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ABSTRACT

One model for the origin of typical Galactic star clusters such as the Orion Nebula Cluster (ONC) is that they form
via the rapid, efficient collapse of a bound gas clump within a larger, gravitationally unbound giant molecular cloud.
However, simulations in support of this scenario have thus far not included the radiation feedback produced by
the stars; radiative simulations have been limited to significantly smaller or lower-density regions. Here we use the
ORION AMR code to conduct the first ever radiation-hydrodynamic simulations of the global collapse scenario for
the formation of an ONC-like cluster. We show that radiative feedback has a dramatic effect on the evolution: once
the first ∼10%–20% of the gas mass is incorporated into stars, their radiative feedback raises the gas temperature
high enough to suppress any further fragmentation. However, gas continues to accrete onto existing stars, and, as
a result, the stellar mass distribution becomes increasingly top-heavy, eventually rendering it incompatible with
the observed initial mass function (IMF). Systematic variation in the location of the IMF peak as star formation
proceeds is incompatible with the observed invariance of the IMF between star clusters, unless some unknown
mechanism synchronizes the IMFs in different clusters by ensuring that star formation is always truncated when the
IMF peak reaches a particular value. We therefore conclude that the global collapse scenario, at least in its simplest
form, is not compatible with the observed stellar IMF. We speculate that processes that slow down star formation,
and thus reduce the accretion luminosity, may be able to resolve the problem.

Key words: ISM: clouds – radiative transfer – stars: formation – stars: luminosity function, mass function –
turbulence
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1. INTRODUCTION

The origin of the stellar initial mass function (IMF) is one of
the outstanding problems in the modern theory of star formation.
While there have been numerous analytic and numerical studies
purporting to explain its origin (e.g., see the review by McKee
& Ostriker 2007 and references therein), much of this work has
been hampered by the limited number of physical processes
that are included in models of how gas fragments. In particular,
while both simulations and analytic work reveal that how
gas fragments into stars is extremely sensitive to how the
temperature of the gas varies with its density (Larson 2005;
Jappsen et al. 2005), it has been common until very recently
to approximate this relationship with a simple equation of state
(e.g., Bate & Bonnell 2005; Bonnell et al. 2006; Offner et al.
2008b; Hennebelle et al. 2011). Since the characteristic masses
of the stars formed in a collapse are largely determined by the
temperature–density relationship, predictions about the location
of the IMF peak in these simulations are only as good as their
adopted equations of state.

Given this realization, attention in recent years has shifted
to models that attempt to determine the temperature–density
relationship from first principles or to include a self-consistent
treatment of the thermal evolution of the gas in numerical
simulations. In the former category, much work has focused
on the effects of imperfect coupling between gas and dust
grains on gas thermodynamics. For example, Larson (2005) and
Elmegreen et al. (2008) both argue that the characteristic stellar
mass is set by the Jeans mass at the density and temperature

where dust grains and gas become thermally coupled due to
collisions. According to these models, at low densities where
grain–gas coupling is poor, the gas is slightly sub-isothermal,
while at higher densities it is slightly super-isothermal, and this
effect favors fragmentation near the coupling density.

However, this argument faces a major difficulty in ex-
plaining the IMF in the dense, cluster-forming regions where
much Galactic star formation appears to take place. The
density at which grains and gas become well-coupled is
∼104–105 H2 molecules cm−3 (Goldsmith 2001), roughly inde-
pendent of the metallicity and of ambient radiation field intensity
(Krumholz & McKee 2008; Elmegreen et al. 2008; Krumholz
et al. 2011). In comparison, observations now show that the typi-
cal site of star cluster formation has a mass of ∼103–104 M�, and
a radius of ∼0.3–0.5 pc (e.g., see Shirley et al. 2003; Faúndez
et al. 2004; Fontani et al. 2005; or the summary plot combin-
ing these data sets in Fall et al. 2010), giving a mean density
∼105 cm−3. Similarly, the present-day Orion Nebula Cluster
(ONC) has a mass of 2400 M� within a half-mass radius of
0.8 pc, corresponding to 2 × 104 cm−3, and within the ∼0.2 pc
core the mean density reaches 4 × 105 cm−3 (Hillenbrand &
Hartmann 1998). Since the star formation efficiency was cer-
tainly less than unity, and the cluster has likely expanded some
since the gas was expelled (Kroupa et al. 2001; Tan et al. 2006),
the density at which most of the stars formed must have been
higher by at least a factor of a few. Thus the typical site of star
cluster formation in the Galaxy, of which the ONC is an exam-
ple, is in the regime where essentially all the mass is at densities
where grain–gas coupling is very strong. It is therefore hard

1

http://dx.doi.org/10.1088/0004-637X/740/2/74
mailto:krumholz@ucolick.org


The Astrophysical Journal, 740:74 (16pp), 2011 October 20 Krumholz, Klein, & McKee

to see how grain–gas coupling could be relevant for determin-
ing how this gas fragments. This argument can be made even
stronger by noting that globular clusters with mean densities
∼107 cm−3 in their centers, two to three orders of magnitude
above the grain–gas decoupling density, also appear to have the
same IMF peak as the Galactic field (Marchesini et al. 2009).

A second class of models for the temperature–density rela-
tionship focuses on the interaction of gas with the radiation pro-
duced by stars in the star formation process. In these models, one
assumes good grain–gas coupling, as is appropriate at the high
densities where most stars form. The gas temperature and its re-
lationship with the density are then determined primarily by the
light produced by stars in the process of formation. Conceptu-
ally, the idea is that the luminosity from an accreting star warms
the gas in its immediate vicinity, inhibiting the ability of that
gas to fragment, and that this process determines characteristic
stellar masses. Analytically, Krumholz (2006) and Krumholz &
McKee (2008) have argued that this process explains how mas-
sive stars are able to form under certain circumstances, while
Bate (2009) argues that it can explain the characteristic peak of
the IMF.

However, numerical studies of the second class of models
have thus far been limited in various ways. Krumholz et al.
(2007a, 2010) and Myers et al. (2011) conduct simulations
including stellar feedback and radiative transfer (including
re-radiation by dust grains, which is the critical process in
determining the gas temperature), but focus on single massive
cores that do not (and are not expected to) form a full IMF.
Commerçon et al. (2010) report similar simulations focusing
on single low-mass cores. Bate (2009), Offner et al. (2009),
Price & Bate (2009), and Peters et al. (2010, 2011) simulate the
formation of star clusters, but consider only low-density regions
similar to those found in nearby clouds like Taurus, rather than
conditions typical of Galactic star formation sites.5 As we will
see, this makes a large difference in the outcome, because under
low-density conditions the regions of heating around each star
are non-overlapping, while in denser conditions they are not.
Moreover, of these simulations, only Offner et al. and Peters
et al. include stellar luminosity, so the amount of heating in the
other two simulations is underestimated.

Other simulations of star cluster formation do not include
radiative transfer at all, and instead approximate it in various
ways. For example, Smith et al. (2009) and Urban et al. (2010)
study the fragmentation of dense gas clouds similar to typical
star-forming regions, but they determine the gas temperature
around each star via a rough fitting formula based on static
radiative transfer calculations. This approximation may be
reasonable as long as the heating at a given point is dominated
the formation by a single star, but it almost certainly fails once
the regions of heating around stars begin to overlap, as occurs
in dense regions.

In summary, to date there have been no simulations capable
of studying the formation of stars near the peak of the IMF
under typical Galactic conditions, including the all-important
effects of stellar feedback and re-radiation by dust grains. The
goal of this paper, the first in a series, is to remedy that lack.

5 Although Peters et al. (2010, 2011) study regions with enough mass to form
massive stars, the column densities of the regions they simulate are
∼0.01 g cm−2, rather than the ∼1 g cm−2 typical of Galactic star-forming
sites. Their simulated clouds are therefore optically thin even in the near-IR,
rendering radiative effects fairly unimportant. In this way, their work is closer
to that of Bate, Offner et al., and Price & Bate than to the simulations we
present here.

We use the ORION adaptive mesh refinement (AMR) radiation-
hydrodynamics code to simulate a typical galactic star-forming
clump including stellar feedback and radiative transfer. As this
is a first attack on the problem, we choose the simplest possible
scenario. We do not include magnetic fields or any form of
feedback other than radiation, and we allow the initial turbulence
in the cloud to decay freely, leading to a rapid global collapse.
Our simulation therefore represents a minimalist scenario for
the formation of a star cluster such as the ONC similar to that
proposed by, for example, Bonnell et al. (2003). Previous authors
who have studied such conditions report that they produce stellar
mass distributions consistent with the observed IMF at all times
in the simulation, but it is clear in retrospect that this result
simply reflects the imposed equation of state. Our work therefore
revisits the critical question of whether such a scenario is capable
of reproducing the observed IMF.

The remainder of this paper proceeds as follows. In Section 2,
we describe our numerical method and simulation setup. In
Section 3, we report the results of our simulations. In Section 4,
we discuss the implications of our findings and present simple
analytic models to aid in understanding them. Finally, we
summarize in Section 5.

2. SIMULATION DESCRIPTION

2.1. Simulation Initial Conditions

We conduct two simulations that are identical in every respect
except that they have different maximum AMR levels, meaning
that the peak resolution is different in the two runs. We refer
to these as the low-resolution (LR) and high-resolution (HR)
simulations. The two simulations enable us to determine to
what extent our results are converged, although we caution that
the two simulations differ only in their peak resolution, which
is deployed near stars and in regions of high density or large
radiation gradients (see Section 2.4). Thus we have not tested
the sensitivity of our results to variations in the resolution used
in low-density regions far from stars. We also carry out a third
simulation with identical initial conditions at the same resolution
as run HR, but with an isothermal equation of state, i.e., with
the radiative transfer module in our code disabled. We refer to
this as run ISO. This simulation enables us to determine what
effects in our simulation are due to radiative transfer.

We summarize the key parameters of the runs in Table 1. The
initial conditions for both consist of an Mc = 1000 M� spherical
gas cloud with a mean surface density of Σc = 1 g cm−2,
corresponding to a mean volume density of 9.4×10−19 g cm−3,
or 2.4×105 H2 molecules cm−3. The corresponding cloud radius
is Rc = √

Mc/(πΣc) = 0.26 pc, and we place the cloud in a
cubical computational domain of size Lbox = 1.9 pc, roughly
four times the cloud diameter. We have chosen this mass and
surface density because they are typical of regions of clustered
star formation in the Galaxy (e.g., see Shirley et al. 2003;
Faúndez et al. 2004; Fontani et al. 2005; and a summary of
the data in Figure 1 of Fall et al. 2010). They are also roughly
the estimated parameters of the progenitor of the core of the
ONC (e.g., Kroupa et al. 2001; Tan et al. 2006). It is worth
noting that our initial conditions are significantly denser than
has been used for some previous simulations of massive star
formation. For example, Bonnell et al. (2003) use initial mean
volume and column densities of 1.3 × 10−19 g cm−3 (3.3 ×
104 cm−3) and 0.26 g cm−2, respectively; Peters et al. (2010)
use 3.9 × 10−21 g cm−3 (1.0 × 103 cm−3) and 0.026 g cm−2.
However, our parameter choices are much closer to what is
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Table 1
Simulations

Name RT? Mc Σc ρ tff Lbox N0 L ΔxL tfin/tff M∗,fin/Mc

(M�) (g cm−2) (g cm−3) (kyr) (pc) (AU)

LR Yes 1000 1.0 9.4 × 10−19 68.6 1.9 256 4 98 0.94 0.51
HR Yes 1000 1.0 9.4 × 10−19 68.6 1.9 256 5 49 0.94 0.52
ISO No 1000 1.0 9.4 × 10−19 68.6 1.9 256 5 49 0.94 0.65

Notes. Column 2: radiative transfer included? Column 3: cloud mass. Column 4: cloud surface density. Column 5: mean volume
density. Column 6: mean-density free-fall time. Column 7: linear size of computational domain. Column 8: number of grid cells per
linear dimension on the coarsest AMR level. Column 9: maximum AMR level. Column 10: linear cell size on the maximum AMR
level. Column 11: time relative to free-fall time to which simulation is evolved. Column 12: total mass of stars at the final evolution
time, normalized to the initial cloud mass.

actually observed in regions of massive star formation. For
example, in their survey of 146 southern massive star-forming
regions, Faúndez et al. (2004) find a typical mass and radius
of 5000 M� and 0.4 pc, corresponding to a volume density of
1.2 × 10−18 g cm−3 (3.1 × 105 cm−3) and a column density of
2.1 g cm−2, similar to what we use.

Our initial cloud has a density structure described by

ρ =

⎧⎪⎨
⎪⎩

ρc, r < Rc/2

ρc(2r/Rc)−1.5, Rc/2 � r < Rc

2−1.5ρc/100, r � Rc

, (1)

where r is the distance from the cloud center and ρc =
6Σc/[(22.5 − 1)Rc] = 1.6 × 10−18 g cm−3 is the core density.
Thus our density profile consists of a constant density in the
inner half of the radius, coupled with a power-law falloff in
the outer half of the radius. Outside this cloud we place a low-
density ambient medium with a density that is 100 times smaller
than the cloud edge density. We choose this density structure
because observations indicate the presence of a roughly r−1.5

density gradient on large scales in star-forming clumps (e.g.,
Caselli & Myers 1995; Beuther et al. 2002, 2005, 2006; Mueller
et al. 2002; Sridharan et al. 2005). By choosing a flat inner
density profile, however, we minimize tidal forces in the cloud
core, thereby ensuring maximum opportunity for fragmentation.

We initialize the cloud velocity with a Gaussian-random
velocity field with a power spectrum P (k) ∝ k−2 and a
one-dimensional velocity dispersion σc = √

GMc/2Rc =
2.9 km s−1. The corresponding virial parameter is α =
5σ 2

c GMc/Rc = 5, so that the turbulent kinetic energy is larger
than the potential energy at time zero. However, we do not
include any feedback processes (e.g., winds or H ii regions) ca-
pable of driving the turbulence, nor do we have other potential
driving mechanisms, such as a turbulent cascade from larger
scales or ongoing infall. As a result, the turbulence undergoes
a rapid decay, which quickly renders the cloud gravitationally
bound.

Throughout the computational domain, we initialize the radi-
ation energy density to that of a blackbody with a temperature
Tr = 10 K. Thus we have E = aT 4

r = 7.56 × 10−11 erg cm−3.
Similarly, we initialize the gas temperature within the cloud
(r < Rc) to Tg = 10 K. Outside the cloud (r > Rc), we set
the temperature to Tg = 1000 K. Since the density outside the
cloud is 1/100 that of the density at the cloud edge, this en-
sures thermal pressure balance across the cloud boundary. We
also set the Planck and Rosseland opacities of the material with
Tg > 500 K and ρ < 2−1.5ρc/50 to zero to ensure that the host
ambient medium does not interact with the radiation field and
is not able to cool.

2.2. Evolution Equations

The simulations we present in this paper use the ORION
AMR code. The numerical method is nearly identical to that in
our previous papers (e.g., Krumholz et al. 2007a, 2009, 2010;
Myers et al. 2011; Cunningham et al. 2011). Here we only
summarize the physics, and we refer readers to the numerical
method papers referenced in Section 2.3 for a full description
of ORION’s workings. ORION works by solving the equations
of compressible gas dynamics including self-gravity, radiative
transfer, and radiating star particles, all on an adaptive grid. In
our computational domain, we describe every cell with a vector
of conserved quantities (ρ, ρv, ρe,E), where ρ is the density, ρv
is the momentum density, ρe is the total internal plus kinetic gas
energy density, and E is the radiation energy density in the rest
frame of the computational grid. In addition to gas quantities,
we also track an arbitrary number of point mass star particles,
each of which is described by a position xi , a momentum pi ,
and an instantaneous luminosity Li, where the subscript i refers
to the particle number.

Given this description of the problem, the full set of evolution
equations is

∂

∂t
ρ = −∇ · (ρv) −

∑
i

ṀiW (x − xi) (2)

∂

∂t
(ρv) = −∇ · (ρvv) − ∇P − ρ∇φ − λ∇E

−
∑

i

ṗiW (x − xi) (3)

∂

∂t
(ρe) = −∇ · [(ρe + P )v] − ρv · ∇φ − κ0Pρ(4πB − cE)

+ λ

(
2
κ0P

κ0R
− 1

)
v · ∇E −

(
ρ

mp

)2

Λ(Tg)

−
∑

i

ĖiW (x − xi) (4)

∂

∂t
E = ∇ ·

(
cλ

κ0Rρ
∇E

)
+ κ0Pρ(4πB − cE)

− λ

(
2
κ0P

κ0R
− 1

)
v · ∇E − ∇ ·

(
3 − R2

2
vE

)

+

(
ρ

mp

)2

Λ(Tg) +
∑

i

LiW (x − xi) (5)

d

dt
Mi = Ṁi (6)
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d

dt
xi = pi

Mi

(7)

d

dt
pi = − Mi∇φ + ṗi (8)

∇2φ = − 4πG

[
ρ +

∑
i

Miδ(x − xi)

]
. (9)

Equations (2)–(4) represent the conservation laws for gas mass,
momentum, and energy, including terms describing the ex-
change of these quantities with star particles and with the radia-
tion field. Equation (5) is the corresponding conservation of en-
ergy equation for the radiation field. Similarly, Equations (6)–(8)
are the equations of mass and momentum conservation, and the
equation of motion, for the point particles. Finally, Equation (9)
is the Poisson equation for the gravitational potential φ. Note
that we compute the gas-radiation exchange terms using the
mixed frame formulation (Mihalas & Klein 1982; Krumholz
et al. 2007b), allowing us to write them in a form that is mani-
festly and exactly energy-conserving.

In these equations, the terms Ṁi , ṗi , and Ėi represent the rate
at which mass, momentum, and energy accrete from the gas
onto the ith star, and Li represents the luminosity of that star.
We describe how we compute these quantities in Section 2.3.
The quantities P and Tg are the pressure and gas temperature,
respectively. These are related by the equation of state

P = ρkBTg

μmH
= (γ − 1)ρ

(
e − v2

2

)
, (10)

where μ = 2.33 is the mean molecular weight for molecular
gas of solar composition and γ is the ratio of specific heats. We
adopt γ = 5/3, appropriate for gas too cool for hydrogen to
be rotationally excited, but this choice is essentially irrelevant
because Tg is set almost purely by radiative effects. The
quantities κ0P and κ0R are the specific Planck- and Rosseland-
mean opacities in the rest frame of the gas, B = caRT 4

g /4π is
the Planck function, and λ is the flux limiter, given by

λ = 1

R

(
cothR − 1

R

)
(11)

R = |∇E|
κ0RρE

(12)

R2 = λ + λ2R2. (13)

We compute the opacities as a function of the gas density and
temperature using the iron normal, composite aggregates dust
model of Semenov et al. (2003).

Finally, Λ(Tg) represents the line cooling coefficient. We
include this because the turbulence can be strong enough in our
cluster so that, at isolated points, gas shock heats to temperatures
above a few thousand K. This exceeds the dust sublimation
temperature, so the dust opacity becomes nearly zero in this
gas. Instead, the gas in this temperature regime is cooled by
line emission, which we cannot easily describe with a simple
continuum opacity. In this gas, we transfer energy from the gas
thermal reservoir to the radiation field at a rate of (ρ/mp)2Λ(Tg),
where mp is the proton mass, and the function Λ(Tg) is taken
from Cunningham et al. (2006). See Cunningham et al. (2011)
for more details of our line cooling approach.

An important subtlety in our evolution equations, which is
worth noting, is that we do not differentiate between gas and
dust grain temperatures. At low densities, gas–grain coupling
can be imperfect, and it can be important to calculate the two
temperatures separately and to simulate the thermal exchange
between dust and gas (e.g., Urban et al. 2009). However, grains
and gas become very tightly coupled in temperature once the
density exceeds n ∼ 104–105 cm−3. For comparison, the mean
density in our initial clouds is n = ρ/μ = 4.0 × 105 cm−3.
Thus our entire computation is in the strong coupling regime,
and there is no need to treat dust and gas temperatures separately.

For simulation ISO, our isothermal run, we modify these
equations as follows. First, we omit Equation (5) entirely.
Second, we set to zero all terms proportional to E or Λ(Tg)
in Equations (3) and (4). Third, instead of γ = 5/3, we use
γ = 1.0001. This corresponds to neglecting the effects of
radiative transfer and simply keeping the gas temperature almost
completely fixed to its initial value.

2.3. Numerical Method

The ORION code solves Equations (2)–(9) in a series of
operator-split steps. In each time step, we first integrate the
hydrodynamic equations (2)–(4), excluding the terms describing
stars and the radiation field. This update uses a conservative
Godunov scheme with an approximate Riemann solver and
is second-order accurate in time and space (Truelove et al.
1998; Klein 1999). Next, we solve the Poisson equation (9)
using a multigrid iteration scheme (Truelove et al. 1998; Klein
1999; Fisher 2002). Third, in the runs where we include
radiation, we update the radiation energy equation (5) and the
radiation terms in the hydrodynamic equations (2)–(9). This
update uses the Krumholz et al. (2007b) conservative update
scheme, in which we handle the dominant terms implicitly and
the non-dominant terms explicitly. The update for the implicit
terms uses the Shestakov & Offner (2008) pseudo-transient
continuation scheme. Finally, we update the stellar quantities,
Equations (6)–(8), and update gas quantities for the gas-star
exchange terms on the right-hand sides of Equations (2)–(9). We
determine the accretion rates of mass, momentum, and energy
onto each star by fitting the flow within a radius of four finest-
level cells of each star particle to a Bondi–Hoyle flow, following
the procedure described by Krumholz et al. (2004). We update
the luminosity Li of each star using the protostellar evolution
model described in the Appendices of Offner et al. (2009).

Each of these update modules operates within the overall
adaptive mesh framework of ORION (Berger & Oliger 1984;
Berger & Collela 1989; Bell et al. 1994). In this scheme, we
discretize the computational domain onto a series of levels
l = 0, 1, 2, . . . , L. The coarsest level, level 0, has cells of
linear size Δx0 and covers the entire computational domain.
All subsequent levels, with cells of size Δxl = Δx0/2l , cover
subregions of the computational domain. Each level consists
of a union of rectangular grids of cells, and grids on different
levels are nested such that every level l grid with l > 0 is fully
contained within one or more level l − 1 grids. To advance
a level l in time, we first advance all the grids on that level
through a time step Δtl , then advance grids on level l + 1 by
two time steps of size Δtl+1 = Δtl/2. After the two level l + 1
advances, we synchronize the boundaries between levels l and
l + 1 to ensure exact conservation of mass, momentum, and
energy across level boundaries. The entire update procedure is
recursive, so a single advance on level l + 1 entails two advances
of size Δtl+2 = Δtl+1/2 on level l + 2, and so forth to the finest
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level present. The coarse level time step Δt0 is set by computing
the Courant condition on each level (including a contribution
to the signal speed from radiation pressure—Krumholz et al.
2007b) and setting Δt0 = min(2lΔtl).

2.4. Boundary, Refinement, and Star Particle Conditions

At the edge of the computational domain, we use reflecting
boundary conditions for the hydrodynamics. However, this
choice is irrelevant to the evolution, because our computational
domain is large enough to ensure that no material from the
cloud ever approaches it. For the gravity, we adopt Dirichlet
boundary conditions, with the potential at the computational
domain boundary set equal to a multipole expansion of the
potential due to the matter in the domain interior, including terms
up to the quadrupole. Finally, for radiation we adopt Marshak
boundary conditions, with the flux into the computational
domain set equal to the flux of an isotropic 10 K blackbody:
Fin = caT 4

r /4 = 0.57 erg cm−2 s−1. The boundary condition
is equivalent to allowing any radiation generated within the
computational domain to escape freely, but also to bathing the
computational domain in a 10 K blackbody radiation field.

In order to determine when AMR levels are added or removed,
we must also specify refinement conditions. The conditions we
use in our simulations are as follows. First, we refine any cell
with a density greater than half the edge density of the initial
cloud to at least level 1. This ensures that our initial cloud is
well-resolved. Second, we refine any cell on level l that is within
a distance 16Δxl or less from any star particle. This ensures that
the region around each star is resolved by at least 32 cells on
all levels by the finest one. Third, we refine any cell where the
density exceeds the local Jeans density (Truelove et al. 1997),

ρ > ρJ = J 2 πc2
s

GΔx2
l

, (14)

where cs = √
kBTg/μ is the sound speed. We use a Jeans

number J = 1/8. Finally, we refine any cell where the local
radiation energy gradient satisfied the condition |ΔE|/E >
0.15/Δxl . This ensures that gradients of radiation energy density
are always well-resolved. If any of these conditions are met,
we refine that point in the computational domain to a higher
AMR level, up to the maximum level L for that simulation (see
Table 1).

Finally, we create a new star in any cell on the maximum
level L that violates the Jeans condition, Equation (14), using
a Jeans number J = 1/4. In contrast to previous runs, where
we merged star particles together if they approached closer than
a certain limit, here we do not allow any star particle that has
a mass greater than 0.05 M� to be destroyed by merging. Our
motivation for choosing this mass limit is that it is roughly the
mass at which a second collapse to stellar densities occurs (e.g.,
Masunaga et al. 1998; Masunaga & Inutsuka 2000). Objects of
lower mass remain extended gas balls with physical sizes of
a few AU, and thus are much more likely to merge than the
much smaller, more compact protostars they become once they
complete their collapse. Complete suppression of mergers for
more massive objects is probably an extreme assumption, but
as we will see in the discussion of our results, allowing mergers
would only strengthen our conclusions by moving the stellar
mass distribution to higher values.

3. SIMULATION RESULTS

For convenience, throughout this section we will report our
results in terms of mean-density free-fall times, where the mean
density is ρ = 3Mc/(4πR3

c ) = 9.4 × 10−19 g cm−3 and the
corresponding free-fall time is tff = √

3π/32Gρ = 68.6 kyr.
The free-fall time in the high-density initial core is ∼30%
shorter, tff,c = 52.3 kyr. In reporting stellar quantities, we only
count as stars those star particles with masses above 0.05 M�,
the mass at which a second collapse to stellar dimensions occurs.
However, this has little effect on our results, since objects below
this mass never constitute more than a tiny fraction of the total
mass in star particles.

We ran these simulations on a combination of the supercom-
puters Pleiades at the NASA Advanced Supercomputing facility
and Ranger at the Texas Advanced Computing Center. Runs LR,
HR, and ISO required roughly 200,000, 850,000, and 60,000
CPU hours, respectively, and ran on between 256 and 960 CPUs
(32–120 nodes), with the number of CPUs used increasing as a
run progressed and the number of HR grids increased.

3.1. Large-scale Evolution

Figures 1 –3 show the large-scale evolution of the cloud as
it collapses in our simulations. As the plots make clear, the
overall distribution of the gas and stellar mass, and the gas
temperature structure, is very similar in all runs. As we will
see in more quantitative detail later, the evolution of the two
radiative runs is very similar in almost every respect, so that we
may have confidence that the behavior we are seeing is physical
and not a result of resolution effects. Even at late times, the only
noticeable difference is the exact positions of individual stars
on the periphery of the cloud. These differ primarily because
the N-body interactions that occur late in the simulation are
chaotic. They can therefore be changed significantly because
the amount of gravitational softening in the gas–particle and
particle–particle interactions is resolution-dependent.

In both radiative runs, we see that, for the first (0.3–0.4)tff ,
the initial velocity perturbations we have injected are developing
and creating structure, but that no stars have yet formed. The
gas temperature remains locked at 10 K, the value imposed by
the radiation field. Around t/tff = 0.45, the first stars start to
appear at the densest peaks created by the turbulent compression.
The mass in stars is still tiny, well under 1% of the gas mass,
and the stars themselves are all quite small. Nonetheless, the
effects on the temperature are immediately apparent. Each star
is surrounded by a clear region of gas at elevated temperatures.
These regions are localized, so that the bulk of the gas remains
cold, and the heated regions around different stars are, for the
most part, non-overlapping.

It is not surprising that the formation of stars has such a
strong effect. As pointed out by Offner et al. (2009), the energy
budget of a star-forming cloud is dominated by the gravitational
potential energy released by star formation, even when those
stars constitute a tiny fraction of the total mass. This continues
to be true up until the point when massive stars with short Kelvin
times begin to dominate the bolometric output of the stellar
population. In our simulations, even though we do produce
∼20 M� stars with significant internal luminosities toward the
end of the simulations, accretion luminosity is the dominant
energy source over most of the simulation time.

This morphology of small regions of warm gas strung out
along filaments continues to hold to some extent even at time
t/tff = 0.6, when the stellar mass has increased to a few percent
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Figure 1. Column density (left) and density-weighted mean temperature (right)
in run LR. The left and right columns show the state of the simulation at the
same time, with the time running from t/tff = 0 at the top to t/tff = 0.9
at the bottom, at intervals of 0.15. The ratio of stellar mass to initial cloud
mass, M∗,tot/Mc , is also indicated in each panel. In the column density plot,
white circles show the locations of star particles, with the size of the circle
indicating the mass of the star. In the right column, the temperature we show is
the radiation temperature, defined by E = aRT 4

r . We show this quantity because
the radiation and gas temperatures are nearly identical everywhere except in the
low-density, zero-opacity ambient medium, where the radiation temperature
is far lower than the gas temperature. By using the radiation rather than
the gas temperature, we ensure that our projected temperatures are not artificially
enhanced by contributions from the hot ambient medium.

Figure 2. Same as Figure 1, but for run HR.

(An animation of this figure is available in the online journal.)
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Figure 3. Same as Figure 1, but for run ISO. Since this run is isothermal, we
show only column density, not density-weighted mean temperature.

Figure 4. Total mass in stars M∗,tot, normalized to the initial cloud mass Mc, as
a function of time, t, normalized to the mean-density free-fall time tff . We show
results for run LR (thin red line), run HR (thick blue line), and run ISO (thin
green line).

of the gas mass. We can still identify distinct heated regions
associated with individual stars or small stellar groups, and the
bulk of the mass remains near 10 K. In the last two time slices,
however, as a larger and larger fraction of the cloud mass is
converted into stars, this ceases to be true. Even the coldest gas
anywhere in the cloud is now at temperatures noticeably larger
than the original background temperature, and the regions of
very warm gas, T � 100 K, are beginning to overlap and
merge. In the last time slice, the coldest gas anywhere in the
computational domain is at ∼30 K, and much of the mass is
concentrated in a few compact regions where the temperature
is significantly higher. Rather than a few warm, dense regions
around individual stars (cf. Offner et al. 2009) the bulk of the
gas is now concentrated into a smaller number of more massive
regions that are heated by the collective effects of large numbers
of stars.

3.2. Star Formation History and IMF

Figure 4 shows the total mass of all stars as a function of
time in the runs. Examining the figure shows that the total mass
in stars is nearly identical in the two radiative runs, indicating
that this aspect of the simulations is very well converged. Run
ISO begins to form stars somewhat earlier, and the mass in
stars present at equal times is somewhat higher. However, this
difference mostly appears to be a time offset. The overall shape
in Figure 4 is the same, indicating a generally similar star
formation history. The time offset is likely a result of the faster
collapse that occurs in the isothermal run, where cooling is
assumed to be infinitely rapid and efficient compared to the
radiative run.

Figure 5 shows the number of stars as a function of the
total stellar mass in each simulation. The total number of
stars is somewhat larger in run HR than in run LR, which
is not surprising given the increased resolution. Observations
indicate that the binary period distribution is extremely broad,
covering separations from only a few stellar radii to � 104 AU
(Duquennoy & Mayor 1991). It is therefore not surprising that
some binaries that might appear to be resolved into two separate
stars in run HR instead appear as a single star in run LR—indeed,
we would expect this result in essentially any simulation that did
not resolve the radii of individual stars. Nonetheless, note that,
if we normalize to the number of stars present at equal times and
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Figure 5. Total number of stars N∗ (top) and number of stars normalized to the
number present at the time when M∗,tot/Mc = 0.5 (bottom). We show results
for run LR (thin red line), run HR (thick blue line), and run ISO (thin green
line).

(A color version of this figure is available in the online journal.)

fractions of mass accreted, then the difference between the two
runs disappears. The number of stars present at any given time
in run HR is roughly 1.6 times the number present at the same
time in run LR. Thus the trend in terms of when the stars are
formed in the simulations is nearly identical in the two cases,
and we can regard the distribution in time of when stars form as
well resolved.

The trend of the number of stars versus mass shown in
Figure 5 is interesting. In the radiative runs, when M∗,tot/Mc �
0.1, the number of stars increases roughly linearly with the
total stellar mass, as we might expect if the mass per star were
constant. However, the rate at which new stars appear drops
sharply once M∗,tot/Mc � 0.2. Indeed, we see that 60%–70%
of all stars have formed at a time when only ∼10% of the cloud
mass has been incorporated into stars. By the time 20% of the
cloud mass has gone into stars, nearly 90% of all the stars are
in place. In effect, the fragmentation of the gas into new stars
has completely shut down. Given that this effect occurs nearly
identically in runs LR and HR, this cannot be a resolution effect.
In contrast, run ISO shows a very different behavior. The number
of stars as a function of total stellar mass is almost the same as
in run HR up to the point where ∼15% of the mass has been
incorporated into stars, but the two runs diverge after that. New
stars continue forming all the way through run ISO, at a rate that
is only slightly less after M∗,tot/Mc � 0.2 than it was earlier
in the simulation. This strongly suggests that the shutdown in
new star formation we observe in runs LR and HR is a radiative
effect, a topic to which we will return in Section 3.3.

As one might expect, this shutoff of fragmentation into new
stars in runs LR and HR even as the total stellar mass contin-
ues to increase produces a dramatic effect on the stellar mass
distribution. Figures 6 and 7 show the cumulative and differ-
ential mass distributions of the stars formed in our simulations

Figure 6. Fraction f (< M∗) of the total stellar mass in stars with masses smaller
than M∗, as a function of M∗. The five panels show this cumulative mass function
in the simulations at the times when the total stellar mass is 10%, 20%, 30%,
40%, and 50% of the initial cloud mass as indicated. We also show the times
at which simulations LR and HR (but not run ISO) reach these stellar masses,
which are identical to within a few percent in runs LR and HR. We show run LR
(red line), run HR (blue line), run ISO (green line), and the results of creating a
cluster of stars of equal total mass (gray), with each star randomly drawn from a
Chabrier (2005) IMF following the procedure outlined in the Appendix. For the
Chabrier (2005) IMF, the three lines show the 10th, 50th, and 90th percentile of
the random drawings, and the hatched region indicates the range between the
10th and 90th percentiles.

(A color version of this figure is available in the online journal.)

at the times when the total mass in stars is 10%–50% of the
initial cluster mass. All these plots show that the stellar mass
distribution in the radiative runs moves continuously to higher
masses as the simulation proceeds. This is because mass is ac-
creting onto existing stars, which rise in mass, but very few new,
lower-mass stars are forming. Note that, while the mean stellar
masses are slightly different in runs LR and HR, the systematic
drift of these mean-to-higher masses as the total stellar mass
rises appears to occur about equally in both runs. In run ISO, on
the other hand, there is much less evolution in the shape of the
IMF. The fraction of mass in very small objects does decrease
slightly with time, but the IMF in run ISO peaks at ∼1 M� in ev-
ery time slice. Quantitatively, we find that, from the point where
M∗,tot/Mc ≈ 0.15 and the star formation histories in runs ISO
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Figure 7. Same as Figure 6, except that we show the differential mass
distribution df (M∗)/d log M∗, i.e., the value in each bin indicates the fraction
of all stellar mass that lies in that bin. We normalize our distributions so that
the sum of all bins multiplied by the bin width equals unity. As in Figure 6, we
show run LR (red line), run HR (blue line), run ISO (green line), and clusters
of equal mass drawn from a Chabrier (2005) IMF following the procedure in
the Appendix (gray). The histogram values we plot are the 50th percentile of
our experiments, and the error bars indicate the range from the 10th to the 90th
percentile.

(A color version of this figure is available in the online journal.)

and HR begin to diverge, up to the point when M∗,tot/Mc ≈ 0.5
and run HR ends, the mass-weighted median stellar mass6 in
run ISO increases by only a quarter of a dex, while in run HR it
increases by half a dex. Thus the behavior of run ISO is similar
to that in previous simulations done with prescribed equations
of state7 (e.g., see Figure 1 of Bonnell et al. 2004, which is a
similar increase in median mass from 0.7 to 1.0 free-fall times
in their simulation).8

6 Defined as the mass m for which stars with masses m∗ < m comprise half
the total stellar mass.
7 We cannot directly compare with the earlier radiative simulations of
low-mass clusters by Bate (2009) and Offner et al. (2009), because these
produced fewer than 20 objects. Their IMFs are therefore much too sparsely
sampled for it to be possible to make any meaningful statements about their
time dependence.
8 There may also be difference between our simulations and those of Bonnell
et al. due to differences in initial conditions (partly centrally condensed for us
versus uniform density for them) and equation of state (isothermal for our run
ISO, barotropic for them.)

For comparison, we have generated 10,000 clusters each of
mass of 100, 200, 300, 400, and 500 M�, randomly drawn from
a Chabrier (2005) IMF,9 with a minimum mass of 0.05 M� and a
maximum of 150 M�. We properly account for finite sampling
using the procedure described in the Appendix. As the plots
show, the mass distribution of stars formed in the radiative
simulations drifts to systematically higher masses than the
observed IMF once ∼30%–50% of the mass has been turned into
stars. The disagreement is highly significant and occurs at stellar
masses that are extremely well resolved in the simulations. For
example, consider Figure 7 at the time when M∗,tot/Mc = 0.5.
For run HR at that time, the mass in almost every bin from
1 to 10 M� is above the 90th percentile of random drawings
from a Chabrier IMF, while the mass in almost every bin below
1 M� is below the 10th percentile of random drawings from
a Chabrier IMF. Indeed, a Kolmogorov–Smirnov comparison
between the mass functions produced in the simulations and the
Chabrier IMF shows that, with the exception of the HR run at
the point when M∗,tot/Mc = 0.3, all the mass functions shown
in Figures 6 and 7 are inconsistent with having been drawn from
the Chabrier IMF at confidence levels better than 1 part in 106.

In contrast, run ISO is consistent with the IMF at the low-
mass end at essentially all times. It is deficient in massive stars
compared to a Chabrier IMF, an effect that has been observed
before in simulations without radiative transfer (Maschberger
et al. 2010) and taken as evidence for the so-called integrated
galactic initial mass function effect. We obtain the same result
here, but find that it disappears in simulations that include
radiation.

One might be tempted to fix this problem simply by scaling
all the stellar masses by some factor less than unity, to account
for mass ejected by protostellar outflows, which we have not
included. However, because the peak of the IMF is evolving
with time in our simulations, a scaling factor that produces
agreement between the simulated IMF and the observed one at
one time would not produce agreement at earlier or later times.
The central problem is not so much that the IMF in the simulation
is too top heavy, but that the median mass increases continuously
with time. However, it does seem likely that protostellar outflows
can help solve the problem by reducing the star formation rate
and thus the luminosity, as we discuss further in Section 4.3.
Such an effect cannot be captured by a simple rescaling of the
masses, however.

3.3. Gas Thermodynamics and Fragmentation

The reason for the shutdown in fragmentation and the drift to
systematically higher stellar masses with time in the radiative
runs becomes clear if we consider how the gas density and
temperature evolve with time. Figures 8 and 9 show the
distribution of gas mass in the density–temperature plane as
star formation proceeds in runs LR and HR. For comparison,
we also overlay lines of constant Bonnor–Ebert mass, where

MBE = 1.18
c3
s√

G3ρ
, (15)

9 The argument has been advanced in the literature that the observed IMF in
clusters with masses as small as a few hundred M� is truncated at high masses
compared to Chabrier or similar IMFs (Weidner et al. 2010; but see Lamb et al.
2010; Calzetti et al. 2010; and Fumagalli et al. 2011 for observational
counterarguments). Here we are mostly interested in the peak of the IMF, not
the high-mass end where our simulations have too few stars to make
statistically strong statements. We therefore proceed with the simplest
assumption that there is no high-mass truncation, since it makes no difference
for our purposes.
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Figure 8. Distribution of the gas mass in bins of density and temperature in run LR. The panels show the distributions at the time when the total stellar mass normalized
to the initial cloud mass is M∗,tot/Mc = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5, as indicated. For the time M∗,tot/Mc = 0.0 we select the last time snapshot for which M∗,tot = 0.
Within a panel, the color of each pixel indicates the density of mass in that pixel, measured in M� per dex in density per dex in temperature. The dashed black line
labeled “sink creation” indicates the locus of density and temperature for which a computational cell exceeds the sink particle creation condition—Equation (14)
evaluated with J = 1/4. Gas cells that fall to the right of this line create sink particles that incorporate some of their mass, which is why no cells fall to the right of
the line. For comparison, the dotted lines indicate the loci where the Bonnor–Ebert mass MBE = 0.01, 0.1, and 1 M�, as indicated.

Figure 9. Same as Figure 8, but for run HR. Note that the sink creation locus is shifted to higher densities by a factor of four compared to run LR.
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Figure 10. Fraction f (M < MBE) of the gas mass for which the Bonnor–Ebert
mass at the local density and temperature, as computed from Equation (15), is
less than MBE. We show these mass distributions for run LR (red) and run HR
(blue), at the times when the total mass is M∗,tot/Mc = 0.0 (dashed, just before
the first star forms), 0.2 (dot-dashed), and 0.5 (solid).

(A color version of this figure is available in the online journal.)

and cs = √
kBT /μ is the isothermal sound speed. The

Bonnor–Ebert mass is significant because objects with masses
below MBE can be supported against collapse by thermal pres-
sure. We therefore expect that the lowest mass stars to form will
tend to have masses comparable to the smallest values of MBE
found in the gas. Even if turbulence does create fragments with
masses below MBE, these will be stable against collapse as a
result of their thermal pressure. Figure 10 summarizes this re-
sult by showing how the gas mass is distributed with respect to
MBE at different times in the simulation. As the plot shows, the
runs are not completely converged at the low MBE end, but the
general trend that the mean Bonnor–Ebert mass systematically
increases is clear in both runs.

Figures 8–10 show that, immediately before any stars have
formed, the great majority of the mass has a temperature within
a few K of 10 K, the initial temperature and the tempera-
ture imposed by the background radiation field. Consequently,
the densest material in the cloud is in a density and tempera-
ture regime where MBE ∼ 0.01 M�, and objects of this mass
are able to collapse. Nearly half the mass in the cloud lies in
the region between MBE = 0.01 M� and 0.1 M�, so there is
plenty of material available to make low-mass stars. Once stars
begin to form, however, their radiation raises the temperature
significantly, pushing to higher MBE. This increase is partly off-
set by an increase in the mean density, but the density does
not increase quickly enough to compensate for the rapidly ris-
ing temperature—likely because the density rise occurs on a
timescale associated with the mean-density free-fall time, while
the temperature rise is driven by stellar accretion occurring at
the peaks of the density distribution, which operate on a much
shorter timescale. As a result of this evolution, there is not much
material that is dense and cold enough to make small stars. For
example, if we look run at HR, we find that 20% of the gas mass
has MBE < 0.05 M� just before the first star forms, and thus is
able to make the smallest stars we consider. In contrast, the mass
fraction able to create such small stars drops to 10% at the point
when M∗,tot/Mc = 0.2, and to only 2% when M∗,tot/Mc = 0.5.
Thus we see that the formation of new stars has stopped because
it is no longer possible for small fragments to gravitationally col-

lapse. By the end of the run, the smallest gravitationally unstable
fragments are approaching 1 M� in size.

The underlying physical reason for this effect, of course, is
the radiation released by the already-formed stars. This, in turn,
is primarily driven by accretion luminosity, with a subdomi-
nant contribution from nuclear burning and Kelvin–Helmholtz
contraction later in the simulation.

4. DISCUSSION

4.1. The Overheating Problem

A systematic increase in the mean stellar mass induced
by heating of the gas due to accretion luminosity is a new
phenomenon in simulations of star cluster formation. Radiative
suppression of fragmentation has been reported in the literature
before, but no previous simulation has observed it to shift the
typical stellar mass scale in regions as large as entire star clusters.
We emphasize that, even if we regard the absolute stellar mass
peak we obtained as uncertain due to resolution effects, the trend
of increasing mean mass is robust and appears equally strong
in both simulations. It has not been seen in previous work due
to the limitations we outlined in Section 1. Most simulations
of large-scale cluster formation with initial conditions similar
to ours, which are typical of Galactic star formation, have not
included radiative transfer. They have adopted a simple equation
of state, which puts in by hand the result that the peak stellar
mass is invariant (e.g., Bonnell et al. 2004). We effectively
recover the same results in our run ISO: the median stellar mass
does increase slightly with time, but the increase is significantly
smaller than in the radiative runs, and is consistent with what
has been found in earlier non-radiative simulations.

Those simulations that have included radiation have either
focused on regions too small or with too few stars (e.g.,
Bate 2009; Offner et al. 2009, 2010) to produce the overlap
of the heating regions around many stars we observe, or
have focused on single massive cores, where suppression
of fragmentation is expected (e.g., Krumholz et al. 2007a,
2010; Myers et al. 2011). Indeed, in these contexts, radiative
suppression of fragmentation is necessary to obtain agreement
between simulations and observations. For single massive cores,
suppressed fragmentation has tentatively been seen in HR
interferometric observations (Bontemps et al. 2010; Longmore
et al. 2011). In the absence of radiation, the disks formed
in simulations of low-mass star formation tend to undergo
excessive fragmentation, leading to an overproduction of brown
dwarfs relative to stars and to various other conflicts with
observation (Luhman et al. 2007). Including radiation fixes
this problem (Bate 2009; Offner et al. 2009, 2010). Indeed,
Bate (2009) argues that the observed peak of the IMF can be
explained as arising from the mass scale at which radiative
feedback halts fragmentation. While this argument is plausible,
it relies on the assumption that we can consider the bubble of
radiatively warmed gas around each star to be isolated from other
stars, amidst a background of cool gas. This assumption holds
in the low-mass, low-density regions simulated by Bate (2009)
and Offner et al. (2009, 2010), where regions of heating are
∼0.05 pc in size, much smaller than the interstellar separation.
It clearly does not hold in our simulation, both because our stars
are closer together than in a low-mass star-forming region and
because our heating regions are larger due to the higher accretion
rates produced by the higher gas densities. This suggests that
the critical problem in our simulation is that the regions of warm
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gas around individual stars begin to overlap. As a result, all the
gas in the cluster is heated, rather than simply discrete regions.

One might hope to avoid this problem by halting star
formation early on, before enough mass goes into stars to allow
the heated regions to overlap. However, such a solution seems
to require improbable fine tuning. Examining Figures 1 and 2,
we see that the overlap of hot regions is well underway by the
time 30%–40% of the mass has been incorporated into stars.
Figures 6 and 7 show that the shift of the simulation IMF to
higher masses than the Chabrier (2005) IMF is also largely
complete by this point. Since this is about the minimum star
formation efficiency required to have any possibility of making
bound clusters (Kroupa et al. 2001; Fall et al. 2010), the fact
that at least some star formation does result in bound clusters
suggests that the star formation efficiency cannot be vastly lower
than this value most of the time.

4.2. Understanding the Problem

We can estimate the dividing line between the two cases
of heating in discrete regions around single stars and heating
in the bulk of the protocluster gas using the analytic radiative
transfer approximation of Chakrabarti & McKee (2005, 2008),
coupled to the formalism developed by Krumholz & McKee
(2008). Chakrabarti & McKee consider a spherical cloud of
dusty gas with radius R, mass M, and a density profile ρ ∝
r−kρ , surrounding a point source of radiation of luminosity L,
with dust whose specific opacity depends on wavelength as
κ = κ0(λ0/λ)β . In such a cloud, they show that the temperature
profile approximately follows

T = Tch

(
r

Rch

)−kT

, (16)

where r is the distance from the cloud center, Rch and Tch are the
characteristic radius and temperature of the dust photosphere
formed within the cloud, and kT is a power-law index to
be approximated by a numerical fit. For convenience, we define
Σ = M/πR2, η = L/M (measured in cgs units, not solar units),
α = 1/[2β + 4(kρ − 1)], R̃ = R/Rch, and T0 = hc/kBλ0.
For Milky Way dust, β ≈ 2 and κ0 ≈ 0.54 cm2 g−1 at
λ0 = 100 μm (Weingartner & Draine 2001), but the results
depend on these parameters very weakly. With these definitions,
the characteristic radius and temperature and the power-law
index are given by
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L̃ ≈ 1.6R̃0.1 (19)

kT ≈ 0.48k0.05
ρ

R̃0.02k1.09
ρ

+
0.1k5.5

ρ

R̃0.7k1.9
ρ

. (20)

The latter two expressions are approximations based on fits
to numerical solutions of the radiative transfer equation and
reproduce the numerical results with high accuracy.

Figure 11. Luminosity-to-mass ratio η vs. dimensionless star formation rate εff .
In each panel, dashed horizontal lines show the critical-light-to-mass ratio ηcrit
at which heating regions around individual protostars merge and fragmentation
is suppressed. Solid lines show the value of ηacc for an accretion-powered
cluster-forming gas cloud with the indicated value of εff . In the upper panel, we
show clouds with Σ = 0.5, 1, and 2 g cm−1 (red, green, and blue), all of mass
M = 103 M�. In the lower panel, we show clouds of fixed Σ = 1 g cm−2, with
masses M = 102, 103, 104, and 105 M� (red, green, blue, and purple).

(A color version of this figure is available in the online journal.)

A rough condition for the heating regions around individual
protostars to merge and heat the bulk of the gas is that
the combined luminosity L of all the protostars, which we
approximate as being near the cloud center, be high enough
so that the temperature T at the edge of the cloud, r = R, be
higher than the background temperature Tb ≈ 10 K to which
gas settles when it is not heated by a nearby star. Thus, to avoid
overheating we require that the luminosity-to-mass ratio η be
smaller than the value ηcrit for which T (R) = Tb. For a given
cloud mass M and surface density Σ, it is straightforward to use
Equations (16)–(20) to numerically determine the value ηcrit for
which the condition T (R) = Tb is satisfied. In what follows
we do so for a background temperature Tb = 10 K and density
profile kρ = 3/2, roughly what is seen in massive star-forming
clumps (e.g., Mueller et al. 2002), but the result we obtain is not
very sensitive to this choice.

The luminosity is in turn related to the star formation rate in
the simulations. Krumholz & McKee (2008) show that accretion
onto low-mass stars yields an energy release per unit mass
accreted of ψ ≈ 2.1 × 1014 erg g−1. This number is a result
of stellar structure considerations, which fix the characteristic
radii of protostars. Thus the light-to-mass ratio ηacc in a cloud
of mass M powered by accretion luminosity from stars forming
at a rate Ṁ∗ is

ηacc = ψ
Ṁ∗
M

= εff
ψ

tff
, (21)

where tff =
√

πR3/8GM is the mean-density free-fall time
of the cloud and εff is the dimensionless star formation rate
introduced by Krumholz & McKee (2005).

In Figure 11, we plot ηcrit and η for clouds of varying mass M
and surface density Σ as a function of εff . Our values of M and
Σ are chosen to span the range of typical cluster-forming gas
clumps in the Milky Way. The value of ηcrit of course depends
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on Σ alone, while that of ηacc is proportional to εff . The plot
shows that, for any plausible cloud mass and surface density,
if εff � 0.1 then η > ηcrit. This plot explains why, in our
simulation, the stellar heating regions overlap. In our simulation,
∼50% of the gas is in stars when t/tff ≈ 1, so we have εff ≈ 0.5.
This puts us in the regime in which heating zones overlap,
and fragmentation is suppressed. In contrast, the simulations of
Bate (2009), Offner et al. (2009), and Peters et al. (2010) have
substantially lower surface densities, Σ � 0.1 g cm−2, putting
them in the regime where heating zones do not overlap and
fragmentation is unlikely to be suppressed even with quite high
εff , except within the disks around each star. The simulations of
Offner et al., since they include driven turbulence, also have a
lower value of εff .

Note that this argument is consistent with the one made by
Elmegreen et al. (2008) for why the Jeans mass should vary little
in regions where the dust and gas temperatures are well coupled,
like those we study. The crux of their argument is that increases
in the gas density lower the Jeans mass and also produce a higher
star formation rate, which in turn raises the dust temperature
and the Jeans mass. The two effects nearly offset one another.
However, this offset only occurs if the star formation rate and
the density are related by a volumetric Schmidt (1959, 1963)
law with εff ≈ 0.01 (see their Equation (6)). If εff rises with
time, as it does in our simulation, then the Jeans mass will not
remain independent of density.

4.3. Possible Solutions to the Problem

Understanding the problem also suggests an immediate solu-
tion. Krumholz & Tan (2007) compile observations from the lit-
erature and find that, even in dense, cluster-forming gas clumps,
εff ∼ 0.01. Evans et al. (2009) obtain similar values of εff in
cluster-forming regions observed by the c2d Legacy Survey, al-
though c2d targets clusters considerably more diffuse and lower
in mass than the one we have simulated here. Figure 11 shows
that such clouds are not in the regime where heating zones over-
lap and fragmentation is suppressed, unless their masses are
quite low, M � 102 M�. This explains why fragmentation is
not suppressed in real clouds.

However, this result has important implications for simula-
tions of star cluster formation. It implies that, once radiation
physics is included in the simulations, one cannot expect to
obtain the correct IMF without also obtaining the correct star
formation rate, or at least a star formation rate that is roughly
correct. In simulations that do not include radiation feedback,
no such care is needed. Fortunately, obtaining the correct star
formation rate in simulations is not terribly difficult. Simula-
tions where the turbulence is driven artificially can reproduce
the observed value εff ≈ 0.01. Even better, simulations that
include stellar wind feedback naturally produce realistic, low
values of εff without any artificial driving (e.g., Li & Nakamura
2006; Nakamura & Li 2007; Wang et al. 2010), and preliminary
evidence indicates that this does reduce accretion luminosities
to the point where fragmentation is suppressed far less than we
have found (C. Hansen et al. 2011, in preparation). It is not
clear if this effect is scalable to all cluster masses (Fall et al.
2010), but it does suggest a way toward simulations of cluster
formation that simultaneously obtain the correct star formation
rate and the correct IMF.

It is thus possible that the problem might be solved the
inclusion of other physics that our simulation omits, such as
outflows and photoionization. These mechanisms might be
able to generate regions of high enough density that their

Bonnor–Ebert masses will be low even in the presence of
overlapping regions of radiative heating.

4.4. Implications for Competitive Accretion
versus Core Accretion

It is also interesting to consider the implications of our result
for the competitive accretion versus core accretion models for
the formation of star clusters and origin of the IMF. Roughly
speaking, the competitive accretion model is that collapses that
produce star clusters are global in nature, so all stars accrete
from the same mass reservoir, and the stellar mass distribution
is determined by a competition between formation of new, small
fragments (which pushes the mean mass to lower values) and
growth of existing fragments by Bondi–Hoyle accretion (which
pushes the mean mass to higher values) (e.g., Bonnell et al. 2001;
Bate & Bonnell 2005; Bonnell & Bate 2006). In contrast, in
the core accretion model, collapses that produce individual star
systems are local rather than global, so that different protostars
are for the most part not accreting from the same mass reservoir.
In this case, the mass distribution of the stars is set by the mass
distribution of the regions of localized collapse, the “cores” (e.g.,
Padoan & Nordlund 2002; McKee & Tan 2003; Padoan et al.
2007; Alves et al. 2007; Hennebelle & Chabrier 2008, 2009).
Intermediate models are also possible, in which low-mass stars
form via local collapse, but either massive stars or the cores
from which they grow form via a global collapse (e.g., Peretto
et al. 2006; Wang et al. 2010).

Krumholz et al. (2005) point out, and Bonnell & Bate (2006)
and Offner et al. (2008a) confirm, that which mode of star
formation takes place depends on the level of turbulence and
on εff . If the turbulence is sub-virial, or becomes sub-virial
through decay that is not offset by internal feedback or external
driving, then εff becomes large and competitive accretion is
the dominant star formation mode; core accretion prevails if
the turbulence remains at virial levels and εff is small. In our
simulation, we do not include either artificial driving or any
physical feedback mechanisms capable of driving the turbulence
(e.g., protostellar outflows or H ii regions), so our simulation
produces large εff and we obtain a competitive accretion-like
mode of star formation. However, crucially, we have shown that
such a mode of star formation cannot produce the correct IMF
due to the radiative suppression problem we have identified.
The constant production of new, low-mass stars on which
competitive accretion relies to keep accretion onto existing stars
from pushing the IMF to ever-increasing masses does not happen
once radiative feedback is included, at least in the minimal case
where hydrodynamics, gravity, and radiative feedback are the
only physical ingredients. It is conceivable that some mechanism
we have omitted might still enable the production of low-mass
stars even in clusters with high εff (e.g., fragmentation induced
by expanding H ii shells), but in this case that mechanism would
be responsible for controlling the peak of the IMF. Our results
therefore suggest that the minimal competitive accretion model
is not compatible with the observed IMF.

One might try to alleviate this problem by choosing signif-
icantly less dense initial conditions and retaining the high εff
required for competitive accretion, i.e., by selecting a lower Σ
in Figure 11. However, this solution faces a severe problem: the
initial conditions we have selected are typical of the observed
gaseous properties of clouds where massive star formation oc-
curs (e.g., Shirley et al. 2003; Faúndez et al. 2004; Fontani et al.
2005). Surface densities are even larger in globular clusters, yet
these show the same IMF peak as the field (De Marchi et al.
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Figure 12. Stellar mass as a function of time for a sample of individual stars in
runs LR (top), HR (middle), and ISO (bottom). The stars shown are the 5 most
massive at the final time in the simulations, plus 10 other stars evenly distributed
in mass.

2000, 2010). If the minimal competitive accretion model can
only reproduce the observed IMF from initial conditions far
less dense than we have simulated, then its applicability is lim-
ited to low-density regions like Taurus, which generally do not
contain any massive stars.

4.5. Implications for Fragmentation-induced Starvation

It is also interesting to examine how individual stars, and
particularly the most massive stars, grow in mass. We show this
in Figures 12 and 13, which show the mass versus time and the
mass accretion rate versus time for a sample of stars in each run.
In run LR the most massive star we form is 20.0 M�, in run HR
the most massive star is 16.2 M�, and in run ISO it is 10.3 M�.
In runs LR and HR, the most massive stars are continuing to
grow rapidly at the end of the simulation, with accretion rates
that are generally flat or increasing with time. The most massive
stars are also growing in run ISO, but more slowly and with
accretion rates that are either constant or declining with time.

These results have potential implications for the idea of
fragmentation-induced starvation proposed by Peters et al.
(2010). In their simulations (which have a resolution comparable
to that of our run LR), the most massive stars stop growing after
a certain point because the accretion flow that is feeding them
fragments to produce small stars rather than being accreted by
the massive star. Thus massive stars exhibit accretion rates that
fall with time. We do see something roughly consistent with this
behavior in run ISO, but not in our radiative runs. This is likely
an effect of radiative suppression of fragmentation.

Figure 13. Mass accretion rate for the most massive (solid) and second most
massive (dashed) stars at the final time in runs LR (red), HR (blue), and ISO
(green). To minimize confusion, the accretion rates have been smoothed over a
timescale of 0.05tff .

(A color version of this figure is available in the online journal.)

Peters et al. (2010) also include radiative transfer in their
simulations, but they do not find strong suppression of frag-
mentation. This is probably because their simulated cloud has a
much lower column density (Σ ≈ 0.03 g cm−2) than either our
simulated clouds or typical regions of massive star formation
in the Galaxy (Σ ∼ 1 g cm−2). Krumholz et al. (2010) show
that the amount by which radiation suppresses fragmentation is
highly sensitive to the column density, and predict essentially
no suppression at the column density used by Peters et al. The
physical reason for this is that a cloud with Σ = 0.03 g cm−2

is optically thin even in the near-infrared, so starlight that is
absorbed by dust grains promptly escapes, and most gas is not
heated by the radiation. It is therefore not surprising that Peters
et al. see fragmentation-induced starvation and we do not.

We emphasize, however, that the absence of fragmentation-
induced starvation in our radiative runs does not mean that
fragmentation-induced starvation does not occur under typical
Galactic star-forming conditions. We have just argued that
fragmentation is suppressed too strongly in our simulations
because star formation is too rapid. Indeed, simulations indicate
that outflows allow more fragmentation to occur even in single
massive cores than in comparable simulations without outflows
(Cunningham et al. 2011). However, our results suggest that,
before fragmentation-induced starvation can be considered an
important mechanism in regulating massive star formation, it
will be necessary to simulate the formation of a star cluster using
typical Galactic conditions, as we do, and to include mechanisms
that produce realistically low star formation rates.

5. SUMMARY

We report simulations of the formation of a massive star clus-
ter comparable in size to the ONC. Our simulations use AMR
to obtain HR and include radiation-hydrodynamics coupled to
a realistic treatment of stellar radiative feedback. These are the
first simulations reported in the literature that include radiation
feedback in the context of the typical region of Galactic star
cluster formation, as opposed to focusing on single low-mass
(Commerçon et al. 2010) or high-mass (Krumholz et al. 2007a,
2010; Myers et al. 2011) cores, or on low-mass or low-density
regions like Taurus (Bate 2009; Offner et al. 2010; Peters et al.
2010).

14



The Astrophysical Journal, 740:74 (16pp), 2011 October 20 Krumholz, Klein, & McKee

Our simulations return a surprising result. At early times
in the simulations, accreting stars produce bubbles of warm,
radiatively heated gas around themselves, and within these bub-
bles fragmentation is suppressed by the increased Bonnor–Ebert
mass. However, we find that, once ∼10%–20% of the gas in the
protocluster has been converted to stars, these bubbles of warm
gas begin to overlap and merge. Rather than resembling a few
warm islands surrounded by a sea of cold gas, we instead have
a cloud where all the gas is warmed by the collective luminosity
of all the accreting stars.

Once the simulation reaches this state, radiation feedback
raises the temperature and the Bonnor–Ebert mass throughout
the remaining gas enough to essentially halt the formation of any
further stars. Mass continues to be converted from gas to stars,
but this is almost entirely through accretion onto existing stars
rather than formation of new ones. As a result, when radiation
is included, the stellar mass distribution in a globally collapsing
star cluster such as the one we simulate is not nearly constant
or very slightly increasing with time, as has been reported
in earlier, non-radiative simulations, and as we find here in a
control run that does not include radiation. Instead, the stellar
mass distribution shifts strongly to systematically higher masses
as star formation proceeds, eventually becoming too top heavy
compared to the observed IMF. While the absolute mass scale
remains uncertain in our simulations due to our inability to
resolve tight binaries, the result that the IMF is non-constant and
increasing with time is robust against changes in resolution. This
implies that, unless there is also some mechanism to ensure that
star formation in every protocluster stops when the IMF peak is
in the same place, it is not possible to produce the invariant IMF
peak that we observe via the global collapse scenario we have
simulated.

We argue that the underlying reason that this problem occurs
is that, in the absence of either external turbulent driving or
any sort of internal mechanical feedback to slow star formation
down, stars in our simulation form too quickly. Since accretion
luminosity produced as gas falls onto stars is what ultimately
drives the temperature increase in our simulations that shuts
off fragmentation and leads to a top-heavy IMF, the problem
is likely to be alleviated in simulations that include enough
physics to obtain a low star formation rate similar to that
observed in real star clusters. We are in the process of conducting
such simulations now and will report on the results in future
publications.
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APPENDIX

GENERATING COMPARISON IMF SAMPLES

The statistical samples for the IMFs shown in Figures 6 and 7
consist of stellar populations drawn from a Chabrier (2005) IMF,

subject to the constraint that the total mass of the population
has specified value. We create each cluster by the following
procedure. First, we draw stars from the Chabrier IMF,

dn

d ln M∗
=

N
{

exp(−[ln{M∗/M�} − ln 0.2]2/2σ 2), M∗ � M�
exp[−(ln 0.2)2/2σ 2](M∗/M�)−1.35, M∗ > M�

, (A1)

where N is a normalization constant and σ = 0.55 ln 10. We
truncate this mass function at 0.05 M� on the lower end (to
match our minimum stellar mass in the simulation) and at
120 M� on the upper end. We continue to draw stars as long
as the total mass of stars is smaller than the specified target
mass. If we draw a star of a mass such that adding it to our
population causes the total mass to exceed the target mass by
more than 0.1 M�, we reject it and draw another. We continue
drawing until the total mass of stars is within 0.1 M� of the
target mass.

Once we have a set of stars, we form the cumulative and
differential distributions. We repeat this procedure 10,000 times
each for clusters of total mass from 100 to 500 M�. To produce
the values shown in Figures 6 and 7, at each mass M∗ on the
x-axis, we sort the values of the 10,000 cumulative or differential
distributions at that value of M∗. The 10th, 50th, and 90th
percentiles shown are the values at that mass point or mass
bin that are the 1000th, 5000th, and 9000th values in the sorted
lists.
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Commerçon, B., Hennebelle, P., Audit, E., Chabrier, G., & Teyssier, R.

2010, A&A, 510, L3
Cunningham, A. J., Frank, A., Quillen, A. C., & Blackman, E. G. 2006, ApJ,

653, 416
Cunningham, A. J., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2011, ApJ,

in press (arXiv:1104.1218)
De Marchi, G., Paresce, F., & Portegies Zwart, S. 2010, ApJ, 718, 105
De Marchi, G., Paresce, F., & Pulone, L. 2000, ApJ, 530, 342
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
Elmegreen, B. G., Klessen, R. S., & Wilson, C. D. 2008, ApJ, 681, 365
Evans, N. J., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS, 181, 321
Fall, S. M., Krumholz, M. R., & Matzner, C. D. 2010, ApJ, 710, L142
Faúndez, S., Bronfman, L., Garay, G., et al. 2004, A&A, 426, 97
Fisher, R. T. 2002, PhD thesis, Univ. California, Berkeley

15

http://dx.doi.org/10.1051/0004-6361:20066389
http://adsabs.harvard.edu/abs/2007A&A...462L..17A
http://adsabs.harvard.edu/abs/2007A&A...462L..17A
http://dx.doi.org/10.1111/j.1365-2966.2008.14165.x
http://adsabs.harvard.edu/abs/2009MNRAS.392.1363B
http://adsabs.harvard.edu/abs/2009MNRAS.392.1363B
http://dx.doi.org/10.1111/j.1365-2966.2004.08593.x
http://adsabs.harvard.edu/abs/2005MNRAS.356.1201B
http://adsabs.harvard.edu/abs/2005MNRAS.356.1201B
http://dx.doi.org/10.1137/0915008
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://adsabs.harvard.edu/abs/1989JCoPh..82...64B
http://adsabs.harvard.edu/abs/1989JCoPh..82...64B
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://adsabs.harvard.edu/abs/1984JCoPh..53..484B
http://adsabs.harvard.edu/abs/1984JCoPh..53..484B
http://dx.doi.org/10.1086/338334
http://adsabs.harvard.edu/abs/2002ApJ...566..945B
http://adsabs.harvard.edu/abs/2002ApJ...566..945B
http://dx.doi.org/10.1086/498867
http://adsabs.harvard.edu/abs/2005ApJ...634L.185B
http://adsabs.harvard.edu/abs/2005ApJ...634L.185B
http://dx.doi.org/10.1051/0004-6361:20064887
http://adsabs.harvard.edu/abs/2006A&A...454..221B
http://adsabs.harvard.edu/abs/2006A&A...454..221B
http://dx.doi.org/10.1111/j.1365-2966.2006.10495.x
http://adsabs.harvard.edu/abs/2006MNRAS.370..488B
http://adsabs.harvard.edu/abs/2006MNRAS.370..488B
http://dx.doi.org/10.1046/j.1365-8711.2001.04270.x
http://adsabs.harvard.edu/abs/2001MNRAS.323..785B
http://adsabs.harvard.edu/abs/2001MNRAS.323..785B
http://dx.doi.org/10.1046/j.1365-8711.2003.06687.x
http://adsabs.harvard.edu/abs/2003MNRAS.343..413B
http://adsabs.harvard.edu/abs/2003MNRAS.343..413B
http://dx.doi.org/10.1111/j.1365-2966.2006.10214.x
http://adsabs.harvard.edu/abs/2006MNRAS.368.1296B
http://adsabs.harvard.edu/abs/2006MNRAS.368.1296B
http://dx.doi.org/10.1111/j.1365-2966.2004.07543.x
http://adsabs.harvard.edu/abs/2004MNRAS.349..735B
http://adsabs.harvard.edu/abs/2004MNRAS.349..735B
http://dx.doi.org/10.1051/0004-6361/200913286
http://adsabs.harvard.edu/abs/2010A&A...524A..18B
http://adsabs.harvard.edu/abs/2010A&A...524A..18B
http://dx.doi.org/10.1088/0004-637X/714/2/1256
http://adsabs.harvard.edu/abs/2010ApJ...714.1256C
http://adsabs.harvard.edu/abs/2010ApJ...714.1256C
http://dx.doi.org/10.1086/175825
http://adsabs.harvard.edu/abs/1995ApJ...446..665C
http://adsabs.harvard.edu/abs/1995ApJ...446..665C
http://adsabs.harvard.edu/abs/2005ASSL..327...41C
http://dx.doi.org/10.1086/432659
http://adsabs.harvard.edu/abs/2005ApJ...631..792C
http://adsabs.harvard.edu/abs/2005ApJ...631..792C
http://dx.doi.org/10.1086/589637
http://adsabs.harvard.edu/abs/2008ApJ...683..693C
http://adsabs.harvard.edu/abs/2008ApJ...683..693C
http://dx.doi.org/10.1051/0004-6361/200913597
http://adsabs.harvard.edu/abs/2010A&A...510L...3C
http://adsabs.harvard.edu/abs/2010A&A...510L...3C
http://dx.doi.org/10.1086/508762
http://adsabs.harvard.edu/abs/2006ApJ...653..416C
http://adsabs.harvard.edu/abs/2006ApJ...653..416C
http://www.arxiv.org/abs/1104.1218
http://dx.doi.org/10.1088/0004-637X/718/1/105
http://adsabs.harvard.edu/abs/2010ApJ...718..105D
http://adsabs.harvard.edu/abs/2010ApJ...718..105D
http://dx.doi.org/10.1086/308334
http://adsabs.harvard.edu/abs/2000ApJ...530..342D
http://adsabs.harvard.edu/abs/2000ApJ...530..342D
http://adsabs.harvard.edu/abs/1991A&A...248..485D
http://adsabs.harvard.edu/abs/1991A&A...248..485D
http://dx.doi.org/10.1086/588725
http://adsabs.harvard.edu/abs/2008ApJ...681..365E
http://adsabs.harvard.edu/abs/2008ApJ...681..365E
http://dx.doi.org/10.1088/0067-0049/181/2/321
http://adsabs.harvard.edu/abs/2009ApJS..181..321E
http://adsabs.harvard.edu/abs/2009ApJS..181..321E
http://dx.doi.org/10.1088/2041-8205/710/2/L142
http://adsabs.harvard.edu/abs/2010ApJ...710L.142F
http://adsabs.harvard.edu/abs/2010ApJ...710L.142F
http://dx.doi.org/10.1051/0004-6361:20035755
http://adsabs.harvard.edu/abs/2004A&A...426...97F
http://adsabs.harvard.edu/abs/2004A&A...426...97F


The Astrophysical Journal, 740:74 (16pp), 2011 October 20 Krumholz, Klein, & McKee

Fontani, F., Beltrán, M. T., Brand, J., et al. 2005, A&A, 432, 921
Fumagalli, M., da Silva, R. L., & Krumholz, M. R. 2011, ApJ, submitted

(arXiv:1105.6101)
Goldsmith, P. F. 2001, ApJ, 557, 736
Hennebelle, P., & Chabrier, G. 2008, ApJ, 684, 395
Hennebelle, P., & Chabrier, G. 2009, ApJ, 702, 1428
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