moment. As a result, electric dipole transitions do not occur, and
radiative transitions that change J by 1 are electric dipoles. This means that there is no
J = 1 → 0 emission. Instead, the lowest-lying transition is the J = 2 → 0 quadrupole.
This is very weak, because it’s a quadrupole. More importantly, however, the J = 2 state
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is 511 K above the ground state. This means that, for a population in equilibrium at a
temperature of 10 K, the fraction of molecules in the J = 2 state is ∼ e−10/500 ≈ 10−22!
In effect, in a molecular cloud there are simply no H2 molecules in states capable of
emitting.

The conclusion of this analysis is that, for typical conditions in star-forming clouds,
we cannot observe the most abundant species, H2, in emission. Instead, we are forced to
observe proxies instead. (One can observe H2 in absorption against background sources,
but this is possible only in special circumstances.)

2.1.2. Observing the Dust

One proxy we can use, which is perhaps the most straightforward conceptually, is
dust. Interstellar gas clouds are always mixed with dust, and the dust grains emit thermal
radiation which we can observe. They also absorb background starlight, and we observe
that absorption too. The advantage of dust grains is that, since they are solid particles, the
can absorb or emit continuum radiation, which the gas cannot. Consider a cloud of gas
of mass density ρ mixed with dust grains at a temperature T . The gas-dust mixture has a
specific opacity κν to radiation at frequency ν . Although the vast majority of the mass is
in gas rather than dust, the opacity will be almost entirely due to the dust grains except
for frequencies that happen to match the resonant absorption frequencies of atoms and
molecules in the gas.

Radiation passing through the cloud is governed by the equation of radiative transfer:

dIν

ds
= jν −κν Iν , (1)

where Iν is the radiation intensity, and we integrate along a path through the cloud. The
emissivity for gas of opacity κν that is in local thermodynamic equilibrium (LTE) is
jν = κνρBν(T ), where jν has units of erg s−1 cm−3 sr−1 Hz−1, i.e. it describes the
number of ergs emitted in 1 second by 1 cm3 of gas into a solid angle of 1 sr in a
frequency range of 1 Hz, and

Bν(T ) =
2hν3

c2

1

ehν/kT −1
(2)

is the Planck function.
Generally we look for emission at submillimeter wavelengths, and for absorption at

near infrared wavelengths. In the sub-mm typical opacities are κν ∼ 0.01 cm2 g−1.
Since essentially no interstellar cloud has a surface density > 100 g cm−2, absorption of
radiation from the back of the cloud by gas in front of it is completely negligible. Thus,
we can set κν Iν to zero in the transfer equation, and integrate trivially:

Iν =
∫

jνds = ΣκνBν(T ) = τνBν(T ) (3)

where Σ =
∫

ρds is the surface density of the cloud and τν = Σκν is the optical depth of
the cloud at frequency ν . Thus if we observe the intensity of emission from dust grains
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FIGURE 1. A map of the Pipe Nebula obtained with near-infrared absorption measurements. Color
indicates visual extinction, which is proportional to column density. Reprinted with permission from [3].

in a cloud, we determine the product of the optical depth and the Planck function, which
is determined solely by the observing frequency and the gas temperature. If we know the
temperature and the properties of the dust grains, we can therefore determine the column
density of the gas in the cloud in each telescope beam.

Conversely, if we are looking for absorption in the near-IR, we have a background star
that emits light that enters the cloud with intensity Iν ,0. The cloud itself emits negligibly
in the near-IR, because hν � kT , so the exponential factor in the denominator of the
Planck function is huge. Thus we can drop the jν term in the transfer equation, and the
solution is again trivial:

Iν = Iν ,0e−τν . (4)

By measuring the optical depth at several frequencies, and knowing the intrinsic
frequency-dependence of Iν ,0 for stars, we can figure out the optical depth and thus the
column density.

These mapping techniques allow us to obtain extremely detailed maps of nearby
molecular clouds. Figure 1 shows a spectacular example. Unfortunately, these tech-
niques are generally not usable for extragalactic observations. The resolution and sen-
sitivity of sub-mm telescopes is not sufficient to allow us to see individual clouds in
emission, and the problem of knowing which stars are behind or in front of a given
gas cloud at extragalactic distances prevents us from making good measurements in ab-
sorption. Both of these limitations may be eased by future telescopes, but for now dust
observations of individual clouds are generally limited to the Milky Way.

2.1.3. Molecular lines

Much of what we know about star forming gas comes from observations of molecular
line emission. These are usually the most complex measurements in terms of the mod-
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eling and required to understand them. However, they are also by far the richest in terms
of the information they provide. They are also among the most sensitive, since the lines
can be very bright compared to continuum emission. Indeed, almost everything we know
about giant molecular clouds outside of our own galaxy comes from studying emission
in the rotational lines of the CO molecule. The CO molecule, since it is much more
massive than H2, has its lowest rotational state only 5.5 K above ground, low enough
to be excited even at GMC temperatures. Since C and O are two of the most common
elements in the ISM beyond H and He, CO molecules are abundant and the lines are
bright.

2.1.4. Two-Level Atoms

The simplest line-emitting system is an atom or molecule with exactly two energy
states, but this example contains most of the concepts we will need. We’ll explore how
that works first, then consider more complex, realistic molecules. Consider an atom or
molecule of species X with two states that are separated by an energy E. Suppose we
have a gas of such particles with number density nX at temperature T . The number
density of atoms in the ground state is n0 and the number density in the excited state is
n1. At first suppose that this system does not radiate. In this case collisions between the
atoms will eventually bring the two energy levels into thermal equilibrium. In that case,
what are n0 and n1?

They just follow a Boltzmann distribution, so n1/n0 = e−E/kT , and thus we have
n0 = nX/Z and n1 = nX e−E/kT/Z, where Z = 1+ e−E/kT is the partition function. Gas
with such a distribution of level populations is said to be in LTE. Now let’s consider
radiative transitions between these states. There are three processes: spontaneous emis-
sion, stimulated emission, and absorption, which are described by the three Einstein
coefficients. For simplicity we’ll start by neglecting all but spontaneous emission. This
is sometimes a good approximation in the interstellar medium, since in many cases the
ambient radiation field is too weak for stimulated emission or absorption to be important.

A particle in the excited state can spontaneously emit a photon and decay to the ground
state. The rate at which this happens is described by the Einstein coefficient A10, which
has units of s−1. Its meaning is simply that a population of n1 atoms in the excited state
will decay to the ground state by spontaneous emission at a rate(

dn1

dt

)
spon. emis.

=−A10n1 (5)

atoms per cm3 per s, or equivalently that the e-folding time for decay is 1/A10 seconds.
For the molecules we’ll be spending most of our time talking about, decay times are

typically at most a few centuries, which is short compared to pretty much any time scale
associated with star formation. Thus if spontaneous emission were the only process at
work, all molecules would quickly decay to the ground state and we wouldn’t see any
emission. However, in the dense interstellar environments where stars form, collisions
occur frequently enough to create a population of excited molecules. Of course collisions
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involving excited molecules can also cause de-excitation, with the excess energy going
into recoil rather than into a photon.

Since hydrogen molecules are almost always the most abundant species in the dense
regions we’re going to think about, with helium second, we can generally only consider
collisions between our two-level atom and those partners. For the purposes of this
exercise, we’ll ignore everything but H2. The rate at which collisions cause transitions
between states is a horrible quantum mechanical problem. We cannot even confidently
calculate the energy levels of single isolated molecules except in the simplest cases, let
alone the interactions between two colliding ones at arbitrary velocities and relative
orientations. Exact calculations of collision rates are generally impossible. Instead,
we either make due with approximations (at worst), or we try to make laboratory
measurements. Things are bad enough that, for example, we often assume that the rates
for collisions with H2 molecules and He atoms are related by a constant factor.

Fortunately, as astronomers we generally leave these problems to chemists, and in-
stead do what we always do: hide our ignorance behind a parameter. We let the rate
at which collisions between species X and H2 molecules induce transitions from the
ground state to the excited state be(

dn1

dt

)
coll. exc.

= γ01n0n, (6)

where n is the number density of H2 molecules (not the number density of species
X) and γ01 has units of cm3 s−1. In general γ01 will be a function of the gas kinetic
temperature T , but not of n (unless n is so high that three-body processes start to become
important, which is almost never the case in the ISM). The corresponding rate coefficient
for collisional de-excitation is γ10, and the collisional de-excitation rate is(

dn1

dt

)
coll. de−exc.

=−γ10n1n. (7)

Collections of collision rate coefficients for common molecules can be found in the
extremely useful Leiden Atomic and Molecular Database1 [4].

A little thought will convince you that γ01 and γ10 must have a specific relationship.
Consider an extremely optically thick region where so few photons escape that radiative
processes are not significant. If the gas is in equilibrium then we have

dn1

dt
=

(
dn1

dt

)
coll. exc.

+

(
dn1

dt

)
coll. de−exc.

= 0 (8)

n(γ01n0 − γ10n1) = 0. (9)

However, we also know that the equilibrium distribution is a Boltzmann distribution, so
n1/n0 = e−E/kT . Thus we have

nn0(γ01 − γ10e−E/kT ) = 0 (10)

γ01 = γ10e−E/kT . (11)

1 http://www.strw.leidenuniv.nl/~moldata/
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This argument applies equally well between a pair of levels even for a complicated
molecule with many levels instead of just 2. Thus, we only need to know the rate of
collisional excitation or de-excitation between any two levels to know the reverse rate.

We are now in a position to write down the full equations of statistical equilibrium for
the two-level system. In so doing, we will see that we can immediately use line emission
to learn a great deal about the density of gas. In equilibrium we have

dn1

dt
= 0 (12)

n1A10 +nn1γ10 −nn0γ01 = 0 (13)
n1

n0
(A10 + γ10n)− γ01n = 0 (14)

n1

n0
=

γ01n

A10 + γ10n
(15)

= e−E/kT 1
1+A10/(γ10n)

(16)

This physical meaning of this expression is clear. If radiation is negligible compared
to collisions, i.e. A10 � γ10n, then the ratio of level populations approaches the Boltz-
mann ratio e−E/kT . As radiation becomes more important, i.e. A10/(γ10n) get larger, the
fraction in the upper level drops – the level population is sub-thermal. This is because
radiative decays remove molecules from the upper state much faster than collisions re-
populate it.

Since the collision rate depends on density and the radiative decay rate does not, the
balance between these two processes depends on density. This make it convenient to
introduce a critical density ncrit, defined by ncrit = A10/γ10, so that

n1

n0
= e−E/kT 1

1+ncrit/n
. (17)

At densities much larger than ncrit, we expect the level population to be close to the
Boltzmann value, and at densities much smaller than ncrit we expect the upper state to be
under-populated relative to Boltzmann. ncrit itself is simply the density at which radiative
and collisional de-excitations out of the upper state occur at the same rate.

For real molecules or atoms with more than two states, the critical density for state i

can be generalized to

ncrit,i =
∑ j<i Ai j

∑ j<i ki j
, (18)

i.e. the critical density is simply the sum of the Einstein A’s for all levels less than i,
divided by the sum of the collision rate coefficients for transitions from level i to all
levels less than i. The condition for equilibrium is

ni =

(
1

1+ncrit,i/n

)
∑ j<i n jk ji

∑ j<i ki j
(19)

This is a series of linear equations (one for each level i) that can be solved to give the
level populations. We could write down an exact solution in terms of a matrix inversion,
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but it’s more illuminating just to notice how the solution will have to behave. For
n � ncrit,i, the leading term in parentheses goes to unity, and the relationships between
the different level populations ni are just determined by the collision rate coefficients ki j

– the Einstein coefficient drops out of the problem. In this case, the level populations go
to the Boltzmann distribution. For n � ncrit,i, the leading term in parentheses is smaller
than unity, and higher levels are underpopulated relative to the Boltzmann distribution.
Thus the behavior is qualitatively similar to the two-level atom.

2.2. Molecular Cloud Properties from Molecular Lines

Molecular lines, as we have seen, are a rather complicated way to observe things,
since the emission we get out depends on many factors. However, we can turn this to
our advantage. The complexity of the molecular line emission process can be exploited
to tell us all sorts of things about molecular clouds. Indeed, they form the basis of most
of our knowledge of cloud properties. For the rest of this section we’ll mostly go back
to our two-level particle for simplicity, since the procedures for multi-level particles are
analogous but more mathematically cumbersome.

2.2.1. Density Inference

First of all, let’s consider the rate of energy emission per molecule from a molecular
line. This is easy once we know the level population:

L

nX
=

EA10n1

nX
(20)

= EA10
n1

n0 +n1
(21)

= EA10
n1/n0

1+n1/n0
(22)

= EA10
e−E/kT

1+ e−E/kT +ncrit/n
(23)

= EA10
e−E/kT

Z +ncrit/n
, (24)

where again Z is the partition function. It is instructive to think about how this behaves
in the limiting cases n � ncrit and n � ncrit. In the limit n � ncrit, the partition function
Z dominates the denominator, and we get L /nX = EA10e−E/kT Z. This is just the energy
per spontaneous emission times the spontaneous emission rate times the fraction of the
population in the upper state when the gas is in statistical equilibrium. This is density-
independent, so this means that at high density you just get a fixed amount of emission
per molecule of the emitting species. The total luminosity is just proportional to the
number of emitting molecules.
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is because trapping of photons within the cloud means that not every spontaneously-
emitted photon escapes the cloud, which has an effect like like lowering the Einstein
A.

2.2.2. Velocity and temperature inference

We can also use molecular lines to infer the velocity and temperature structure of
gas if the line in question is optically thin, meaning that we can neglect absorption.
For an optically thin line, the width of the line is determined primarily by the velocity
distribution of the emitting molecules. The physics here is extremely simple. Suppose
we have gas along our line of sight with a velocity distribution ψ(v), i.e. the fraction of
gas with velocities between v and v+dv is ψ(v)dv, and

∫ ∞
−∞ ψ(v)dv= 0. For an optically

thin line, in the limit where natural and pressure-broadening of lines is negligible, we
can think of emission producing a delta function in frequency in the rest frame of the
gas. There is a one-to-one mapping between velocity and frequency. Thus emission from
gas moving at a frequency v relative to us along our line of sight produces emission at a
frequency

ν ≈ ν0

(
1− v

c

)
, (26)

where ν0 is the central frequency of the line in the molecule’s rest frame, and we assume
v/c � 1.

In this case the line profile is described trivially by

φ(ν) = ψ

(
c

[
1− ν

ν0

])
. (27)

We can measure φ(ν) directly, and this immediately tells us the velocity distribution
ψ(v). In general the velocity distribution of the gas ψ(v) is produced by a combination of
thermal and non-thermal motions. Thermal motions arise from the Maxwellian velocity
distribution of the gas, and produce a Maxwellian profile φ(ν) ∝ e−(ν−νcen)

2/σ2
ν . Here

νcen is the central frequency of the line, which is νcen = ν0(1− v̄/c), where v̄ is the mean
velocity of the gas along our line of sight. The width is σν =

√
kT/μ/c, where T is the

gas temperature and μ is the mean mass of the emitting molecule. This is just the 1D
Maxwellian distribution.

Non-thermal motions involve bulk flows of the gas, and can produce a variety of ve-
locity distributions depending how the cloud is moving. Unfortunately even complicated
motions often produce distributions that look something like Maxwellian distributions,
just because of the central limit theorem: if you throw together a lot of random junk, the
result is usually a Gaussian distribution.

Determining whether a given line profile reflects predominantly thermal or non-
thermal motion requires that we have a way of estimating the temperature independently.
This can often be done by observing multiple lines of the same species. Our expression

L

nX
= EA10

e−E/kT

Z +ncrit/n
(28)
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shows that the luminosity of a particular optically thin line is a function of the temper-
ature T , the density n, and the number density of emitting molecules nX . If we observe
three transitions of the same molecule, then we have three equations in three unknowns
and we can solve for n, nX , and T independently. Certain molecules, because of their
level structures, make this technique particularly clean. The most famous example of
this is ammonia, NH3.

Measurements of this sort show that typical molecular clouds have velocity disper-
sions of several km s−1, but very low temperatures of only ∼ 10 K. This is significant
because the sound speed for H2 molecules at 10 K is cs =

√
kT/mH2 ≈ 0.2 km s−1. Thus

the observed linewidths indicate that the typical velocities of material inside a GMC are
supersonic by factors of ∼ 10. This has important implications that we will explore be-
low.

2.2.3. Mass inference

The last thing we routinely infer from line observations is total masses of clouds.
In this case we usually want to pick a line that is quite optically thick, such as CO
J = 1 → 0. Other commonly-used lines include CO J = 2 → 1, 13CO J = 1 → 0 and
J = 2 → 1, and HCN J = 1 → 0. The main motivation for using an optically thick line
is that these tend to be nice and bright, so they’re observable in external galaxies, or at
long distances within our galaxy.

The challenge for an optically thick line is how to infer a mass, given that we’re really
only seeing the surface of a cloud. At first blush this shouldn’t be possible – after all,
I cannot infer how thick a wall is by seeing its surface. The reason it is possible is that
molecular clouds are not like walls. Even at their surfaces they carry information about
their full mass. To see why this is, consider optically thick line emission from a cloud
of mass M and radius R at temperature T . The mean column density is N = M/(μπR2),
where μ = 3.9×10−24 g is the mass per H2 molecule.

Suppose this cloud is in virial balance between kinetic energy and gravity, so that
its kinetic energy is half its potential energy (we’ll discuss this more in the context of
the virial theorem in the next section). The gravitational-self energy is W =−aGM2/R,
where a is a constant of order unity that depends on the cloud’s geometry and internal
mass distribution. For a uniform sphere a= 3/5. The kinetic energy is T = (3/2)Mσ2

1D,
where σ1D is the one dimensional velocity dispersion, including both thermal and non-
thermal components. We define the virial ratio as

αvir =
5σ2

1DR

GM
, (29)

For a uniform sphere, which has a = 3/5, this definition implies αvir = 2T /|W |. Thus
αvir = 1 corresponds to the ratio of kinetic to gravitational energy in a uniform sphere
of gas in virial equilibrium between internal motions and gravity. In general we expect
that αvir ≈ 1 in any object supported primarily by internal turbulent motion, even if its
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mass distribution is not uniform. Re-arranging this definition, we have

σ1D =

√(αvir

5

) GM

R
. (30)

To see why this is relevant for the line emission, consider the total frequency-
integrated intensity that the line will emit. The emission will be dominated by gas with
a density above the critical density, for the reason we just discussed. This gas is close to
LTE, so its emissivity is given by the Planck function times its opacity. In this case the
solution to the transfer equation is

Iν =
(
1− e−τν

)
Bν(T ), (31)

so integrating over frequency we get∫
Iν dν =

∫ (
1− e−τν

)
Bν(T )dν . (32)

By assumption the optical depth at line center is τν0 � 1, and for a Gaussian line profile
the optical depth at frequency ν is

τν = τν0 exp
[
− (ν −ν0)

2

2(ν0σ1D/c)2

]
(33)

Since the integrated intensity depends on the integral of τν over frequency, and the
frequency-dependence of τν is determined by σ1D, we therefore expect that the inte-
grated intensity will depend on σ1D.

To get a sense of how this dependence will work, let us adopt a very simplified yet
schematically correct form for τν . We will take the opacity to be a step function, which
is infinite near line center and drops sharply to 0 far from line center. The frequency at
which this transition happens will be set by the condition τν = 1, which gives

Δν = |ν −ν0|= ν0
√

2lnτν0

σ1D

c
. (34)

The corresponding range in Doppler shift is

Δv =
√

2lnτν0σ1D. (35)

For this step-function form of τν , the emitted brightness temperature is trivial to
compute. At velocity v, the brightness temperature is

TB,v =

{
T, |v− v0|< Δv

0, |v− v0|> Δv
(36)

If we integrate this over all velocities of emitting molecules, we get

ICO =
∫

TB,ν dv = 2TBΔv =
√

8lnτν0σ1DT. (37)
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Thus, the velocity-integrated brightness temperature is simply proportional to σ1D. The
dependence on the line-center optical depth is generally negligible, since that quantity
enters only as the square root of the log.

Now let us consider the amount of emission we get per unit column density within
our telescope beam. We define this quantity as X , and we have

X [cm−2 (K km s−1)−1] =
M/(μπR2)

ICO

= 105 (8lnτν0)
−1/2

T μπ

M

σ1DR2

= 105 (μ lnτν0)
−1/2

T

√
5n

6παvirG
,

where n = 3M/(4πR3) is the number density of the cloud, and the factor of 105 comes
from the fact that we’re measuring ICO in km s−1 rather than cm s−1. To the extent that all
molecular clouds have comparable volume densities on large scales and are virialized,
this suggests that there should be a roughly constant CO X factor. If we plug in T = 10
K, n= 100 cm−3, αvir = 1, and τν0 = 100, this gives XCO = 5×1019 cm−2 (K km s−1)−1.

This is quite a result: it means that we have inferred the mass of a molecular cloud
simply by measuring the luminosity it emits in a particular optically thick line. Of course
this calculation has a few problems – we have to assume a volume density, and there are
various fudge factors like a floating around. Moreover, we had to assume virial balance
between gravity and internal motions. This implicitly assumes that both surface pressure
and magnetic fields are negligible, which they may not be. Making this assumption
would necessarily make it impossible to independently check whether molecular clouds
are in fact in virial balance between gravity and turbulent motions.

In practice, the way we get around these problems is by determining X factors by
empirical calibration. We generally do this by attempting to measure the total gas
column density by some tracer that measures all the gas along the line of sight, and then
subtracting off the observed atomic gas column – the rest is assumed to be molecular.
One way of doing this is measuring γ rays emitted by cosmic rays interacting with the
ISM. The γ ray emissivity is simply proportional to the number density of hydrogen
atoms independent of whether they are in atoms or molecules (since the cosmic ray
energy is very large compared to any molecular energy scales). Once produced the γ
rays travel to Earth without significant attenuation, so the γ ray intensity along a line of
sight is simply proportional to the total hydrogen column. Another way is to measure
the infrared emission from dust grains along the line of sight, which gives the total dust
column. This is then converted to a mass column using a dust to gas ratio. Yet a third
method is to observe a cloud in multiple molecular lines, some of which are optically
thin and some of which are thick, and use the multiple lines in an attempt to determine
the absolute mass.

Using any of these techniques in the Milky Way gives X ≈ 2× 1020 cm−2 (K km
s−1)−1 for the Milky Way, with roughly a factor of 2 scatter on either side depending on
the technique used and the assumptions made [5, 6, 7, 8]. These numbers are roughly
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consistent with our simple model, and the fact that several independent techniques give
results that match to a factor of 2 gives us some confidence that the method works.

From this sort of analysis we learn that most of the molecular mass in our galaxy and
in similar nearby galaxies is organized into giant clouds with masses of ∼ 104−106 M�
[9].

3. PHYSICAL PROCESSES IN MOLECULAR CLOUDS

3.1. Heating and cooling proceses

The temperature in molecular clouds is set mostly by radiative processes – adiabatic
heating and cooling associated with hydrodynamic motions is generally negligible, as we
will show in a moment. Thus we have to consider how clouds can gain and loose heat by
radiation. A full treatment of this problem necessarily involves numerical calculations,
but we can derive some basic results quite simply.

3.1.1. Heating by cosmic rays

In the bulk of the interstellar medium the main source of heating is starlight. However,
typical molecular clouds have visual extinctions AV ∼ 5, which means that starlight
in the interior is reduced to a few percent of the mean interstellar value at visible
wavelengths, and to much less than a percent of the interstellar value at the ultraviolet
wavelengths that produce most heating. Thus, we can generally neglect starlight as a
source of heat (except very near young stars forming within the cloud).

Instead, over the bulk of a molecular cloud’s volume, the main source of heating is
cosmic rays: relativistic particles accelerated in shocks that are able to penetrate into
GMC interiors. How much heat do cosmic rays produce? To answer this question, we
must first determine the mechanism by which the gas is heated. The first step in such
a heating chain is the interaction of a cosmic ray with an electron, which knocks the
electron off a molecule:

CR+H2 → H+
2 + e−+CR (38)

The free electron’s energy depends only weakly on the CR’s energy, and is typically
∼ 30 eV.

The electron cannot easily transfer its energy to other particles in the gas directly,
because its tiny mass guarantees that most collisions are elastic and transfer no energy
to the impacted particle. However, the electron also has enough energy to ionize or
dissociate other hydrogen molecules, which provides an inelastic reaction that can
convert some of its 30 eV to heat. Secondary ionizations do indeed occur, but in this
case almost all the energy goes into ionizing the molecule (15.4 eV), and the resulting
electron has the same problem as the first one: it cannot effectively transfer energy to the
much more massive protons.
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Instead, it is secondary dissociations and excitations that wind up being the dominant
energy channels. The former reaction is

e−+H2 → 2H+ e−. (39)

In this reaction any excess energy in the electron beyond what is needed to dissociate
the molecule (4.5 eV) goes into kinetic energy of the two recoiling hydrogen atoms, and
the atoms, since they are massive, can then efficiently share that energy with the rest
of the gas. Alternately, an electron can hit a hydrogen molecule and excite it without
dissociating it. The hydrogen molecule then collides with another hydrogen molecule
and collisionally de-excites, and the excess energy again goes into recoil, where it is
efficiently shared. The reaction is

e−+H2 → H∗
2 + e− (40)

H∗
2 +H2 → 2H2. (41)

Summing over all possible transfer channels, and including heating by secondary ion-
izations too, the energy yield per primary cosmic ray ionization is in the range 7− 20
eV [10, 11], depending on the density. These figures are slightly uncertain.

Combining this with the primary ionization rate for cosmic rays in the Milky Way,
which is observationally-estimated to be about 2× 10−17 s−1 per H nucleus [12], this
gives a total heating rate per H nucleus

ΓCR ∼ 10−27 erg s−1. (42)

The heating rate per unit volume is ΓCRn, where n is the number density of H nuclei
(= 2× the density of H molecules).

3.1.2. CO cooling

In molecular clouds there are two main cooling processes: molecular lines and dust
radiation. Dust can cool the gas efficiently because dust grains are solids, so they are
thermal emitters. However, dust is only able to cool the gas if collisions between dust
grains and hydrogen molecules occur often enough to keep them thermally well-coupled.
Otherwise the grains cool off, but the gas stays hot. The density at which grains and gas
become well-coupled is around 104 cm−3 [13], which is higher than the typical density
in a GMC, so we won’t consider dust cooling further at this point. We’ll return to it
in the next section when we discuss collapsing objects, where the densities do get high
enough for dust cooling to be important.

The remaining cooling process is line emission, and by far the most important
molecule for this purpose is CO, due to its abundance and its ability to radiate even at
low temperatures and densities. The physics is fairly simple. CO molecules are excited
by inelastic collisions with hydrogen molecules, and such collisions convert kinetic en-
ergy to potential energy within the molecule. If the molecule de-excites radiatively, and
the resulting photon escapes the cloud, the cloud loses energy and cools.
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Let us make a rough attempt to compute the cooling rate via this process. As we
mentioned in the last section, a diatomic molecule like CO can be excited rotationally,
vibrationally, or electronically. At the low temperatures found in molecular clouds, usu-
ally only the rotational levels are important. These are characterized by an angular mo-
mentum quantum number J, and each level J has a single allowed radiative transition to
level J−1. Larger ΔJ transitions are strongly suppressed because they require emission
of multiple photons to conserve angular momentum.

Unfortunately the CO cooling rate is quite difficult to calculate, because the lower CO
lines are all optically thick. A photon emitted from a CO molecule in the J = 1 state is
likely to be absorbed by another one in the J = 0 state before it escapes the cloud, and
if this happens that emission just moves energy around within the cloud and provides
no net cooling. The cooling rate is therefore a complicated function of position within
the cloud – near the surface the photons are much more likely to escape, so the cooling
rate is much higher than deep in the interior. The velocity dispersion of the cloud also
plays a role, since large velocity dispersions Doppler shift the emission over a wider
range of frequencies, reducing the probability that any given photon will be resonantly
re-absorbed before escaping.

In practice this means that CO cooling rates usually have to be computed numerically,
and will depend on the cloud geometry if we want accuracy to better than a factor of ∼ 2.
However, we can get a rough idea of the cooling rate from some general considerations.
The high J levels of CO are optically thin, since there are few CO molecules in the
J−1 states capable of absorbing them, so photons they emit can escape from anywhere
within the cloud. However, the temperatures required to excite these levels are generally
high compared to those found in molecular clouds, so there are few molecules in them,
and thus the line emission is weak. Moreover, the high J levels also have high critical
densities, so they tend to be sub-thermally populated, further weakening the emission.

On other hand, low J levels of CO are the most highly populated, and thus have the
highest optical depths. Molecules in these levels produce cooling only if they are within
one optical depth the cloud surface. Since this restricts cooling to a small fraction of the
cloud volume (typical CO optical depths are many tens for the 1 → 0 line), this strongly
suppresses cooling.

The net effect of combining the suppression of low J transitions by optical depth
effects and of high J transitions by excitation effects is that cooling tends to be dominated
a the single line produced by the lowest J level for which the line is not optically thick.
This line is marginally optically thin, but is kept close to LTE by the interaction of lower
levels with the radiation field. Which line this is depends on the column density and
velocity dispersion of the cloud, and detailed calculations show that for typical GMC
properties it is generally around J = 5.

If we assume this dominant cooling level is in LTE, the cooling rate per H nucleus is
simply the number of CO molecules per H nucleus times the fraction of molecules in
the relevant level, times the emission rate from that level, times the energy per photon:

ΛCO = xCO(2J+1)
e−EJ/(kBT )

Z
AJ,J−1(EJ −EJ−1), (43)

where Z is the partition function and xCO is the ratio of CO molecules to H nuclei. Note
that the factor of 2J +1 is the degeneracy of level J. For a quantum rotator the Einstein
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A’s and energy levels obey

EJ = hBJ(J+1) (44)

AJ+1,J =
512π4B3μ2

3hc3

(J+1)4

2J+1
, (45)

where B is the rotation constant of the molecule and μ is its electric dipole moment. For
CO, B = 57 GHz and μ = 0.112 Debye.

Plugging these values in, for J = 5 → 4 at T = 10 K we get ΛCO = 1.3× 10−27 erg
s−1 per H nucleus. If we equate the cooling rate to the cosmic ray heating rate of 10−27

erg s−1, which is independent of temperature, we find that heating and cooling balance
at T ≈ 10 K, in good agreement with what we observe. Note that the density does not
enter into this, since both Γ and ΛCO are proportional to density. Thus we expect the
equilibrium temperature to be close to density-independent. Due to the exponential de-
pendence, the cooling rate is very temperature-sensitive. If we increase the temperature
by a factor of 2, ΛCO rises by a factor of 30, to about 4×10−26 erg s−1. Thus it requires
a lot of change in heating rate to raise the temperature appreciably.

It is also instructive to consider the timescales implied by these cooling rates. The gas
thermal energy per H nucleus is

e =
1
2

(
3
2

kT

)
= 10−15

(
T

10 K

)
erg (46)

for a monatomic gas – and H2 acts like a monatomic gas at low temperature because its
rotational degrees of freedom cannot be excited. The factor of 1/2 comes from 2 H nuclei
per H2 molecule. The characteristic cooling time is tcool = e/ΛCO. Suppose we have gas
that is mildly out of equilibrium, say T = 20 K instead of T = 10 K. The heating and
cooling are far out of balance, so we can ignore heating completely compared to cooling.
At the cooling rate of ΛCO = 4×10−26 erg s−1 for 20 K gas, tcool = 1.6 kyr. In contrast,
the crossing time for a molecular cloud is tcr = L/σ ∼ 7 Myr for L = 30 pc and σ = 4
km s−1. The conclusion of this analysis is that radiative effects happen on time scales
much shorter than mechanical ones. Mechanical effects, such as the heating caused by
shocks, simply cannot push the gas any significant way out of radiative equilibrium.

3.2. Flows in Molecular Clouds

Now that we have satisfied ourselves that the gas in molecular clouds is, for the
most part, kept rigidly fixed at a low temperature, let us consider what that implies
about the flows of gas in molecular clouds. In the process we will define four important
dimensionless numbers that characterize the flow, two each for the magnetic and non-
magnetic cases.
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3.2.1. Equations of Motion

We begin by writing down the basic equations of magnetohydrodynamics that govern
flows in molecular clouds. There are three such equations in our case:

∂ρ

∂ t
= −∇ · (ρv) (47)

∂

∂ t
(ρv) = −∇ · (ρvv)−∇P+

1
4π

(∇×B)×B−ρ∇φ +ρν∇2v (48)

∂B

∂ t
= −∇× (B×v)−∇× (ηηη : ∇×B) (49)

∇2φ = −4πGρ. (50)

The quantities here are the density ρ , the velocity v, the pressure P, the magnetic field
B, the gravitational potential φ , the kinematic viscosity ν , and the magnetic resistivity
ηηη . Note that, in general, ηηη can be a tensor, and the colon represents tensor contraction.
Since the temperature is fixed by radiative effects, the equation of state is simple. We
characterize the temperature by a sound speed cs, which is related to the pressure by

P = ρc2
s . (51)

Physically, the first equation represents conservation of matter. It states that the rate
of change in density at a given point, ∂ρ/∂ t, is equal to the rate at which mass flows
toward or away from the point, −∇ · (ρv). Similarly, the second equation represents
conservation of momentum. It states that the rate of change of the momentum is equal
to the rate at which momentum is advected away by the flow, plus four remaining terms
on the right hand side, which represent pressure forces, Lorentz (magnetic) forces,
gravitational forces, and viscous forces. Finally, the third equation is the induction
equation, and it states that the time rate of change of the magnetic field is equal to
the rate at which the field is carried along by the fluid plus the rate at which the field is
either dissipated or diffused by resistance in the fluid. Finally, the last equation gives the
gravitational potential due to the matter in the cloud.

Solving these four equations in general is not feasible, except by numerical simula-
tion. Instead, we will simply analyze them to try to derive some general results and gain
some insight.

3.2.2. Dimensionless Numbers

We start by considering which terms are important. Suppose our system is character-
ized by a size scale L, a velocity scale V , and a magnetic field strength B. In a molecular
cloud, we might have L ∼ 30 pc, V ∼ 3 km s−1, and B ∼ 10 μG. The natural scale for
spatial derivatives is 1/L, so to figure out how big terms are to the order of magnitude
level, we can take on of our equations and replace all the spatial derivatives with 1/L.
Doing so with the momentum equation, and dropping the gravitational force term for
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now, the terms on the right hand side are

ρ
V 2

L
+ρ

c2
s

L
+

B2

L
+ρν

V

L2 . (52)

These terms represent, from left to right: advection of momentum by fluid flows, changes
in momentum due to pressure forces, changes in momentum due to magnetic forces, and
changes in momentum due to viscous forces.

We can get a learn a lot simply by figuring out which of these terms are important and
which are not. Only terms that are important will contribute to the time derivative, and
thus to the evolution of the system. Let’s start by comparing the first and second terms.
Clearly the ratio of the first term, representing advection, to the second term, pressure,
is of order (V/cs)

2. We define the square root of this ratio as the Mach Number of the
flow:

M =
V

cs
. (53)

The significance of M is that, when M � 1, the advection term, representing momen-
tum changing at a given position because of fluid motions, is much more important than
the pressure term, representing changes in momentum at a given point due to pressure
forces. Thus when M pressure becomes unimportant. We have already seen that the
sound speed in a molecular cloud is cs ≈ 0.2 km s−1, so M ∼ 10, and we conclude that
the pressure term is sub-dominant by a factor of M 2 ∼ 100. Thus we reach our first in-
teresting conclusion based on dimensionless numbers: molecular cloud flows are highly
supersonic, and this means that pressure forces are unimportant.

Now that we have determined pressure forces are unimportant, let us consider mag-
netic forces. Clearly the ratio of those two terms is of order B2/(ρV 2). We use the square
root of this ratio to define the Alfvén Mach Number, after Hannes Alfvén, the father of
magnetohydrodynamics. Formally,

MA =
V

vA

, (54)

where vA = B/
√

4πρ is called the Alfvén speed, which plays a role analogous to
the sound speed in non-magnetized fluid dynamics. If MA � 1, this means that the
advection term is much more important than the magnetic term, so magnetic forces
are unimportant. On the other hand MA

<∼1 means that magnetic forces are important,
and this will tend to force the flow to follow magnetic field lines. The resulting flow
morphology will be quite different, as shown in Figure 3. Evaluating our terms for a
molecular cloud, we have vA = B/

√
4πρ ∼ 2 km s−1, so MA ∼ 1. Thus we conclude

that magnetic forces are not negligible in molecular clouds. They are comparable in
importance to advection.

Third, let us compare the advection term to the viscous term. Taking the ratio of these
two gives

Re =
advection

viscous forces
=

LV

ν
. (55)

The quantity we have defined is called the Reynolds Number, and it clearly character-
izes the importance of viscous forces. If Re � 1, this means that viscosity is unable to
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FIGURE 3. Two simulations of driven magnetohydrodynamic turbulence, one with a low Alfvén Mach
number (left) and one with a high Alfvén Mach number (right). The colored box walls show the logarithm
of density, The blue lines are magnetic field lines. The red surfaces show the distribution of a passive
contaminant that has been added to the flow. Reprinted with permission from the AAS from [14].

change fluid velocities on a timescale comparable to the natural crossing timescale of the
flow. We can also think of the Reynolds number as describing a characteristic size scale
L ∼ ν/V on which motions are damped. Motions larger than this scale are unimpeded
by viscosity, while smaller scale motions are damped out.

For diffuse gases, the kinematic viscosity ν = 2uλ , where u is the RMS particle speed
and λ is the mean free path. The former is comparable to the sound speed, u ∼ 0.2
km s−1, while the latter is of order the inverse of the cross section times the particle
density, λ ∼ 1/(nσ). For a typical molecule size of 1 nm and a density of 100 cm−2, this
gives λ ∼ 1012 cm. Thus we have ν ∼ 1016 cm2 s−1, and putting this together with our
characteristic size and velocity scales gives Re ∼ 109. We therefore learn that molecular
cloud flows are extremely non-viscous. An important implication of this is that they are
almost certainly turbulent, since essentially all flows with Re>∼103 are observed to be
turbulent.

Finally, let’s apply our non-dimensionalization treatment to the induction equation.
Doing so, the two terms on the right hand side are of order

BV

L
+η

B

L2 . (56)

In analogy with the Reynolds number, we define the ratio of these two terms by the
Magnetic Reynolds Number

Rm =
LV

η
. (57)

The significance of Rm is that, when it is large, the advection term in the induction
equation is much larger than the resistive one, and this means that magnetic field is
simply carried around by the fluid. We describe this situation as flux-freezing, meaning
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that lines of magnetic flux passing through a fluid element move with that fluid element
at all times.

The value of the magnetic Reynolds number depends on the resistivity, which is tricky
to calculate. We won’t do so in these lectures, but we can outline the main process that
contributes to it: ion-neutral drift, also known as ambipolar diffusion. In a molecular
cloud, most of the gas is actually neutral, not ionized, and so it doesn’t feel magnetic
forces. Only the ions do. However, the ions collide with the neutrals, and if those
collisions are frequent enough then they will transmit the magnetic force to the neutrals.
However, this process isn’t perfect. If there are too few ions, then neutrals may go a long
time before encountering an ion, and they will begin to drift with respect to the ions,
since they ions are being pulled by magnetic forces that the neutrals don’t feel. For this
reason the resistivity depends on the ionization fraction, with lower ionization fractions
giving higher resistivities.

In a molecular cloud the ionization fraction is controlled by the balance between
cosmic ray ionizations and recombinations of electrons with ions, and calculations of
this process (e.g. [15]) suggest that, at a density of n ∼ 100 cm−3, typical ionization
fractions are about 10−6. That might not seem like much, but it’s enough to produce a
fairly small resistivity – working through the calculation gives Rm ∼ 50 for our typical
parameters. We therefore conclude that resistivity is not significant on GMC scales, and
flux-freezing holds. However, note that, as with viscosity, we can define a characteristic
scale where resistivity does become important, which is L/Rm. This is ∼ 0.5 pc, and
this means that, on small scales, we expect magnetic fields to begin to decouple from the
gas. We’ll return to this issue later on.

3.3. The Virial Theorem

As our final topic in this lecture, we will derive a theorem that describes the large-scale
behavior of molecular clouds. This is the virial theorem, which is a sort of integrated
version of the equations of motion. Like the equations of motion, there is both an
Eulerian form and a Lagrangian form of the virial theorem, depending on which version
of the equations of motion we start with. We’ll derive the Eulerian form here, but the
derivation of the Lagrangian form proceeds in a similar manner, and can be found in
many standard textbooks. This derivation follows that of McKee & Zweibel [16].

To derive the virial theorem, we begin with the MHD equations of motion, without
either viscosity or resistivity (since neither of these are important for GMCs on large
scales) but with gravity. We leave in the pressure forces, even though they are small,
because they’re also trivial to include. Thus we have

∂ρ

∂ t
= −∇ · (ρv) (58)

∂

∂ t
(ρv) = −∇ · (ρvv)−∇P+

1
4π

(∇×B)×B−ρ∇φ . (59)

Here φ is the gravitational potential, so −ρ∇φ is the gravitational force per unit volume.
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These equations are the Eulerian equations written in conservative form. The first is
conservation of mass: it says that the rate of change of density is equal to the flux of
mass into or out of a given volume. The second is conservation of momentum: it says
that the rate of change of momentum is given by the flux of momentum in or out of a
given volume plus the changes in momentum due to gas pressure, magnetic forces, and
gravitational forces. Note here that in the second equation the term vv is a tensor – in
tensor notation, its elements are viv j.

Before we begin, life will be a bit easier if we re-write the entire second equation in a
manifestly tensorial form – this simplifies the analysis tremendously. To do so, we define
two tensors: the fluid pressure tensor Π and the Maxwell stress tensor TM, as follows:

Π ≡ ρvv+PI (60)

TM ≡ 1
4π

(
BB− B2

2
I

)
(61)

Here I is the identity tensor. In tensor notation, these are

(Π)i j ≡ ρviv j +Pδi j (62)

(TM)i j ≡ 1
4π

(
BiB j − 1

2
BkBkδi j

)
(63)

With these definitions, the momentum equation just becomes

∂

∂ t
(ρv) =−∇ · (Π−T)−ρ∇φ . (64)

The substitution for Π is obvious. The equivalence of ∇ ·TM to 1/(4π)(∇×B)×B
is easy to establish with a little vector manipulation, which is most easily done in tensor
notation:

(∇×B)×B = εi jkε jmn

(
∂

∂xm
Bn

)
Bk (65)

= −εi jkε jmn

(
∂

∂xm
Bn

)
Bk (66)

= (δinδkm −δimδkn)

(
∂

∂xm
Bn

)
Bk (67)

= Bk

∂

∂xk

Bi −Bk

∂

∂xi
Bk (68)

=

(
Bk

∂

∂xk

Bi +Bi
∂

∂xk

Bk

)
−Bk

∂

∂xi
Bk (69)

=
∂

∂xk

(BiBk)− 1
2

∂

∂xi

(
B2

k

)
(70)

= ∇ ·
(

BB− B2

2

)
(71)
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To derive the virial theorem, we begin by imagining a cloud of gas enclosed by some
fixed volume V . The surface of this volume is S. We want to know how the overall
distribution of mass changes within this volume, so we begin by writing down a quantity
the represents the mass distribution. This is the moment of inertia:

I =
∫

V
ρr2 dV. (72)

We want to know how this changes in time, so we take its time derivative:

İ =
∫

V

∂ρ

∂ t
r2 dV (73)

= −
∫

V
∇ · (ρv)r2 dV (74)

= −
∫

V
∇ · (ρvr2)dV +2

∫
V

ρv · rdV (75)

= −
∫

S
(ρvr2) ·dS+2

∫
V

ρv · rdV (76)

In the first step we used the fact that the volume V does not vary in time to move the
time derivative inside the integral. Then in the second step we used the equation of mass
conservation to substitute. In the third step we brought the r2 term inside the divergence.
Finally in the fourth step we used the divergence theorem to replace the volume integral
with a surface integral.

Now we take the time derivative again, and multiply by 1/2 for future convenience:

1
2

Ï = −1
2

∫
S

r2 ∂

∂ t
(ρv) ·dS+

∫
V

∂

∂ t
(ρv) · rdV (77)

= −1
2

d

dt

∫
S

r2(ρv) ·dS−
∫

V
r · [∇ · (Π−TM)+ρ∇φ ] dV (78)

The term involving the tensors is easy to simplify using a handy identity, which
applies to an arbitrary tensor. This is a bit easier to follow in tensor notation:∫

V
r ·∇ ·TdV =

∫
V

xi
∂

∂x j
Ti j dV (79)

=
∫

V

∂

∂x j
(xiTi j)dV −

∫
V

Ti j
∂

∂x j
xi dV (80)

=
∫

S
xiTi j dS j −

∫
V

δi jTi j dV (81)

=
∫

S
r ·T ·dS−

∫
V

Tr TdV, (82)

where Tr T = Tii is the trace of the tensor T.
Applying this to our result our tensors, we note that

Tr Π = 3P+ρv2 (83)

Tr TM = −B2

8π
(84)
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Inserting this result into our expression for Ï give the virial theorem, which I will write
in a more suggestive form to make its physical interpretation clearer:

1
2

Ï = 2(T −TS)+M +W − 1
2

d

dt

∫
S
(ρvr2) ·dS, (85)

where

T =
∫

V

(
1
2

ρv2 +
3
2

P

)
dV (86)

TS =
∫

S
r ·Π ·dS (87)

M =
1

8π

∫
V

B2 dV +
∫

S
r ·TM ·dS (88)

W = −
∫

V
ρr ·∇φ dV (89)

Written this way, we can give a clear interpretation to what these terms mean. T is
just the total kinetic plus thermal energy of the cloud. TS is the confining pressure on
the cloud surface, including both the thermal pressure and the ram pressure of any gas
flowing across the surface. M is the the difference between the magnetic pressure in the
cloud interior, which tries to hold it up, and the magnetic pressure plus magnetic tension
at the cloud surface, which try to crush it. W is the gravitational energy of the cloud. If
there is no external gravitational field, and φ comes solely from self-gravity, then W is
just the gravitational binding energy. The final integral represents the rate of change of
the momentum flux across the cloud surface.

Ï is the integrated form of the acceleration. For a cloud of fixed shape, it tells us the
rate of change of the cloud’s expansion of contraction. If it is negative, the terms that
are trying to collapse the cloud (the surface pressure, magnetic pressure and tension at
the surface, and gravity) are larger, and the cloud accelerates inward. If it is positive, the
terms that favor expansion (thermal pressure, ram pressure, and magnetic pressure) are
larger, and the cloud accelerates outward. If it is zero, the cloud neither accelerates nor
decelerates.

We get a particularly simple form of the virial theorem if there is no gas crossing the
cloud surface (so v = 0 at S) and if the magnetic field at the surface to be a uniform value
B0. In this case the virial theorem reduces to

1
2

Ï = 2(T −TS)+M +W (90)

with

TS =
∫

S
rPdS (91)

M =
1

8π

∫
V
(B2 −B2

0)dV. (92)

In this case TS just represents the mean radius times pressure at the virial surface, and
M just represents the total magnetic energy of the cloud minus the magnetic energy of
the background field over the same volume.
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Notice that, if a cloud is in equilibrium (Ï = 0) and magnetic and surface forces are
negligible, then we have 2T =−W , which is what went into our definition of the virial
ratio above: αvir = 2T /|W |.

4. MOLECULAR CLOUD COLLAPSE

We are now at the point where we can discuss why molecular clouds collapse to form
stars, and explore the basic physics of that collapse. We will first look at instabilities that
cause collapse, and then discuss what happens when collapse occurs.

4.1. Stability Conditions

In considering whether molecular clouds can collapse, it is helpful to look at the virial
theorem, equation (85). We can group the terms on the right hand side into those that
are generally or always positive, and thus oppose collapse, and those that are generally
or always negative, and thus encourage it. The main terms opposing collapse are T ,
which contains parts describing both thermal pressure and turbulent motion, and M ,
which describes magnetic pressure and tension. The main terms favoring collapse are
W , representing self-gravity, and TS, representing surface pressure. The final term, the
surface one, could be positive or negative depending on whether mass is flowing into our
out of the virial volume. We will begin by examining the balance among these terms,
and the forces they represent.

4.1.1. Thermal Pressure: the Bonnor-Ebert Mass

To begin with, consider a cloud where magnetic forces are negligible, so we need
only consider pressure and gravity. For simplicity we’ll adopt a spherical geometry,
since more complex geometries only change the result by factors of order unity, and we
will neglect the flux of mass across the cloud surface, since on average that contributes
neither to support nor to collapse. Thus we have a spherical cloud of mass M and radius
R, bounded by an external medium that exerts a pressure Ps at its surface. The material
in the cloud has a one-dimensional velocity dispersion σ (including thermal and non-
thermal motions). With this assumption, the terms that appear on the right-hand side of
the virial theorem are

T =
∫

V

(
1
2

ρv2 +
3
2

P

)
=

3
2

Mσ2 (93)

TS =
∫

S
r ·Π ·dS = 4πR3PS (94)

W = −
∫

V
ρr ·∇φ dV =−a

GM2

R
, (95)
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where a is a constant of order unity that depends on the internal density distribution of
the cloud.

If we wish the cloud to be in virial equilibrium, then we have

0 =
3
2

Mσ2 −4πR3PS −a
GM2

R
, (96)

which we can re-arrange to

PS =
1

4πR3

(
3
2

Mσ2 −a
GM2

R

)
(97)

This expression has an interesting feature. If we consider a cloud of fixed M and σ and
vary the radius R, we find that PS has a maximum value

PS =
37σ8

214πa3G3M2 . (98)

We can understand what is going on physically as follows. Consider starting a cloud
at very large radius R. In this case its self-gravity is negligible, so the second term in
parentheses is can be dropped, but the mean density is very low and so the pressure
is low. As we decrease the radius the pressure rises initially, but as the radius gets
larger self-gravity starts to become important, and more and more of the cloud’s internal
pressure goes to holding it up against self-gravity, rather than against the external surface
pressure. Eventually we reach a point where further contraction is counter-productive
and actually lowers the surface pressure.

Now turn this around: if we consider a cloud with a fixed mass and internal velocity
dispersion, and we vary the surface pressure, this means that, once the pressure exceeds
a fixed value, there is no way that the cloud can remain in virial equilibrium. Instead,
it must collapse. The maximum possible pressure is a decreasing function of mass, so
larger and larger masses become progressively more and more unstable.

In order to be more quantitative about this, we need to know the value of a, which
depends on the internal density distribution. We can solve for this by writing down the
equation of hydrostatic balance for the cloud and finding the value of a from the self-
consistently determined density distribution. We won’t do so in these notes, but the result
can be found in standard textbooks. The result is that the maximum mass that can be held
up in an environment where the surface pressure is PS is

MBE ≈ 1.18
σ4

G3/2P
1/2
S

= 0.47M�
(

σ

0.2 km s−1

)4(
PS/kB

106 K cm−3

)−1/2

. (99)

This is known as the Bonnor-Ebert mass. The scalings chosen for σ and PS are typical
of the thermal sound speed and the pressure in molecular clouds, and it is certainly
interesting that when we plug in these values we get something like the typical mass of
a star.

Of course if we put in the typical observed velocity dispersion in molecular clouds,
σ ∼ a few km s−1, we get a vastly larger mass – more like 104 − 106 M�, the mass of
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a GMC. This makes sense. It’s equivalent to our statement from above that the virial
ratios of molecular clouds are about unity. However, turbulent support is a tricky thing.
It doesn’t work everywhere. In some places the turbulent flows come together and cancel
out, and in those places the velocity dispersion drops to the thermal value, and collapse
can occur if the mass exceeds the Bonnor-Ebert mass. We’ll return to this idea of large-
scale support by turbulence coupled with localized collapse in the final section.

4.1.2. Magnetic Support: the Magnetic Critical Mass

Now let us consider a cloud where the magnetic term in the virial theorem greatly
exceeds the kinetic one. Again, we’ll consider a simple case to get the basic scalings: a
uniform spherical cloud of radius R threaded by a magnetic field B. We imagine that B
is uniform inside the cloud, but that outside the cloud the field lines quickly spread out,
so that the magnetic field drops down to some background strength B0, which is also
uniform but has a magnitude much smaller than B.

The magnetic term in the virial theorem is

M =
1

8π

∫
V

B2 dV +
∫

S
x ·TM ·dS (100)

where

TM =
1

4π

(
BB− B2

2
I

)
. (101)

If the field inside the cloud is much larger than the field outside it, then the first term,
representing the integral of the magnetic pressure within the cloud, is

1
8π

∫
V

B2 dV ≈ B2R3

6
. (102)

Here we have dropped any contribution from the field outside the cloud. The second
term, representing the surface magnetic pressure and tension, is

∫
S

x ·TM ·dS =
∫

S

B2
0

8π
x ·dS ≈ B2

0R3
0

6
. (103)

Since the field lines that pass through the cloud must also pass through the virial
surface, it is convenient to rewrite everything in terms of the magnetic flux. The flux
passing through the cloud is ΦB = πBR2, and since these field lines must also pass
through the virial surface, we must have ΦB = πB0R2

0 as well. Thus, we can rewrite the
magnetic term in the virial theorem as

M ≈ B2R3

6
− B2

0R2
0

6
=

1
6π2

(
Φ2

B

R
− Φ2

B

R0

)
≈ Φ2

B

6π2R
. (104)

In the last step we used the fact that R � R0 to drop the 1/R0 term.
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Now let us compare this to the gravitational term, which is

W =−3
5

GM2

R
(105)

for a uniform cloud of mass M. Comparing these two terms, we find that

M +W =
Φ2

B

6π2R
− 3

5
GM2

R
≡ 3

5
G

R

(
M2

Φ −M2) (106)

where

MΦ ≡
√

5
2

(
ΦB

3πG1/2

)
(107)

We call MΦ the magnetic critical mass.
Since both ΦB does not change as a cloud expands or contracts (due to flux-freezing),

this magnetic critical mass does not change either. The implication of this is that clouds
that have M > MΦ always have M +W < 0. The magnetic force is unable to halt
collapse no matter what. Clouds that satisfy this condition are called magnetically
supercritical, because they are above the magnetic critical mass MΦ. Conversely, if
M < MΦ, then M +W > 0, and gravity is weaker than magnetism.

Clouds satisfying this condition are called subcritical. For a subcritical cloud, since
M +W ∝ 1/R, this term will get larger and larger as the cloud shrinks. In other words,
not only is the magnetic force resisting collapse is stronger than gravity, it becomes
larger and larger without limit as the cloud is compressed to a smaller radius. Unless the
external pressure is also able to increase without limit, which is unphysical, then there is
no way to make a magnetically subcritical cloud collapse. It will always stabilize at some
finite radius. The only way to get around this is to change the magnetic critical mass,
which requires changing the magnetic flux through the cloud. This is possible only via
ambipolar diffusion or some other non-ideal MHD effect that violates flux-freezing.

Of course our calculation is for a somewhat artificial configuration of a spherical
cloud with a uniform magnetic field. In reality a magnetically-supported cloud will not
be spherical, since the field only supports it in some directions, and the field will not be
uniform, since gravity will always bend it some amount. Figuring out the magnetic crit-
ical mass in that case requires solving for the cloud structure numerically. A calculation
of this effect by Tomisaka et al. [17] gives

MΦ = 0.12
ΦB

G1/2
(108)

for clouds for which pressure support is negligible. The numerical coefficient we got for
the uniform cloud case is 0.17, so this is obviously a small correction. It is also possible
to derive a combined critical mass that incorporates both the flux and the sound speed,
and which limits to the Bonnor-Ebert mass for negligible field and the magnetic critical
mass for negligible pressure.

Given that a sufficiently strong magnetic field can prevent the collapse of a cloud,
it is a critical question whether molecular clouds are super- or subcritical. This must be
answered empirically. Observations of magnetic fields in molecular clouds are extremely
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FIGURE 4. Measurements of the line of sight magnetic field strength Blos in a sample of molecular
cloud cores, as a function of the number density of H2 molecules N21 (in units of 1021 molecules cm−2).
Filled points show detections, while empty points show upper limits. The dashed line is the division
between magnetically subcritical (above the line) and magnetically supercritical (below the line). Error
bars are 1σ . The solid line is a linear fit to the data. The magnetic field strengths shown here were measured
using the Zeeman effect. Reprinted with permission from the AAS from [18].

difficult, and we will not take the time to go into the various techniques that are used.
Nonetheless, the observations at this point do seem to show that molecular clouds are
magnetically supercritical, although not by a lot – see Figure 4. However, since this is a
difficult observation, this interpretation of the data is not universally accepted.

4.2. Collapsing Cores

4.2.1. Spherical collapse

The simplest case to think about, and a good one to understand some of the basic
physical processes, is the collapse of a non-rotating, non-turbulent, isothermal spherical
core without a magnetic field, supported by thermal pressure. Of course none of these
assumptions are strictly true, but they give us a place to begin our study. Moreover,
the assumption that collapsing regions, called cores, are not strongly supersonic is
reasonable, since collapse tends to occur in places where the turbulent velocities cancel.
Observations show this, e.g. as illustrated in Figure 5.

Density and Velocity Profiles. Consider a sphere of gas with an initial density distri-
bution ρ(r). We would like to know how the gas moves under the influence of gravity
and thermal pressure, under the assumption of spherical symmetry. For convenience we
define the enclosed mass

Mr =
∫ r

0
4πr′2ρ(r′)dr′ (109)
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FIGURE 5. Measurements of the velocity dispersion of the gas in and around a dense core, measured
using ammonia (NH3) lines. The grayscale image on the left shows the velocity dispersion as a function
of position, and on the right the figure shows the measured spectra at the indicated positions. Reprinted
with permission from the AAS from [19].

or equivalently
∂Mr

∂ r
= 4πr2ρ. (110)

The equation of mass conservation for the gas in spherical coordinates is

∂

∂ t
ρ +∇ · (ρv) = 0 (111)

∂

∂ t
ρ +

1
r2

∂

∂ r
(r2ρv) = 0, (112)

where v is the radial velocity of the gas.
It is useful to write the equations in terms of Mr rather than ρ , so we take the time

derivative of Mr to get

∂

∂ t
Mr = 4π

∫ r′

0
r′2

∂

∂ t
ρ dr′

= −4π

∫ r′

0

∂

∂ r′
(r′2ρv)dr′

= −4πr2ρv

= −v
∂

∂ r
Mr.

In the second step we used the mass conservation equation to substitute for ∂ρ∂ t, and
in the final step we used the definition of Mr to substitute for ρ . To figure out how the
gas moves, we write down the Navier-Stokes equation without viscosity, which is just
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the Lagrangean version of the momentum equation:

ρ
Dv

Dt
=− ∂

∂ r
P− fg, (113)

where fg is the gravitational force. For the momentum equation, we take advantage of the
fact that the gas is isothermal to write P = ρc2

s . The gravitational force is fg =−GMr/r2.
Thus we have

Dv

Dt
=

∂

∂ t
v+ v

∂

∂ r
v =−c2

s

ρ

∂

∂ r
ρ − GMr

r2 . (114)

For a given set of initial conditions, it is generally very easy to solve these equations
numerically, and in some cases to solve them analytically. To get a sense of what to
expect, let’s think about the behavior in the limit of zero gas pressure, i.e. cs = 0. We
take the gas to be at rest at t = 0. This is not as bad an approximation as you might think.
Consider the virial theorem: the thermal pressure term is just proportional to the mass,
since the gas sound speed stays about constant. On the other hand, the gravitational term
varies as 1/R. Thus, even if pressure starts out competitive with gravity, as the core
collapses the dominance of gravity will increase, and before too long the collapse will
resemble a pressureless one.

In this case the momentum equation is trivial:

Dv

Dt
=−GMr

r2 . (115)

This just says that a shell’s inward acceleration is equal to the gravitational force per
unit mass exerted by all the mass interior to it, which is constant. We can then solve for
the velocity as a function of position:

v = ṙ =−
√

2GMr

(
1
r0

− 1
r

)1/2

, (116)

where r0 is the position at which a particular fluid element starts. To integrate again and
solve for r, we make the substitution r = r0 cos2 ξ [20]:

−2r0(cosξ sinξ )ξ̇ = −
√

2GMr

r0

(
1

cos2 ξ
−1

)1/2

(117)

2(cosξ sinξ )ξ̇ =

√
2GMr

r3
0

tanξ (118)

2cos2 ξ dξ =

√
2GMr

r3
0

dt (119)

ξ +
1
2

sin2ξ = t

√
2GMr

r3
0

. (120)
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We are interested in the time at which a given fluid element reaches the origin, r = 0.
This corresponds to ξ = π/2, so this time is

t =
π

2

√
r3

0

2GMr
. (121)

Suppose that the gas we started with was of uniform density ρ , so that Mr = (4/3)πr3
0ρ .

In this case we have

t = tff =

√
3π

32Gρ
, (122)

where we have defined the free-fall time tff: it is the time required for a uniform sphere
of pressureless gas to collapse to infinite density.

For a uniform fluid this means that the collapse is synchronized – all the mass reaches
the origin at the exact same time. A more realistic case is for the initial state to have
some level of central concentration, so that the initial density rises inward. Let’s take the
initial density profile to be ρ = ρc(r/rc)

−α , where α > 0 so the density rises inward.
The corresponding enclosed mass is

Mr =
4

3−α
πρcr3

c

(
r

rc

)3−α

(123)

Plugging this in, the collapse time is

t =

√
(3−α)π

32Gρc

(
r0

rc

)α/2

. (124)

Since α > 0, this means that the collapse time increases with initial radius r0.
This illustrates one of the most basic features of a collapse, which will continue to

hold even in the case where the pressure is non-zero. Collapse of centrally concentrated
objects occurs inside-out, meaning that the inner parts collapse before the outer parts.
Within the collapsing region near the star, the density profile also approaches a char-
acteristic shape. If the radius of a given fluid element r is much smaller than its initial
radius r0, then its velocity is roughly

v ≈ vff ≡−
√

2GMr

r
, (125)

where we have defined the free-fall velocity vff as the characteristic speed achieved by
an object collapsing freely onto a mass Mr.

The mass conservation equation is

∂Mr

∂ t
=−v

∂Mr

∂ r
=−4πr2vρ (126)

If we are near the star so that v ≈ vff, then this implies that

ρ =
(∂Mr/∂ t)r−3/2

4π
√

2GMr

. (127)
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To the extent that we look at a short interval of time, over which the accretion rate does
not change much (so that ∂Mr/∂ t is roughly constant), this implies that the density near
the star varies as ρ ∝ r−3/2.

The characteristic accretion rate. What sort of accretion rate do we expect from a
collapse like this? For a core of mass Mc = [4/(3−α)]πρcr3

c , the last mass element
arrives at the center at a time

tc =

√
(3−α)π

32Gρc
=

√
3−α

3
tff(ρc), (128)

so the time-averaged accretion rate is

〈Ṁ〉=
√

3
3−α

Mc

tff(ρc)
. (129)

In order to get a sense of the numerical value of this, let us suppose that our collapsing
object is a marginally unstable Bonnor-Ebert sphere, with mass

MBE = 1.18
c4

s√
G3Ps

, (130)

where Ps is the pressure at the surface of the sphere and cs is the thermal sound speed
in the core. Let’s suppose that the surface of the core, at radius rc, is in thermal pressure
balance with its surroundings. Thus Ps = ρcc2

s , so we may rewrite the Bonnor-Ebert mass
as

MBE = 1.18
c3

s√
G3ρc

. (131)

A Bonnor-Ebert sphere doesn’t have a powerlaw structure, but if we substitute into
our equation for the accretion rate and say that the factor of

√
3/(3−α) is a number of

order unity, we find that the accretion rate is

〈Ṁ〉 ≈ c3
s/
√

G3ρc

1/
√

Gρc

=
c3

s

G
. (132)

This is an extremely useful expression, because we know the sound speed cs from mi-
crophysics. Thus, we have calculated the rough accretion rate we expect to be associated
with the collapse of any object that is marginally stable based on thermal pressure sup-
port. Plugging in cs = 0.2 km s−1, we get Ṁ ≈ 2× 10−6 M� yr−1 as the characteristic
accretion rate for these objects.

Since the typical stellar mass is a few tenths of M�, based on the peak of the IMF, this
means that the characteristic star formation time is of order 105 −106 yr. Of course this
conclusion about the accretion rate only applies to collapsing objects that are supported
mostly by thermal pressure. Other sources of support produce higher accretion rates;
this is typically the case for massive stars.
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4.2.2. Rotation Collapse and the Angular Momentum Problem

The next element to add to this picture is rotation. We characterize the importance
of rotation through the ratio of rotational kinetic energy to gravitational binding energy,
which we denote β . If the angular velocity of the rotation is Ω and the moment of inertia
of the core is I, this is

β =
(1/2)IΩ2

aGM2/R
, (133)

where a is our usual numerical factor that depends on the mass distribution. For a sphere
of uniform density ρ , we get

β =
1

4πGρ
Ω2 =

Ω2R3

3GM
(134)

Thus we can estimate β simply given the density of a core and its measured velocity
gradient. Observed values of β are typically a few percent [21].

Let us consider how rotation affects the collapse, for a simple core of constant angular
velocity Ω. Consider a fluid element that is initially at some distance r0 from the axis of
rotation. We will consider it to be in the equatorial plane, since fluid elements at equal
radius above the plane have less angular momentum, and thus will fall into smaller radii.
Its initial angular momentum in the direction along the rotation axis is j = r2

0Ω.
If pressure forces are insignificant for this fluid element, it will travel ballistically,

and its specific angular momentum and energy will remain constant as it travels. At its
closest approach to the central star plus disk, its radius is rmin and by conservation of
energy its velocity is vmax =

√
2GM∗/rmin, where M∗ is the mass of the star plus the disk

material interior to this fluid element’s position. Conservation of angular momentum
them implies that j = rminvmax.

Combining these two equations for the two unknowns rmin and vmax, we have

rmin =
r4

0Ω2

GM∗
=

4πρβ r4
0

M∗
, (135)

where we have substituted in for Ω2 in terms of β . This tells us the radius at which
infalling material must go into a disk because conservation of angular momentum and
energy will not let it get any closer.

We can equate the stellar mass M∗ with the mass that started off interior to this fluid
element’s position – this amounts to assuming that the collapse is perfectly inside-out,
and that the mass that collapses before this fluid element’s all makes it onto the star. If
we make this approximation, then M∗ = (4/3)πρr3

0, and we get

rmin = 3β r0, (136)

i.e. the radius at which the fluid element settles into a disk is simply proportional to β
times a numerical factor of order unity.

We shouldn’t take the factor too seriously, since of course real clouds aren’t uniform
spheres in solid body rotation, but the result that rotation starts to influence collapse and
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force disk formation at a radius that is a few percent of the core radius is interesting.
It implies that for cores that are ∼ 0.1 pc in size and have β values typical of what is
observed, they should start to become rotationally flattened at radii of several hundred
AU. This will be the typical size scale of protostellar disks.

In order for mass to actually get to a star, of course, its angular momentum must be
redistributed outwards. It must get from hundreds of AU to � 1 AU. Fortunately, disks
are devices whose sole purpose is to separate mass and angular momentum. We will not
spend any more time on disks (which could form an entire lecture series of their own),
except to say that they provide numerous possible mechanisms to remove the angular
momentum from the bulk of the mass and allow it to reach the star.

4.2.3. Magnetized Collapse and the Magnetic Flux Problem

So far we have only dealt with pressure, rotation, and gravity. Now we will add mag-
netic fields to the picture. We will assume that we have a magnetically supercritical core,
so that we need not worry about magnetic fields significantly inhibiting the collapse. In-
stead, we will work on a second problem: that of the magnetic flux.

As we discussed earlier, observed magnetic fields make cores marginally supercritical,
but only by factors of a few. If the collapse occurs in the ideal-MHD regime, where
perfect flux-freezing holds, then this mass to flux ratio doesn’t change. What sort of
magnetic field would we then expect stars to have? For the Sun, if we had MΦ = M/2,
then we would expect the mean magnetic field to be

ΦB = πR2
�B =

G1/2M�
0.24

=⇒ B =
G1/2M�
0.24πR2�

≈ 108 G (137)

For comparison, the observed mean surface magnetic field of the Sun is a few Gauss.
Clearly this means that the Sun, and other stars like it, must have lost most of their
magnetic fields during the collapse process. This means that the ideal MHD regime
cannot apply, and resistivity or some other non-ideal effect must become significant.

There are two mechanisms which can lead to violation of flux-freezing in cores:
ambipolar diffusion and Ohmic resistivity. As we saw in the last section, ambipolar
diffusion will cause ions and neutrals to begin decoupling on scales below ∼ 0.5 pc.

Decoupling does not prevent the field from increasing at all – there is always some
inward drag exerted on the ions by the infalling neutrals, even if it is weak. This will
eventually increase the field strength, which leads to the second effect: Ohmic resistivity.
As the field lines are pressed closer together, field lines of opposite direction come into
close proximity. When this happens, the field can reconnect, meaning that its topology
changes and drops to a lower energy state. The excess energy is released in the form of
heat. The microphysics of this process is not fully understood, but we see it happening
in plasmas like the solar corona, where it is associated with flaring. Something similar
must happen in protostellar cores in order to explain the observed low magnetic fields of
stars.
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5. TWO PROBLEMS: THE STAR FORMATION RATE AND THE
INITIAL MASS FUNCTION

In this final section we’ll come up to the present state of the art and talk about what are
probably the two largest unsolved problems in star formation today: the star formation
rate and the origin of the initial mass function.

5.1. The Star Formation Rate

5.1.1. The Observational Problem: Slow Star Formation

The problem of the star formation rate can be understood very simply. In the last
lecture we computed the characteristic timescale for collapse to occur, and argued that,
even if a collapsing region is only slightly unstable initially, this will not change the
collapse time by much. Magnetic fields could delay or prevent collapse, but observations
seem to indicate that they are not strong enough to do so. Thus we would expect that,
on average, clouds will collapse on a timescale comparable to tff, and the rate of star
formation in a galaxy should be the total mass of bound molecular clouds M divided by
this.

To make this more concrete, we introduce the notation (first used by Krumholz &
McKee [22])

εff =
Ṁ∗

M(ρ)/tff(ρ)
, (138)

where M(ρ) is the gas mass in a given region with density ρ or larger, tff is the free-fall
time evaluated at that density, and Ṁ∗ is the star formation rate in the region in question.
The regions here can be either entire galaxies are specified volumes within a galaxy.
We refer to εff as the dimensionless star formation rate or star formation efficiency.
Unfortunately the language here is somewhat confused, because people sometimes mean
something different by star formation efficiency. To avoid confusion we will just use the
symbol εff.

The argument we have just given suggests that εff should be of order unity if we pick
ρ to be the typical density of molecular clouds, or anything higher. However, the actual
value of εff is much smaller, as first pointed out by Zuckerman & Evans [23]. The Milky
Way’s disk contains ∼ 109 M� of GMCs inside the Solar circle [24, 25], and these have
a mean density of n ∼ 100 cm−3 [26], corresponding to a free-fall time time tff ≈ 4 Myr.
Thus M/tff ≈ 250 M� yr−1. The observed star formation rate in the Milky Way is ∼ 1
M� yr−1 [27, 28]. Thus εff ∼ 0.01! Clearly our naive estimate is wrong.

One can repeat this exercise in many galaxies and using many different density tracers.
One way is to measure the mass using a molecular tracer with a known critical density,
which effectively gives M(ρ), compute tff(ρ) at that critical density, and compare to
the star formation rate. Krumholz & Tan [29] compiled the data available at the time
and found that, for every tracer for which they could make a measurement, and in every
galaxy, εff was still ∼ 0.01 (Figure 6. Subsequent more accurate measurements in several
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FIGURE 6. Observed star formation efficiency per free-fall time εff, as a function of mean gas density
nH. Each data point represents a different method of measuring the gas, which is sensitive to different
densities. GMC indicates giant molecular clouds, traced in CO J = 1 → 0. IRDCs indicates infrared
dark clouds, measured in infrared absorption. ONC is the Orion Nebula cluster, a single star cluster near
Earth, whose gas mass is estimated from the mass and dynamical state of the remaining star cluster. HCN
represents extragalactic measurements in the HCN J = 1→ 0 line. Finally, CS represents measurements of
the CS J = 5→ 4 line within the Milky Way. However, it is only an upper limit. Reprinted with permission
from the AAS from [29].

large surveys, most notably the c2d survey [30], give the same result. Thus, we have a
problem: why is the star formation rate about 1% of the naively estimated value?

As a side note, the famous Kennicutt relation [31], which is an observed correlation
between the star formation rate in a given portion of a galaxy disk and the gas surface
density in that region. The observed normalization of the Kennicutt relation is equivalent
to the statement εff ∼ 0.01.

5.1.2. Potential Solutions

There are two major classes of proposed solution to this problem. One is the idea
that molecular clouds aren’t really gravitationally bound, and the other is the idea that
clouds are bound, but that turbulence inhibits large-scale collapse while permitting small
amount of mass to collapse.

Unbound GMCs. The unbound GMC idea is that most of the mass in molecular
clouds is in a diffuse state that is either not gravitationally bound, or that is supported
against collapse by strong magnetic fields. (The latter is not ruled out because it is not
easy to measure the magnetic field in very diffuse molecular gas.) This idea would
definitely work, in the sense that it would produce low star formation rates, if GMCs
really were unbound. The main problem is that there is no observational evidence that
this is the case, and considerable evidence that it is not. In particular, while we have no
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trouble finding low mass CO-emitting clouds with virial ratios αvir � 1, CO-emitting
clouds with masses >∼104 M� and αvir � 1 do not appear to exist [32]. If GMCs were
really unbound, why do they all have virial ratios ∼ 1?

A second problem with this idea is that, as we have seen εff is ∼ 1% across of huge
range of densities and environments. It is not at all obvious why the fraction of mass
that is bound would be the same at all densities and across all galactic environments,
from low-mass dwarfs to massive ultraluminous infrared galaxies. The universality of
the ∼ 1% seems to demand an explanation that is rooted in something more universal
than an appeal to fractions of a GMC that are bound versus unbound.

Turbulence-Regulated Star Formation. A more promising idea, which is probably
the most generally accepted at this point (though it still has significant problems) is that
the ubiquitous turbulence observed in GMCs serves to keep the star formation rate within
them low. The first quantitative model of this in the hydrodynamic case was proposed by
Krumholz & McKee [22], and it has since been extended to the MHD case by Padoan &
Nordlund [33].

The basic idea of this model relies on two properties of supersonic turbulence. Due
to time limitations we will not prove these, but they can be understood analytically, and
the are reproduced in every simulation. The first property is that turbulence obeys what
is known as a linewidth-size relation. This means that, if we consider a region of size
� and compute the non-thermal velocity dispersion σnt within it, the velocity dispersion
will depend on �. For subsonic turbulence the relationship is σnt ∝ �1/3, while for highly
supersonic turbulence it is σ ∝ �1/2. This relationship is in fact observed in molecular
clouds.

Now consider the implications of this result in the virial theorem. On large scales we
know that clouds have αvir ∼ 1, so that |W | ∼T . If we consider a random region within
a cloud of size � < R, where R is the cloud radius, then the mass within that region
will scale as �3, so the gravitational potential energy will scale as W ∝ M2/� ∝ �5. In
comparison, the kinetic energy varies as T ∝ Mσ2 ∝ �4, since σ2 ∝ � for large �. Thus
we expect that, for an average region

αvir(�) ∝
T

W
∝

1
�
. (139)

Since αvir(R)≈ 1, this means that αvir � 1 for �� R, i.e. the typical, randomly chosen
region within a GMC is gravitationally unbound by a large margin. This is in good
agreement with observations: GMCs are bound, but random sub-regions within them
are not.

We can turn this around by asking how much denser than average a region must be in
order to be bound. For convenience we define the sonic length as the choice of length
scale � for which the non-thermal velocity dispersion is equal to the thermal sound speed,
i.e.

σ = cs

(
�

λs

)1/2

. (140)

Now consider a region within a cloud with density ρ , chosen small enough that the
velocity dispersion is dominated by thermal rather than non-thermal motions. The max-
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imum mass that can be supported against collapse by thermal pressure is the Bonnor-
Ebert mass. If we let ρ be the density at the surface of our Bonnor-Ebert sphere and we
adopt a uniform sound speed cs, then σ = cs, PS = ρc2

s , and

MBE = 1.18
c3

s√
G3ρ

, (141)

and the corresponding radius of the maximum mass sphere is

RBE = 0.66
cs√
Gρ

. (142)

We can compute the gravitational potential energy and the thermal energy of such a
sphere from its self-consistently determined density distribution. The result is

W = −1.06
c5

s√
G3ρ

(143)

Tth = 1.14|W |. (144)

Similarly, we can compute the turbulent energy from the linewidth-size relation evalu-
ated at �= 2RBE. Doing so we have

Tturb =
3
2

MBEσ2(2RBE) = 0.89
(

λJ

λs

)
|W |, (145)

where λJ =
√

πc2
s/Gρ is called the Jeans length; it is just 2.7 times RBE.

This is a very interesting result. It says that the turbulent energy in a maximal-
mass Bonnor Ebert sphere is comparable to its gravitational potential energy if the
Jeans length is comparable to the sonic length. Since the Jeans length goes up as the
density goes down, this means that, at low density, Tturb � |W |, while at high density
Tturb � |W |. In order for a region to be unstable to collapse, the latter condition must
hold. We have therefore identified a minimum density at which we expect sub-regions
of a molecular cloud to be unstable to collapse.

To get a sense of what this density is, let us evaluate λJ/λs at the mean density of a
104 M�, 6 pc-sized molecular cloud. If such a cloud has αvir = 1, the velocity dispersion
at the cloud scale is σ = 1.2 km s−1; since cs = 0.2 km s−1, we have λs = 0.15 pc. At
the mean density of the cloud, ρ = 7.5×10−22 g cm−3, and λJ = 1.5 pc. Thus λJ � λs,
and at the mean density things are unbound by a large margin. To be dense enough to
be bound, the density has to be larger than the mean by a factor of (λs/λJ)

2 ≈ 100, so
bound structures are those with ρ >∼8×10−20 g cm−3, or n>∼3×104 cm−3.

In order to go further we must know something about the internal density distribution
in molecular clouds. We now invoke the second property of supersonic isothermal
turbulence: it generates a distribution of densities that is lognormal in form. Formally,
the point probability distribution function of the density, meaning the probability of
measuring a density ρ at a given position, obeys

d p

dx
=

1
2πσ2

ρ

exp

[
−
(
lnx− lnx

)2

2σ2
ρ

]
, (146)

��

47



where x = ρ/ρ is the density divided by the volume-averaged density, lnx = −σ2
ρ/2 is

the mean of the logarithm of the overdensity, and σρ is the dispersion of log density.
That the density distribution should be lognormal isn’t surprising. In a supersonically
turbulent medium, each shock that passes a point multiplies its density by a factor of
the Mach number of the shock squared, and each rarefaction front divides the density
by a similar factor. Thus the density at a point is a product of many multiplications
and divisions, and by the central limit theorem the result of many such operations is
a lognormal (just as the result of doing many random additions and subtractions is a
normal distribution). Empirical work shows that the width of the normal distribution
depends on the Mach number M of the turbulence as

σρ ≈
[

ln
(

1+
3M 2

4

)]1/2

. (147)

Now we can put together an estimate of the star formation rate. We estimate that the
gas that has a density larger than the critical density given by the condition that λJ < λs,
which is

xcrit =

(
φx

λJ(ρ)

λs

)2

, (148)

where φx is a factor of order unity. If we compute the mean density and the sonic length
for our fiducial cloud of mass M, radius R, and velocity dispersion σ , with a little algebra
we can show that

xcrit =
π2φ 2

x

15
αvirM

2. (149)

Gas above this density forms stars on a timescale given by the free-fall time at the mean
density, since that is the timescale over which the density distribution will be regenerated
to replace overdense regions that collapse to stars. Thus we have

εff = φ

∫ ∞

xcrit

x
d p

dx
dx (150)

=
φ

2

[
1+ erf

(
σ2

ρ −2lnxcrit

23/2σρ

)]
, (151)

where φ is another constant of order unity. Note that, except for the φ factors, everything
in this expression is given in terms of αvir and M , i.e. in terms of the virial ratio and
Mach number of the cloud. The φ factors can be calibrated against simulations. For those
who don’t walk around with graphs of the the error function in their heads (i.e. most of
us), it’s useful to have a powerlaw approximation to this, which is

εff ≈ 0.017α−0.68
vir (M /100)−0.32. (152)

In other words, for a cloud with M ∼ 10− 100 and αvir = 1, we expect εff ∼ 0.01,
which nicely explains the observation that εff ∼ 0.01 everywhere. This analytic model
also agrees well with numerical simulations [33].
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Driving Turbulence. This is a cute explanation, but it assumes that the turbulence
is present and is capable of inhibiting star formation over the lifetime of a molecular
cloud. This is not obvious, because we know from numerical experiments that turbulence
decays quickly. This is not surprising. Every time there is a shock, kinetic energy is
converted into thermal energy. Because radiative times are short compared to mechanical
ones, as we showed earlier, all this energy is radiated away immediately, bringing the gas
back to its original temperature. This represents a net loss of energy, and in the absence
of a source to offset this loss the turbulence must decay. Numerical experiments show
that the decay time is only about a crossing time of the cloud [14].

We therefore need an energy source to drive the turbulence. There are two main
possibilities, both of which probably contribute. One is the gravitational potential energy
released in the formation of the molecular cloud itself. As material falls onto the cloud it
can drive turbulent motion, and as long as the cloud gains mass quickly from the larger
ISM that is probably an important energy source [34, 35]. A second source, which is
probably more important in evolved GMCs, is feedback from newly formed stars. Young
stars produce strong jets that can drive motions in their parent clouds [36, 37], and they
also produce ionizing radiation that can drive motions [38, 39]. Both of these effects can
drive turbulence, and they probably dominates in more evolved clouds. Exactly what the
energy balance in GMCs is, and how it is maintained, is not completely understood.

5.2. The Initial Mass Function

5.2.1. The Observed IMF

Our second unsolved problem in this lecture is the initial mass function (IMF). To
begin, we have to define what the IMF means. It is simply the mass distribution of a
population of stars at birth. We define this by a function

ξ (m) =
dn

d lnm
. (153)

Note that dn/dm would be the number of stars per unit mass, while ξ (m) = dn/d lnm =
m(dn/dm) is the mass of stars per unit mass, i.e.

∫ m2
m1

ξ (m)dm is the fraction of the mass
in a newborn stellar population that is found in stars with masses between m1 and m2.

Observing the IMF is tricky, and there are three main approaches. One is to look
at a young cluster and count the stars in it as a function of mass. This is the most
straightforward approach, but it is limited by the number of young clusters where we can
directly measure individual stars down to low masses. This means that we get a clean
measurement, but the statistics are poor. A second approach is to rely on counts of field
stars in the solar neighborhood that are no longer in clusters. Here the statistics are much
better, but we can only use this technique for low mass stars, because for massive ones
the number in the Solar neighborhood is determined more by star formation history than
by the IMF. Finally, we can get limits on the IMF from the integrated light of a stellar
populations.
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FIGURE 7. Measured K band luminosity functions (left) and stellar initial mass functions (right) for
the cluster IC 348 (filled and open circles), and for the Trapezium cluster (histogram). Reprinted with
permission from the AAS from [40].

One interesting result to come out of all of this work is that the IMF is remarkably uni-
form. One can notice this at first by comparing the mass distributions of stars in different
clusters. As Figure 7 illustrates, clearly the two clusters IC 348 and the Trapezium have
the same IMF for the mass range they cover. This is despite the fact that the Trapezium
is a much larger, denser cluster forming out a significantly larger molecular cloud. The
Trapezium IMF is also a good fit in a remarkably broad range of even more different
environments. For example, it is a good fit to the stellar mass distribution in the Digel
2 North and South clusters, which are forming in the extreme outer galaxy, Rgal ≈ 19
kpc [41]. We also obtain a good fit using this IMF to model globular clusters, provided
that we account for the age of the stellar population and for dynamical effects such as
evaporation and mass segregation [42]. This represents a star-forming environment that
is much denser, at much lower metallicity, out of the galactic plane rather than in the
plane, and at much higher redshift, yet has the same IMF. All of these IMFs also agree
with the IMF derived for field stars in the solar neighborhood. Thus one constraint on
theories of the IMF is that, at least on the scale of star clusters or larger, it is remarkably
universal. There is some indirect evidence for variation of the IMF at the very high end,
although I would describe it as suggestive rather than definitive, and we won’t go into it.

The observed IMF can be parameterized in several ways; popular parameterizations
are due to Kroupa (2002) and Chabrier et al. (2003). All parameterizations share in
common that they have a powerlaw tail at high masses with

ξ (m) ∝ m−Γ, (154)

with Γ ≈ 1.3 − 1.4. At lower masses there is a flattening, reaching a peak around
∼ 0.2− 0.3 M�, and then a decline at still lower masses, although that is very poorly
determined due to the difficulty of finding low mass stars. This is parameterized either
with a series of broken powerlaws or with a lognormal function [43, 44, 45]. Figure 8
shows a plot of one proposed functional form for ξ (m) (due to [43]).
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FIGURE 9. Left: extinction map of the Pipe Nebula with the cores circled. Right: mass function of the
cores (data points with error bars) compared to stellar IMF (solid line). Reprinted with permission from
[46].

5.2.3. A Possible Model: Turbulent Fragmentation and

Radiation-Suppressed Fragmentation

Although we don’t have a complete model that meets the three conditions outlined
above, we can sketch out the beginnings of one. This may be entirely wrong, but it’s the
idea that, right now, I consider the most promising.

The Padoan & Nordlund Model for the CMF. The model’s basic elements were
originally proposed by Padoan & Nordlund [48]. The first element is the idea that
supersonic turbulence generates a spectrum of structures with a slope that looks similar
to the high end slope of the stellar IMF. Formally, one can show (though we will not in
this lecture) that the distribution of fragment masses follows a distribution

dnfrag

d lnm
∝ m3/(4−β ), (155)

where β is a numerical factor related to the exponent q in the linewidth-size relation by
β = 2q+ 1. (Formally β is the index of the turbulent power spectrum, so if we have a
linewidth-size relation Δv ∝ �q, then one can show that the power spectrum is P(k)∝ kβ .)
To remind you, for subsonic turbulence q ≈ 1/3 and for highly supersonic turbulence
q ≈ 1/2, corresponding to β = 5/3 or β = 2, respectively. At the Mach numbers in
molecular clouds β tends to be a bit less than 2, around 1.9, giving a slope around 1.4.
Notice that this is very similar to the observed high-mass slope Γ ∼ 1.3−1.4.

By itself this is just a pure powerlaw. However, not all of the structures generated by
the turbulence are gravitationally bound and liable to collapse. The very massive ones
almost certainly are, because their masses are larger than the Bonnor-Ebert mass for
any plausible surface pressure. However, the low mass ones are bound only if they find
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FIGURE 10. The distribution of core masses produced in a simulations of turbulence, using hydrody-
namics (blue) and magnetohydrodynamics (red). The overplotted dashed line shows the IMF, using the
functional form of [43]. Reprinted with permission from the AAS from [49].

themselves in regions of high pressure, which lowers the Bonnor-Ebert mass to a value
smaller than the mean in the cloud.

To make this more quantitative, recall our result that the distribution of densities
inside a molecular cloud, and thus this distribution of pressures (since P ∝ ρ in an
isothermal gas), is lognormal. Thus the number of stars formed at a given mass is given
by the number of fragments of that mass produced by the turbulence multiplied by the
probability that each fragment generated is bound:

ξ (m) =
dnfrag

dm

∫ ∞

Pmin(m)

d p

dP
dP, (156)

where Pmin is the minimum pressure required to make an object of mass m unstable, and
dP/d p is the (lognormal) distribution of pressures. The effect of this integral is to impose
a lognormal turndown on top of the powerlaw produced by turbulence. Simulations seem
to show fragments forming in a manner and with a mass distribution that is in good
agreement with this model (Figure 10).

The Evolution of Massive Cores. By itself this model is not complete, because it
doesn’t explain why the massive cores don’t fragment further as they collapse. After all,
a 1 M� core may only be about 1 Bonnor-Ebert mass, but a 100 M� core is 100 Bonnor-
Ebert masses, so why doesn’t it fragment to produce 100 small stars instead of 1 big
one? Even for low mass cores there tends to be too much fragmentation in simulations,
resulting in an overproduction of brown dwarfs compared to what we see.

The answer to that problem was provided in a series of papers by Krumholz et
al. [51, 52, 53, 54]. Inside a collapsing core a first low mass star will form, and as
matter accretes onto it, the accreting matter releases its gravitational potential energy
as radiation. This is a lot of radiation. In a massive core the velocity dispersions tend
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FIGURE 11. A volume rendering of the gas density a simulation of a the formation of a massive binary
star system, showing the accretion disk face-on (left) and edge-on (right). Notice the Rayleigh-Taylor
fingers that channel gas onto the accretion disk. Reprinted with permission from [50].

to be supersonic, and the corresponding accretion rates ∼ σ3/G are large, perhaps
∼ 10−4 − 10−3 M� yr−1. If one drops mass at this rate onto a protostar of mass M

and radius R, the resulting luminosity is

L =
GMṀ

R
= 3×103L�

(
M

M�

)(
Ṁ

10−4 M� yr−1

)(
R

R�

)−1

. (157)

With a source of this luminosity shining from within it, a massive core is no longer
isothermal. Instead, its temperature rises, raising the sound speed and suppressing the
formation of small stars – recall that, in an isothermal gas, MBE ∝ c3

s ∝ T 3/2. Then the
problem becomes a dynamical one, in which there is a competition between secondary
fragments trying to collapse and the radiation from the first object trying to raise their
temperature and pressure to disperse them. One can study this result using radiation-
hydrodynamic simulations, and the result is that, for sufficiently dense massive cores,
the heating tends to win, and massive cores tend to form binaries, but fragment no
further. (This latter point is good, because essentially all massive stars are observed
to be binaries.)

A final difficulty with massive cores is radiation pressure. A cartoon version of the
problem can be understood as follows. Massive stars have very short Kelvin times,
so they will reach the main sequence and begin hydrogen burning while they are still
accreting. Now consider the force per unit mass exerted by the star’s radiation on the gas
around it. This is

frad =
κL

4πr2c
, (158)

where κ is the opacity per unit mass. We can compare this to the gravitational force per
unit mass

fgrav =
GM

r2 (159)
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to form the Eddington ratio

fEdd =
frad

fgrav
=

κ

4πGc

(
L

M

)
= 3.8×10−4

(
κ

5 cm2 g−1

)(
L

M

)
�
, (160)

where the value of κ we’ve plugged in is typical for dusty interstellar gas absorbing
near-IR photons. Thus we expect radiation force to exceed gravitational force once the
star has a light to mass ratio larger than a few thousand in Solar units. This happens at a
mass M ∼ 20 M�.

So how can bigger stars form, when they should repel rather than attract interstellar
matter? This is a classic problem in star formation, and it led to all sorts of exotic theories
for how massive stars form, e.g. that they form via stellar collisions in dense clusters.
If any of these models are right, then the picture we’ve just outlined cannot be correct.
Fortunately, it turns out that there is a more prosaic answer. Real life is not spherically
symmetric, and using radiation to try to hold up infalling gas proves to be an unstable
situation. The instability is not all that different from garden variety Rayleigh-Taylor
instability, with radiation playing the role of the light fluid (Figure 11).
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