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ABSTRACT

We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of
an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star
formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model
clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion
and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud.
Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with
typical surface densities of order 50–200 M� pc−2, in good agreement with observations of GMCs in the Milky
Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also
increase, implying that the linewidth–size relation constitutes an age sequence. Lastly, we compare our models to
observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement
between our model clouds and the observed relationship between H ii regions, young star clusters, and GMCs.

Key words: evolution – ISM: clouds – stars: formation – turbulence

Online-only material: color figures

1. INTRODUCTION

Giant molecular clouds (GMCs) are the primary reservoir
of molecular gas in the galaxy (Williams & McKee 1997;
Rosolowsky 2005; Stark & Lee 2006). Since the surface density
of star formation shows a strong correlation with the surface
density of molecular gas (Wong & Blitz 2002; Kennicutt et al.
2007; Bigiel et al. 2008; Schruba et al. 2011), GMCs must
also be the primary site of star formation in the Milky Way.
However, recent high-resolution observations have shown that
the Kennicutt–Schmidt law breaks down when the resolution of
an observation is finer than the typical length scales of GMCs
(Onodera et al. 2010; Schruba et al. 2010). Thus, in order to
develop a detailed theoretical understanding of the relationship
between star formation and molecular gas, it is necessary to first
understand the formation, evolution, and destruction of GMCs.

One stumbling block in this effort is the substantial disagree-
ment in the literature regarding both the formation mechanism
and typical lifetimes of GMCs (see, e.g., Goldreich & Kwan
1974; Zuckerman & Evans 1974; Blitz & Shu 1980; Ballesteros-
Paredes et al. 1999; McKee & Ostriker 2007; Murray 2011, and
references therein). Some authors suggest that GMCs form out
of bound atomic gas as a result of gravitational instability (Kim
et al. 2002, 2003; Kim & Ostriker 2006; Li et al. 2006b; Tasker
& Tan 2009), surviving as roughly virialized objects for many
cloud dynamical times (Tan et al. 2006; Tamburro et al. 2008).
In support of this picture is the observation that massive clouds
are found to be marginally bound, with typical virial parameters
of order unity (Heyer et al. 2001; Rosolowsky 2007; Roman-
Duval et al. 2010). Since supersonic isothermal turbulence is
found to decay via radiative shocks in one or two crossing times
(Mac Low et al. 1998; Stone et al. 1998; Mac Low & Klessen
2004; Elmegreen & Scalo 2004), this model must invoke a
mechanism to drive supersonic motions for the lifetime of a
cloud, which could be several crossing times. Possible turbulent
driving mechanisms include protostellar outflows (Norman &

Silk 1980; McKee 1989; Li & Nakamura 2006; Li et al. 2010),
H ii regions (Matzner 2002; Krumholz & Matzner 2009, here-
after KM09), supernovae (Mac Low & Klessen 2004), or, as
investigated here, mass accretion (Klessen & Hennebelle 2010;
Vázquez-Semadeni et al. 2010).

Accretion driven turbulence in molecular clouds has re-
ceived little attention in the literature. However, as Klessen &
Hennebelle (2010) point out, the kinetic energy of accreted
material can power the turbulent motions observed in molecular
clouds with energy conversion efficiencies of only a few percent.
While there has been no systematic study of the kinetic energy
budget of a molecular cloud formed via gravitational instability,
this problem has been examined in the context of the formation
of protogalaxies at high redshift. In one example, Wise & Abel
(2007) analyzed simulations of virializing high redshift mini-
halos, tracking the thermal, kinetic, and gravitational potential
energy of gas in protogalactic dark matter halos. In their models,
which included a nonequilibrium cooling model, gas collapsed
onto the halo and cooled quickly, causing turbulent velocities to
become supersonic. As pointed out by Wang & Abel (2008), this
means that the virialization process is a local one: gravitational
potential energy can be converted directly into supersonically
turbulent motions characterized by a volume-filling network of
shocks. The turbulence in turn provides much of the kinetic
support for the newly virialized gaseous component of the dark
matter halo. If a similar mechanism is at work as gas cools and
collapses onto GMCs then gravitational potential energy alone
may be sufficient to power turbulence in GMCs.

The most detailed simulations of simultaneously accreting
and star-forming GMCs were recently completed by Vázquez-
Semadeni et al. (2010). These numerical models included
a simplified subgrid prescription for stellar feedback by the
ionizing radiation of newborn star clusters and focused on the
balance between accretion and feedback in clouds formed via
thermal instability in colliding flows. Throughout the course
of these simulations, dense molecular gas condensed out of a
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warm atomic envelope, allowing a study of the interplay between
accretion and feedback in the simulated clouds. The resulting
clouds were able to attain a state of quasi-virial equilibrium, in
which the supply of gas from the ambient medium balanced the
formation of stars and ejection of gas from H ii regions. Due
to the idealized nature of the subgrid star formation feedback
prescription, in which all H ii regions were powered by a cluster
with the same ionizing luminosity, star formation feedback was
unable to act on the cloud as a whole but could reduce the
global star formation rate by destroying overdensities. Since
the simulation did not include star clusters with large ionizing
luminosities, the cloud as a whole could not be destroyed and star
formation would have eventually consumed all of the gas had
the simulation not been cut off. Even though the simulations
employed a highly idealized star formation prescription, the
computations still required substantial resources to complete
and only allowed insight into the evolution of a single cloud. It
seems that a computationally inexpensive model that includes
a somewhat more sophisticated treatment of star formation
feedback is called for.

In this work, we model the global evolution of GMCs
from their birth as low-mass seed clouds to their dispersal
after a phase of massive star formation. This is done using
an updated version of the semianalytical model of Krumholz
et al. (2006, hereafter Paper I). Using a virial formalism, we
compute the global dynamical evolution of a single cloud while
simultaneously tracking its energy budget. Model clouds form
stars, launch H ii regions, and undergo accretion from their
environments. We are able to investigate the role accretion
plays in maintaining turbulence in molecular clouds and directly
compare to observations of GMCs in the Milky Way and
nearby external galaxies. This work is complementary to the
simulations of Vázquez-Semadeni et al. (2010), since our
simplified global models allow us to survey a large variety of
GMCs at little computational cost while including a much more
sophisticated star formation feedback prescription. We are able
to capture model clouds with masses comparable to the most
massive clouds observed in the Milky Way and nearby galaxies,
allowing us to simulate the sites of the majority of star formation
in these systems (Williams & McKee 1997; Fukui & Kawamura
2010).

We proceed by describing the formulation and implementa-
tion of our GMC model in Section 2. Next, in Section 3, we test
our implementation of accretion. Following this, in Section 4
we perform full simulations and describe the general features
of our simulated clouds. In Section 5, we make comparisons to
observations, focusing on the scaling relations observed to hold
for GMCs as well as the high quality multiwavelength observa-
tions available for GMCs in the Large Magellanic Cloud (LMC).
Lastly, in Section 6, we discuss the limitations inherent in the
simplifying assumptions we make to derive the cloud evolution
equations.

2. GOVERNING EQUATIONS

The GMC evolution model described below allows us to
solve for the time evolution of the global properties of model
molecular clouds. In contrast with previous work, we follow the
flow of gas as it condenses out of the diffuse gas in the envelope
surrounding the GMC and falls onto the cloud. Employing
simplifying assumptions as well as the results of simulations
of compressible MHD turbulence, we derive a set of coupled
ordinary differential equations that govern the time evolution of
the cloud’s mass, radius, and velocity dispersion. Combining the

Figure 1. Schematic overview of the GMC model. A molecular cloud (black)
is embedded in a warm atomic envelope (dark blue). Cool atomic gas (light
blue) flows onto the cloud, where it condenses, recombines into molecules, and
mixes with the cloud. Newborn OB associations (blue stars) drive H ii regions
(orange) and eject ionized winds back into the ambient medium.

(A color version of this figure is available in the online journal.)

governing evolution equations with a set of initial conditions,
model parameters, and a model for the time dependence of
the mass accretion rate based on the gravitational collapse of
the GMC envelope, we can solve for the time evolution of the
cloud. Below, we give an overview of the model, discuss the
formulation of our numerical scheme, describe our parameter
choices, and give a brief description of our treatment of star
formation and our model for the GMC’s gas supply.

2.1. Model Overview

The model we employ below is based on the global GMC
model of Paper I, itself a generalization of the global model for
low mass star formation of McKee (1989), the Eulerian virial
theorem (EVT) of McKee & Zweibel (1992), and the model
for star-forming clumps of Matzner (2001). Employing a virial
formalism, we account for the dynamics and energy budget of
gas contained within an Eulerian volume, Vvir. We separate the
gas within Vvir into three species: virial material, a gaseous
reservoir, and a photoionized wind. A schematic representation
of the components of our model is presented in Figure 1.

By design, each of the three components has a straightfor-
ward physical interpretation. The first component, which we
label virial material, consists of two physically distinct subcom-
ponents: a molecular cloud and a warm atomic envelope that
encloses the cloud. The cloud is assumed to be cold (∼10 K),
molecular, and contained within a spherical volume of radius
Rcl. The ambient medium is composed of warm (∼103 K) and
diffuse atomic gas that encloses the cloud and extends beyond
the virial volume. The second component is a gaseous reser-
voir, which we assume is composed of cold (∼102 K) neutral
material that flows onto the cloud at free fall from beyond the
virial volume. The last component is an ionized wind made up
of hot (∼104 K) ionized gas ejected from the ionization fronts
of blister-type H ii regions. All three components are allowed
to mutually interpenetrate. We restrict interaction between the
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components to the transfer of mass between the accretion flow
and cloud as well as between the cloud and wind. Since the en-
velope and cloud are not allowed to interpenetrate, we formally
group the envelope and cloud together; this somewhat artificial
choice significantly simplifies the virial analysis.

We make use of two simplifying assumptions regarding the
distribution and flow of the virial material. First, we assume that
the virial material follows a spherically symmetric, smoothly
varying density profile. Second, we assume that the cloud is
homologous: the cloud expands, contracts, accretes, and sheds
mass in such a way as to always maintain the same smooth
density profile. We assume a density profile of the form

ρ(r) = ρ0

(
r

Rcl

)−kρ

for r � Rcl, (1)

where ρ0 is the density at the edge of the cloud and kρ

is assumed to be unity. This choice is consistent with the
Larson scaling relations observed in galactic (Larson 1981;
Solomon et al. 1987; Heyer et al. 2001, 2009) and extragalactic
(Mizuno et al. 2001; Engargiola et al. 2003; Rosolowsky 2007;
Bolatto et al. 2008; Hughes et al. 2010) GMCs. Our assumed
cloud density profile effectively averages over the clumpy and
filamentary internal structure and oblate shapes of observed
clouds. At r = Rcl, the density of the ambient medium is
assumed to smoothly transition from ρ0 to ρamb in a thin
boundary layer. We assume that the density of the ambient
medium is negligible compared to the density of gas in the
cloud, ρamb � ρ0. The density of the ambient medium remains
ρamb out to the virial radius.

Beyond assuming a density profile, we must also specify
the velocity structure of all three components of the model. We
follow Paper I in assuming that the velocity of the virial material
can be decomposed into a systematic and turbulent component,

v = Ṙcl

Rcl
r + vturb. (2)

We assume that vturb is randomly oriented with respect to
position so that turbulent motions carry no net flux of matter.
We make a similar assumption regarding the velocity structure
of the reservoir,

vres = vres,sysr̂ + vres,turb. (3)

The systematic component of vres is due to the gravitational
attraction of material within the virial volume

v2
res,sys

2
=

∫ r

∞
g · dr, (4)

while the random component is such that (M−1
cl

∫
Vcl

ρv2
res,turb

dV )1/2 = √
3σres. Here, g is the gravitational acceleration

and σres is the velocity dispersion of gas in the reservoir
feeding the accretion flow. Since the amount of material in
the accretion flow is determined by how fast it can fall into
the cloud, we must simultaneously determine both the density
profile and radial velocity of material in the accretion flow (see
Appendix B). Finally, for the wind material, we follow Paper I
in assuming

vw = v + v′
ej, (5)

where v′
ej = 2ciir̂ and cii is the ionized gas sound speed. We

follow McKee & Williams (1997) in choosing cii = 9.7 km s−1.

2.2. Momentum Equation

In Appendix A, we derive the EVT for a simultaneously
evaporating and accreting cloud,

1

2
Ïcl = 2(T − T0) + B + W − 1

2

d

dt

∫
Svir

(ρvr2) · dS

+ aIṀclRclṘcl +
1

2
aIM̈clR

2
cl + aIṀejRclṘcl

+
3 − kρ

4 − kρ

Rcl(Ṁejv
′
ej − ξṀaccvesc). (6)

Here, aI is a constant of order unity that depends on the
distribution of material in the cloud, Icl is the cloud moment
of inertia, T is the combined turbulent and thermal kinetic
energy of the cloud, T0 is the energy associated with interstellar
pressure at the cloud surface, B is the net magnetic energy
due to the presence of the cloud, W is the gravitational term
(equal to the gravitational binding energy in the absence of an
external potential; McKee & Zweibel 1992), the surface integral
is proportional to the rate of change of the moment of inertia
inside the bounding viral surface, Mcl is the cloud mass, Rcl is
the cloud radius, Ṁej is the mass ejection rate, Ṁacc is the mass
accretion rate, vesc = {2G[Mcl +Mres(Rcl)]/Rcl}1/2 is the escape
velocity at the edge of the cloud, and ξ is a dimensionless factor
we compute via Equation (A8) that depends on the depth of
the cloud potential well. The quantity ξvesc is the accretion rate
weighted average infall velocity. Precise definitions for T , T0,
B, and W are given in Paper I.

The EVT of a cloud without accretion or mass loss would
only contain the terms up to the surface integral. The next three
terms account for changes in the cloud moment of inertia due to
changes in the mass of the cloud, while the last term accounts
for the rate at which the recoil of inflowing and outflowing
mass injects momentum into the cloud. Inflows and outflows
are treated separately because material is ejected at a constant
velocity, but is accreted at a velocity that is a function of the
depth of the potential well of the cloud. The dimensionless factor
ξ appears due to this difference.

The mass of the cloud can only change via mass accretion or
ejection,

Ṁcl = Ṁej + Ṁacc. (7)

We assume that ejection of material can only decrease the
mass of the cloud and accretion can only increase the mass of
the cloud. Since stars may not follow the homologous density
profile we assume, we neglect the change in the cloud mass due
to star formation. We expect that the error incurred from this
assumption will be small, since stars make up a small fraction of
the mass of observed clouds (Evans et al. 2009; Lada et al. 2010)
and our assumed star formation law converts a small fraction of
the cloud’s mass into stars per free-fall time.

We follow Paper I in using the assumption of homology
and the results of simulations of MHD turbulence to evaluate
each term in the EVT in terms of constants and the dynamical
variables Rcl, Mcl, and σcl. In the end, we obtain a second-order
nonlinear ordinary differential equation in Rcl,

aIR̈cl = 3
c2

cl

Rcl
+ 3.9

σ 2
cl

Rcl
− 3

5
a′(1 − η2

B

)GMcl

R2
cl

− 4πPamb
R2

cl

Mcl

− aI
Ṁacc

Mcl
Ṙcl +

(
3 − kρ

4 − kρ

) (
Ṁej

Mcl
v′

ej − ξ
Ṁacc

Mcl
vesc

)
.

(8)
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Here,

a′ = 15 − 5kρ

15 − 6kρ

[
1 + (3 − 2kρ)

∫ 1

0
x1−kρ y(x)dx

]
, (9)

y(x) is the ratio of the mass of reservoir material to the mass of
cloud material contained within a normalized radius x = r/Rcl
(see Appendix B), and ηB is the ratio of the magnetic critical
mass to the cloud mass.

This equation governs the balance of forces acting on the
cloud as a whole. Each term corresponds to a single physi-
cal mechanism that can alter the radial force balance. The first
two terms are due to thermal and turbulent pressure support,
respectively. The third is due to a combination of gravitational
compression and magnetic support. The fourth is due to the con-
fining interstellar pressure. The fifth comes from the exchange
of momentum between the expanding cloud and infalling accre-
tion flow. Finally, the last term is due to a combination of the
recoil from ejected material and the ram pressure of accreting
material. Although the two parts of the recoil term have oppo-
site signs, Ṁej and Ṁacc have opposite signs as well: Ṁej < 0
and Ṁacc > 0. This implies that both the recoil due to launch-
ing wind material and the ram pressure of accreting reservoir
material tend to confine the cloud.

Letting Mcl,0, Rcl,0, and σcl,0 be the cloud mass, radius, and
velocity dispersion at t = 0 and defining the initial cloud crossing
time, tcr,0 = Rcl,0/σcl,0, we can define the dimensionless
variables M = Mcl/Mcl,0, R = Rcl/Rcl,0, σ = σcl/σcl,0, and
τ = t/tcr,0. Letting primes denote differentiation with respect
to τ , we can write Equation (8) in dimensionless form

R′′ = 3.9σ 2 + 3M−2
0

aIR
− ηG

a′M
R2

− ηP

R2

M

− M ′
accR

′

M
+ ηE

M ′
ej

M
− ηA

ξM ′
acc

(f MR)1/2
, (10)

where
M0 = σcl,0/ccl (11)

is the initial turbulent Mach number and we define the dimen-
sionless constants

ηG = 3
(
1 − η2

B

)
aIαvir,0

(12)

ηP = 4πR3
cl,0Pamb

aIMcl,0σ
2
cl,0

(13)

ηE =
(

5 − kρ

4 − kρ

)
v′

ej

σcl,0
(14)

ηA =
(

5 − kρ

4 − kρ

) (
10

αvir,0

)1/2

, (15)

where

αvir,0 = 5σ 2
cl,0Rcl,0

GMcl,0
(16)

is the initial nonthermal virial parameter (Bertoldi & McKee
1992). These constants are set by the ratios of various forces
acting on the initial state of the cloud. ηG is proportional to the
ratio of the initial magnetic forces to the initial gravitational
force, and ηP , ηE , and ηA are the ratios of the ambient
pressure force, the mass ejection recoil force, and the initial

accretion ram pressure force to the initial internal turbulent
forces, respectively.

Comparing Equation (10) with the corresponding equation
given in Paper I, we see that two new terms proportional to M ′

acc
have appeared. In practice, we find that, of the two terms, the
one proportional to ηA dominates, implying that the primary
direct impact of accretion on the radial force balance of the
cloud is to provide a confining ram pressure. We will see in the
next section that accretion also increases the turbulent velocity
dispersion, implying that the kinetic pressure term also increases
when accretion is included. The cloud radius is determined by a
balance between kinetic pressure and a combination of gravity,
accretion ram pressure, and wind recoil pressure. Thermal
pressure support is negligible.

We also note that although the ambient pressure term is of the
same form as in Paper I, we assume an observationally motivated
value for the ambient pressure, Pamb/kB = 3 × 104 K cm−3

(McKee 1999). This includes thermal and turbulent pressure
but neglects magnetic and cosmic ray pressure, since magnetic
fields and cosmic rays permeate both the cloud and the ambient
interstellar medium (ISM). We have also adjusted the ambient
pressure upward by a factor of two because GMCs form in
overdense regions of the ISM where the hydrostatic pressure
is higher than average. In Paper I, Pamb was chosen to be
artificially high to ensure that the cloud would start its evolution
in hydrostatic equilibrium. This choice was made to account
for the weight of the gaseous reservoir that was not explicitly
included. In practice, by choosing a lower value for Pamb, we
find that the ambient pressure term is subdominant for most
of the evolution of the cloud. This is expected, since we now
correctly account for the pressure of the reservoir through the
term proportional to ηA. Once accretion halts, the cloud is left out
of pressure equilibrium and must expand to match the ambient
pressure. This effect is seen most clearly in the second column
of Figure 3.

2.3. Energy Equation

In Appendix C, we derive the time evolution equation for the
total energy of the cloud,

dEcl

dt
= Ṁcl

Mcl

[
Ecl +

(
1 − η2

B

)
W

] − 4πPambR
2
clṘcl

+
GMclṀcl

Rcl
χ

(
1 − MclṘcl

ṀclRcl

)

+

(
3 − kρ

4 − kρ

)
Ṙcl(Ṁejv

′
ej − ξṀaccvesc)

+ ϕ

(
3

2
Ṁaccσ

2
res +

3

2
Ṁaccσ

2
cl + γ Ṁaccv

2
esc

)
− aIṀaccṘ

2
cl − 3Ṁaccσ

2
cl + Gcl − Lcl, (17)

where Gcl and Lcl are the rates of energy gain and loss due to
H ii regions and turbulent dissipation, respectively, Ecl is the total
energy due to the presence of the cloud (see Equation (C5)), σres
is the velocity dispersion of material that is being accreted, χ
is given by Equation (C8), γ is given by Equation (C15), and
ϕ is a free parameter that sets the amount of energy available
to drive accretion driven turbulence. The parameter ϕ is the
only adjustable constant in our model that is not constrained
by the results of simulations or observations and must be tuned
to reproduce the observed properties of clouds. The evolution
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of the cloud is very sensitive to ϕ and we justify our fiducial
choice, ϕ = 0.75, in Section 3.

Equation (17) governs the global energy budget of the cloud.
Each term has a straightforward physical explanation. The term
(Ṁcl/Mcl)Ecl is the rate of change of the cloud’s energy as mass
is advectively added to or carried away from the cloud. Similarly,
(Ṁcl/Mcl)(1 − η2

B)W is the rate of change of the gravitational
and magnetic energy due to changes in the mass of the cloud.
The next term is the rate at which external pressure does
compressional work on the cloud. This is followed by a term
that accounts for the gravitational work done on the cloud by the
reservoir as the cloud expands and contracts. The following term
represents the rate at which mass inflows, outflows, and external
thermal and turbulent pressure, respectively, do compressional
work on the cloud. The next term, which is proportional to
ϕ, represents the rate of kinetic energy injection via stirring
of turbulence by accreted material. This is followed by two
terms that are proportional to Ṁacc, which account for the fact
that in the frame comoving with the motions of material in the
cloud, accreted material is moving at the transformed velocity,
vres − v, different to the velocity of the reservoir material in the
rest frame, vres. Lastly, Gcl andLcl are the rate of energy injection
by star formation and the rate at which energy is radiated away,
respectively.

Noting that turbulent motions carry no net radial flux of matter
and recalling that we had set Bturb = 0.6Tturb, we may evaluate
Equation (C5) and obtain for the total cloud energy,

Ecl = 1

2
aIMclṘ

2
cl + 2.4Mclσ

2
cl +

3

2
Mclc

2
cl

−
[

3

5
a′ (1 − η2

B

)
+ χ

]
GM2

cl

Rcl
. (18)

Taking the time derivative of this expression, substituting into
Equation (17), and nondimensionalizing as in Section 2.2 yields
a time evolution equation for σ ,

4.8

aI
σ ′ = −R′R′′

σ
− ηG

MR′

R2σ
− ηP

R2R′

Mσ
+ ηE

M ′
ejR

′

Mσ

− ηA

M ′
accR

′

(MR)1/2σ
− M ′

accR
′2

Mσ
− (3 − 1.5ϕ)M ′

accσ

aIM

+ ηD

ϕςM ′
acc

Mσ
+ ηI

ϕγM ′
acc

f Rσ
+
G − L
aIMσ

, (19)

where ς = σres/σres,0,

G − L = Rcl,0(Gcl − Lcl)

Mcl,0σ
3
cl,0

, (20)

and we define the constants,

ηD = 3σ 2
res,0

2aIσ
2
cl,0

, (21)

ηI = 10

aIαvir,0
. (22)

Here, ηD is proportional to the ratio of the initial turbulent kinetic
energy in the reservoir and the initial turbulent kinetic energy in
the cloud and ηI is proportional to the ratio of the initial kinetic
energy due to the infall of the reservoir to the initial turbulent
kinetic energy of the cloud.

Since motions in GMCs are highly supersonic, the internal
structure of a typical cloud is characterized by strong shocks.
Because clouds have short cooling timescales, the shocks
present throughout GMCs must be radiative. The braking of
turbulent motions via radiative shocks has been extensively
studied in numerical simulations (see, e.g., Mac Low et al. 1998;
Stone et al. 1998) in which the turbulent dissipation timescale
is found to be tdis = Eturb/Ė = kλin/σcl where k is a constant of
order unity and λin is the characteristic length scale of turbulent
energy injection. The simulations of Stone et al. (1998) give
k = 0.48 and Eturb = 2.4Mclσ

2
cl. Motivated by this result and

using a scaling argument given by Matzner (2002) and McKee
(1989), we assume that the dimensionless rate of energy loss is
given by

L = ηv

φin

Mσ 3

R
. (23)

Here, ηv is a constant of order unity that depends on the nature
of MHD turbulence in the cloud and we assume φin = λin/4Rcl.
The factor of four in our expression for φin appears because the
largest wavelength mode supported by the cloud is λmax = 4Rcl,
corresponding to net expansion or compression of the cloud. We
make use of the simulations of Stone et al. (1998) to calibrate this
expression. For the run most resembling real molecular clouds,
we find ηv = 1.2. We follow Paper I in adopting φin = 1.0
below. This is motivated by the results of Brunt et al. (2009)
(but see also Ossenkopf & Mac Low 2002; Heyer & Brunt
2004) who compared the velocity structure of observed clouds,
where λin cannot be directly observed, with the velocity structure
of simulated clouds, where λin is known a priori and found
λin � Rcl.

Comparing our velocity dispersion evolution equation
(Equation (19)) to the corresponding equation given in Paper
I, we see there are four new terms proportional to M ′

acc. In
practice, we find that the primary effect of accretion on the en-
ergy balance of the cloud is to increase the turbulent velocity
dispersion via the terms proportional to ϕ. We will show in
Section 4.2 that the velocity dispersion is set by a balance be-
tween the decay of turbulence and energy injected by accretion
and star formation.

2.4. Star Formation and H ii Regions

Star formation is able to influence the evolution of the cloud
by ejecting mass and by injecting turbulent kinetic energy as
expanding H ii regions merge with and drive turbulent motions
in the cloud. The first mechanism is accounted for in our models
by including an ionized wind that decreases the mass of the cloud
and confines the cloud by supplying recoil pressure. The second
mechanism is accounted for by the Gcl term in Equation (17)
which represents the injection of energy by H ii regions.

Since we only know the global properties of the cloud, we
calculate the rate of star formation by making use of a power-
law fit to the star formation law of Krumholz & McKee (2005).
Stars form at a low efficiency per free-fall time, consistent
with observations of star formation in nearby molecular clouds
(Krumholz & Tan 2007). Individual star formation events occur
once a sufficient amount of mass has accumulated to form a star
cluster. Star cluster masses are found by drawing from a cluster
mass function appropriate for a single cloud (see Equation (44)
of Paper I). We then populate the cluster with individual stars by
picking masses from a Kroupa (2002) IMF. If the total ionizing
luminosity of the newborn star cluster is sufficient to drive the
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expansion of an H ii region, we begin to track the resulting
expansion.

Once a massive star cluster forms, it photoionizes gas in its
surroundings and drives the expansion of an H ii region. Paper I
tracked the expansion of individual H ii regions by assuming the
analytic self-similar solution for H ii region expansion worked
out by Matzner (2002). This solution uses the fact that once an
H ii region has expanded beyond the Strömgren radius, most
of the mass in the H ii region volume is in a thin shell of
atomic gas at a radius rsh from the center of the H ii region.
The ionized gas in the interior of the shell exerts a pressure on
the surface of the shell, causing the shell to accelerate outward.
The shell evolution equation derived from this analysis admits
a self-similar solution for the expansion of the H ii region. This
self-similar result does a good job of predicting the expansion
if there is no characteristic scale in the problem.

However, the introduction of radiation pressure leads to a
characteristic radius, rch, and time, tch. Radiation pressure is the
dominant force driving the expansion of the ionized bubble when
rsh < rch and gas pressure dominates when rsh > rch. KM09
modified the theory of Matzner (2002) to account for the effect
of radiation pressure in the initial stages of the expansion. They
derived an explicit functional form for rch and tch in terms of the
bolometric and ionizing luminosity of the central star cluster,
properties of the molecular cloud, and fundamental constants
(see Equations (4) and (9) in KM09). The numerical value of rch
and tch depends on the bolometric luminosity and the ionizing
photon flux of the central star cluster. The value we choose for
ftrap, a factor that accounts for the trapping and reradiation of
photons as well as the trapping of main-sequence winds within
the neutral shell, and φ, a factor that accounts for the absorption
of radiation by dust, are the fiducial values quoted by KM09.

Defining the dimensionless variables xsh = rsh/rch and
τsh = t/tch, the equation of motion for the shell reduces to
(KM09)

d

dτsh

(
x2

sh
dxsh

dτsh

)
= 1 + x

1/2
sh . (24)

This assumes that gas in the neighborhood of the H ii region
follows a density profile proportional to r−1, effectively placing
the H ii region in the center of the cloud. This accounts for the
fact that H ii regions form in overdense regions of the cloud. In
practice, we solve Equation (24) numerically to obtain xsh and
dxsh/dτsh and thus rsh(t) and ṙsh(t).

In a gas pressure driven H ii region, the force exerted on
the expanding bubble is twice the recoil force photoionized
material imparts on the cloud as it is ejected (Matzner 2002). The
photoevaporation rate can then be straightforwardly calculated
via Ṁej = −ṗsh/2cii. Here, psh is the momentum of the shell and
ṗsh is the force acting on the shell. In a radiation pressure driven
H ii region, the total force is given by the sum of the gas pressure
and radiation pressure forces, ṗsh = ṗgas + ṗrad. At early times,
when rsh � rch, the radiation force dominates, so ṗrad 	 ṗgas.
Thus, if we calculate the mass ejection rate from the total force
acting on the shell, we will overestimate the mass ejection rate
in a radiation pressure dominated H ii region. To correct for this
effect, we modify the analysis of Paper I by only including the
gas pressure force when we calculate the mass ejection rate,

Ṁej = − ṗgas

2cii

, (25)

where

ṗgas =
(

12Sφπ

αB

)1/2

2.2kBTiir
1/2
sh (26)

= 3.3 × 1028L39 x
1/2
sh dynes. (27)

Since we do not include the dynamical ejection of material as
H ii regions break out of the cloud surface, this is formally a
lower limit on the true mass ejection rate. Since clouds are
clumpy and somewhat porous (Lopez et al. 2011), we expect to
make little error by neglecting dynamical ejection.

Once the stars providing 50% of the total ionizing luminosity
of the central star cluster have left the main sequence, the H ii

region enters an undriven momentum-conserving snowplow
phase. When the expansion velocity of the H ii region is
comparable to the turbulent velocity dispersion, we assume that
the H ii region breaks up and contributes turbulent kinetic energy
to the cloud. H ii regions can merge with the cloud during either
the driven or undriven phases. If the radius of the H ii region is
greater than the radius of the cloud and the expansion velocity
of the shell is greater than the cloud escape velocity, we say the
H ii region disrupts the cloud and end the global evolution.

If an H ii region merges with the cloud at time t = tm when
its radius is rsh = rm, the rate of energy injection from a single
H ii region is given by

Gcl = 1.6ηET1(tm)

(
rm

Rcl

)1/2

δ(t − tm). (28)

Here T1(tm) = pshσcl/2, ηE parameterizes the efficiency of
energy injection, δ(t) is the Dirac delta function, and the
factor of 1.6 arises because magnetic turbulence is slightly
sub-equipartition compared to kinetic turbulence. The factor
(rm/Rcl)1/2 accounts for the more rapid decay of turbulence
when the driving scale is smaller (see Paper I).

2.5. Mass Accretion

Consistent with the analysis in Appendix B, we treat the
reservoir as a gravitationally unstable spherical cloud undergo-
ing collapse. The cloud is primarily composed of atomic gas
in both warm and cold phases. We expect that as the reservoir
collapses, material that is accreted onto the cloud will cool and
become molecular. We approximate that the reservoir has ap-
proximately constant surface density, Σres. To find an upper limit
on the mass accretion rate, we can assume that the reservoir is
undergoing collapse in the limit of zero pressure. It is straight-
forward to show that the resulting accretion rate onto the central
condensation is given by

Ṁacc,ff = 256

π
G2Σ3

rest
3. (29)

Since the estimate for the accretion rate given in Equation (29)
does not take into account pressure support, it is likely an
overestimate of the true accretion rate. Indeed, McKee &
Tan (2003) considered the inside out collapse of equilibrium
polytropic molecular cloud cores and, in the case of kρ = 1,
found the same scaling with time and surface density but a
substantially lower coefficient. Tan & McKee (2004) argued
that subsonic inflow was a more realistic initial condition than
the static equilibrium solution used by McKee & Tan (2003).
Hunter (1977) found the set of solutions for the collapse of an
isothermal sphere starting at an infinite time in the past. The
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solution with an infall velocity of about ccl/3 corresponds well
to the results of the simulation of the formation of a primordial
star by Abel et al. (2002). Tan & McKee (2004) adopted this
solution, noting that it has an accretion rate that is 2.6 times
greater than that for a static initial condition (Shu 1977) when
expressed in dimensionless form. Our problem is quite different
from Hunter’s, since an equilibrium density gradient kρ = 1
corresponds to γ = 0 (McKee & Tan 2003) rather than Hunter’s
γ = 1. Nonetheless, we assume that the accretion rate for our
problem is also 2.6 times greater than that for a static initial
condition and find

Ṁacc,TM04 = 10.9 G2Σ3
rest

3. (30)

Clearly, this result is uncertain, and magnetic fields introduce
further uncertainty. Fortunately, we find that varying the numer-
ical coefficient in Equation (30) does not affect the qualitative
nature of the results discussed below.

To model the effect of a finite gas supply, once the total mass
of gas that has fallen onto the cloud exceeds the total mass of
the reservoir, Mres, we set Ṁacc = 0. When comparing with
galactic populations of GMCs, we set Mres = 6 × 106 M�,
the observed upper mass cutoff for GMCs (Williams & McKee
1997; Fukui & Kawamura 2010). This may underestimate the
true upper mass since fragmentation may lead to a range of
reservoir masses. Since 6 × 106 M� GMCs are relatively rare,
we set Mres = 2 × 106 M� for the runs presented in Figure 3
and Table 2 as ∼106 M� is a more typical GMC mass.

If we also assume that the atomic reservoir is such that the
virial parameter of the reservoir, αres, is constant with radius,
we find

σres = 0.4α1/2
res GΣrest. (31)

Fiducially, we take αres = 2.0, corresponding to a marginally
gravitationally bound reservoir. This parameterization assumes
that the reservoir satisfies an internal linewidth–size relation
of the form σres(r) ∝ r1/2. The increase of the reservoir
velocity dispersion with time reflects that material originates
at increasingly larger radii.

The precise normalization of the mass accretion law is a
major source of uncertainty in our modeling. Since the length
scales over which material is swept up into the cloud through
the reservoir approach galactic dynamical scales (Dobbs et al.
2011; Tasker 2011), a more complete treatment would require
tracking the gas dynamics from the scale of an entire galaxy
down to the scale of the reservoir. This would also allow us
to self-consistently model the end of accretion onto the cloud
instead of assuming that mass accretion cuts off abruptly. In a
forthcoming paper, we plan to add our molecular cloud models
to a simulation of gas dynamics in a galactic disk to model the
gas reservoir for a population of GMCs.

Although the normalization of the accretion law is somewhat
uncertain, we can make use of observations of the gas content of
nearby galaxies to estimate Σres, the surface density of gas in the
reservoir feeding the cloud. The average H i surface density in
the inner disk of the Milky Way is observed to be approximately
constant, ∼8 M� pc−2 (Kalberla & Dedes 2008). Beyond a
galactocentric radius of ∼10–15 kpc, the H i surface density
decreases exponentially with radius; however, few GMCs are
observed in the outer Milky Way (Heyer et al. 2001) or beyond
the optical radius of nearby galaxies (Engargiola et al. 2003;
Bigiel et al. 2008). Similar saturated mean H i surface densities
are observed in nearby galaxies, except in the central regions
of some galaxies where the ISM becomes fully molecular and

the H i surface density goes to zero (Leroy et al. 2008). For
this reason, we adopt Σres = 8 M� pc−2 as a fiducial atomic
reservoir surface density typical of the bulk ISM of local star-
forming galaxies.

Although the mean atomic surface density in nearby galaxies
is as low as 8 M� pc−2, the atomic ISM is observed to be clumpy,
with overdense regions reaching significantly higher surface
densities. These regions may be associated with spiral arms,
as in M 33 (Thilker et al. 2002), or driven by gravitational
instability, as in the LMC (Yang et al. 2007). For this reason, we
also explore the behavior of molecular clouds accreting from
higher surface density gas, Σres = 16 M� pc−2. Since massive
molecular clouds are universally observed to be associated with
high surface density gas (Wong et al. 2009; Imara et al. 2011), we
expect there to be marked differences between molecular clouds
that accrete from high surface density gas and clouds that accrete
from low surface density gas. Although the gas will be primarily
atomic at a gas surface density of 16 M� pc−2, we expect that
there should be some diffuse “dark” molecular gas (Krumholz
et al. 2008; Wolfire et al. 2010). Thus, the reservoir is not
necessarily completely atomic, but instead primarily composed
of atomic gas.

2.6. Numerical Scheme

Equations (7), (10), and (19) constitute a system of coupled,
stochastic, nonlinear ordinary differential equations in M, σ , and
R. We solve these equations by using a straightforward Euler
integration with an adaptive step size. The precise order in which
we update cloud properties is as follows. After calculating the
instantaneous star formation rate, we calculate M ′ by summing
the components due to ionized winds and mass accretion. Next,
we calculate the rate of turbulent dissipation using Equation
(23). We then calculate ζ , the ratio of the mass doubling time
to the free-fall time, using Equation (B5). We use ζ to calculate
a′, f, and ξ by interpolating on precomputed tables. Since σ ′
depends on R′′, we first evaluate R′′ using Equation (10) and
then compute σ ′ using Equation (19). Next, we check if R, M,
or σ will change by more that 0.1% using the current value of
the time step. If we detect a change larger than this, the time
step is iteratively recalculated using a new time step half the
size of the original until the fractional changes in R, M, and σ
are smaller than 0.1%. Next, we calculate R, M, and σ at the
new time step, update the state of any H ii regions created in
previous time steps, and then create new H ii regions using the
procedure described in Section 2.4. If the time step did not need
to be reduced, we increase the size of the time step by 10%.

Cloud evolution can be terminated if one of three conditions
is satisfied.

1. The time step is less than 10−8 of the current evolution time
(i.e., Δτ/τ < 10−8).

2. The mean visual extinction falls below AV,min = 1.4,
corresponding to the CO dissociation threshold found by
van Dishoeck & Black (1988).

3. An H ii region envelops and unbinds the cloud, i.e., if
rsh > Rcl and ṙsh > vesc.

We use the phrases collapse, dissociation, and disruption, re-
spectively, to describe these scenarios. The dissociation thresh-
old depends on the ambient radiation field. However, Wolfire
et al. (2010) found that the CO dissociation threshold varies by
only a factor of two when the intensity of the ambient radiation
field varies by an order of magnitude, so we neglect variations
in the radiation field and, for consistency with Paper I, adopt
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Table 1
Fiducial Parameters

Parameter Value Reference

αvir,0 2.0 Blitz et al. (2007)
Σcl,0 60 M� pc−2 Heyer et al. (2009)
cs

a 0.19 km s−1 . . .

cii

b 9.74 km s−1 McKee & Williams (1997)
ηB 0.5 Krumholz & McKee (2005)
ηE 1.0 Paper I
ηv 1.2 Paper I
φin 1.0 Brunt et al. (2009)
ϕ 0.75 This work
AV,min 1.4 van Dishoeck & Black (1988)
αres 2.0 . . .

Pamb/kB 3 × 104 K cm−3 McKee (1999)
Mcl,0 5 × 104 M� . . .

Notes.
a Assumes T = 10 K and μ = 2.3.
b Assumes T = 7000 K and μ = 0.61.

AV,min = 1.4. The surface density corresponding to the disso-
ciation threshold depends on the assumed dust to gas ratio and
thus on the metallicity. For solar metallicity, a surface density of
1 g cm−2 corresponds to AV = 214.3. Since we use a dissocia-
tion threshold based on CO rather than H2 to define the end of
the cloud’s life, we may miss the further evolution of a diffuse
molecular cloud where most of the carbon is neutral or singly
ionized but the hydrogen is still molecular.

These halting conditions probably oversimplify the true end
of a cloud’s evolution due to our assumption of spherical
symmetry and homology. For the case of collapse, it is more
likely that the cloud would undergo runaway fragmentation
rather than monolithic collapse. In the case of dissociation,
even if the mean surface density drops below the point where
CO can no longer remain molecular, that does not preclude
the possibility that overdense clumps might retain significant
amounts of CO. Finally, for the case of disruption, even if an H ii

region delivered a large enough impulse to unbind the cloud, it
may simply be displaced as a whole, or be disrupted into multiple
pieces which would then evolve independently. It is also likely
that if the cloud is disrupted while still actively accreting, the
cloud would inevitably recollapse since it is unlikely that an
H ii region would have enough kinetic energy to unbind the
reservoir.

Since we must necessarily use simple criteria to halt the cloud
evolution, our estimates of cloud lifetimes presented below are
strictly lower limits to the true lifetime of a cloud. Both the
disruption and dissociation criteria do not preclude the presence
of overdense clumps that may survive the destruction events.
However, our estimates of cloud lifetimes are appropriate for the
lifetime of a single monolithic cloud. Any overdense clumps that
do survive would represent entirely different clouds that would
evolve independently of each other.

2.7. Input Parameters

To complete our model, we must choose a set of parameters
and initial conditions to fully determine our cloud evolution
equations. In Table 1, we have listed the various fiducial
parameters we have chosen for our model as well as the
references from which we derive our choices. Some of these
parameters are motivated by observations, others by the results
of simulations, and one parameter (ϕ, see Section 3) is left free.

The cloud initial conditions can be computed given an initial
cloud mass along with our assumed value for αvir,0 and Σcl,0.
Matzner & McKee (2000) and Fall et al. (2010) found that
protostellar outflows are energetically important when Mcl �
104.5 M�. Above this mass, they contribute negligibly. Thus,
if we choose a low initial mass, we may be underestimating
the amount of turbulent energy injection by star formation
feedback at early times since we do not account for protostellar
outflows. For this reason, we choose a relatively large initial
mass, Mcl,0 = 5 × 104 M�. For reference, given our choice of
initial virial parameter and surface density, this corresponds to
Rcl,0 = 11.5 pc, σcl,0 = 2.7 km s−1, and tcr,0 = 4.1 Myr. While
this is larger than some local molecular clouds like Taurus or
Perseus, it is still much smaller than the mass of the molecular
clouds where most of the star formation in local galaxies occurs.

3. MODELS WITH ACCRETION ONLY

Before beginning full simulations using our method, we must
first test the behavior of our model as we vary the free parameter
ϕ introduced in the derivation of the energy evolution equation.
For this purpose, we have run our model with star formation
feedback disabled. The only physical mechanisms modeled in
these tests are accretion and the decay of turbulence. Since there
is no random drawing from the stellar or cluster IMF in these
runs, the results are fully deterministic. These simplified models
allow us to understand how the results depend on our choice for
the tunable parameter ϕ and provide physical insight that will
be useful in interpreting the results of the more complex and
stochastic runs that include feedback.

The energetics and virial balance of our cloud models depend
critically on the parameter ϕ. Broadly speaking, ϕ controls the
amount of turbulent kinetic energy injected by the accretion
flow. For the case ϕ = 0 the accretion flow contributes the
minimum possible amount of turbulent kinetic energy. This
means that accreted material cannot contribute significantly
to turbulent pressure support, since the accreted material is
maximally subvirial. With this choice, as the cloud accretes
mass, its energy budget must become increasingly dominated
by self-gravity. Once this happens, internal pressure support is
negligible and the cloud must inevitably undergo gravitational
collapse.

Alternatively, we could set ϕ > 0. If ϕ is small, the turbulent
kinetic energy of a newly accreted parcel of gas would still be
small compared to the gravitational potential energy of the gas
parcel. Thus, once the cloud is primarily composed of accreted
gas, the cloud will undergo gravitational collapse, although on
a slightly longer timescale than in the ϕ = 0 case. At some
larger value of ϕ, accretion contributes a net positive amount
of energy to the cloud, balancing out the negative gravitational
potential energy of the newly accreted material. The cloud will
still collapse with this choice since turbulent motions quickly
decay away. As ϕ is increased further, we should eventually find
that at some critical value, ϕ = ϕcrit, accretion drives turbulent
motions with sufficient vigor to avoid the gravitational collapse
of the cloud entirely.

The results of test runs with different choices of ϕ are
presented in Figure 2. The time evolution of the cloud surface
density, virial parameter, velocity dispersion, and cloud radius
is plotted for a selection of clouds evolved with different choices
for ϕ. Each line depicts the time evolution of a cloud property
and is color coded by the value of ϕ chosen. It is obvious that
the value of ϕ can strongly influence the resulting evolution.
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Figure 2. Cloud surface densities (bottom row), virial parameters (second row),
velocity dispersions (third row), and radii (top row) for 400 different runs, each
with a different choices for ϕ, as indicated in the color bar. Star formation was
turned off for all runs.

(A color version of this figure is available in the online journal.)

If ϕ = 0, the cloud experiences global collapse in a free-
fall time. Initially, the cloud velocity dispersion decreases,
but inevitably the gravitational term in the velocity dispersion
evolution equation, proportional to −R′/R2, becomes dominant,
and the velocity dispersion begins to diverge. The fact that σcl
diverges as Rcl goes to zero is an artifact. In reality, the highest
density regions would independently fragment and collapse and
the cloud would never undergo a monolithic collapse.

As we increase ϕ, the cloud is able to support itself against
collapse for longer periods. Near ϕ = 0.5, accretion brings in
net positive energy but turbulent dissipation wins out, and the
cloud still eventually collapses. At a critical value, ϕcrit � 0.8,
accretion driven turbulence alone is sufficient to hold up the
cloud against collapse for as long as the reservoir continues
to supply mass to the cloud. The mass, radius, and velocity
dispersion of the cloud increase in such a way as to maintain a
constant virial parameter and surface density.

Since we expect that gas motions driven by accreting dense
clumps should be at least somewhat correlated with the motions
of the infalling clumps, we do not expect a physically realistic
choice of ϕ to be very close to zero. On the other hand, a
model in which a cloud is entirely supported by accretion driven
turbulence seems to preclude the possibility that a significant
fraction of the kinetic energy of infalling gas is radiated away
in an accretion shock. For this reason, we rule out as unphysical
runs with ϕ ≈ 0 and ϕ � ϕcrit. The precise value of ϕ we will
use in our models that include star formation below depends
on uncertain details of the accretion and mixing of infalling
gas. In practice, we find that even with the energy provided
by star formation feedback, clouds generally undergo free-fall
collapse or reach unreasonably high mean surface densities once
they are primarily composed of accreted material if we choose
ϕ � 0.7. Since clouds are generally not observed to be in global
free-fall collapse, we instead pick a value somewhat higher
that this, ϕ = 0.75, for our fiducial models. This splits the
difference between accretion contributing a negligible amount
of energy to the cloud when ϕ = 0.5 and accretion contributing

the maximum possible amount of energy when ϕ = 1. We
will see below that our fiducial choice broadly reproduces the
observed properties of molecular clouds in the Milky Way and
nearby galaxies.

4. MODELS WITH ACCRETION AND STAR FORMATION

Feedback by the action of ionizing radiation emitted by
newborn stellar associations alters the evolution of a GMC
after the birth of the first massive star cluster. The source of
energy provided by massive star formation can be a significant
component of the energy budget of the entire cloud. For the
remainder of this paper, we consider models with the star
formation prescription described in Section 2.4 turned on.

4.1. Overview of Results

We have run two sets of simulations with parameters chosen to
model conditions in interarm (Σres = 8 M� pc−2) and spiral arm
(Σres = 16 M� pc−2) regions. Besides the two different choices
for the ambient surface density, all other parameters and initial
conditions are identical. The time evolution of a subsample of
runs is plotted in Figure 3 and average properties of the full
sample are presented in Table 2.

The most striking result of our comparison is that the final
mass of our model molecular clouds depends on the assumed
mass accretion history. Clouds evolved with a low accretion
rate, corresponding to conditions in interarm regions, grow
larger than 105 M� less than 30% of the time and very rarely
reach masses comparable to the most massive GMCs in the
Local Group. The vast majority of clouds are instead disrupted
by an energetic H ii region within a few crossing times. The
clouds attain a quasi-equilibrium configuration in which mass
accretion is roughly balanced by mass ejection. Clouds avoid
global collapse by extracting energy from the expansion of H ii

regions.
The evolution of the clouds is characterized by discrete energy

injection events due to the formation of a single massive star
cluster. Once a cluster forms, it ejects a wind and launches an
H ii region. The recoil force of launching the wind leads to an
overall confining ram pressure, causing the radius to decrease
and the surface density to increase. Once the star cluster burns
out, the H ii region expansion decelerates and then stalls. When
the expansion velocity of the H ii region is comparable to the
cloud velocity dispersion, the kinetic energy of the expanding
H ii region is converted into turbulent kinetic energy, causing a
spike in the turbulent velocity dispersion. The turbulent kinetic
energy exponentially decays away over a crossing time, but the
temporarily elevated velocity dispersion increases the turbulent
kinetic pressure, causing the cloud to expand. This leads to
oscillations in the cloud radius and mean surface density. On
the whole, clouds that are not quickly disrupted by H ii regions
are able to survive as quasi-virialized objects for several crossing
times before they are either disrupted or dissociated.

Clouds evolved with a higher ambient surface density, typical
of spiral arm regions in the Milky Way, exhibit significantly
different behavior. Since these clouds accrete mass much faster
than in the low surface density runs, they are not able to
attain steady state between accretion and ejection of mass.
While some clouds are still destroyed by energetic H ii regions
early in their evolution, over 90% of these clouds were able
to accrete their entire reservoir after 25 Myr. At this point,
the clouds are generally quite massive, ∼1.5 × 106 M�. Once
accretion is shut off, the clouds are no longer confined by
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Figure 3. Cloud surface densities (bottom row), star formation rates (second row), virial parameters (third row), velocity dispersions (fourth row), and radii (top row)
for a set of 40 clouds. Half of the clouds were evolved with a low surface density, characteristic of the bulk of the atomic ISM, and the other half were evolved with
a high surface density, characteristic of overdense regions in the ISM. The two different choices of Σres are marked at top. Accretion was shut off once 106 M� of
material had been processed through the accretion flow. The ambient surface density, and thus the accretion history, strongly affects the resulting cloud evolution.

Table 2
Average Properties of Model Clouds

Σres 〈tlife〉 〈Mmax〉 〈Mejected〉 〈ε〉 〈εff〉 Ndissoc Ndisrupt

(M� pc−2) (Myr) (M�) (M�) (%) (%)

8 26.2 ± 29.8 (3.7 ± 4.9) × 105 (3.4 ± 5.3) × 105 5.0 ± 2.3 1.9 ± 0.5 308 692
16 52.6 ± 16.8 (1.3 ± 0.4) × 106 (1.2 ± 0.4) × 106 8.3 ± 2.0 1.9 ± 0.4 687 313

accretion ram pressure and lose a portion of the power that
had been driving turbulence. For this reason, the velocity
dispersion decreases in response to the loss of accretion driven
turbulence, and the cloud radius expands in response to the
loss of the confining pressure provided by accretion. Before
the cloud can dissociate, it attains pressure balance with the
ambient ISM at a lower velocity dispersion and larger radius.
For the next 20–30 Myr, the clouds evolve in much the same
way as the massive cloud models considered in Paper I. The
clouds can be supported against self-gravity for many dynamical
times by forming stars and launching H ii regions. Particularly
energetic H ii regions can disrupt the clouds and excursions
to low surface density can dissociate the clouds. The lifetime
of these clouds is thus set by the amount of time they can
accrete. This may imply that spiral arm passage times set GMC

lifetimes, although further work is needed to clarify this tentative
conclusion.

The star-forming properties of the two sets of models are
also somewhat different. In the interarm case, the star formation
efficiency,

ε = M∗,tot∫ tlife
0 Ṁaccdt

, (32)

is only 5% while in the high surface density case, ε is somewhat
larger, approximately 8%. This can be entirely attributed to the
difference in lifetimes between the two sets of models. In the low
surface density case, most clouds are only able to survive one
or two crossing times and thus can only convert a small fraction
of their mass into stars before they are dissociated or disrupted.
The clouds evolved with a high ambient surface density are able
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Figure 4. Number of clouds plotted as a function of |EH ii/Eacc|. In regions of low ambient surface density, accretion and star formation are in equipartition, while in
regions of high ambient surface density, accretion dominates the energy budget.

(A color version of this figure is available in the online journal.)

to survive for many crossing times and convert a larger fraction
of their gas into stars. An even larger fraction is ejected via
photoionization. However, for both models, the star formation
efficiency per free-fall time,

εff = Ṁ∗
Mcltff

, (33)

is low, around 2%. This is not surprising, as a low star formation
efficiency per free-fall time is one of the basic assumptions of
our model.

4.2. Energetics of Star Formation Feedback
Versus Mass Accretion

GMCs exhibit highly supersonic turbulence. There is no
agreement in the literature about what drives these motions,
which numerical models of compressible MHD turbulence
indicate should decay if left undriven. Some authors suggest that
the primary energy injection mechanism is some sort of internal
star formation feedback process, such as protostellar outflows
(Li & Nakamura 2006; Wang et al. 2010), expanding H ii regions
(Matzner 2002), or supernovae (Mac Low & Klessen 2004).
Others suggest that turbulence is driven externally via mass
inflows (Klessen & Hennebelle 2010). Comparing the amount
of energy injected by different forms of star formation feedback,
Fall et al. (2010) found that at typical GMC column densities,
the dominant stellar feedback mechanism is H ii regions driven
by the intense radiation fields emitted by massive star clusters.
Using our models, we can compare the importance of accretion
relative to H ii regions in the energy budget of GMCs.

To find the total energy injected by accretion, we make use of
our knowledge of the total energy of the cloud as a function of
time. At the end of time step j we use Equation (18) to calculate
both the total cloud energy, Ecl,j , as well as what the cloud
energy would have been if we had set Ṁacc = 0 for that time
step, Ecl|Ṁacc=0. The difference,

Eacc,j = Ecl,j − Ecl|Ṁacc=0, (34)

is the total energy added by accretion during that time step. The
total energy injected by accretion over the cloud’s lifetime is

just the sum of the contributions of each time step,

Eacc =
∑

j

Eacc,j . (35)

The energy injected by H ii region i, EH ii,i , can be found by
integrating the rate of energy injection by a single H ii region
with respect to time. This is,

EH ii,i = 1.6ηET1,i

(
rm,i

Rcl,i

)1/2

, (36)

where rm,i is the radius of H ii region i when it merges with the
parent cloud and Rcl,i is the radius of the cloud as a whole when
H ii region i merged with the cloud. To find the total energy
injected by H ii regions over the cloud’s lifetime, we simply
sum up the contributions due to individual H ii regions,

EH ii =
∑

i

EH ii,i . (37)

The ratio |EH ii/Eacc| indicates the relative importance of
star formation feedback to accretion driven turbulence to the
global energy budget of the cloud. If |EH ii/Eacc| < 1, accretion
dominates the energy injection; similarly if |EH ii/Eacc| > 1, star
formation feedback is the primary driver of turbulence.

The results of this comparison are plotted for both choices of
the ambient surface density in Figure 4. We find that H ii regions
and accretion contribute approximately equal amounts of energy
in the low surface density runs, while accretion dominates in
the high surface density runs. In the low surface density runs,
stochastic effects can be important, particularly for clouds that
do not last much longer than a crossing time. Thus, in some
runs, star formation feedback can contribute significantly more
energy than accretion, while in others star formation feedback
is negligible. In the runs evolved with a high ambient surface
density, star formation feedback is subdominant, although not
completely negligible, in the vast majority of runs.

It is worth pointing out that this result depends on the
precise value of ϕ we choose to evolve the clouds with. If ϕ
is lower, accretion contributes less energy, and star formation
can dominate the energy budget. If ϕ is higher, star formation
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becomes completely negligible, and the amount of kinetic
energy injection is controlled by the mass accretion rate. Since
clouds collapse when we choose ϕ much lower than our
fiducial value, and shocks in molecular gas tend to be strongly
dissipative, we do not expect the “true” value of ϕ to be much
different than our fiducial value. We thus conclude that one of
three cases must hold. Star formation may be dominant, but only
marginally so. Accretion may also be dominant, but again, only
marginally. It is also possible that star formation and accretion
contribute roughly equal amounts of energy. In all three cases,
neither star formation or accretion is truly negligible.

5. OBSERVATIONAL COMPARISONS

5.1. Larson’s Laws

GMCs are observed to obey three scaling relations, known as
Larson’s laws (Larson 1981; Solomon et al. 1987; Bolatto et al.
2008). In their simplest form, Larson’s laws state the following.

1. The velocity dispersion scales with a power of the size of
the cloud. Subsequent observations have shown that this
power is about 0.5 (σcl ∝ R0.5

cl ).
2. The mass of the cloud scales with the square of the radius

(constant Σcl).
3. Clouds are in approximate virial equilibrium (αvir of order

unity).

These laws are not independent; any two imply the other. At
a minimum, an acceptable theoretical model for GMCs should
agree with both the scaling and the normalization of the Larson
scaling relations observed in real clouds. We have already seen
that clouds maintain approximate virial equilibrium as well
as roughly constant surface densities, but we have yet to see
whether the normalization of the Larson scaling relations for
our models agrees with the observed Larson scaling relations.

5.1.1. Equilibrium Surface Densities

GMCs, both in the Milky Way (Larson 1981; Solomon et al.
1987) and in nearby external galaxies (Blitz et al. 2007; Bolatto
et al. 2008), exhibit surprisingly little variation in surface
density. For the Solomon et al. (1987) sample of Milky Way
clouds, this was found to be 〈Σcl〉 = 170 M� pc−2. More
recent and sensitive observations find lower values, closer to
〈Σcl〉 = 50 M� pc−2, in the Milky Way (Heyer et al. 2009)
and in the LMC (Hughes et al. 2010), although these latter
estimates depend on a highly uncertain correction for non-LTE
line excitation and the CO to H2 conversion factor, respectively.
Using heterogenous data from several nearby galaxies, Bolatto
et al. (2008) attempted to extract cloud properties in a uniform
manner and found a typical surface density of 85 M� pc−2 but
with significant variation from galaxy to galaxy.

Variations in the mean GMC surface density are seen when
comparing samples from different galaxies. However, within a
single galaxy there is little variation (Blitz et al. 2007). These
variations are usually attributed to differences in the CO-to-H2
conversion factor from galaxy to galaxy (Bolatto et al. 2008),
a quantity which may depend on metallicity and the interstellar
radiation field (Glover et al. 2010) as well as variations in
turbulent pressure and radiation field in the ambient ISM. In
our runs, we also recover roughly constant surface densities
(see the second row from the bottom of Figure 3).

In Figure 5, we have reproduced a figure from Blitz et al.
(2007) that depicts observational results for CO luminosities
and cloud radii for a sample of clouds in the outer Milky Way

l

l

l

Figure 5. Cloud CO luminosity plotted as a function of cloud radius. CO
luminosities are found by assuming XCO = 4×1020 cm−2 (K km s−1)−1. Solid
lines of constant surface density are plotted for 10, 100, and 1000 M� pc−2

for reference. The dashed line of constant surface density corresponds to our
assumed dissociation threshold. The outputs from a set of 2000 runs were used,
with Σres = 8 and 16 M� pc−2 and Mres = 6 × 106 M�. Colors indicate the
amount of time model clouds tend to occupy a position in LCO–Rcl parameter
space. Symbols denote observed CO luminosities and cloud radii for galactic
(points) and extragalactic (open shapes) GMCs. See Blitz et al. (2007) and
references therein for details of the observations.

(A color version of this figure is available in the online journal.)

as well as from several samples of extragalactic GMCs. To
compare against this compendium of results, we calculate CO
luminosities for our model clouds by assuming a constant CO-
to-H2 conversion factor,

LCO = Mcl

8.8 M�
K km s−1 pc2 (38)

as in Rosolowsky & Leroy (2006). This formula accounts
for the presence of helium and assumes a constant H2-to-CO
conversion factor, XCO = 4 × 1020 cm−2 (K km s−1)−1, twice
the value derived for molecular clouds within the Solar circle
using observations of gamma-ray emission (Strong & Mattox
1996; Abdo et al. 2010). We choose this value to be consistent
with Blitz et al. (2007), who find, using this value of XCO, that
all of the GMCs in their sample have virial masses comparable
to the masses implied by their CO luminosity to within a factor
of two.

With our fiducial initial conditions, model clouds in our
sample begin their lives in the bottom left-hand corner of
Figure 5 at Rcl ≈ 10 pc. As they accrete and expand, clouds
move toward the upper right-hand corner. Clouds end their
evolution either through disruption by a single H ii region or by
passing below the molecular dissociation threshold, indicated
by a dashed line in Figure 5. Offsets in the distribution of
column densities from galaxy to galaxy and from the simulated
clouds can be attributed to variations in XCO and uncertainty
in identifying a unique radius for observed clouds (Blitz et al.
2007) that have nonzero obliquity (Bertoldi & McKee 1992).
Accounting for variations in XCO, there is striking agreement
between the observed distribution of molecular clouds and our
sample of simulated clouds.

The models exhibit a kink in their evolution when the reservoir
is exhausted and accretion is shut off. For this reason, there
are no clouds with LCO > 105.6 K km s−1 pc2. Once accretion

12



The Astrophysical Journal, 738:101 (20pp), 2011 September 1 Goldbaum et al.

l

l

l

Figure 6. Cloud velocity dispersion plotted as a function of cloud radius. The
dash-dotted line is the galactic linewidth–size relation found by Solomon et al.
(1987), σv = 0.72R0.5. Symbols and color coding are the same as in Figure 5.

(A color version of this figure is available in the online journal.)

is shut off, the clouds decrease in mass for the remainder of
their evolution. This kink is somewhat artificial since we have
assumed a fixed reservoir mass and a smooth accretion history.
A more sophisticated model for the reservoir including a range
of reservoir masses would exhibit a continuous spectrum of
kinks, broadening the region of parameter space explored by
the models, particularly for LCO < 104.5 K km s−1 pc2.

The models also exhibit two distinct favored strips of param-
eter space along which they tend to evolve. This corresponds
to the two different equilibrium column densities picked out by
the two different choices of Σres. This behavior is clearly seen
in the second panel from the bottom of Figure 3. The fact that
Σcl is sensitive to Σres follows from dimensional analysis.

5.1.2. Linewidth–Size Relation

We next compare our simulated clouds with the
linewidth–size relation observed to hold among GMCs as a pop-
ulation (Bolatto et al. 2008). In Figure 6, we plot the region of
velocity dispersion–size parameter space explored by our cloud
models, along with the observed velocity dispersions and sizes
for a selection of Local Group GMCs. We are able to reproduce
the power law, scatter, and the rough normalization in the ob-
served linewidth–size relation. This conclusion is unsurprising,
since we have already seen that our simulated clouds maintain
roughly constant virial parameters and surface densities as they
evolve. It is worth noting that, for our simplified model for the
environment of a GMC, the linewidth–size relation corresponds
to an age sequence. Clouds that live toward the left-hand side of
the diagram are younger than clouds that live toward the right.
It is possible that this conclusion is an artifact of choosing a
single reservoir mass. Clouds accreting from a population of
reservoirs with a continuous spectrum of masses may blur this
effect somewhat. We plan to revisit this in future work in which
we will model the global ISM of a galaxy simultaneously with
the evolution of a population of GMCs.

There is a small offset when comparing the locus of extra-
galactic and outer Milky Way clouds with our models, although
there is good agreement between our models and the scaling
found by Solomon et al. (1987). For a subset of the observa-
tional sample, particularly the SMC clouds, it is possible that
the metallicity of the gas in the clouds is so low that CO is no

longer a good tracer of the bulk of the molecular gas (Leroy
et al. 2007). Since our models assume perfect sphericity and
the observed radius of a prolate or oblate spheroid will always
be smaller than the corresponding spherical radius (Bertoldi &
McKee 1992), it is also possible that the radii predicted by our
models overpredict the corresponding observed cloud radius by
0.1 or 0.2 dex. Lastly, it could be that we overpredict the vari-
ous pressures due to photoionization and accretion by assuming
spherical symmetry. In reality, the wind and accretion ram pres-
sure may not necessarily be perfectly spherically symmetric,
leading to a reduction in the overall confining pressure and an
increase in the radius.

5.2. Evolutionary Classification

The LMC is home to one of the best-studied samples of
GMCs in any galaxy. The LMC’s disk-like geometry and face-
on orientation offer little ambiguity in distance measurements,
with the most accurate measurements giving dLMC = 50.1 kpc
(Alves 2004). A large quantity of high-quality multiwavelength
data has been obtained for the entire disk of the galaxy. In
particular, the NANTEN 12CO (J = 1 → 0) surveys and high-
resolution follow-up from the MAGMA 12CO (J = 1 → 0)
survey (Hughes et al. 2010) have mapped the molecular content
of the entire disk of the LMC and identified 272 clouds that
together contain 5 × 107 M� of molecular gas. When combined
with multiwavelength archival observations of star formation
indicators, these CO data constitute a snapshot in the evolution
and star formation history of a population of GMCs.

Kawamura et al. (2009) used the NANTEN CO J = (1 → 0)
data, along with complementary Hα photometry (Kennicutt &
Hodge 1986), radio continuum maps at 1.4, 4.8, and 8.6 GHz
(Dickel et al. 2005; Hughes et al. 2007), and a map of young
(<10 Myr) clusters extracted from UBV photometry (Bica et al.
1996) to investigate the ongoing star formation within GMCs in
the LMC. These authors found a strong tendency for H ii regions
and young clusters to be spatially correlated with GMCs. Using
this association, the GMCs in their sample were separated into
three types. Type 1 GMCs are defined to be starless in the sense
that they are not associated with detectable H ii regions or young
clusters, Type 2 GMCs are associated with H ii regions, but not
young clusters in the cluster catalog, and Type 3 GMCs are
associated with both H ii regions and young clusters. 24% of the
NANTEN sample were classified as Type 1, 50% as Type 2, and
26% as Type 3.

Assuming that GMCs and clusters are formed in the steady
state and assuming that young clusters not associated with
GMCs are associated with GMCs that have dissipated, one
can infer from the NANTEN population statistics that GMCs
spend 6 Myr in the Type 1 phase, 13 Myr in the Type 2
phase, 7 Myr in the Type 3 phase, and then dissipate within
3 Myr. This accounting implies GMC lifetimes of approximately
20 to 30 Myr. In support of the claim that the GMC classification
scheme constitutes an evolutionary sequence, the authors note
that, among the resolved GMCs in the NANTEN survey,
Type 3 GMCs are on average more massive, have larger turbulent
line widths, and have larger radii. However, there is significant
scatter in the Type 3 GMC sample and the mass and size
evolution are well within their error bars.

In order to correct for extinction, which might obscure Hα
emitting H ii regions, radio continuum maps at three, well-
separated frequencies were used to identify obscured H ii

regions via their flat spectral slopes. However, no H ii regions
were identified in the radio continuum data that were not present
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in the Hα maps, leading the authors to conclude that the Hα
data were unaffected by obscuration. No similar analysis was
performed to estimate obscuration of young star clusters. No
attempt was made to correct for the varying sensitivities in the
different radio maps, allowing for the possibility that some H ii

regions were detected at 1.4 GHz but below the sensitivity limit
at 4.8 and 8.6 GHz.

There are several observational biases inherent in the GMC
classification scheme described above. The first is the probable
existence of star clusters and H ii regions located either behind
or within GMCs from our viewpoint. High dust extinction along
these sightlines would mask some young clusters from detection
in the Bica et al. (1996) star cluster sample. This could lead to
an overestimate of Type 2 GMCs relative to Type 3 GMCs.
Another possible bias is the use of the Bica et al. (1996) star
cluster catalog. Clusters in this catalog were targeted for UBV
photometry based on brightness and association with emission
nebulae. It is possible that some young clusters were missed
in this catalog and no attempt is made by Kawamura et al.
to correct for the completeness of the cluster catalog. This
would also lead to an overestimate of Type 2 GMCs relative to
Type 3 GMCs.

In order to make a quantitative comparison between our
models and the evolutionary classification of Kawamura et al.
(2009), we employ a few simple prescriptions to generate
synthetic V-band, Hα, and radio continuum photometry for
the clusters and H ii regions in our simulated clouds. First, we
calculate the V-band luminosity of our simulated clusters using
the synthetic photometry of Lejeune & Schaerer (2001). For
5 M� � M∗ � 15 M�, the photometry is based on the evolution
tracks of Schaerer et al. (1993). For massive stars, M∗ � 15 M�,
the synthetic photometry is based on the high mass-loss models
of Meynet et al. (1994). For both sets of synthetic photometry,
we assume Z = 0.008. Following Parravano et al. (2003), we
approximate variations in LV for these stars by only considering
the main-sequence evolution and taking LV = 〈LV 〉MS, the
mean luminosity on the main sequence. Since the stellar
evolutionary tracks give the luminosity at a discrete set of
masses, we interpolate by fitting a broken power law between
stellar masses with evolutionary tracks.

We calculate the Hα luminosity of our model H ii regions via
(McKee & Williams 1997)

LHα = 1.04 × 1037S49 erg s−1, (39)

where S49 is the ionizing luminosity of the central star cluster in
units of 1049 photon s−1. This is larger than the empirical relation
by a factor of 1.37 to correct for the absorption of ionizing
radiation by dust grains. Lastly, we find the radio continuum
luminosity of our simulated H ii regions via (Condon 1992)

Lν = 1.6 × 1023S49

(
1 GHz

ν

)
erg s−1 Hz−1. (40)

We also account for the reduction in flux from H ii regions that
would be larger than the beam size used by Dickel et al. (2005)
by performing a geometric correction and assuming that all H ii

regions are placed at the center of the model beam.
To assign our simulated GMCs an evolutionary classification,

we extract the ionizing luminosity and V-band luminosity of
the brightest cluster in the GMC as a function of time. Using
the ionizing flux, we calculate the expected Hα and radio
continuum luminosity via Equations (39) and (40), respectively.
For the V-band and Hα luminosity, we correct for the foreground

extinction, AV = 0.25, toward the LMC (Schlegel et al. 1998),
ignoring extinction internal to the LMC but external to the cloud
under consideration. To identify the GMC as either Type 2
or Type 3, we use either an Hα luminosity cutoff or a radio
continuum flux cutoff corresponding to the detection limits
quoted by Kawamura et al. (2009). For Hα, we say that an H ii

region is detected if LHα � 1036 erg s−1. For radio continuum,
we say an H ii region is detected if the radio flux at a distance of
50 kpc would be greater than 0.7 mJy beam−1 for a beam size of
20′′ at 4.8 GHz (Dickel et al. 2005). Finally, we say that a GMC
is Type 3 if it meets the criteria just described for Hα or radio
continuum as well as if LV � 1.66 × 104 L�, the completeness
limit quoted by Bica et al. (1996) for the young cluster
sample.

Since there are bound to be clusters that are located both
behind and within clouds along our line of sight, we also correct
the synthetic V-band and Hα photometry for extinction by the
GMC. This is done by assuming that star clusters form at random
locations within clouds. We calculate the optical depth to the
star cluster via τν = κνξμRcl where κν is the mean dust opacity
through the cloud, ξμ is the depth into the cloud in units of
the cloud radius, and μ is the angle between the normal to
the surface of the cloud and the line of sight (Krumholz et al.
2008). For this purpose, we use a Milky Way extinction curve
and assume an LMC dust-to-gas ratio whereby a column of
1 g cm−2 corresponds to AV = 107. In the visual passbands we
are concerned with here, the Milky Way and LMC extinction
curves are nearly identical.

We have run a set of 2000 cloud models, 1000 each evolved
using two different values of the ambient surface density,
Σres = 8 and 16 M� pc−2. All other parameters are as in
Table 1. The resulting cloud models encompass the entire
observed range in cloud masses reported by Fukui et al. (2008).

To directly compare to the observed distribution of GMC
types we perform simulated observations using a Monte Carlo
scheme. Since the observations are inherently weighted by
the GMC mass function, we first generate cloud masses by
drawing from a power-law GMC mass spectrum with a slope
of −1.6, a minimum mass of 5 × 104 M� and a maximum
mass of 5 × 106 M� (Fukui & Kawamura 2010). Once a mass
is generated, we find all time steps where model clouds have
masses within 0.1 dex of the randomly selected mass. Within
this sample of time steps, we calculate f1, f2, and f3, the fraction
of Type 1, Type 2, and Type 3 GMCs, respectively. At the same
time, we calculate t1, t2, and t3 the average age of clouds in each
GMC Type bin. We generate 104 Monte Carlo realizations, from
which we construct probability distributions for f1, f2, f3, t1, t2,
and t3.

The results of this comparison are presented in the top row of
Figure 7. In the figure, the lines connect the median of the Monte
Carlo probability distributions while the error bars encompass
the 10th to the 90th percentile. We are able to reproduce the
observed distribution of Type 1, 2, and 3 GMCs as observed
by Kawamura et al. (2009). In particular, using both detection
limits, we find that the majority of clouds are detected as
Type 2 GMCs, and relatively fewer clouds are detected as Type 1
and 3 GMCs. Interestingly, in the bottom panel of the figure,
we find that, on average, the GMC classification scheme does
constitute an age sequence in that Type 2 GMCs tend to be
somewhat older than Type 1 clouds. Type 3 GMCs in turn tend
to be older than Type 2 clouds. On the other hand, the spread
in cloud ages within each bin is well within the error bars,
indicating that the GMC type classification is not necessarily a
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Figure 7. Fraction of GMC lifetime spent as a Type 1, 2, and 3 GMC as
defined by Kawamura et al. (2009) (diamonds, top row), and average age
of GMCs in each classification bin (bottom row). The asterisks indicate the
median of the GMC type probability distribution functions generated using a
Monte Carlo analysis described in the text. The error bars encompass the 10th
to 90th percentile interval of the probability distribution functions.

(A color version of this figure is available in the online journal.)

strict evolutionary sequence: older clouds can be classified as
Type 1 and younger clouds can be classified as Type 3.

This can be seen more clearly in Figure 8, where we plot
the classification of a selection of GMCs as a function of time.
We see that, for some clouds, the classification scheme does
represent an evolutionary sequence. In these runs, the cloud
starts as a Type 1 GMC, begins forming star clusters, evolves
into a Type 2 GMC, and then forms massive OB association
and becomes a Type 3 GMC. However, we also see that a cloud
can quickly form a massive OB association and be classified as
a Type 3 GMC early on and only later be classified as a Type
2 GMC. Alternatively, a cloud may happen to not form any
massive clusters late in its evolution, causing a massive and old
cloud to be identified as a Type 2 or 1 GMC late in its evolution.
Finally, there are clouds which exhibit no discernible pattern
in their histories, more or less randomly transitioning between
GMC classifications throughout their lives. This may explain
the presence of massive (∼106 M�) Type 1 “young” GMCs in
the samples of Kawamura et al. (2009) and Hughes et al. (2010).

6. CAVEATS AND LIMITATIONS

6.1. Implications of the Assumption of Homology

Assuming that clouds evolve homologously is the main lim-
itation of our model. We make the assumption of homology to
significantly simplify the equations governing the evolution of
the cloud. Given the assumption of homology, our equations
of motion follow rigorously from the local equation of mo-
mentum and energy conservation. A more complex cloud struc-
ture destroys the relative simplicity of the model and would
require computationally expensive hydrodynamical simulations
to model accretion in detail.

Homology constrains the cloud to always maintain the same
shape and degree of central concentration. This is equivalent
to setting time derivatives of the structure constant, aI, to zero.
This might be a problem if changes of the moment of inertia of
clouds occur primarily by changing the shape of the cloud rather
than through overall expansion or contraction. It might also be
a problem if the accretion flow does not in reality differentially
mix with the cloud. If the accretion flow is anisotropic or if it
cannot fall to the central regions of the cloud before it mixes,
the cloud may become less centrally condensed and we may

Figure 8. GMC classification as a function of time for a selection of model
clouds.

overestimate the kinetic energy injection since material cannot
fall to the bottom of the cloud potential well.

While we cannot resolve the dynamical effect of changes in
the shape of the cloud, we can resolve changes in the size of the
cloud. Given the observed Larson scaling relations, we expect
more massive clouds to be larger, implying that clouds must
expand as they accrete mass. If clouds do form via gravitational
instability, they must accrete significant mass. We do resolve this
behavior in our models. We caution that our virial analysis most
readily describes a relaxed system. We may be doing a poor job
of resolving phenomena that occur on a timescale comparable
to the crossing time.

6.2. Magnetic Fields in the Atomic Envelope

One key assumption we made in deriving the global energy
equation was that the atomic envelope contributes negligibly
to the total magnetic energy associated with the cloud. That
is, we did not include the magnetic field when calculating
Eamb in Equation (C6). The motivation for this assumption is
based on comparisons of observations of magnetic fields in
dense molecular clumps, where it is possible to measure the
magnetic field directly via the Zeeman effect in lines of OH and
CN (Troland & Crutcher 2008; Falgarone et al. 2008), to the
magnetic fields in the atomic ISM, measured via the Zeeman
effect in the 21 cm line of neutral hydrogen (Heiles & Troland
2005). These studies consistently find that the magnetic field
strength is significantly elevated in the dense molecular gas.
However, most of the volume of a GMC is occupied by diffuse
molecular gas with low OH abundance—frustrating efforts to
measure magnetic fields via observations of OH in emission.
Thus, without direct observations of magnetic fields in the
diffuse molecular gas, we cannot know whether the magnetic
fields in the atomic envelope are weak or strong compared
to the magnetic field strength in the bulk of a GMC. While
preliminary observations by T. H. Troland et al. (2011, private
communication) indicate that magnetic fields in the diffuse
molecular component are somewhat stronger than in the atomic
envelope, this question has yet to be settled. It is possible that
we underestimate the net magnetic energy due to the presence
of the cloud.

Another possible problem with our treatment of magnetic
fields is that we assume that the mass-to-flux ratio remains
constant throughout the evolution of the cloud. This is equivalent
to assuming a fixed value for ηB . This assumption might be
invalid if accreted material flows preferentially along magnetic
field lines or if ambipolar diffusion can act on timescales
comparable to the cloud dynamical time. While measurements
(Li et al. 2006a) and theoretical estimates (McKee & Ostriker
2007) of the mass-to-flux ratio of molecular clouds find that
clouds should be marginally supercritical, with mass-to-flux
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ratios of order unity, the time evolution and cloud-to-cloud
variation in mass-to-flux ratios are poorly constrained.

6.3. Validity of Larson’s Laws

It has been suggested that the observed constancy of GMC
surface densities is an artifact (see, e.g., Kegel 1989; Vazquez-
Semadeni et al. 1997; Murray 2011). Since the physical structure
we assume for the clouds in our model implicitly assumes that
the Larson relations are valid, this may imply that our models
do not correspond well to real GMCs.

The argument that the Larson laws are a product of a selection
effect usually proceeds as follows. If one looks for overdensities
of a particular size in a simulation of the turbulent ISM, one will
find that the selected clouds have a wide distribution of masses,
implying a large spread in cloud-to-cloud surface density. Since
observers detect clouds using CO as a tracer and at low surface
density the CO abundance is not high enough to be detectable in
emission, observers will never find low surface density clouds.
This implies that, at a fixed radius, real clouds should have
more variation in mass than a naive interpretation of the CO
observations would suggest.

This argument misses two key aspects of the observed
properties of GMCs. The first is that it cannot explain the lack of
GMCs with high gas surface densities. For the same reason that
we should not be able to see diffuse clouds, we should very easily
be able to see compact, high surface density CO clouds. The fact
that these clouds do not exist implies something important about
the structure of GMCs. The second argument is that the lack of
low surface density clouds does not imply that molecular clouds
can exist at all surface densities but merely that the molecular
clouds dissociate once they become optically thin to the ambient
ultraviolet radiation field. While diffuse atomic clouds certainly
exist, these clouds do not form stars (Krumholz et al. 2011).

Since high surface density GMCs are not observed in the lo-
cal universe and low surface density clouds are not molecular
and thus not GMCs by definition, the observed lack of variation
in GMC surface densities must be a real property of the clouds.
This has been confirmed with very detailed dust extinction mea-
surements of nearby star-forming clouds, where an exquisitely
tight mass–radius relation is observed (Lombardi et al. 2010)
and in extragalactic studies where little variation is seen when
comparing the mass–radius relation from galaxy to galaxy
(Bolatto et al. 2008). Taken together, the evidence seems to
imply that the Larson relations are a property of the structure of
GMCs and are not due to a selection effect.

7. CONCLUSIONS

In this paper, we have presented semianalytic dynamical
models for the evolution of GMCs undergoing both mass
accretion and star formation. These models are able to capture
the evolution of individual GMCs from their growth and the
onset of massive star formation, until their dispersal via an
energetic H ii region or through the combined action of accretion
and star formation. We are able for the first time to synthesize
galactic populations of GMCs whose properties correspond
closely to the observed properties of GMCs in the Milky Way
and nearby external galaxies. We have shown that clouds in
low surface density environments generally disperse within a
few crossing times, before they can accrete all of the gas in
their reservoir. At the same time, clouds in high surface density
environments do accrete all of the gas in their reservoirs and
tend to be larger and more massive. We have also shown

that mass accretion can contribute a significant fraction of
the total energy available for turbulent driving. Lastly, we
generate synthetic cluster observations and compare against
the evolutionary classification scheme of Kawamura et al.
(2009), finding good agreement when we correct for selection
effects and systematic biases inherent in the observations. We
conclude that, on average, the evolutionary classification scheme
corresponds to an age sequence but is not a good predictor for
the evolutionary state of isolated clouds.
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APPENDIX A

DERIVATION OF THE VIRIAL THEOREM FOR AN
ACCRETING CLOUD

Here, we derive an equation governing the virial balance
of a cloud that is simultaneously forming stars and accreting
material. This is a generalization of the analysis of Paper I and
McKee & Zweibel (1992). We refer the reader to those papers for
details that are unrelated to the accretion flow and to Section 2.1
for a general overview of the model.

Consider a single molecular cloud contained within an
Eulerian volume Vvir with bounding surface Svir. We assume
that Vvir is sufficiently large to contain the cloud at all times.
Material within the virial volume is apportioned into three
components: virial material, a gaseous reservoir, and material in
a photoionized wind. Locally, each component satisfies its own
continuity equation,

∂ρ

∂t
= −∇ · ρv + ρ̇ (A1)

∂ρres

∂t
= −∇ · ρresvres − ρ̇acc (A2)

∂ρw

∂t
= −∇ · ρwvw − ρ̇ej. (A3)

These equations are coupled via the source and sink terms,

ρ̇ = ρ̇acc + ρ̇ej. (A4)

We assume that accretion can only transport material onto the
cloud and that the wind can only carry material away from the
cloud, implying ρ̇acc � 0 and ρ̇ej � 0.

The local equation of momentum conservation for the virial
material is (cf. Equation (A2) in Paper I)

∂

∂t
(ρv) = −∇·(Π−TM)+ρg+F∗+ρ̇ej(v+v′

ej)+ρ̇accvres, (A5)
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where Π = PthI + ρvv − π is the gas pressure tensor, π is
the viscous stress tensor, TM = [BB − (1/2)B2I]/(4π ) is the
Maxwell stress tensor, B is the magnetic field, I is the unit tensor,
g is the gravitational force per unit mass, and F∗ + ρ̇ej(v + v′

ej) is
the local body force due to the interaction between expanding
H ii regions and the cloud. We write the stellar forcing term in
this form so as to separate the random component, F∗, from the
spherically symmetric component ρ̇ej(v + v′

ej).
F∗ is a function of time and position in the cloud and depends

on the precise location and history of massive star formation.
Due to the nature of supersonic turbulence, we expect turbulent
overdensities to be randomly scattered throughout the cloud.
Thus, we expect F∗ to be randomly oriented with respect to
the position vector, implying

∫
Vvir

r · F∗dV = 0. While F∗ is
randomly oriented, ρ̇ej(v+v′

ej) should on average be purely radial
because the photoionized wind will be blown out preferentially
along the pressure gradient. Neither F∗ nor the viscous stress
tensor is included in the momentum equation used in Paper
I. A detailed comparison of the two approaches leads us to
conclude that the formulation used here more properly follows
the transport of energy through the turbulent cascade.

After taking the second time derivative of the cloud moment
of inertia, Icl = ∫

Vvir
ρr2dV , and substituting the momentum

Equation (A5) into the resulting expression, we find

1

2
Ïcl = 1

2

d

dt

∫
Vvir

ρ̇r2dV − 1

2

d

dt

∫
Svir

ρvr2 · dS

+
∫

Vvir

r · [ρg + F∗ − ∇ · (Π − TM)]dV

+
∫

Vvir

ρ̇ejr · (v + v′
ej)dV +

∫
Vvir

ρ̇accr · vresdV.

(A6)

Upon evaluating the integrals in Equation (A6) term by term,
we obtain the EVT,

1

2
Ïcl = 2(T − T0) + B + W

− 1

2

d

dt

∫
Svir

(ρvr2) · dS + aIṀclRclṘcl

+
1

2
aIM̈clR

2
cl + aIṀejRclṘcl

+
3 − kρ

4 − kρ

Rcl(Ṁejv
′
ej − ξṀaccvesc). (A7)

Here T , T0, B, and W are, respectively, the standard kinetic,
surface kinetic, magnetic, and gravitational terms (see Paper I
for precise definitions) and aI = (3 − kρ)/(5 − kρ). The final
term in Equation (A7) does not appear in the EVT derived in
Paper I and is due to the presence of the accretion flow. This has
the same form as the wind recoil term except for the presence
of a dimensionless factor

ξ =
∫ 1

0
(4 − kρ)x3−kρ

{
1 + f

[
1 − x2−kρ

2 − kρ

+
∫ 1

x

y(x ′)
x ′2 dx ′

]}
dx

(A8)
which arises because material is accreted at a velocity that
depends on the depth of the cloud potential well. The di-
mensionless variables x, y, and f are defined explicitly in
Appendix B.

The magnetic term B retains the form used in Paper I and
derived by McKee & Zweibel (1992) because we assume any

deformation of the magnetic field in the ambient medium caused
by the presence of the cloud is negligible at the virial surface,
allowing us to approximate that the virial volume is threaded
by a constant magnetic field B0. Here, B0 is the rms value of
the true magnetic field at the virial surface, which may fluctuate
around B0. Since material in the reservoir should also carry
currents and thus generate magnetic fields, this parameterization
underestimates the total magnetic energy. However, we expect
the mean density of reservoir material within the virial volume
to be an order of magnitude smaller than the density of cloud
material (see Appendix B), so the contribution of the reservoir
to the magnetic energy is small compared to the contribution
due to the cloud.

APPENDIX B

PROPERTIES OF THE RESERVOIR

Consider an accreting cloud that is not forming stars and thus
not generating a wind. Let Mres(r, t) be the mass of material
in the accretion flow contained within a radius r at time t and
let Δr = vres,sysΔt be the distance that the accreting gas falls
in a time Δt . In the same time, a fraction of the material in
the accretion flow will be converted into cloud material. In the
frame comoving with the accretion flow, the change in the mass
of reservoir interior to a radius r in a time Δt is

Mres(r, t) − Mres(r − Δr, t + Δt) = −Δt

∫ r

0
ρ̇accdV. (B1)

Upon Taylor expanding in Δt and Δr , dropping the nonlinear
terms, and evaluating the integral on the right-hand side of
Equation (B3), we find

Δr
∂Mres(r, t)

∂r
− Δt

∂Mres(r, t)

∂t
= −Ṁacc(r, t)Δt. (B2)

If the accretion flow is in a quasi-steady state, the time derivative
vanishes and Mres(r, t) = Mres(r). Integrating to obtain Mres(r),
we find

Mres(r) = −
∫ r

0

Ṁacc(r ′)
vres,sys(r ′)

dr ′. (B3)

If we wish to evaluate the above integral and obtain an
expression for Mres(r), we need to know vres,sys(r). Expanding
Equation (4), we see

1

2
v2

res,sys(r) = −
∫ Rcl

∞

G(Mcl + Mres)

r ′2 dr ′

−
∫ r

Rcl

GMcl(r ′)
r ′2

[(
r ′

Rcl

)3−kρ

+
Mres(r ′)
Mcl(r ′)

]
dr ′.

(B4)

Equations (B3) and (B4) constitute a system of integral equa-
tions that must be simultaneously solved to obtain a solu-
tion for the velocity and mass profile of reservoir material
within the cloud volume. If we define the functions x =
r/Rcl, y(x) = Mres(Rclx)/Mcl, and f = Mcl/(Mres + Mcl),
Equation (B4) reduces to

vres,sys(r) = −vesc

[
1 + f

(
1 − x2−kρ

2 − kρ

−
∫ x

1

y(x ′)
x ′2 dx ′

)]1/2

.

(B5)
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Figure 9. (a) y (dotted line) and z (dashed line) as a function of x = r/Rcl. (b) y(1) = Mres(Rcl)/Mcl as a function of ζ = Ṁacctff/Mcl. We see Mres(Rcl) � Mcl
for ζ � 5.

Defining ζ = Ṁacctff/Mcl and z(x) = ∫ 1
x

y(x ′)/x ′2dx ′, we
see that the problem of determining both vres,sys(r) and Mres(r)
reduces to solving the following system of nonlinear ordinary
differential equations:

dy

dx
= 2

π
ζx3−kρ

[
1 + f

(
1 − x2−kρ

2 − kρ

+ z(x)

)]−1/2

, (B6)

dz

dx
= −y(x)

x2
. (B7)

These equations can be solved numerically using the shooting
method as follows. Since there should be no unmixed accreted
material at r = 0, we expect y(0) = 0. Since z(x) is defined
in terms of an integral, we have no a priori knowledge of z(0).
However, we do know that z(1) = 0 and we expect y(1) � ζ .
If we impose y(1) = c ζ where c is a constant of order unity,
we can integrate the above system and obtain a trial solution for
y(x) and z(x). The constant c can then be varied until a solution
is obtained with y(0) = 0. There is a unique solution for each
value of ζ and thus a new solution must be obtained if ζ varies.

A key assumption in this analysis was that the accretion rate is
approximately constant over the cloud free-fall timescale. This
is equivalent to the assumption that ζ � 1. This is a reasonable
assumption, which we can see by making an analogy to the case
of a protostellar core. Since we expect Ṁcl ≈ Mcl/tff,r where
tff,r is the free-fall time for all of the gas in the reservoir (Stahler
et al. 1980; McKee & Tan 2003) and since the reservoir should
be significantly more extended than the cloud, we expect the
mean density of the reservoir to be much lower than the mean
density in the cloud. This implies tff,r 	 tff,cl. If this condition
does hold, then the condition ζ � 1 is automatically satisfied.

In Figure 9(a) we present a numerical solution for y(x)
and z(x) obtained for ζ = 1.0. We see for this case that
Mres(Rcl) ≈ 0.2Mcl, showing that even for substantial accretion
rates, the gas within Vcl is primarily composed of cloud material.
In Figure 9(b) we show y(1) = Mres(Rcl)/Mcl as a function of ζ .
Reservoir material becomes the primary component of the vol-
ume occupied by the cloud for ζ � 5.0. For this reason, we reject
as unphysical any portion of cloud history with ζ � 5. In prac-
tice, we find ζ � 1.0 for the lifetime of all clouds we simulate.

APPENDIX C

DERIVATION OF THE EQUATION OF ENERGY
CONSERVATION FOR AN ACCRETING CLOUD

Here, we derive the global equation of energy conserva-
tion for a cloud undergoing accretion and star formation.

We begin by writing the equation of momentum conservation
(Equation (A5)) in Lagrangian form:

ρ
dv
dt

= −∇P −ρ∇φ+∇·π +
J × B

c
+ρ̇ejv′

ej+F∗+ρ̇acc(vres−v).

(C1)
Upon contracting the above equation with v, we obtain the
nonthermal energy evolution equation,

∂

∂t

(
1

2
ρv2 + ρφcl +

B2 − B2
0

8π

)
+ ∇ · ρv

(
1

2
v2 + φcl

)
+ ∇ · SP

= −v · ∇P + ρ
∂φcl

∂t
+ ρv · gres + ∇ · (π · v)

− π : ∇v + ρ̇

(
1

2
v2 + φcl

)
+ v · F∗ + ρ̇ejv · v′

ej

+ ρ̇acc(v · vres − v2), (C2)

where SP is the Poynting vector. Combining the first law
of thermodynamics with the continuity equation yields the
evolution equation for the thermal energy of the cloud,

∂

∂t
(ρe) + ∇ · ρv

(
e +

P

ρ

)
= ρ̇e + v · ∇P + Γ − Λ, (C3)

where e is the internal energy per unit mass and Γ and Λ
are, respectively, the rates of energy gain and loss per unit
volume. Here we have assumed that accreted material has
the same thermal energy density as cloud material, which
will be true if the radiative timescales are short compared to
the mechanical timescales, as in molecular cloud conditions.
Summing Equations (C2) and (C3), we obtain the evolution
equation for the total energy of the system:

∂

∂t

[
ρ

(
1

2
v2 + e +

1

2
φcl

)
+

B2 − B2
0

8π

]

+ ∇ · ρv
(

1

2
v2 + e +

P

ρ
+ φcl

)
+ ∇ · SP

= 1

2

(
ρ

∂φcl

∂t
− ∂ρ

∂t
φcl

)
+ ρ̇

(
1

2
v2 + e +

1

2
φcl

)
+

1

2
ρ̇φcl

+ ρv · gres + ρ̇ejv · v′
ej + ρ̇acc(v · vres − v2) + ∇ · (π · v)

+ v · F∗ − Λ. (C4)

Here we have assumed that Γ = π :∇v, the scalar rate of
viscous dissipation. This is equivalent to the statement that
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turbulent kinetic energy is converted into heat at viscous scales
whereupon the energy is quickly radiated away. While there
may be other heating mechanisms, including cosmic rays and
protostellar radiation, we neglect these sources by noting that
any local heating should be offset in a time much shorter than
the dynamical time.

If we define the total energy due to the presence of the cloud,

Ecl =
∫

Vcl

ρ

(
1

2
v2 + e +

1

2
φcl

)
dV +

∫
Vvir

B2 − B2
0

8π
dV, (C5)

and the total energy in the ambient medium,

Eamb =
∫

Vvir−Vcl

ρ

(
1

2
v2 + e +

1

2
φcl

)
dV, (C6)

we can integrate Equation (C4) over the virial volume and
obtain an evolution equation for Ecl. Portions of this calculation
are performed explicitly in Paper I and we do not reproduce
those results here. The new terms stem from our inclusion of
accretion as well as the inclusion of F∗, the random component
of the stellar forcing term. The integrals over the new terms are
evaluated below.

The first new term is due to the gravitational influence of the
reservoir, ∫

Vvir

ρv · gresdV = −χ
Ṙcl

Rcl

GM2
cl

Rcl
, (C7)

where

χ = (3 − kρ)
∫ 1

0
x1−kρ y(x)dx. (C8)

This is the gravitational work done on the cloud by the reservoir
material as the cloud expands and contracts.

The random stellar forcing term can be evaluated by noting
that r and F∗ are assumed to be uncorrelated, so

∫
Vvir

v · F∗dV

= ∫
Vvir

vturb · F∗dV . This integral depends on the degree of
correlation between two randomly oriented vectors, vturb and
F∗. Since, at a fixed time, the direction of expansion of an
H ii region is the same as the direction of momentum injection,
these vectors should indeed be highly correlated. This term then
corresponds to the net injection of energy by H ii regions,

Gcl =
∫

Vvir

vturb · F∗dV. (C9)

For the terms proportional to ρ̇acc, we have∫
Vvir

ρ̇accv · vresdV = −
(

3 − kρ

4 − kρ

)
ξṘclṀaccvesc

+
∫

Vvir

ρ̇accvturb · vresdV (C10)

and ∫
Vvir

ρ̇accv
2dV = aIṀaccṘ

2
cl + 3Ṁaccσ

2
cl, (C11)

where we have used our assumption that vres,rand is randomly
oriented with respect to r.

We are left with one last integral on the right-hand side of
Equation (C10) that depends on the correlation between two
vector fields, vturb and vres. Suppose vres and vturb are perfectly
correlated. In that case, the integral we are concerned with can be

readily evaluated in three limits, |vres| = |vturb|, |vres| 	 |vturb|,
and |vres| � |vturb|. In the first limit |vres| = |vturb| the transfer
of material to the cloud is merely an act of relabeling, so
vturb · vres = v2

res. Now consider the limit |vres| 	 |vturb|. We
approximate that a parcel of reservoir material mixes with the
cloud once it has swept up a mass of cloud material equal
to its own mass. Since the interaction between cloud material
and reservoir material must be inelastic if they are to mix, the
velocity of cloud material must be driven by the act of mixing
to vturb = vres/2. Conversely, if |vres| � |vturb|, the reservoir
material is driven to a velocity vres = vturb/2. We obtain the
correct answer in all three limits if we assume∫

Vvir

ρ̇accvturb · vresdV = 1

2

∫
Vvir

ρ̇acc
(
v2

res + v2
turb

)
dV. (C12)

This is an upper bound on the value of the integral in the limit
of perfect correlation between vturb and vres. If vturb and vres are
uncorrelated then the integrand should on average be zero. Thus
we have

0 �
∫

Vvir

ρ̇accvturb · vresdV � 1

2

∫
Vvir

ρ̇acc(v2
res + v2

turb)dV.

(C13)
To evaluate this integral, we linearly interpolate between the
upper limit and lower limit,∫

Vvir

ρ̇accvturb · vresdV = ϕ
1

2

∫
Vvir

ρ̇acc
(
v2

res + v2
turb

)
dV

= ϕ

(
3

2
Ṁaccσ

2
res +

3

2
Ṁaccσ

2
cl + γ Ṁaccv

2
esc

)
, (C14)

where ϕ is an interpolation parameter that ranges between zero
and unity and

γ = 1

2
+ f

(
1

10 − 4kρ

− χ

6 − 2kρ

)
. (C15)

Summing the individual terms derived above yields the global
form of the equation of energy conservation,

dEcl

dt
= Ṁcl

Mcl

[
Ecl +

(
1 − η2

B

)
W

]
+

GMclṀcl

Rcl
χ

(
1 − MclṘcl

ṀclRcl

)

+

(
3 − kρ

4 − kρ

)
Ṙcl(Ṁejv

′
ej − ξṀaccvesc)

− 4πPambR
2
clṘcl − aIṀaccṘ

2
cl − 3Ṁaccσ

2
cl

+ ϕ

(
3

2
Ṁaccσ

2
res +

3

2
Ṁaccσ

2
cl + γ Ṁaccv

2
esc

)
+ Gcl − Lcl,

(C16)

where Lcl = ∫
Vvir

ΛdV .
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