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ABSTRACT

We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation
flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such
systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime,
where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H ii region),
radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume
toward the interface overcomes that away from it. In the optically thick “adiabatic” regime where the total (gas
plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation
pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state
and derive a generalized version of the classical Rayleigh–Taylor stability condition.
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1. INTRODUCTION

The superposition of a dense fluid above a lighter one in a
gravitational field is prone to the well-known Rayleigh–Taylor
instability (e.g., Chandrasekhar 1961): any corrugation of the in-
terface between them will grow exponentially, as fingers of the
heavier fluid sink in the more buoyant one. The Rayleigh–Taylor
instability and related processes have found applications in var-
ious astrophysical settings, such as the expansion of supernova
remnants (e.g., Ribeyre et al. 2004) (where inertial accelera-
tion plays the role of the gravitational field), the interiors of
red giants, subject to thermohaline mixing (e.g., Charbonnel &
Lagarde 2010), or interstellar gas clouds pushed above the galac-
tic plane (e.g., Zweibel 1991).

One can envision several Rayleigh–Taylor-like configurations
of astrophysical interest where radiation is important for both
energetics and dynamics. For instance, during massive star for-
mation, radiation pressure overcomes gravity and causes the for-
mation of bubbles of rarefied matter around the central star(s).
Since they are overlain by denser infalling gas, they may be
prone to Rayleigh–Taylor instabilities, potentially aiding con-
tinued accretion (Krumholz et al. 2009). Another astrophysical
setting of relevance could be the interface between an H ii re-
gion and its neutral shell. Stellar photons are absorbed in the
H ii region and exert a force toward the interface that acts like
an effective gravitational field. In sufficiently dense H ii regions
driven by sufficiently massive stars this radiation force can be
very large (Krumholz & Matzner 2009; Draine 2010), poten-
tially destabilizing the shell of swept-up material. Finally, in the
same vein, the radiation force could be significant in shaping
Rayleigh–Taylor instabilities in supernova explosions.

Radiative Rayleigh–Taylor instabilities are not a new subject.
Mathews & Blumenthal (1977) studied the stability of surfaces
and slabs of fully ionized plasmas and found instability for
optically thin clouds at their far side and optically thick
ones (using the Boussinesq approximation) with significant
amount of neutral gas, or pushed at the illuminated side.
Krolik (1977) studied the global stability of a constant-density

slab under the Boussinesq approximation and found, in the
absence of gravity, instability of short-wavelength perturbations
if radiative acceleration correlates positively with total optical
depth; inclusion of gravity induced a transition back to the
classical Rayleigh–Taylor result.

A noteworthy related, albeit qualitatively different instabil-
ity was studied by Blaes & Socrates (2003) in the optically
thick regime. They performed a local radiative magnetohydro-
dynamics stability analysis of a stratified equilibrium and found
radiation to overstabilize acoustic disturbances for high enough
background flux. Radiation slips into rarefied regions giving rise
to buoyant “photon bubbles.” In the absence of magnetic fields,
the instability criterion requires the specific opacity to have an
explicit dependence on the density or the temperature.

In this study, we investigate the role of radiation in the lin-
ear stability of a single interface between two media, ignoring
magnetic fields and chemical processes as well as the structure
of the interface. We present general frameworks in the opti-
cally thin and optically thick regimes, before giving analytical
solutions in limiting cases. In Section 2, we will review the
fundamental equations and outline the model and a few gener-
alities, while Section 3 applies our formalism to the standard
(non-radiative) Rayleigh–Taylor instability to illustrate how it
works. In Section 4, we focus on the optically thin regime,
and in particular the isothermal limit, while Section 5 will be
devoted to the optically thick regime, and in particular the adi-
abatic approximation, whereby the total (gas plus radiation)
specific entropy is conserved for a Lagrangian fluid element. In
Section 6, we conclude.

2. GENERALITIES

2.1. Equations of Radiation Hydrodynamics

We begin by reviewing the fundamental equations of radiation
hydrodynamics (RHD). Beforehand, a few words on notation:
scalars will be written in italics (e.g., a), vectors in bold (e.g.,
F), and higher-rank tensors in bold calligraphy (e.g., T ). The
product of two tensors U and V is written UV; their contraction
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is denoted by a dot for a single index (U · V) and a colon for
two indices (U : V). Quantities evaluated in the frame comoving
with the fluid will be given a subscript 0.

In the nonrelativistic and inviscid limits, the RHD equations
are given by (Mihalas & Weibel Mihalas 1984)

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

ρ
Dv
Dt

= G0 − ∇Pg + ρg (2)

∂ug

∂t
+ ∇ · (ugv

) = −Pg∇ · v + cG0
0, (3)

for the gas (mass conservation, momentum, and internal energy
equation), and

∂Er

∂t
+ ∇ · F = −cG0 (4)

1

c2

∂F
∂t

+ ∇ · Pr = −G (5)

for the radiation (energy and momentum equation). Here ρ,
Pg = ρa2, and ug = Pg/(γ − 1) are the gas density, pressure,
and internal energy per unit volume, respectively, with a =√

kBT /m the isothermal sound speed, and g = −∇φ is the
gravitational acceleration with φ the potential. Er, F, and Pr

are the energy density, energy flux vector, and pressure tensor,
respectively, of the radiation field.

The rate of four-momentum transfer from radiation to matter
per unit space-time volume dV dt (or minus the four-divergence
of the radiation energy–momentum tensor) G, evaluated in the
comoving frame, assuming that the gas is in local thermody-
namic equilibrium, and that scattering is isotropic, is given by:

G0 =
(

G0
0

G0

)
=
(

ρ(κJ Er0 − κP aT 4)
κF ρ

c
F0

)
, (6)

where κJ and κP are frequency-integrated absorption opacity
means weighted against the spectral energy distribution of the
radiation and a Planckian at the gas temperature T, respectively,
and κF is the flux mean (with both absorption and scattering
contributions).

When coupling of the radiation to the gas (through the
latter term) is significant, it is useful to rewrite the radiation
equations in terms of the comoving frame energy density Er0 =
Er −2v ·F/c2, radiative flux F0 = F− (Er +Pr )v, and radiation
pressure tensor Pr0 = Pr − (Fv + vF)/c2 (Equations (95.87)
and (95.88) of Mihalas & Weibel Mihalas 1984):

∂Er0

∂t
+ ∇ · (Er0v + F0) + Pr0 : ∇v + 2

a · F0

c2
= −cG0

0 (7)

− G0 = 1

c2

D

Dt
F0 + ∇ · Pr0 + (F0 · ∇)

v
c2

+
∇ · v
c2

F0

+ (Er0 + Pr0)
a
c2

, (8)

where it is (generally) safe, for v � c, to drop all the terms
containing a ≡ Dv/Dt as well as (F0 · ∇) v/c2 and (∇·v/c2)F0.
Note that this system of equations needs a closure, which will
be obtained through various approximations depending on the
regime considered in the next sections.

If we sum Equations (2) and (5), we obtain the total momen-
tum equation (Equation (94.10b) of Mihalas & Weibel Mihalas
1984):

∂

∂t

(
ρv +

1

c2
F
)

+ ∇ · (ρvv + Pr + PgI3) = −ρ∇φ, (9)

where I3 is the 3 × 3 identity matrix, and we have followed
Mihalas & Weibel Mihalas (1984) in dropping the term −G0

0v/c
on the right-hand side as non-dominant in flows with v � c.

Equations (3) and (7) can be summed to yield (Equation (16)
of Buchler 1979):

DEtot

Dt
+ ∇ · F0 + Htot : ∇v = 0, (10)

with Etot ≡ Er0 + u and Htot ≡ EtotI3 + Ptot, where Ptot =
PgI3 + Pr . Yet another useful form of the total energy equation
can be obtained by adding the scalar product of Equation (2)
with v (Equation (18) of Buchler 1979):

0 = ∂

∂t

[
ρ

(
v2

2
+ φ

)
+ Etot

]
+ ∇ ·{[

ρ

(
v2

2
+ φ

)
+ Etot

]
v + F0 + Ptot · v

}
, (11)

where we have assumed the gravitational potential to be static.

2.2. Model and Linear Stability Formalism

We consider a plane-parallel background configuration, con-
sisting of two semi-infinite media separated by an interface
at z = 0, with medium 1 overlying medium 2 (which one
might generally think of as being more rarefied). Throughout
this study, we will ignore the width of the discontinuity, and we
allow no flow across it. The system is subject to a constant and
uniform external gravitational field (or, equivalently, an inertial
acceleration) g = −gez and is threaded by a radiative flux F,
which in equilibrium is independent of z and vertical. For the
astrophysical applications considered here, both gravitation and
radiation fields may be thought of as being caused by a radiation
source such as a massive star located at z = −∞.

The system of dynamical equations written in the preceding
subsection, when supplemented by equations of state and
appropriate closures, may be cast in the form

i
∂ψ

∂t
= H (ψ), (12)

where ψ is a vector of the different fields (here, physical
quantities as functions of spatial location) evolved in time by the
(nonlinear) operator H. The equilibrium configuration ψeq then
satisfies H (ψeq) = 0. Considering a perturbation δψ ≡ ψ−ψeq,
we have, to linear order,

i
∂δψ

∂t
= dHψeq (δψ), (13)

with dHψeq the (linear) differential of H at ψeq. The problem
now amounts to finding the eigenmodes of dHψeq , since if
dHψeq (δψ(0)) = ω δψ(0), δψ(t) = e−iωt δψ(0). If Im(ω) > 0,
the perturbation grows and linear instability is declared. We
therefore are interested in Eulerian perturbations whose space-
time dependence, for any quantity Q(x, z, t), is given by

δQ(x, z, t) = δQ̂(z)ei(kx−ωt), (14)
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where the Fourier dependence in x (whereby we orient the axes
to have k positive) is motivated by the plane-parallel nature of
the background equilibrium. Since no perturbed vector quantity
has a component perpendicular to both ex and ez, the linear
problem is two dimensional.

The eigenvalue problem now reduces to a set of coupled
ordinary differential equations (ODEs), supplemented by a set
of relationships with no derivatives in z, and the former may be
cast in the form

dδψ̂

dz
= A(z) · δψ̂, (15)

where the linear operator A, in our problem, depends on z
only through the background quantities, in turn, completely
determined by their values at z = 0± and the values of g and
Fz (the z component of the radiation flux) from the equilibrium
equations.

Since each solution to this set of ODEs corresponds to a set
of perturbations in the space z = 0±, it should, in principle, be
possible to analyze stability conditions as a function solely of
quantities evaluated at the interface (rather than integrals, as in
Krolik (1977), but he was considering an upper boundary for
the cloud).

2.3. Boundary Conditions

Up to this point, nothing distinguishes our problem mathemat-
ically from a stability analysis of an infinite, single medium, be
the analysis global or local in nature. The distinguishing char-
acteristic of the interface problem is the boundary conditions
which select the relevant (z dependence of the) eigenfunctions,
on which we now focus.

First, we consider media that are unbounded on either side
of the interface, so we require our modes not to blow up as z
goes to ±∞. Thus, we are focusing on “local” instabilities at the
interface, rather than global ones on a cloud scale as in Krolik
(1977). This requires

lim
z→±∞ δψ̂(z) = 0. (16)

We next investigate the continuity conditions at the interface.
Let ξ (x, z, t) be the Lagrangian displacement of the fluid
element that is at position (x, z) in the unperturbed state. We also
denote, for any quantity Q(x, z, t), the Lagrangian perturbation
by

ΔQ = δQ + ξ · ∇Q. (17)

The usual kinematic relationship

Δv = Dξ

Dt
(18)

reduces, for the Fourier dependence adopted for our solutions
and the zero-velocity background, to δv = −iωξ . Since there
is no flow across the interface, ξz(x, 0, t) represents the vertical
displacement of the boundary between the two fluids. Thus, ξz

is continuous at the interface.
Now consider a general flux-conservative form equation

describing the evolution of the system:

∂m

∂t
+ ∇ · f = s, (19)

where m is the conserved quantity, f is the corresponding flux,
and s is a source term. The equations of mass conservation (1),

total momentum conservation (9), and total energy conservation
(11) are all manifestly of this form. We place ourselves in an
inertial frame comoving (at time t) with the interface. (Note
that for the general considerations we are about to make, it is
immaterial whether there is a net flow across it or not.) Our
purpose here is to find under which conditions the component
of the flux f0,z (the 0 subscript referring to the frame chosen)
normal to the interface can be considered continuous across at
the interface at z = ξz.

Integration of Equation (19) across the interface thickness
yields

f0,z

(
x, ξz +

ε

2
, t
)

− f0,z

(
x, ξz − ε

2
, t
)

= ε

(
〈s〉 − ∂〈m0〉

∂t0
− ∂〈f0,x〉

∂x

)
, (20)

where ε is the thickness of the interface and the brackets
〈...〉 denote averages across the interface, i.e., for any function
Q(x, z, t)

〈Q〉 ≡ 1

ε

∫ ξz(x,0,t)+ε/2

ξz(x,0,t)−ε/2
Q(x, z, t) dz, (21)

which is a function of x and t. It is a consequence of the choice
of frame and the orientation of z-axis normal to the interface3

that Equation (20) has no extra “boundary term.”
We expect m0, f0, and s to remain bounded within the inter-

face (although their z-derivatives may be large) such that their
z-integrated averages are comparable to their asymptotic values
on either side of the interface.4 Therefore, it is already quali-
tatively clear that the continuity of f0,z will be verified if ε is
“small enough.”

In order to be more quantitative, we note that

f0,z

(
x, ξz +

ε

2
, t
)

− f0,z

(
x, ξz − ε

2
, t
)

= [Δf0,z]
1
2 + f0,z,eq

(
x,

εeq

2
, t
)

− f0,z,eq

(
x,−εeq

2
, t
)

= [δf0,z + seqξz]
1
2 + 〈seq〉εeq, (22)

where subscripts “eq” refer to the equilibrium, unperturbed
value of a quantity, and for any quantity Q(x, z, t) we define

[Q]1
2 ≡ Q(x, 0+, t) − Q(x, 0−, t), (23)

with Q(x, 0+, t) the value taken by Q in medium 1 at z = 0 (the
value being extrapolated if the perturbed interface is actually
above z = 0) and Q(x, 0−, t) that same quantity for medium
2 (extrapolated if the perturbed interface is below z = 0). We
have also used ∂f0,z,eq/∂z = seq.

Since the 〈seq〉εeq term essentially cancels 〈s〉ε in the right-
hand side of Equation (20), we see that the question of the
vertical flux continuity amounts to that of Δf0,z (which is

3 Actually, the normal to the perturbed interface generally differs from the
z-axis (defined at equilibrium), such that the relevant component of the flux we
should consider is

[
f0,z − f0,x (∂ξz/∂x)

]
/
√

1 + (∂ξz/∂x)2, but this does not
differ from f0,z to linear order.
4 As regards s, it is nonzero only for the momentum equation, where it is
proportional to ρ and a fixed gravity; were we including self-gravity, we would
even be able to write it as the divergence of a flux − (g2/2 − gg)

)
/4πG so

that no source term would be present.
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actually what we will be using in the stability analyses).
Equation (20) may be rewritten as

[
Δf0,z

]1
2 = −ε

(
∂〈m0〉
∂t0

+
∂〈f0,x〉

∂x

)
. (24)

So the general condition that our perturbation must satisfy
in order to have continuity of Δf0,z across the interface is
that kε δf0,x � Δf0,z and εω δm � Δf0,z. If, for example,
δf0,x ∼ δf0,z, we obtain ε � 1/k, as might have been expected
intuitively.

Since application of this boundary condition to the mass
conservation Equation (1) does not bring any new information
as there is no flow across the interface, and since we will
be making approximations to the energy equations, the sole
important application (in this paper) of the above considerations
is the z component of the momentum Equation (9), where
m = ρvz +Fz/c

2, f = ρvzv+Pr ·ez +Pgez, and s = −ρg. Thus,
we have f0,z = Pzz

r0 + Pg , and the result will thus read

[Δf0,z]
1
2 = [

δPg + δPzz
r0 − ρgξz

]1
2 = 0. (25)

(From now on, we shall drop the “eq” subscripts from the
background quantities.) To linear order, we will always have
f0,x = 0, so the only important condition is εω δm � ρgξz. If
we take δm ∼ ρωξz, one obtains the condition ε � g/ω2. For
ω of order the classical Rayleigh–Taylor result (rederived in the
next section), this amounts to the constraint kε � 1, i.e., that
continuity holds as long as we restrict ourselves to considering
perturbations with wavelengths much larger than the thickness
of the interface. In the case where radiation forces are important,
this is likely to be of order the photon mean free path or the
radiation diffusion length, depending on the particular problem
we are considering.

3. THE CLASSICAL RAYLEIGH–TAYLOR INSTABILITY

We illustrate the above formalism with the classical
Rayleigh–Taylor instability, which also provides a benchmark
with which the upcoming results can be compared. In this sec-
tion, we therefore ignore radiation and consider the two media
to consist of constant-density (incompressible) fluids (as ap-
propriate for liquids). The perturbed mass conservation (here
incompressibility) and Euler equations then read

∂

∂z
δvz + ik δvx = 0 (26)

− iωρ δvz +
∂

∂z
δPg = 0 (27)

− iωρ δvx + ik δPg = 0. (28)

Solving Equation (28) for δvx and recalling that δvz = −iωξz,
Equations (26) and (27) yield

d

dz

[
ξ̂z

δP̂g

]
= A

[
ξ̂z

δP̂g

]
, (29)

with

A =
[

0 1
ρ

(
k
ω

)2

ρω2 0

]
. (30)

The matrix A here is independent of z in each medium. In
general, for a constant 2 × 2 matrix A (a circumstance we shall

encounter again), the solution for each individual medium (keep
in mind δψ̂ is not continuous across the interface) may be written
as

δψ̂(z) =
[

ξ̂z

δP̂g

]
= Cae

razδψ̂a + Cbe
rbzδψ̂b, (31)

where Ca,b are two constants of integration and δψ̂a,b are
two linearly independent eigenvectors of the matrix A, with
eigenvalues ra,b. In this simple case, the eigenvalues in question
are ra = k and rb = −k. In order for ξ̂ and δP̂g not to blow up
away from the interface, it is therefore necessary that Ca = 0
in the region z > 0 and Cb = 0 in the region z < 0. δψ̂ must
thus be an eigenvector of A, with eigenvalue −k in medium 1
(z > 0) and k in medium 2 (z < 0), respectively.

To obtain the dispersion relation, we apply the boundary
conditions at the interface, which in the absence of radiation
reads [

ΔPg

]1
2 = [δPg − ρgξz]

1
2 = 0. (32)

If we solve for δP̂g as a function of ξ̂z in the eigenvalue equation
for each medium and plug into Equation (32), we obtain

ω2 = gk
ρ2 − ρ1

ρ2 + ρ1
. (33)

The instability criterion is thus ρ1 > ρ2 as is well known.
The growth rate of the instability in the limit ρ1 � ρ2 is
Im(ω) = √

gk.

4. THE OPTICALLY THIN ISOTHERMAL REGIME

4.1. Formulation of the Equations

We now consider radiation, first in the optically thin isother-
mal regime. By optically thin we mean that we can neglect
attenuation and treat the radiation flux as constant and unper-
turbed in each of the two fluids, and by isothermal we mean
that each of the fluids is kept at a fixed temperature via its
interaction with the radiation. A discontinuity exists only be-
cause there is a chemical change at the interface between the two
fluids, and possibly a frequency shift in the radiation spectrum
at the interface as well (though the total frequency-integrated
flux is constant). As a result, the fluid on one side of the interface
interacts with radiation differently than fluid on the other side.

One possible astrophysical realization of this situation is an
ionization front, where fluid on one side of the interface is
ionized and hot, and the radiation is dominated by ionizing
photons, while fluid on the other side of the interface is neutral
and cold, and the radiation there is shifted to non-ionizing
frequencies. If radiation pressure forces dominate gas pressure
ones in the ionized gas, this gas is swept into a thin atmosphere
on the surface of the front. The downconversion of the ionizing
radiation to non-ionizing frequencies occurs mostly within this
thin transition region (Krumholz & Matzner 2009; Draine 2010),
and thus we can treat the situation as an interface problem.5

In this limit, it is most convenient to lump the gravitational
and radiation forces in Equation (2) together as

ρg + G0 = ρ
(

g +
κF

c
F
)

, (34)

5 Strictly speaking such an interface has a flow across it, since the amount of
ionized mass increases with time in such a configuration. However, for a
strong D-type ionization front the flux of mass and momentum across the
ionized-neutral interface is very small compared to the flux reaching the front,
and so we may safely neglect it.
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where we have ignored the difference between the comoving
and the reference frame, as appropriate in this regime in
the nonrelativistic limit. If, as we shall henceforth assume,
the specific opacity κF does not depend upon density, these
two forces are exactly equivalent to an effective gravity field
geff ≡ g + (κF /c)F = −geffez constant in each medium, but
which may differ, as mentioned above, between the two media.

The equilibrium density profile on both sides of the interface
is ρ ∝ exp (−geffz/a

2), where a is the sound speed, so the scale
height is a2/geff .

4.2. Stability Analysis

We now move on to the derivation of the dispersion relation
and the instability criterion. The underlying hydrodynamic
equations are the same as in the classical Rayleigh–Taylor case,
except that we replace g by geff , and we relax the assumption
of incompressibility. The perturbed equations analogous to
(26)–(28) in this case are

− iω δρ + δvz

∂

∂z
ρ + ρ

(
ikδvx +

∂

∂z
δvz

)
= 0 (35)

− iωρ δvz +
∂

∂z
δPg − geff δρ = 0 (36)

− iωρ δvx + ik δPg = 0. (37)

Eliminating δvx as in Section 3, using the isothermal equation
of state Pg = ρa2, and using the fact that ∂ρ/∂z = −(geff/a

2)ρ
and for the background state, we obtain

d

dz

[
ξ̂z
δρ̂

ρ

]
= A

[
ξ̂z
δρ̂

ρ

]
, (38)

with

A =
[

geff

a2

(
ka
ω

)2 − 1(
ω
a

)2
0

]
. (39)

The matrix A here is independent of z in each medium (as
in Section 3). The general solution will thus adopt the form of
Equation (31). Hence, we need to discuss the eigenvalues of A.
They satisfy the characteristic equation

λ2 − geff

a2
λ +

(ω

a

)2
− k2 = 0. (40)

Let us focus our attention on medium 1. For the velocity and
density perturbation to vanish for z → +∞, we require that, for
each eigenvector of A with corresponding eigenvalue λ1 along
which the solution has a nonzero projection,

Re(λ1) < min

(
0,

g1

a2
1

)
, (41)

where g1 and a1 are the value of geff and a in medium 1. However,
from the characteristic equation, we know that the average of
the real parts of the two eigenvalues is g1/2a2

1 , and therefore
one of the eigenvalues has a real part that violates the above
inequality, regardless of the sign of g1. Therefore, the solution
cannot have a nonzero projection along this eigenvector and
must be an eigenvector of A. The same argument can be repeated
in region 2 (one can, e.g., change the orientation of the z-axis
to be in the exact same configuration) and thus, δψ̂ (which is

not continuous at the interface) is an eigenvector of A in each
region, of eigenvalue λ1 and λ2.

To derive the dispersion relation, we now introduce the
boundary condition at the interface. Equation (32) continues
to hold if we replace g with geff , so

[ΔPg]1
2 = [δPg − ρgeffξz]

1
2 = 0. (42)

Applying this to the characteristic Equation (40), we have

1

a2
1

(
ω2

λ1
− g1

)
= 1

a2
2

(
ω2

λ2
− g2

)
. (43)

If we divide Equation (40) by λ2 and equate the resulting left-
hand sides for each medium, use of Equation (43) yields (since
λ1 �= λ2)

λ1λ2 = −k2, (44)

which implies that the two eigenvalues have real parts of op-
posite signs. While the constraint that the velocity perturbation
vanishes at +∞ and −∞ hereby reduces to Re(λ1) < 0, this
does not guarantee that the density perturbation will do so in a
medium where geff points away from the interface. In this case,
one needs to further satisfy6

(
Im(ω2)

)2
+ g2

eff

(
k2 − Re(ω2)

a2

)
> 0. (45)

Solving Equation (44) for λ2 and injecting into Equation (43),
one obtains the following quadratic equation:

(
a1λ1

k

)2

− h

ω2
λ1 + a2

2 = 0, (46)

with h ≡ g1a
2
2 − g2a

2
1 , from which one deduces that

sgn (Re(λ1)) = sgn((ρ1g1 − ρ2g2)Re(ω2)) (with ρ1,2 = ρ(0±)).
Therefore, if ρ1g1 > ρ2g2, ω cannot be real and the configu-
ration is unstable. Indeed, even if Im(ω) < 0, we simply need
to take the complex conjugate of Equations (38) and (39): we
then see that δψ̂∗ corresponds to a perturbation (still satisfy-
ing the boundary conditions) with the same wavenumber k but
with complex frequency ω∗, and which is therefore a growing
eigenmode. In a more coordinate-free manner (since upper and
lower are not well defined if the direction of the effective gravity
switches sign across the interface), the instability arises if the
effective weight per unit volume toward the interface overcomes
that away from it. A corollary is that, should geff point toward
the interface in both regions, the equilibrium is unequivocally
unstable.

In order to completely prove the sufficiency of the criterion,
we need to show that Re(ω2) < 0 (which ensures the inequality
(45)) is actually allowed by the dispersion relation. To do so,
we first solve for λ1 from Equation (46) after eliminating the
quadratic term with Equation (40). We obtain

λ1 = ω2 ω2 − (ka)2

g1ω2 − hk2
, (47)

6 We start from the inequality Re(λ1) < g1/a
2
1 (if we take the medium in

question to be medium 1), with λ1 obtained from solving the quadratic
Equation (40). We use the following useful relationships, holding for all
complex values of z: Re(

√
z) = √

(|z| + Re(z)) /2 and
Im(

√
z) = sgn(Im(z))

√
(|z| − Re(z)) /2; the latter equation also defines our

choice of branch cut in the complex plane.
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Figure 1. Growth rate s ≡ Im(ω) of the isothermal, optically thin radiative
Rayleigh–Taylor instability, calculated numerically from the dispersion relation
(48). The value shown corresponds to the fastest growing mode, i.e., to the largest
value of s. Growth rates and wavenumbers are nondimensionalized through
combinations of a ≡ (a2

1 + a2
2 )1/2 and g ≡ (g2

1 + g2
2)1/2, and as such depend

on two dimensionless parameters Δg/g = (g1 − g2)/g and the Atwood number
A = (ρ1 −ρ2)/(ρ1 +ρ2) (plus sign information, sgn(g1 +g2)) which are bounded
by 21/2 and 1 in absolute value, respectively. Here, we have fixed A = 0.5 (and
g1 + g2 > 0) and varied Δg/g with values (from top to bottom) 21/2, 1, 0.5, 0,
and −0.5.

(A color version of this figure is available in the online journal.)

with a ≡
√

a2
1 + a2

2 . Since the same formula holds for λ2 if
the subscripts “1” and “2” exchange roles (and thus h switches
sign), Equation (44) yields the desired dispersion relation

0 = ω8 − 2(ka)2ω6 + [(ka)4 + g1g2k
2]ω4

+ k4(g1 − g2)hω2 − k6h2, (48)

which is fourth order in ω2. As this polynomial always has
one negative real root (in terms of ω2), provided kh �= 0,
the sufficiency of the instability criterion ρ1g1 > ρ2g2 (or,
equivalently, h > 0) is proven. The polynomial has two real
roots, only one of which is physically allowed (the other being
opposite to leading order), asymptotically given by

ω2 = − hk

a2
+

h(g1 + g2)
(
a2

2 − a2
1

)
2a6

+ O

(
1

k

)

= − k
ρ1g1 − ρ2g2

ρ1 + ρ2

+
(g1 + g2) (ρ2 − ρ1) (ρ1g1 − ρ2g2)

2a2 (ρ1 + ρ2)2 + O

(
1

k

)
. (49)

In the long-wavelength limit, if the instability criterion is
satisfied, ω2 is given by (hk)2min (1/g1,−1/g2) if g1g2 > 0
and −√−g1g2k if g1g2 < 0. The instability is a “pure”
instability (in the sense that ω is purely imaginary). Figure 1
shows a calculation of the growth rate as a function of various
parameters. Note that Equation (49) agrees with earlier results
for compressible Rayleigh–Taylor instability without radiation
(Equation (23) of Shivamoggi 2008) if we take g1 = g2.

4.3. Sample Application: Radiation Pressure-driven H ii

Regions

We conclude this section with a sample application for the
case of the ionization front around an H ii region where radiation
pressure significantly affects the dynamics (e.g., the 30 Doradus
region; Lopez et al. 2010). Consider such a region powered
by a star cluster of luminosity L∗ expanding into a uniform
ambient medium of number density n, sweeping up ambient gas
as it expands. We will neglect the gravitational pull of the star
cluster, which is significant only early in the evolution. During
the radiation-dominated phase of the expansion, which applies
when the H ii radius r � r0, the radius of the H ii after a time t
is (Krumholz & Matzner 2009)

r ≈ r0(t/t0)1/2, (50)

where r0 = 11L7 pc, t0 = 50L
3/2
7 n

1/2
6 Myr, L7 = L∗/107 L�,

n6 = n/106 H nuclei cm−3, and for all other quantities we have
adopted the fiducial parameters of Krumholz & Matzner7 for
the embedded case. Our choice of luminosity and density is
motived by the example of the 30 Doradus H ii region, which is
driven by a central cluster of luminosity 1.7 × 107 L�.

The acceleration of the shell, and thus the effective gravita-
tional force toward the front in the frame comoving with the
front, is

g1 = − r0

4t2
0

(
t

t0

)−3/2

= − 1.1 × 10−12 L−2
7 n−1

6

(
t

t0

)−3/2

cm s−2, (51)

where positive sign corresponds to geff pointing toward the
cluster. Note that for simplicity we have assumed that the
material outside the transition region near the front is optically
thin to the (non-ionizing) radiation that emerges from inside it.
Within the shell, the opacity is dominated by dust (except near
the transition region, where the neutral fraction is high enough
for neutrals to contribute significantly). Radiation exerts a force
toward the front, inducing an outward force per unit mass in the
frame of the front given by

g2 = g1 − κF L

4πr2c
(52)

= −8.8 × 10−8κ3L
−1
7

(
t

t0

)−1/2

cm s−2, (53)

where κ3 = κF /103 cm2 g−1, and in the numerical evaluation
we have dropped g1 since it is small compared to g2. The
normalization of κF is chosen because ∼103 cm2 g−1 is a typical
dust opacity for radiation at the color temperature of an O star
(Draine 2003).

If we adopt sound speeds of a1 = 0.19 km s−1 and
a2 = 9.2 km s−1 in the neutral and ionized gas (appropriate for
molecular gas at 10 K and ionized gas at 7000 K, respectively),
ρ1g1 −ρ2g2 = (ρ1 −ρ2)g1 +ρ2κF F/c ≈ ρ2κF F/c > 0, and we
find that this configuration is unstable. The inertial force term
ρ1g1 points away from the interface and is therefore stabilizing,
and instability occurs only because it is overcome by the larger

7 Except that we take ψ = 3.3 and correct a factor of 2.2 error in
Equation (4) of Krumholz & Matzner; see Fall et al. (2010) for details.
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ρ2g2 term that is dominated by radiation force. In the short-
wavelength limit, which applies for all perturbations smaller
than r0, the growth rate is given by (using Equation (49))

Im(ω) ≈
√

hk

a
≈ a1

a2

√
g2k. (54)

Plugging in our fiducial values, we have

Im(ω) ≈ 0.08

(
κ3

L7

)1/2 (
t0

t

)1/4 ( r0

λ

)1/2
Myr−1, (55)

and we learn that modes with λ/r0 � 0.01 (λ � 0.1 pc for
our fiducial parameters) will be able to grow significantly in the
few Myr lifetime of the stars driving the H ii region. This may
explain the small-scale filamentary structures seen around the
edges of 30 Doradus and similar radiatively driven H ii regions.

5. THE “ADIABATIC” RAYLEIGH–TAYLOR
INSTABILITY

5.1. Formulation of the Equations

We now consider the stability of an interface where both
sides are optically thick (although we discuss how to relax
this requirement for the lower medium below) and in radiative
equilibrium. In this regime, the radiation field is a Planckian
locked at the gas temperature and the comoving frame pressure
tensor may be taken to be isotropic (scalar) and given by
Pr0 = (Er0/3)I3, with Er0 = aRT .4 Equation (8) may then
be approximated by

G0 ≈ −∇Pr0, (56)

which can be lumped with the gas pressure force. In mak-
ing this assumption, we require that the photon mean free
path 1/(κF ρ) be smaller than the wavelengths of the pertur-
bation and the characteristic lengthscale of variation of the
background equilibrium. The latter may be defined as L ≡
min (Ptot/ρg, Pr0c/κF F ) = min (1 + x, x/E) a2/g, where for
convenience we define

E ≡ κF F0

gc
(57)

x ≡ Pr0

Pg

. (58)

Physically, E measures the Eddington ratio of the background
state (i.e., the ratio of radiation force to gravitational force),
while x measures the relative importance of radiation and gas
pressure.

Considerable simplification of the problem is achieved if we
are allowed to drop ∇ ·δF0 in the energy equation (the Appendix
shows the system of equations without this approximation.)
Indeed, the energy Equation (10) can be rewritten as

ρT
Ds

Dt
= −∇ · F0, (59)

with s the specific entropy of the gas plus radiation fluid,

s = kB

m(γ − 1)
lnPgρ

−γ +
4Pr0

ρT
. (60)

Perturbation of Equation (59) yields

DΔs

Dt
= −∇ · δF0

ρT
. (61)

If we can actually disregard the right-hand side, we obtain

Δs = 0. (62)

Such an approximation, henceforth referred to as the “adiabatic
approximation,” holds in the limit of high optical thickness.
More precisely, when discussing the validity of the upcoming
calculation, we will require

δF0 � Etotδv. (63)

A possible astrophysical realization of this configuration is
the wall of a rarefied bubble blown by a massive star in
formation (e.g., Krumholz et al. 2009). The system is close to
the Eddington limit, so the gravity and luminosity of the central
star (at z = −∞) nearly balance. Medium 1 would correspond
to dust-laden gas infalling from the protostellar core, while
medium 2 would refer to the rarefied bubble. Flow of matter
across the interface is very slow and can therefore be neglected.

5.2. Stability Analysis

While the perturbed mass conservation equation is the same
as in Section 4 (Equation (35)), the two components of the
perturbed Euler equation read

− iωρδvz = − ∂

∂z
δPtot − gδρ (64)

− iωρδvx = −ikδPtot. (65)

The total pressure continuity at the interface is

[ΔPtot]
1
2 = [δPg + δPr0 − ρgξz]

1
2 = 0. (66)

We eliminate δvx through Equation (65) as previously and δρ
through the following formula (from the expression of s):

δρ

ρ
=
(

C
δPtot

Pg

− 1 + 4x

D

m

kB

δs

)
, (67)

combined with Equation (62). Here,

C = 1

D

(
12x +

1

γ − 1

)
(68)

D = 16x2 + 20x +
γ

γ − 1
. (69)

The ODE system in z then reduces to a 2×2 matrix A, defined
by

d

dz

[
ξ̂z

δP̂tot

]
= A

[
ξ̂z

δP̂tot

]
, (70)

with

A =
⎡
⎣ g

a2 C
1
ρ

((
k
ω

)2 − C
a2

)
ρ
(
ω2 + B

(
g

a

)2
)

− g

a2 C

⎤
⎦ , (71)
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where

B = 1

D

(
16(E − 1)x2 + (24E − 8)x

+ E

(
5 +

γ

γ − 1

)
− 1 +

γE

4(γ − 1)x

)
. (72)

Let us restrict attention to eigenmodes actually localized at
the interface, i.e., which vanish on a vertical lengthscale small
compared to L. This we will refer to as the “evanescence
condition.” Then, the matrix A above may be treated as a
constant in each region (we provisionally consider the adiabatic
approximation to hold in the lower region too). Since it is
traceless (and thus the two eigenvalues are equal and opposite),
ψ̂ must be an eigenvector of A (as it was in the previous section)
in each region, of eigenvalue λ1 and λ2 in media 1 and 2, where
the eigenvalue have negative and positive real parts, respectively.

Combining the first row of the eigenvalue equation for z = 0±
and the continuity of the pressure, one finds that

[
ρ

λ (ω/k)2 − g

1 − C (ω/ka)2

]1

2

= 0. (73)

More explicitly, the dispersion relation implied by the above
reads

ρ1

1 − C1 (ω/ka1)2

(
− g −

(ω

k

)2

√
−C1

a2
1

ω2 − C1(B1 − C1)g2

a4
1

+ k2 + B1

(
kg

a1ω

)2)

= ρ2

1 − C2 (ω/ka2)2

(
− g +

(ω

k

)2

√
−C2

a2
2

ω2 − C2(B2 − C2)g2

a4
2

+ k2 + B2

(
kg

a2ω

)2)
. (74)

This equation may (in principle) be manipulated to achieve
polynomial form, but with a degree of 20, and a loss of sign
information.

We now further specialize to the case where ρ2 � ρ1.
Equation (73) then reduces to

λ1 = g

(
k

ω

)2

. (75)

This equation we would have obtained more directly had we
set Δ1Ptot = Δ2Ptot = 0 and thus its validity is not endangered
if the adiabatic approximation is violated in medium 2, or if
the latter is optically thin, provided we consider this rarefied
medium to have an imposed radiation field. We observe that
ΔPtot = 0 combined with Δs = 0 entails ΔT = 0 and Δρ = 0
at the interface.

From Equation (75), one deduces that we must have Re(ω2) <
0 if g > 0, in order for the perturbation not to blow up for
z → +∞, and thus we have instability. Dropping henceforth the
“1” subscripts, the evanescence condition then translates to

ω

k
< a

√
min

(
1 + x,

x

E

)
. (76)

The dispersion relation follows from setting the right-hand side
of Equation (74) to zero:

− C

a2
ω6 +

(
C(C − B)g2

a4
+ k2

)
ω4 + B

(
kgω

a

)2

− g2k4 = 0,

(77)
which is third order in ω2 and always has a negative root (in terms
of ω2), whence the instability qualifies as a pure instability.

In the long-wavelength limit, the complex frequency con-
verges toward a finite value given by

ω2 =
(g

a

)2
(C − B)

=
(g

a

)2
{

1 − E

[
1 +

4x + 5 + γ

4(γ−1)x

16x2 + 20x + γ

γ−1

]}
, (78)

which amounts to a Brunt–Vaı̈sala frequency modified by
compressibility, corresponding to a positive growth at (and even
somewhat below) the Eddington limit. Indeed, the background
entropy gradient

ds

dz
= g

T

{
1 + 4x − E

[
5 + 4x +

γ

4(γ − 1)x

]}
(79)

is already negative at the Eddington limit, since a large radiative
flux corresponds to a large temperature gradient in the optically
thick limit.8 However, as we shall see in the next section, this
long-wavelength limit often violates the evanescence condition
(except for a nonzero range if B min (1 + x, x/E) � 1),
in which case this convective instability, although physically
sensible because of Equation (79), is not captured quantitatively
by the present calculation.

Since the evanescence condition allows one to neglect the
highest order term and the first term inside the parentheses of
the second one in Equation (77), we can provide the following
more explicit (approximate) formula:

ω2 = g

⎛
⎝− Bg

2a2
−
√

k2 +

(
Bg

2a2

)2
⎞
⎠ . (80)

For large wavenumbers, this coincides with the standard
Rayleigh–Taylor result, and indeed, physically, the instability
in question is really Rayleigh–Taylor in essence: this results
from the fact that, in the adiabatic approximation, the system
is completely mathematically equivalent to a single fluid with a
modified equation of state (total pressure law). We emphasize
that this “adiabatic Rayleigh–Taylor instability,” as we will call
it for ease of reference, is not an interface counterpart of the lo-
cal RHD instability studied by Blaes & Socrates (2003), where
acoustic disturbances are overstable, whereas perturbations are
here incompressible at the interface. Moreover, the instability
criterion of Blaes & Socrates (2003) involves the opacity law,
while opacity is actually absent in the equations under the adi-
abatic approximation, except as a constraint for their validity.
The domain of validity of the above calculation we shall now
discuss.

8 Since F0 < Er0c, we must have E/x < κF Pg/g, and by a large margin at
that if the diffusion approximation is to hold.
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Figure 2. Growth rate s ≡ Im(ω) of adiabatic Rayleigh–Taylor instability,
calculated numerically from the full dispersion relation (77) (solid line) with
the classic Rayleigh–Taylor result overplotted (dotted line). Shaded in yellow
is the region of the k–s plane where the evanescence constraint (the decay of
perturbations on lengthscales smaller than the background equilibrium scale
height) is violated, and in red that of breakdown of the adiabatic approximation
(conservation of specific entropy for gas plus radiation) breaks down, for a given
value of F0/Etota (which is here arbitrary, since the calculation does not depend
on F0). For completeness, we note that allowable growth rates and wavenumbers
are also bounded by radiative equilibrium and optical thickness requirements,
respectively. We have plotted the growth rates for three representative sets of
parameters E = 0, x = 1 (for which the growth rate vanish in the long-
wavelength limit), E = x = 1, and E = x = 100 (for which the growth
rate converges toward a finite value in the long-wavelength limit). In the short-
wavelength limit, the growth rates are identical to the classical Rayleigh–Taylor
value.

(A color version of this figure is available in the online journal.)

5.3. Validity of the Adiabatic Approximation

Since δPr0 = −ξz(dPr0/dz) = Eρgξz, the requirement (63),
which amounts to kc δPr0/κρ � Etotδvz, is equivalent to

ω

k
� F0

Etot
. (81)

Figure 2 shows the growth rate calculated, for example, pa-
rameters, with regions forbidden by the evanescence and
the adiabatic constraints shaded. As mentioned previously,
we see that the long-wavelength limit violates the evanes-
cence condition, while at large enough wavenumbers (k >
g (Etot/F0)2 min (1 + x, x/E) if we take ω2 ≈ −gk), the adi-
abatic approximation breaks down.

Constraints (76) and (81) are compatible (i.e., allow a range
of wavenumbers in which the above calculation is valid) if

F0 � Etota

√
min

(
1 + x,

x

E

)
. (82)

Inasmuch as it is a diffusion term that becomes important (in
the energy equation) as the adiabatic approximation breaks
down, it may be suspected that larger wavenumber distur-
bances are damped (yielding a maximum growth of order√

min (1 + x, x/E)gEtot/F0 = √
min (1 + x, x/E)κEtot/Ec).

5.4. Sample Application: Bubbles Around Massive Protostars

As a sample application, we consider radiation-driven bubbles
around massive stars, such as those seen in the simulations

of Krumholz et al. (2009) or Kuiper et al. (2010). In these
simulations, the radiation emitted by an accreting massive star
exerts a force stronger than gravity on the dusty gas around it
that is trying to accrete. Above and below the midplane of the
dense accretion disk, the radiation drives an expanding shell of
material into the surrounding protostellar core. Inside the shell
is an evacuated low-density region filled by radiation, while
outside there is dense swept-up dusty gas. We are interested in
exploring the stability of the interface between the low-density
bubble and the high-density shell, where the flow is near the
Eddington limit. Given the relatively sharp edges of the radiation
bubbles that form in the Krumholz et al. (2009) simulations, it
does appear that they lend themselves to an interface stability
analysis such as the one we present here. The continuous
medium case treated by Blaes & Socrates (2003) indeed does
not seem to be of relevance here, because the Krumholz et al.
simulations—which did not include magnetic fields—do not
satisfy a priori their local hydrodynamical instability criterion
(Equation (58) or (63) if one takes gas and radiation temperature
to be equal) as their implemented specific Rosseland mean
opacity is independent of gas density.

Consider a star of mass M∗ and luminosity L∗ that inflates a
bubble of radiation to a stellocentric distance R. The material in
the bubble wall has a density ρ and a temperature T. The mean
mass per particle is m = 2.33 mH and the gas has γ = 7/5,
appropriate for warm molecular hydrogen. The bubble wall is
defined by the condition E ≈ 1, and we also have

x = aRT 3m

3ρkB

= 950 T 3
s ρ−1

−16, (83)

where Ts = T/1100 K (where 1100 K is the dust sublimation
temperature in the simulations, and thus the temperature at the
edge of the bubble) and ρ−16 = ρ/10−16 g cm−3, a typical
density in the bubble wall in the simulations. First, we can check
that the compatibility condition (Equation (82)) for application
of the adiabatic approximation is satisfied. Doing so, we find

Etota
√

x

F0
≈ 50

T 5
s r2

4

L5ρ
1/2
−16

, (84)

where r4 = r/104 AU, L5 = L/105 L�, and we have chosen
normalizations for our parameters based on typical bubble
properties seen in the simulations. Since adiabaticity requires
that this ratio be � 1, we see that the condition is satisfied, and
instability is guaranteed since ρ2 � ρ1.

To obtain the growth rate, we plug into Equations (68), (69),
and (72) for B, C, and D, respectively, and using g = GM∗/R2,
and numerically solve the dispersion relation (77) to find the
fastest growing mode (i.e., the one with the largest negative
value of ω2). We do so for two example sets of parameters
in Figures 3 and 4. In each case we see that the instability
growth time is below 1 kyr, short compared to the ∼100 kyr
formation timescale for the star. At small wavelengths the
instability is likely to be suppressed by diffusion, since the
solution violates the adiabaticity constraint (81), but at large
wavelengths (in some cases comparable to the physical size
of the bubble) the constraint is satisfied and instability occurs.
This instability explains the behavior observed in the Krumholz
et al. simulations, where large modes grow unstable and allow
accretion onto massive stars that are formally super-Eddington.
Although we have argued above that photon bubble instabilities
were not relevant to interpret these simulations, this should not

9
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Figure 3. Radiation Rayleigh–Taylor instability growth rate for the bubble
around a massive star, as a function of the wavelength λ = 2π/k of the
perturbation, computed for the parameters Ts = 1, L5 = 1, ρ−16 = 1, r4 = 1,
and M = 100 M�. The blue line shows the computed growth rate, while
the pink and yellow regions indicate where the conditions for the instability
to be adiabatic (Equation (81) and evanescence (Equation (76) conditions are
violated.

(A color version of this figure is available in the online journal.)

Figure 4. Same as Figure 3, but for the parameters Ts = 1, L5 = 0.1, ρ−16 = 1,
r4 = 1, and M = 10 M�.

(A color version of this figure is available in the online journal.)

necessarily be extended to the “real-world” problem of massive
star formation, e.g., because we have ignored magnetic fields
(which have been detected observationally), unlike the local
simulations of circumstellar envelopes by Turner et al. (2007).
The relative importance of the photon bubble and the radiative
Rayleigh–Taylor instabilities (as well as other processes; see,
e.g., Zinnecker & Yorke 2007) for massive star formation has
yet to be determined.

6. SUMMARY AND CONCLUSION

We have studied the linear stability of a plane-parallel
superposition of two media separated by a thin interface, with
both gravity and radiation force, and given results for two
analytically tractable limiting cases. In these two cases, the
role of radiation in these Rayleigh–Taylor-like instabilities is
qualitatively different.

In the optically thin, isothermal limit, with a constant flux
and a constant specific opacity in each medium, assumed to be
chemically distinct, radiation acts like an effective gravitational
field, which generally is different on either side of the interface.
Linear instability occurs if the effective gravity per unit volume
toward the interface overcomes that away from it, which
in the case of a continuous effective gravity reduces to the
ordinary Rayleigh–Taylor criterion on the Atwood number. This
instability might contribute to the asymmetry of H ii regions.

In the opposite limit, if the upper medium is optically thick
and satisfies the approximation that the total specific entropy
of the gas plus radiation fluid is conserved, assuming the lower
medium to be rarefied, one finds that perturbations that van-
ish away from the interface more rapidly than the background
equilibrium scale height are unstable. In the short-wavelength
limit, the instability is indistinguishable from the classical
Rayleigh–Taylor result, since the adiabatic approximation re-
duces the system to a single fluid, where the radiation force is
part of the pressure force. Sufficiently close to the Eddington
limit, the growth rate converges toward a finite value in the long-
wavelength limit because of the negative entropy gradient. This
instability could pertain to massive star formation by accretion
beyond the Eddington limit (Krumholz et al. 2009).

Yet other regimes not studied in this work could be quali-
tatively different. For example, it is conceivable that the local
radiative hydrodynamic overstabilities in optically thick media
studied by Blaes & Socrates (2003) have an interface coun-
terpart, where radiation slips into underdense regions near the
interface. Those instabilities are not captured by the adiabatic
approximation, and investigation of how the instability behaves
beyond the adiabatic limit is left for future work.
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APPENDIX

THE MATRIX A IN THE OPTICALLY THICK REGIME WITHOUT THE ADIABATIC APPROXIMATION

The relevant perturbation equations are those mentioned in Section 5.2, plus the perturbed energy equation, diffusion approximation
closure, and radiative flux continuity:

− iωδEtot + δvz

∂

∂z
Etot + ∇ · δF0 + Htot∇ · δv = 0 (A1)

δF0 = − c

χ
∇δPr0 − F0δlnχ (A2)

[
δF0,z

]1
2 = 0, (A3)
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with χ ≡ κF ρ. The matrix A is 4 × 4 and is defined by

d

dz

⎡
⎢⎢⎣

ξ̂z

δP̂tot

δP̂r0

δF̂0z

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣

ξ̂z

δP̂tot

δP̂r0

δF̂0z

⎤
⎥⎥⎦ , (A4)

and given by

A =

⎡
⎢⎢⎢⎢⎢⎣

− ∂
∂z

lnρ 1
ρ

(
k
ω

)2 − 1
Pg

1
Pg

+ 1
4Pr0

0

ρω2 − ρg

Pg
ρg
(

1
Pg

+ 1
4Pr0

)
0

0 −χF0z

c

1+Θρ

Pg

χF0z

c

(
(1 + Θρ)

(
1
Pg

+ 1
4Pr0

)
− ΘT

4Pr0

)
−χ

c

iω
(

∂
∂z

Etot − Htot
∂
∂z

lnρ
)

iω
(

1
γ−1 − Htot

Pg

)
iω
(

3 − 1
γ−1 + Htot( 1

Pg
+ 1

4Pr0
)
)

− k2c
χ

0

⎤
⎥⎥⎥⎥⎥⎦ , (A5)

with Θρ ≡ ∂lnκF

∂lnρ |T and ΘT ≡ ∂lnκF

∂lnT |ρ .
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