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ABSTRACT

We study rapidly accreting, gravitationally unstable disks with a series of idealized global, numerical experiments
using the code ORION. Our numerical parameter study focuses on protostellar disks, showing that one can predict
disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which
compare the infall rate to the disk sound speed and orbital period. Although gravitational instabilities become
strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times
more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate and
governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum
stable disk mass: disks that exceed ∼50% of the total system mass are subject to fragmentation and the subsequent
formation of binary companions.
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1. INTRODUCTION

During the earliest phases of star formation, protostellar disks
are deeply embedded within their natal clouds. Observing this
stage has been difficult because the source is only visible at
wavelengths where resolution is poor. But because it sets the
initial conditions for stellar and planetary systems, an under-
standing of this phase is critical. Models of rapidly accreting
disks are thus vital for the interpretation of observations of fu-
ture facilities such as ALMA and the EVLA.

In this paper, we focus on the dynamics of disks around
young, rapidly accretings protostars, for which self-gravity is
the key ingredient (Lin & Pringle 1987; Gammie 2001; Kratter
et al. 2008). Gravitational instability (GI) is important whenever
disks are cold enough or massive enough to trigger it, as they
typically are during the early phases of star formation. GI plays
a strong role in active galactic nucleus (AGN) disks as well, and
possibly in other contexts where disks are cold and accretion is
fast.

The role of GI in angular momentum transport is complicated
by the fact that it can lead to runaway collapse. Indeed, this
makes GI an attractive mechanism for the formation of stars
with companions (binaries and brown dwarfs; Bonnell & Bate
1994a, 1994b; Whitworth et al. 2007). Kratter & Matzner
(2006, hereafter KM06) and Kratter et al. (2008, hereafter
KMK08) found that disk fragmentation and binary formation
are increasingly likely as one considers more and more massive
stars, whereas disks in low-mass star formation are relatively
stable (Matzner & Levin 2005).

Although semi-analytical and low-dimensional studies can
illuminate trends and provide useful approximate results, disk
fragmentation is inherently a nonlinear and multidimensional
process. For this reason we have embarked on a survey of
idealized, three-dimensional, numerical experiments to exam-
ine the role of GI as the mediator of the accretion rate in

self-gravitating disks, and as a mechanism for creating disk-
born companions.

We emphasize that these are numerical experiments, not sim-
ulations of star formation. Our goal in conducting experiments is
to isolate the important physical process, GI, which dictates an-
gular momentum transport and fragmentation. To do so, we sep-
arate the dynamical problem from the thermal one. We exclude
thermal physics from our simulations entirely, while scanning a
thermal parameter in our survey.

By these means we reduce the physical problem to two
dimensionless parameters: one for the disk’s temperature and
another for its rotation period—both in units determined by its
mass accretion rate. We hold these fixed in each simulation
by choosing well-controlled initial conditions corresponding to
self-similar core collapse. This parameterization is a central
aspect of our work: it forms the basis for our numerical survey;
it allows us to treat astrophysically relevant disks, including
fragmentation and the formation of binary companions, while
also maintaining generality; and it distinguishes our work from
previous numerical studies of core collapse, disk formation, GI,
and fragmentation. We demonstrate that idealized disks like
those presented here can capture many of the important features
of simulations with more complicated physics, with significantly
lower computational cost.

This paper, the first in a series, focuses on the broad
conclusions we can draw from our parameter space study;
subsequent papers will discuss the detailed behavior of mul-
tiple systems, and three-dimensional effects such as turbu-
lence, and vertical flows. We begin here by introducing our
dimensionless parameters in Section 2. We describe the ini-
tial conditions and the numerical code used in Section 3.
In Section 4, we derive analytic predictions for the behav-
ior of disks as a function of our parameters. We describe the
main results from our numerical experiments in Section 5,
with more detailed analysis in Section 6. We compare them
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to other numerical and analytic models of star formation in
Section 7.

2. A NEW PARAMETER SPACE FOR STUDYING
ACCRETION

We consider the gravitational collapse of a rotating, quasi-
spherical gas core onto a central pointlike object, mediated by
a disk. In the idealized picture we will explore in this paper, the
disk and the mass flows into and out of it can be characterized
by a few simple parameters. At any given time, the central
point mass (or masses, in cases where fragmentation occurs)
has mass M∗, the disk has mass Md, and the combined mass of
the two is M∗d . The disk is characterized by a constant sound
speed cs,d . Material from the core falls onto the disk with a
mass accretion rate Ṁin, and this material carries mean specific
angular momentum 〈j 〉in, and as a result it circularizes and goes
into Keplerian rotation at some radius Rk,in; the angular velocity
of the orbit is Ωk,in.

Note that Ṁin, jin, Rk,in, and Ωk,in characterize the material
that is just reaching the disk at a given instant, and as a result they
can vary with time—indeed, we will set up our initial conditions
to guarantee that they do vary with time in precisely the manner
required to ensure that certain dimensionless numbers remain
constant as gas accretes. In general in what follows, we refer
to quantities associated with the central object with subscript
“*”, quantities associated with the disk with a subscript “d”,
quantities associated with infall with subscript “in”. Angle
brackets indicate mass-weighted averages over the disk (with
subscript “d”) or over infalling mass (with subscript “in”).

We characterize our numerical experiments using two dimen-
sionless parameters which are well adapted to systems undergo-
ing rapid accretion. Because the behavior of young protostellar
disks will be dominated by infall, modeling their behavior in
terms of dimensionless accretion rates is a natural choice.

We encapsulate the complicated physics of heating and
cooling through the thermal parameter

ξ = ṀinG

c3
s,d

, (1)

which relates the infall mass accretion rate Ṁin to the charac-
teristic sound speed cs,d of the disk material. Our parameter ξ
is also related to the physics of core collapse leading to star
formation. If the initial core is characterized by a signal speed
ceff,c then Ṁin ∼ c3

eff,c/G, implying ξ ∼ c3
eff,c/c

3
s,d—although

there can be large variations around this value (Larson 1972;
Foster & Chevalier 1993). The second, rotational parameter

Γ = Ṁin

M∗dΩk,in
= Ṁin〈j 〉3

in

G2M3
∗d

(2)

compares the system’s accretion timescale, M∗d/Ṁin to the
orbital timescale of infalling gas. For the initial conditions we
use in this work, the quantities 〈j 〉in and M∗d evolve in time
while Ṁin remains constant. They can be evaluated as functions
of time, or the current radius from which material is falling onto
the system. To hold Γ fixed, we specify a core rotation profile
such that 〈j 〉in ∝ M∗d . Unlike ξ , Γ is independent of disk heating
and cooling, depending only on the core structure and velocity
field. In general, Γ compares the relative strength of rotation
and gravity in the core. Systems with a large value of Γ (e.g.,
accretion-induced collapse of a white dwarf) gain a significant

amount of mass in each orbit, and tend to be surrounded by
thick, massive accretion disks, while those with very low Γ
(e.g., AGN) grow over many disk lifetimes, and tend to harbor
thin disks with little mass relative to the central object. We
consider characteristic values for our parameters in Section 2.1,
and their evolution in the isothermal collapse of a rigidly rotating
Bonnor–Ebert sphere in Section 7.1.

The parameters ξ and Γ are more flexible than other dimen-
sionless parameters used to characterize collapsing cores such as
αtherm = Etherm/Egrav and βrot = Erot/Egrav (Bodenheimer et al.
1980; Miyama et al. 1984). While the latter rely implicitly on a
quasi-static core model, ξ and Γ can be evaluated for arbitrary
infall models, and therefore for a wider range of astrophysical
disk scenarios. Whereas αtherm and βrot are zero-dimensional
descriptions of the collapse problem, ξ and Γ can be functions
of mass and hence describe time (or scale) evolution.

In order to model disk behavior in terms of these two param-
eters, we hold ξ and Γ fixed for each experiment via the self-
similar collapse of a rotating, isothermal sphere (Section 3.2).
This strategy allows us to map directly between the input pa-
rameters and relevant properties of the system. Specifically, we
expect dimensionless properties such as the disk-to-star mass ra-
tio, Toomre parameter, Q = csΩ/(πGΣ) (Toomre 1964), stellar
multiplicity, etc., to fluctuate around well-defined mean values
(see Section 3.4).

We aim to use our parameters ξ and Γ to (1) explore the
parameter space relevant to a range of star formation scenarios;
(2) better understand the disk parameters, both locally and
globally, which dictate the disk accretion rate and fragmentation
properties; (3) make predictions for disk behavior based on
larger scale, observable quantities; and (4) allow the results of
more complicated and computationally expensive simulations
to be extended into other regimes.

2.1. Characteristic Values of the Accretion Parameters

We base our estimates of Γ and ξ on observations of core
rotation in low-mass and massive star-forming regions (Myers
& Fuller 1992; Goodman et al. 1993; Williams & Myers 1999),
as well as the analytical estimates of core rotation and disk
temperature in Matzner & Levin (2005), Krumholz (2006),
KM06, and KMK08. Using simple models of core collapse
in which angular momentum is conserved in the collapse
process and part of the matter is cast away by protostellar
outflows (Matzner & McKee 2000), we find that both ξ and
Γ are higher in massive star formation than in low-mass star
formation. In our models, the characteristic value of Γ rises from
∼0.001 to 0.03 as one considers increasingly massive cores for
which turbulence is a larger fraction of the initial support.

The value of ξ is more complicated, as it reflects the disk’s
thermal state as well as infalling accretion rate, but the models
of KMK08 and Krumholz (2006) indicate that its characteristic
value increases from <1 to ∼10 as one considers higher and
higher mass cores—although the specific epoch in the core’s
accretion history is also important. In the case of massive stars,
such rapid accretion has been observed (Beltrán et al. 2006
and Barnes et al. 2008). Numerical simulations also find rapid
accretion rates from cores to disks. Simulations such as those of
Banerjee & Pudritz (2007) report ξ ∼ 10 at early times in both
magnetized and non-magnetized models. We note that Γ has
significant fluctuations from core to core when turbulence is the
source of rotation, and both ξ and Γ are affected by variations
of the core accretion rate around its characteristic value (Foster
& Chevalier 1993).
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3. NUMERICAL METHODOLOGY

3.1. Numerical Code

We use the code ORION (Truelove et al. 1998; Klein 1999;
Fisher 2002) to conduct our numerical experiments. ORION
is a parallel adaptive mesh refinement (AMR), multi-fluid,
radiation-hydrodynamics code with self-gravity and Lagrangian
sink particles (Krumholz et al. 2004). Radiation transport and
multi-fluids are not used in the present study. The gravito-
hydrodynamic equations are solved using a conservative, Go-
dunov scheme, which is second-order accurate in both space
and time. The gravito-hydrodynamic equations are

∂

∂t
ρ = −∇ · (ρv) −

∑
i

ṀiW (x − xi), (3)

∂

∂t
(ρv) = −∇ · (ρvv) − ∇P − ρ∇φ

−
∑

i

ṗiW (x − xi), (4)

∂

∂t
(ρe) = −∇ · [(ρe + P )v] + ρv · ∇φ

−
∑

i

ĖiW (x − xi). (5)

Equations (3)–(6) are the equations of mass, momentum, and
energy conservation, respectively. In the equations above, Ṁi ,
ṗi , and Ėi describe the rate at which mass and momentum are
transferred from the gas onto the ith Lagrangian sink particles.
Summations in these equations are over all sink particles present
in the calculation. W (x) is a weighting function that defines the
spatial region over which the particles interact with gas. The
corresponding evolution equations for sink particles are

d

dt
M = Ṁi, (6)

d

dt
xi = pi

Mi

, (7)

d

dt
pi = −Mi∇φ + ṗi . (8)

These equations describe the motion of the point particles under
the influence of gravity while accreting mass and momentum
from the surrounding gas.

The Poisson equation is solved by multilevel elliptic solvers
via the multigrid method. The potential φ is given by the Poisson
equation

∇2φ = 4πG

[
ρ +

∑
i

Miδ(x − xi)

]
, (9)

and the gas pressure P is given by

P = ρkBTg

μp

= (γ − 1)ρ

(
e − 1

2
v2

)
, (10)

where Tg is the gas temperature, μp is the mean particle
mass, and γ is the ratio of specific heats in the gas. We
adopt μp = 2.33mH, which is appropriate for standard cosmic
abundances of a gas of molecular hydrogen and helium.

We use the sink particle implementation described in
Krumholz et al. (2004) to replace cells which become too dense
to resolve. Sink particle creation and AMR grid refinement are
based on the Truelove criterion (Truelove et al. 1997) which
defines the maximum density that can be well resolved in a grid
code as

ρ < ρj = N2
J πc2

s

G(Δxl)2
, (11)

where NJ is the Jeans number, here set to 0.125 for refinement,
and 0.25 for sink creation, and Δxl is the cell size on level l.
When a cell violates the Jeans criterion, the local region is
refined to the next highest grid level. If the violation occurs on
the maximum level specified in the simulation, a sink particle
is formed. Setting NJ to 0.125 is also consistent with the
resolution criterion in Nelson (2006). Sink particles within four
cells of each other are merged in order to suppress unphysical
n-body interactions due to limited resolution. At low-resolution,
unphysical sink particle formation and merging can cause
rapid advection of sink particles inward onto the central star,
generating spurious accretion. Moreover, because an isothermal,
rotating gas filament will collapse infinitely to a line (Truelove
et al. 1997; Inutsuka & Miyama 1992), an entire spiral arm can
fragment and be merged into a single sink particle. To alleviate
this problem, we implement a small barotropic switch in the gas
equation of state such that

γ = 1.0001, ρ < ρJs /4, (12)

γ = 1.28, ρJ s /4 < ρ < ρJs , (13)

where the Js subscript indicates the Jeans’ criterion used for sink
formation. With this prescription, gas is almost exactly isother-
mal until fragmentation is imminent, at which point it stiffens
somewhat. This modest stiffening helps turn linear filaments
into resolved spheres just prior to collapse and provides sep-
aration between newborn sink particles. The primary effect of
this stiffening is to increase the resolution of the most unstable
wavelength in a given simulation, at the expense of some dy-
namical range. We describe the influence of this stiffening on
our results in Section 6.1, where we conduct some experiments
in which it is turned off.

As described via Equations (3)–(6), sink particles both accrete
from and interact with the gas and each other via gravity.
Accretion rates are computed using a modified Bondi–Hoyle
formula which prevents gas which is not gravitationally bound
to the particles from accreting. See Krumholz et al. (2004) and
Offner et al. (2008) for a detailed study of the effects of sink
particle parameters. Note that we also use a secondary, spatial
criterion for AMR refinement based on an analytic prediction
for the disk size as a function of time (see Section 3.3).

3.2. Initial Conditions

We initialize each run with an isothermal sphere:

ρ(r) = Ac2
s,core

4πGr2
. (14)

There is a small amount of rotational motion in our initial
conditions, but no radial motion. A core with this profile is
out of virial balance when A > 2 and accretes at a rate

Ṁ = c3
s,core

G
×

{
0.975, (A = 2)
(2A)3/2/π (A 	 2) . (15)
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The value for A = 2 represents the Shu (1977) inside-out
collapse solution, whereas the limit A 	 2 is derived assuming
pressureless collapse of each mass shell. It is possible to predict
Ṁ analytically (Shu 1977), but in practice we initialize our
simulations with a range of values A > 2 and measure Ṁ just
outside the disk. Because our equation of state is isothermal up
to densities well above the typical disk density (cs,d = cs,core),
ṀG/c3

s,core is equivalent to our parameter ξ .
In order to set the value of our rotational parameter Γ and

hold it fixed, we initialize our cores with a constant, subsonic
rotational velocity:

vrot = �Ω = 2Acs

(
Γ
ξ

)1/3

, (16)

where � is the cylindrical radius. We arbitrarily choose a
constant velocity rather than rigid rotation on spheres in order
to concentrate accretion near the outer disk radii. Our definition
of Γ in terms of the mean value of jin rather than its maximum
value is intended to reduce the sensitivity of our results to the
choice of rotational profile.

Given these initial conditions, our parameters ξ and Γ remain
constant throughout the simulation, while the collapsed mass
and disk radius (as determined by the Keplerian circularization
radius of the infalling material) increase linearly with time. We
define a resolution parameter,

λ = Rk,in

dxmin
, (17)

to quantify the influence of numerics on our results. Because we
hold the minimum grid spacing dxmin constant, λ increases ∝ t
as the simulation progresses.

By artificially controlling the infall parameters of our disks
and then watching them evolve in resolution, we gain insight into
the physical behavior of accretion with certain values of ξ and
Γ, as captured in a numerical simulation with a given dynamical
range (λ). Our initial conditions are necessarily ideal, allowing
us to perform controlled experiments. That we use a “core
model” at all is purely for numerical convenience. Realistic
star-forming cores will undoubtedly look very different with
turbulence, and time varying accretion of mass and angular
momentum, but before addressing more complicated scenarios
we must establish the predictive value of our parameters.

3.3. Domain and Resolution

Due to the dimensionless nature of these experiments, we
do not use physical units to analyze our runs. The base
computational grid is 1283 cells, and for standard runs we use
nine levels of refinement, with a factor of 2 increase in resolution
per level: this gives an effective resolution of 65,5363. More
relevant to our results, however, is the resolution with which
our disks are resolved: λ � 102. To compare this to relevant
scales in star formation, this is equivalent to sub-AU resolution
in disks of ∼50–100 AU.

The initial core has a diameter equal to one half of the full grid
on the base level. The gravity solver obeys periodic boundary
conditions on the largest scale; as the disk is 2.5–3 orders of
magnitude smaller than the grid boundaries, disk dynamics are
unaffected by this choice. The initial radius of the current infall
is (πΓ)−2/3Rk,in (from Equations (2), (14), and (15)); although
this is much larger than the disk itself, it is still ∼15–40 times
smaller than the initial core and ∼30–80 times smaller than the

base grid. Tidal distortions of the infall are therefore very small,
although they may be the dominant seeds for the GI. We return
to this issue in Section 6.2, where we compare two runs in which
only the tidal effects should be different.

In addition to the density criterion for grid refinement de-
scribed in Section 3, we also refine spatially to ensure that the
entire disk is resolved at the highest grid level. We use ξ and
Γ to predict the outer disk radius (see Section 4), and refine to
the highest resolution within 1.5 times this radius horizontally,
and within 0.4 times this radius vertically. We find that we accu-
rately capture the vertical and radial extent of the disk with this
prescription, and the density criterion ensures that any matter at
disk densities extending beyond these radii will automatically
be refined.

3.4. Dynamical Self-similarity

Because our goal is to conduct a parameter study isolating
the effects of our parameters ξ and Γ, we hold each fixed
during a single run. At a given resolution λ, we expect the
simulation to produce consistent results regarding the behavior
of the accretion disk, the role of GI, and the fragmentation
of our idealized disks into binary or multiple stars. Since λ
increases linearly in time, each simulation serves as a resolution
study in which numerical effects diminish in importance as
the run progresses. Because GI is an intrinsically unsteady
phenomenon, a disk should fluctuate around its mean values
even when all three of Γ, ξ , and λ are fixed. Because of this,
and because λ changes over the run, we expect our runs to be
self-similar, but only in a limited, statistical sense.

Moreover, whereas many physical systems are captured
perfectly in the limit of infinite resolution (λ → ∞), this is
not true of isothermal, gravitational gas dynamics, in which
the minimum mass and spacing of fragments both scale as
λ−1 (Inutsuka & Miyama 1992). For this reason, we quote the
resolution λ whenever reporting on the state of the disk-star
system.

We note that there exists a minimum scale in real accretion
disks as well, namely the opacity-limited minimum fragment
mass (Rees 1976). The finite dynamical range of our numerical
simulations is therefore analogous to a phenomenon of nature,
albeit for entirely different reasons.

4. DISK PROPERTIES IN TERMS OF THE ACCRETION
PARAMETERS

To assess the physical importance of ξ and Γ, it is useful
to consider the case of a single star and its accretion disk.
Because many ξ , Γ pairs lead to fragmentation, this assumption
is only self-consistent within a subregion of our parameter space;
nevertheless, it helps to guide our interpretation of the numerical
results. In order to associate results from our parameters with
those of previous studies, we also derive expressions for disk
averaged quantities such as Q and the disk-to-system mass ratio,
μ as a function of ξ and Γ.

The combination(
Γ
ξ

)1/3

= 〈j 〉incs,d

GM∗d

= cs,d

vk,in
(18)

is particularly useful, since it provides an estimate for the disk’s
aspect ratio (the scale height compared to the circularization
radius). Being independent of Ṁ , it is more a property of the
disk than of the accretion flow.
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The other important dimensionless quantity whose mean
value depends primarily on ξ and Γ (and slowly on resolution)
is the disk-to-system mass ratio

μ = Md

M∗d

. (19)

When the disk is the sole repository of angular momentum, the
specific angular momentum stored in the disk is related to the
infalling angular momentum via

jd =
(

Jin

〈j 〉inM∗d

) 〈j 〉in

μ
, (20)

where Jin is the total angular momentum accreted, so that
Jin/(〈j 〉inM∗d ) = 1/(lj + 1) in an accretion scenario where

〈j 〉in ∝ M
lj
∗d . In our simulations lj = 1, so jd = 〈j 〉in/(2μ).

Given the relation between jd and 〈j 〉in, we can define

Rd = [
(lj + 1)μ

]−2
Rk, in,

Ωd = [
(lj + 1)μ

]3 Ωk, in (21)

which relate the disk’s characteristic quantities (not the location
of its outer edge) to conditions at the current circularization
radius Rk,in = 〈j 〉2

in/(GM∗d ). Such “characteristic” quantities
are valuable for describing properties of the disk as a whole,
rather than at single location, with an effective mass weighting.
If we further suppose that the disk’s column density varies with
radius as Σ(r) ∝ r−kΣ (we expect kΣ � 3/2 for a constant
Q, isothermal disk), we may define its characteristic column
density Σd = (1 − kΣ/2)Md/(πR2

d ):

Σd � fΣ
G2M3

∗d

〈j 〉4
in

μ5 (22)

where fΣ = (1 − kΣ/2)(1 + lj )4/π . Using Equations (18) and
(21)–(22), we can rewrite the Toomre stability parameter Q
(ignoring the difference between Ω and the epicyclic frequency,
κ , for simplicity):

Q = csκ

πGΣ
→ csΩd

πGΣd

(23)

Qd � f −1
Q

μ2

cs,d〈j 〉in

GM∗d

=
(

Γ
ξ

)1/3 f −1
Q

μ2
, (24)

where fQ = (1 − kΣ/2)(1 + lj ). To the extent that we expect
Qd ∼ 1 in any disk with strong GI, this suggests μ ∼
(Γ/ξ )1/6(1 − kΣ/2)−1/2(1 + lj )−1/2; and because we expect that
μ has an upper limit of around 0.5 (see Section 5 and discussion
in KMK08 and Shu et al. 1990), we see there is an upper limit
to ξ/Γ above which the system is likely to become binary or
multiple. This is not surprising, as μ is proportional to the scale
height when Q is constant; Equation (24) simply accounts self-
consistently for the fact that μ also affects Rd.

To go any further with analytical arguments, we must intro-
duce a Shakura & Sunyaev (1973) α viscosity parameterization,
in which steady accretion occurs at a rate

Ṁ∗ = 3α

Qd

c3
s,d

G
. (25)

Using the definition of ξ

ξ � 3α

Qd

1

1 − μ
. (26)

Insofar as Q ∼ 1 when the GI is active, the effective value of
α induced by a strong GI is directly proportional to ξ . We have
made the simplifying assumption that accretion through the disk
is roughly constant, although the factor of (1 − μ) accounts for
the difference between the infall rate and the rate at which the
disk processes material onto the star.

The magnitude of Γ has important implications for disk
evolution. As discussed previously by KMK08, Γ (called in
there) affects μ through the relation

μ̇

μΩk,in
= Γ

(
1

μ
− 1

)
− Ṁ∗

MdΩk,in
. (27)

� Γ
(

1

μ
− 1

)
− 3

(
1 − kΣ

2

)
(1 + lj )αμ

(
Γ
ξ

)2/3

,

where the second line uses disk-averaged quantities to construct
a mean accretion rate from Equation (25). Our runs approach
a statistical steady state, μ̇ � 0 (although the dimensional
quantity Md continues to increase). We expect μ to saturate
at the value for which the two terms on the right-hand side of
Equation (27) are equal,

μ → (B2 + 2B)1/2 − B, where B = Γ1/3ξ 2/3

3(2 − kΣ)(1 + lj )α
. (28)

Here B is the linear coefficient for the quadratic in Equation (27).
The disk mass fraction μ increases with B, so both Γ and ξ have
a positive effect on μ, whereas α tends to suppress the disk
mass.

The scaling of disk properties with ξ is in accord with intuitive
expectations. An increase in ξ corresponds to an increase
in accretion rate at fixed disk sound speed, and as a result
the equilibrium disk mass rises. Similarly, an increase in α
corresponds to an increase in the rate at which the disk can
transport angular momentum and mass at a fixed rate of mass
and angular momentum inflow, allowing the disk to drain and
reducing its relative mass.

Less intuitive, however, is the fact that Equations (24) and
(28) predict that rotation has a stabilizing effect on massive disk
systems, in the sense that Qd increases with Γ so long as μ > 0.
This can be seen by noting that d ln μ/d ln B = (1−μ)/(2−μ).
Note that when B is small and μ � √

2B, Equation (23) implies
Qd � 3α/ξ in accordance with Equation (25). Thus for small
values of μ, we recover the dependence of Q solely on ξ ,
in accord with Gammie (2001). As μ grows and saturates, Γ
becomes more important in setting Q. We discuss the stabilizing
influence of Γ in Section 5.3.

Because the effective value of α induced by the GI is
a function of disk parameters, we cannot say more without
invoking a model for α(Γ, ξ ) or α(Q,μ) as in KMK08. We use
the above relations to guide our interpretation of our simulation
results, specifically the dependence of disk parameters such as
μ, Qd, α, and the fragmentation boundary, on ξ and Γ.

5. RESULTS

Each of our runs produces either a disk surrounding a
single star, or binary or multiple star system formed via disk
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Figure 1. Two examples of single, binary, and multiple systems. The resolution across each panel is 328 × 328 grid cells. The single runs are ξ = 2.9, Γ = 0.018
(top), ξ = 1.6, Γ = 0.009 (bottom). The binaries are ξ = 4.2, Γ = 0.014 (top), ξ = 23.4, Γ = 0.008, (bottom). The multiples are ξ = 3.0, Γ = 0.016 (top),
ξ = 2.4, Γ = 0.01 (bottom). Black circles with plus signs indicate the locations of sink particles. These correspond to runs 5, 1, 9, 16, 7, and 4, respectively.

(A color version of this figure is available in the online journal.)

fragmentation; Figure 1 depicts examples of each outcome.
We use these three possible morphologies to organize our
description of the experiments. We explore the properties of
each type of disk below as well as examine the conditions at the
time of fragmentation.

The division between single and fragmenting disks in ξ and
Γ is relatively clear from our results, as shown in Figure 2.
Several trends are easily identified. First, there is a critical ξ
beyond which disks fragment independent of the value of Γ.
Below this critical ξ value, there is a weak stabilizing effect of
increasing Γ. As ξ increases, disks transition from singles into
multiples, and finally into binaries. We discuss the distinction
between binaries and multiples in Section 5.4. This stabilizing
effect of Γ is predicted by Equation (23), although it is somewhat
counter intuitive. We discuss in Section 5.3 that the stabilization
is often masked by thermal effects in real collapsing systems.

In Table 1, we list properties of the final state for all of
our runs, their final multiplicity (S, B, or M for single, binary,
or multiple, respectively), and the disk-to-star(s) mass ratio
μf measured at the time at which we stop each experiment,
as well as the maximum resolution λn. Note that the disk
extends somewhat beyond Rk,in: therefore, the disk as a whole
is somewhat better resolved than the value of λn would suggest.
For the disks which fragment, we also list the values of μf , λf ,
and Q just before fragmentation occurs.

In Table 2, we describe those disks which do not fragment: we
list the analytic estimate for the characteristic value of Toomre’s

Q, Qd, the measured minimum of Q2D (Equation (29)), the
radial power law kΣ which characterizes Σ(r) for a range of radii
extending from the accretion zone of the inner sink particle to
the circularization radius Rk,in, the final disk resolution, λn, and
the characteristic disk radius, Rd (Equation (21)).

5.1. The Fragmentation Boundary and Q

It is difficult to measure a single value of Q to characterize
a disk strongly perturbed by GI, so we consider two estimates:
a two-dimensional measurement Q2D, and a one-dimensional
measure Qav(r) based on azimuthally averaged quantities.

Q2D(r, φ) = csκ

πGΣ
, (29)

Qav(r) = c̄s(r)κ̄(r)

πGΣ̄(r)
, (30)

where bars represent azimuthal averages, and κ is calculated
directly from the gravitational potential of the disk+stars. As
Figure 3 shows, the two-dimensional estimate shows a great
deal of structure which is not captured by the azimuthal average,
let alone by Qd. Moreover, while the minimum of the averaged
quantity is close to 2, the two-dimensional quantity drops to
Q ∼ 0.3. We find that the best predictor of fragmentation is the
minimum of a smoothed version of the two-dimensional quan-
tity (smoothed over a local Jeans length to exclude meaningless
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Figure 2. Distribution of runs in ξ–Γ parameter space. The single stars are
confined to the low ξ region of parameters space, although increasing Γ has a
small stabilizing effect near the transition around ξ = 2 due to the increasing
ability of the disk to store mass at higher values of Γ. The dotted line shows the
division between single and fragmenting disks: Γ = ξ2.5/850. As ξ increases
disks fragment to form multiple systems. At even higher values of ξ disks
fragment to make binaries. We discuss the distinction between different types
of multiples in Section 5.4. The shaded region of parameter space shows where
isothermal cores no longer collapse due to the extra support from rotation.

(A color version of this figure is available in the online journal.)

Table 1
Each Run is Labeled by ξ, Γ, Multiplicity Outcome, the Final Value of the

Disk-to-star(s) Mass Ratio, μ, and the Final Resolution, λn

Run ξ 102Γ N∗ μf λf Q2D μ λn

1 1.6 0.9 S . . . . . . . . . 0.49 99
2 1.9 0.8 S . . . . . . . . . 0.40 88
3 2.2 2.5 S . . . . . . . . . 0.56 82
4 2.4 1.0 M 0.43 77 0.69 0.16 98
5 2.9 1.8 S . . . . . . . . . 0.53 86
6 2.9 0.8 M 0.40 51 0.72 0.14 78
7 3.0 0.4 M 0.33 50 0.48 0.11 77
8 3.4 0.7 M 0.40 66 0.37 0.16 70
9 4.2 1.4 B 0.51 56 0.19 0.33 72
10 4.6 2.1 M 0.54 71 0.42 0.23 123
11 4.6 0.7 B 0.35 28 0.52 0.12 52
12 4.9 0.9 B 0.37 26 0.74 0.19 59
13 5.4 0.4 B 0.38 38 0.33 0.19 64
14 5.4 0.7 B 0.31 49 0.85 0.21 62
15 5.4 7.5 B 0.72 99 0.20 0.59 129
16* 23.4 0.8 B 0.25 5 0.83 0.10 84
17* 24.9 0.4 B 0.15 3 0.59 0.11 61
18* 41.2 0.8 B 0.13 5 1.33 0.10 58

Notes. Values of Γ are quoted in units of 10−2. For fragmenting runs the disk
resolution λf , Q2D (Equation (29)) and μf at the time of fragmentation are
listed as well. S runs are single objects with no physical fragmentation. B’s are
binaries which form two distinct objects each with a disk, and M are those with
three or more stars which survive for many orbits. * indicates runs which are
not sufficiently well resolved at the time of fragmentation to make meaningful
measures of μf and Q.

fluctuations), although Qd shows a similar trend. We use this
smoothed minimum quantity in Table 1, and compare it to the
analytic estimate Qd in Table 2 for non-fragmenting disks.

The critical values of Q at which fragmentation sets in depend
on the exact method used for calculation (e.g., Qav or Q2D). The

Figure 3. Top: Qav in a disk with ξ = 2.9, Γ = 0.018. The current disk radius,
Rk,in is shown as well. Bottom: log(Q2D) (Equation (29)) in the same disk.
While the azimuthally averaged quantity changes only moderately over the
extent of the disk, the full two-dimensional quantity varies widely at a given
radius. Q is calculated using κ derived from the gravitational potential, which
generates the artifacts observed at the edges of the disk. Here and in all figures,
we use δx to signify the resolution.

(A color version of this figure is available in the online journal.)

Table 2
Non-fragmenting Runs (Numbers as from Table 1)

Run ξ 102Γ μ Qd Q2D kΣ λn Rd

1 1.6 0.9 0.49 1.6 0.96 1.5 99 103
2 1.9 0.8 0.40 1.5 1.10 1.3 88 138
3 2.2 2.5 0.56 3.7 0.83 1.8 82 65
5 2.9 1.8 0.53 2.2 0.56 1.7 86 77

Notes. We list values for the characteristic predicted value of Toomre’s Q, Qd

(Equation (23)), as well as the measured disk minimum, Q2D Equation (29).
We also list the slope of the surface density profile, kΣ averaged over several
disk orbits, the final resolutions, and Rd at the end of the run (Equation (21)).

canonical Q = 1 boundary only indicates the instability of
axisymmetric perturbations in razor-thin disks (Toomre 1964).
As discussed by numerous authors, the instability criterion is
somewhat different for thick disks (Goldreich & Lynden-Bell
1965; Laughlin et al. 1997, 1998), and for the growth of higher
order azimuthal modes (Adams et al. 1989; Shu et al. 1990;
Laughlin & Korchagin 1996).

Because our disks are thick, the fragmentation boundary
cannot be drawn in Q-space alone. We use Q2D and μ in
Figure 4 to demarcate the fragmentation boundary. Labeled
curves illustrate that the critical Q for fragmentation depends
on the disk scale height (Equation (18)). At a given value of Q,
a disk with a larger value of μ will have a larger aspect ratio,
and will therefore be more stable. Recall from Equation (18)
that the disk aspect ratio is proportional to (ξ/Γ)1/3.
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Figure 4. Steady-state and pre-fragmentation values of Q and μ for single stars
and fragmenting disks, respectively. We use the minimum of Q2D as described
in Section 5.1. Symbols indicate the morphological outcome. Note that the non-
fragmenting disks (large triangles) have the highest value of μ for a given Q.
Contours show the predicted scale height as a function of Q and μ. It is clear
that the single disks lie at systematically higher scale heights. We have assumed
kΣ = 3/2 in calculating scale height contours as a function of Q and μ.

This trend is consistent with the results of Goldreich &
Lynden-Bell (1965) for thick disks; because the column of
material is spread out over a larger distance, H, its self-gravity
is somewhat diluted. The fact that two parameters are necessary
to describe fragmentation is also apparent in Figure 2, where
the boundary between single and multiple systems is a diagonal
line through the parameter space.

5.2. Properties of Non-fragmenting Disks

We find that the disks show some evidence of a broken
power-law structure: an inner region, characterized by kΣ,
where disk material is being accreted inward, and an outer
region characterized by a steep, variable power law due to
the outward spread of low-density, high angular momentum
material. The inner disks are characterized by slopes between
kΣ = 1–2. Clustering around kΣ = 3/2 is expected, as this is
the steady-state slope for a constant Q, isothermal disk. Our
measurements of Q(r) (Equation (29)) show fluctuating, but
roughly constant value over the disk radius. Note that the slope
of the inner disk region tends to increase with Γ. Figure 5
shows normalized radial profiles for the non-fragmenting disks.
Profiles are averaged over approximately three outer-disk orbital
periods. The flattening at small radii is due to the increasing
numerical viscosity in this region (Section 6.2).

We find an upper mass limit of μ ∼ 0.55, for single stars,
which means that disks do not grow more massive than their
central star. A maximum disk mass has been predicted by Shu
et al. (1990) as a consequence of the SLING mechanism. Such an
upper limit is expected as eccentric gravitational instabilities in
massive disks shift the center of mass of the system away from
the central object. Indeed, we observe this wobble in binary
forming runs. The subsequent orbital motion of the primary
object acts as an indirect potential exciting strong m = 1
mode perturbations which can induce binary formation (Shu

Figure 5. Normalized density profiles for the non-fragmenting disks. Profiles are
azimuthal averages of surface densities over the final ∼3 disk orbital periods.
We find that while the inner regions are reasonably approximated by power-
law slopes, the slope steepens toward the disk edge. For comparison, slopes of
kΣ = 1, 1.5, and 2 are plotted as well. Runs are labeled according to their values
in Table 1.

(A color version of this figure is available in the online journal.)

et al. 1990). Although our maximum value is higher than their
prediction, the discrepancy may be related to the sharpness of
their disk edge.

Using the analytic expressions above, we can also derive an
expression for an effective Shakura–Sunyaev α. In this regime of
parameter space, ξ and Γ are always such that B � 1 (assuming
α does not stray far from unity). We therefore expect that
μ ∝ Γ1/6ξ 1/3α−1/2. Using this relation we can find a functional
form of α(ξ, Γ). We find that

μ ≈ 2Γ1/3, (31)

with some scatter for both single disks and fragmenting disks
just prior to fragmentation. We can use this fit to infer a scaling
relation for α using Equation (28) in the limit μ � √

2B:

αd ≈ 1

18(2 − kΣ)2(1 + lj )2

ξ 2/3

Γ1/3
. (32)

The scaling is consistent with our expectation that driving the
disk with a higher ξ causes it to process materially more rapidly,
while increasing Γ decreases the efficiency with which the
disk accretes. Equation (32) predicts disk averaged values of
α for single star disks between ∼0.3 and 0.8. These values
are consistent with the observed accretion rates, and with
numerically calculated torques (Section 5.5).

5.3. The Fragmentation Boundary

We find that the division between fragmenting and non-
fragmenting disks can be characterized by a minimum value
of Γ at which disks of a given ξ are stable. In Figure 2, we
have plotted this empirically derived boundary as Γ = ξ 2.5/850.
Although the fragmentation boundary may be influenced by disk
resolution, our analytic predictions suggest that the moderate
Γ dependence is physical. This result is consistent with the
findings of Tohline (1981) and Tsuribe & Inutsuka (1999a) who
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find cloud fragmentation below a critical value of αthermβrot.
For the cores which describe our initial conditions, αtherm =
3(ξπ )−2/3, while βrot = (Γπ )2/3/4. Although the mechanism for
fragmentation is not identical (here fragmentation occurs after
the central object has formed, in contrast to Tsuribe & Inutsuka
1999b), the αthermβrot criterion is equivalent to a restriction on
(H/R)2.

In disks with realistic temperature gradients, the stabilizing
influence of rotation is overwhelmed by the fact that larger
disks are typically colder, and have shorter cooling times
relative to their orbital period, and therefore are more prone
to fragmentation. In this case, more rotation does correspond
to more fragmentation, as often observed (Walch et al. 2009).
However, in our models we can distinguish between the effects
of temperature and disk size (angular momentum). In the
absence of a temperature gradient, a larger disk will be more
stable because it can store more mass at lower column densities.
In addition, Γ increases the disk aspect ratio, H/R, which also
lowers the critical Q threshold for fragmentation.

5.4. The Formation of Binaries and Multiples

As shown by Figure 2, a large swath of our parameter space
is characterized by binary and multiple formation. Are these
equal mass binaries? Low mass stellar companions? Or maybe
even massive planets? In our idealized self-similar picture it
is difficult to tell. In an actively accreting multiple system, as
long as the mass reservoir has angular momentum such that
the circularization radius of the infalling material is comparable
to the separation between objects, the smaller object, which is
further from the center of mass, will accrete due to the torque
imbalance (Bate & Bonnell 1997; Bonnell & Bate 1994b).
Similarly, in thick, gravitationally unstable disks, the isolation
mass approaches the stellar mass:

Miso = 4πfH rH rdΣ ≈ fH

3.5

(
10H

R

)3/2

Q−3/2M∗. (33)

Here, rH = (Ms/3M∗)1/3 is the Hill radius, Ms and M∗ are
the masses of the secondary and primary, and the numerical
factor fH represents how many Hill radii an object can feed
from in the disk—numerical simulations suggest fH ∼ 3.5
(Lissauer 1987; Rafikov 2002). Therefore, the evolution of these
objects in our models is clear: they tend to equalize in mass.
The binary separation will also grow if any of the infalling
angular momentum is transferred to the orbits as opposed
to the circumstellar disks. These trends are borne out in our
experiments: binary mass ratios asymptote to values of 0.8–0.9
and separations to ∼60% of Rk,in.

In a realistic model for star formation, the parameters that
characterize a single run in this paper will represent only one
phase in the life of a newborn system. The trajectory through
ξ–Γ space which the systems take following binary formation
will strongly influence the outcome in terms of separation and
mass ratio.

5.4.1. Hierarchical Multiples and Resolution Dependence

Disks which are at the low ξ end of the binary forming regime
tend to form binaries at later times, and therefore at higher disk
resolution. Because of the numerical algorithm which forces
sink particles within a gravitational softening length of each
other to merge, at lower resolution many of these particles
merge, leaving only two distinct objects behind. At higher

Figure 6. Azimuthal averages of different components of torque expressed as
an effective α (Equation (35)) for run 8. The straight line, αd (Equation (32))
is plotted for comparison. The agreement between the analytic value of αd and
the combined contribution from the other components is best near the expected
disk radius Rk,in.

(A color version of this figure is available in the online journal.)

resolution, while some of the particles ultimately merge, we
find that three or four objects typically survive this process. We
cannot distinguish between merging and the formation of very
tight binaries. In addition to merging, small mass fragments are
occasionally ejected from the system entirely. This appears be
a stochastic process, though we have not done sufficient runs to
confirm this conclusion.

5.5. Gravitational Torques and Effective α

We verify that the accretion observed in our disks is generated
by physical torques by computing the net torque in the disk.
It is convenient to analyze the torques in terms of the stress
tensor, TRφ , which is made up of two components: large-scale
gravitational torques and Reynolds stresses. Following Lodato
& Rice (2005) we define

TRφ =
∫

gRgφ

4πG
dz + ΣδvRδvφ, (34)

where δv = v − v̄. In practice, we set δvR = vR , while δvφ is
calculated with respect to the azimuthal average of the rotational
velocity at each radius. In reality there is an extra viscous term
attributable to numerical diffusion. We discuss the importance
of this term in Section 6.2.

The first term in Equation (34) represents torques due to
large-scale density fluctuations in spiral arms, while the second
is due to Reynolds stresses from deviations in the velocity field
from a Keplerian (or at least radial) velocity profile. To facilitate
comparison with analytic models, the torques can be represented
as an effective α where

TRφ =
∣∣∣∣d ln Ω
d ln R

∣∣∣∣αΣc2
s . (35)

We can compare these torques to the characteristic disk αd in
Equation (32) at a snapshot in time. Figure 6 compares αd to
the azimuthal average of the physical torques for one of our
runs. We also show the expected contribution from numerical
diffusion (see Section 6.2). The accretion expected from these
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Figure 7. Cuts along the vertical axis and disk midplane of the vertical velocity,
normalized to the disk sound speed. Clearly most of the vertical motions in
the disk are transonic, although at the edges of the disk the velocities exceed
M ∼ 1.

(A color version of this figure is available in the online journal.)

three components is consistent with the time averaged total
accretion rate onto the star. Due to the short-term variability
of the accretion rate, the two do not match up exactly. It is
interesting to note the radial dependence of the Reynolds stress
term, which in the inner region decays rapidly, before rising
again, due to the presence of spiral arms. In both the azimuthal
average and the two-dimensional distribution we see that at
small radii numerical diffusion dominates, whereas at large radii
deviations in the azimuthal velocity which generate Reynolds
stresses are spatially correlated with the spiral arms.

5.6. Vertical Structure

When the disks reach sufficient resolution, we can resolve
the vertical motions and structure of the disk. We defer a
detailed analysis of the vertical structures to a later paper,
but discuss several general trends here. Depending on the run
parameters, the disk scale height is ultimately resolved by 10–
25 grid cells. We observe only moderate transonic motions
in the vertical direction of order M ∼ 1–2. Figure 7 shows
two slices of the z-component of the velocity field for a single
system, one through the X–Z plane, and the other through the
disk midplane. Although there is significant substructure, the
motions are mostly transonic. Figure 8 illustrates the range of
disk aspect ratios as a function of ξ and Γ.

6. CAVEATS AND NUMERICAL EFFECTS

6.1. Isothermal Equation of State

Many simulations have shown the dramatic effects that
thermodynamics have on disk behavior (Boss et al. 2000;
Gammie 2001; Rice et al. 2005; Lodato & Rice 2005; Boley
et al. 2006; Krumholz et al. 2007; Offner et al. 2009). Since
we are concerned with fragmentation, we must be aware of the
potential dependences of the fragmentation boundary on cooling
physics. Starting with Gammie (2001), there has been much

Figure 8. Density slices showing vertical structure in a single and binary disk.
The top plot is a single star with ξ = 1.6, Γ = 0.009, while the bottom is a
fragmenting binary system with ξ = 24.3, Γ = 0.008. Equation (18) predicts
disk aspect ratios of 0.18 and 0.07, respectively. The extended material in the
binary system is generated by a combination of large-scale circumbinary torques
and the infalling material. Color scale is logarithmic. The box sizes are scaled
to 1.5Rk,in in the plane of the disk.

(A color version of this figure is available in the online journal.)

discussion of the “cooling time constraint” that states that a disk
with Q ∼ 1 will only fragment if the cooling time is short. While
this is a valuable analysis tool for predicting the evolution of a
system from a snapshot and for quantifying the feedback from
gravito-turbulence, for most of the protostellar disks that we
are modeling, the cooling time at the location of fragmentation
is short because irradiation is the dominant source of heating
(D’Alessio et al. 1997; Matzner & Levin 2005; Krumholz et al.
2007; Kratter et al. 2008).

Passively heated disks behave more like isothermal disks
than barotropic disks, because the energy generation due to
viscous dissipation is small compared to the energy density
due to radiation. Consequently, feedback from accretion in
the midplane does not alter the disk temperature significantly.
Numerical simulations such as Krumholz et al. (2007) find that
strongly irradiated disks appear locally isothermal. In fact, the
morphological outcome is similar to those of Krumholz et al.
(2007) with comparable values of ξ .

Another possible concern is the lack of a radial temperature
gradient, independent of the equation of state. Both passively
and actively (through viscous dissipation) heated disks will be
warmer at small radii. In these experiments, we find spiral arms
persist in regions where the average value of Q is well above
that at which instability is presumed to set in, with local values
exceeding this by an order of magnitude. It seems plausible that
due to the global nature of the low-m spiral modes, angular
momentum transport may still occur in regions one would
assume stable against GI. As discussed by Adams et al. (1989),
m = 1 modes can have appreciable growth rates for Q > 1
even when the evanescent region covers as much as 70% of
the disk radius. At small radii where the disk becomes stable,
another mechanism for transport must take over. Alternatively,
material from the outer, unstable portion of the disk will likely
accumulate until the critical surface density for GI is reached.

In order to test the effects of the gas stiffening we introduced to
avoid unphysical merging of our sink particles (see Section 3.1),
we have conducted several purely isothermal experiments in
which it is turned off. The removal of the barotropic switch
artificially enhances accretion at early times due to sink particles
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Figure 9. Left: snapshot of the standard resolution of run 16 shortly after binary formation. Right: the same run at double the resolution. Because of the self-similar
infall prescription, we show the runs at the same numerical resolution, as time and resolution are interchangeable. In this case, the high-resolution run has taken twice
the elapsed “time” to reach this state. The two runs are morphologically similar and share expected disk properties.

(A color version of this figure is available in the online journal.)

formed via numerical fragmentation merging with the central
star. Removing the barotropic switch is equivalent to increasing
the resolution of the fragmentation process, but decreasing
the resolution of the scale of fragmentation relative to λ, the
disk resolution. Using a barotropic switch allows the disk to
reach a higher λ before fragmentation sets in for a given set of
parameters.

6.2. Resolution

We have shown in Section 5.5 that the observed accretion is
consistent with the combined gravitational torques and Reynold
stresses, and that these are dominant over that expected purely
from numerical diffusion. Because of the self-similar infall,
convergence to a steady state within a given run is a good
indicator that numerics are not determining our result; in effect,
every run is a resolution study. That we observe a range of
behavior at the same resolution but different input parameters
also imply that numerical effects are sub-dominant. We consider
our disks to be resolved when they reach radii such that
Rk,in/Δx � 30. The effective numerical diffusivity, which we
plot in Figure 6, has been estimated by Krumholz et al. (2004)
for ORION. Specifically they find that

αnum ≈ 78
rB

Δx

( r

Δx

)−3.85
, (36)

where

rB = GM∗
c2
s

(37)

is the standard Bondi radius.
For our typical star and disk parameters, this implies numeri-

cal α’s of order 0.1–0.3 at the minimum radius at which we are
resolved, so at most 1/3 of our effective α could be attributed to
numerical effects at low resolution. See discussions by Offner
et al. (2008); Krumholz et al. (2007, 2004) for a detailed analy-
sis of disk resolution requirements. At our resolution of 50–100
radial cells across the disk, the dominant effect of numerical
diffusion is likely a suppression of fragmentation (Shetty & Os-
triker 2006; Nelson 2006). Because the isothermal spiral arms
can become very narrow prior to fragmentation, numerical dif-
fusion across an arm may smear out some overdensities faster
than they collapse. Therefore, the conclusions regarding the
fragmentation boundary are likely conservative.

We demonstrate morphology convergence in one of our
binary runs. We rerun run 16 (as labeled in Table 1) at double the

resolution (1283 with 10 levels of refinement as opposed to 9).
Increasing the physical resolution also decreases the code time
step proportionally so that the ratio of the timestep to orbital
period as a function of λ should be preserved. In fact, there is
little that can be different between the runs at two resolutions at
the same effective λ.

The two runs have the same morphology and characteristic
disks properties as a function of λ, as expected. We show
in Figure 9 snapshots of the standard and high resolution
runs. The standard resolution run (left) is at twice the elapsed
“time” of the high resolution one (right), and so the same
numerical resolution, λ. We confirm that the mass accretion rate
is consistent between the two runs: at the snapshots shown the
mass ratio of the lower resolution run is 0.46, while the higher
resolution run is 0.48. To the extent that numerical artifacts are
seeding instabilities, we expect some stochasticity in the details
of the fragmentation between any two runs. Although the effect
is small, it is also possible that since the physical size of the
disk (and the radius from which material is currently accreting)
relative to the box size is larger at the same value of λ for the
low resolution run, the large-scale quadrapole potential from the
image masses is stronger in the low resolution case.

7. COMPARISON TO PREVIOUS STUDIES

The literature is replete with useful simulations of proto-
stellar and protoplanetary disks at various stages of evolution,
however most involve isolated disks, without infall at large radii
(Laughlin & Bodenheimer 1994; Laughlin & Rozyczka 1996;
Rice et al. 2005; Lodato & Rice 2005; Fromang & Nelson 2006;
Shetty & Ostriker 2006; Boley et al. 2006; Lodato et al. 2007;
Cai et al. 2008). These simulations include a wide range of
physics, from magnetic fields to radiative transfer, but due to
the lack of infalling matter, they neither develop disk profiles
(surface density, temperature) self-consistently, nor do they en-
ter the regime of interest in this work: rapid accretion in the
embedded phase. For a review of many of the issues addressed
by current GI disk simulations, see Durisen et al. (2007).

There are a few simulations of self-consistent growth and
evolution (Vorobyov & Basu 2007, 2008). These are ideal for
following the long-term evolution of more quiescient lower mass
disks. However, because they are two dimensional, and lack a
moving central potential, they cannot follow the evolution of
non-axisymmetric modes which are driven by the displacement
of the central star from the center of mass, nor can they
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Figure 10. Trajectory of a Bonnor–Ebert sphere through ξ–Γ space. The two
lines show values of β = 0.02, 0.08 as defined in Matsumoto & Hanawa
(2003). Arrows indicate the direction of time evolution from t/tff,0 = 0–5. tff,0
is evaluated with respect to the central density, and arrows are labeled with the
fraction of the total Bonnor–Ebert mass which has collapsed up to this point.
The dotted line shows the fragmentation boundary from Figure 2.

(A color version of this figure is available in the online journal.)

accurately simulate the formation of multiple systems. Other
authors have investigated the initial stage of core collapse
onto disks (Tsuribe & Inutsuka 1999b; Banerjee & Pudritz
2007), however, these authors focus on the effects of magnetic
fields and fragmentation of the core prior to disk formation,
respectively. Tsuribe & Inutsuka (1999b) and Matsumoto &
Hanawa (2003) have also investigated the collapse of cores into
disks and binaries, though they do not investigate many disk
properties (see Section 7.1 for detailed comparisons). Krumholz
et al. (2007) and Krumholz et al. (2009) have conducted
three-dimensional radiative transfer calculations, but due to
computational cost can only investigate a small number of initial
conditions.

In addition to numerical work, there are a range of semi-
analytic models which follow the time evolution of accreting
disks (Hueso & Guillot 2005; KMK08). KMK08 examined
the evolution of embedded, massive disks in order to predict
regimes in which gravitational instability, fragmentation of the
disk, and binary formation were likely. They concluded that
disks around stars greater than 1–2 M� were likely subject to
strong gravitational instability, and that a large fraction of O and
B stars might be in disk-born binary systems.

7.1. The Evolution of the Accretion Parameters in the
Isothermal Collapse of a Bonnor–Ebert Sphere

While self-similar scenarios are useful for numerical exper-
iments, they do not accurately capture the complexities of star
formation. In particular, in realistic cores, ξ and Γ evolve in
time. Therefore, it is interesting to chart the evolution of a more
realistic (though still idealized) core through our dimension-
less parameter space. We consider the isothermal collapse of
a Bonnor–Ebert sphere initially in solid-body rotation (Bonnor
1956). Such analysis allows us to compare our results with other
numerical simulations that have considered global collapse and
binary formation such as Matsumoto & Hanawa (2003) via the
parameters laid out in Tsuribe & Inutsuka (1999a).

We use the collapse calculation of a 10% overdense, non-
rotating Bonnor–Ebert sphere from Foster & Chevalier (1993),
and impose angular momentum on each shell to emulate solid

body rotation. Figure 10 shows the trajectory of a rotating
Bonnor–Ebert sphere through ξ–Γ parameter space as a function
of time in units of the central initial freefall time t/tff,0, for two
different rotation rates corresponding to βrot = 0.02, 0.08.

The early spike in ξ is due to the collapse of the inner
flattened core. Similarly, the corresponding decline in Γ is a
result of the mass enclosed increasing more rapidly than the
infalling angular momentum. The long period of decreasing ξ
and constant Γ arises from the balance between larger radii
collapsing to contribute more angular momentum and the slow
decline of the accretion rate. This trajectory may explain several
features of the fragmentation seen in Matsumoto & Hanawa
(2003). Although not accounted for in Figure 10, cores with high
values of β have accretion rates suppressed at early times due to
the excess rotational support, while those with low β collapse
at the full rate seen in Foster & Chevalier (1993). In cores with
small β, the high value of ξ may drive fragmentation while the
disk is young. Alternatively, for modest values of β, Γ may be
sufficiently low while ξ is declining that the disk mass surpasses
the critical fragmentation threshold, and fragments via the so-
called satellite formation mechanism. For very large values of β,
a core which is only moderately unstable will oscillate and not
collapse as seen in Matsumoto & Hanawa (2003) for β > 0.3.

8. DISCUSSION

We have examined the behavior of gravitationally unstable
accretion disks using three-dimensional, AMR numerical exper-
iments with the code ORION. We characterize each experiment
as a function of two dimensionless parameters, ξ and Γ, which
are dimensionless accretion rates comparing the infall rate to the
disk sound speed and orbital period, respectively. We find that
these two global variables can be used to predict disk behavior,
morphological outcomes, and disk-to-star accretion rates and
mass ratios. In this paper, we discuss the main effects of varying
these parameters. Our main conclusions are as follows.

1. Disks can process material falling in at up to ξ ∼ 2–3
without fragmenting. Although increasing Γ stabilizes disks
at fixed values of ξ those fed at ξ > 3 for many orbits tend
to fragment into a multiple or binary system.

2. Disks can reach a statistical steady state where mass
is processed through the disk at a fixed fraction of the
accretion rate onto the disk. The discrepancy between
these two rates, μ, scales with Γ; disks with larger values
of Γ can sustain larger maximum disk masses before
becoming unstable. The highest disk mass reached in a
non-fragmenting system is μ ≈ 0.55 or M∗ ∼ Md .

3. Gravitational torques can easily produce effective accretion
rates consistent with a time averaged α ≈ 1.

4. The minimum value of Q at which disks begin to fragment
is roughly inversely proportional to the disk scale height. It
is therefore important to consider not only Q but another dy-
namical parameter when predicting fragmentation, at least
in disks which are not thin and dominated by axisymmetric
modes.

5. The general disk morphology and multiplicity is consistent
between isothermal runs and irradiated disks with similar
effective values of ξ .

These conclusions are subject to the qualification that frag-
mentation occurs for lower values of ξ as the disk resolu-
tion increases, and so it is possible that the location of the
fragmentation boundary will shift with increasing resolution
(K. M. Kratter et al. 2010, in preparation). However, we expect
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that our results are representative of real disks and other numer-
ical simulations insofar as they have comparable dynamic range
of the parameters relevant to fragmentation such as λJ /λ.
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