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ABSTRACT

Forming stars emit a substantial amount of radiation into their natal environment. We use ORION, an adaptive mesh
refinement (AMR) three-dimensional gravito-radiation-hydrodyanics code, to simulate low-mass star formation in
a turbulent molecular cloud. We compare the distributions of stellar masses, accretion rates, and temperatures
in the cases with and without radiative transfer, and we demonstrate that radiative feedback has a profound
effect on accretion, multiplicity, and mass by reducing the number of stars formed and the total rate at which
gas turns into stars. We also show that once the star formation reaches a steady state, protostellar radiation
is by far the dominant source of energy in the simulation, exceeding viscous dissipation and compressional
heating by at least an order of magnitude. Calculations that omit radiative feedback from protstars significantly
underestimate the gas temperature and the strength of this effect. Although heating from protostars is mainly
confined to the protostellar cores, we find that it is sufficient to suppress disk fragmentation that would otherwise
result in very low-mass companions or brown dwarfs. We demonstrate that the mean protostellar accretion
rate increases with the final stellar mass so that the star formation time is only a weak function of mass.
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1. INTRODUCTION

On large scales, molecular clouds are generally observed to
have limited temperature variations, a characteristic that results
from the high efficiency of radiative cooling at typical cloud den-
sities. Consequently, simulations of molecular clouds frequently
assume constant gas temperature, a convenient approximation
for investigations of gas dynamics, turbulence, and gravitational
collapse (Gammie et al. 2003; Bonnell et al. 2003; Li et al.
2004; Tilley & Pudritz 2004; Vázquez-Semadeni et al. 2008).
However, an isothermal assumption necessarily neglects the in-
fluence of heating due to gas compression, accretion, and stellar
sources.

The importance of the local gas temperature to the star
formation process is motivated analytically when considered
in combination with gravity. The characteristic fragmentation
scale for self-graviting gas of density, ρ, and sound speed, cs, is
given by the Jeans length:

λJ =
√

πc2
s

Gρ
∝

(
T

ρ

)1/2

. (1)

Thus, for lower temperatures, gas is prone to gravitational
instability at lower densities. In rotating self-gravitating disks,
the criterion may be phrased in terms of the local column
density Σ:

Q = κεcs√
πGΣ

∝ T 1/2, (2)

where the onset of gravitational instability occurs as the Toomre
parameter, Q, approaches one and κε is the epicyclic frequency.
Cold protostellar disks more readily develop spiral structure and
become Toomre unstable, influencing protostellar accretion and

driving fragmentation (Kratter et al. 2008). Overproducing low-
mass objects or brown dwarfs in the stellar initial mass function
(IMF) is one side effect of increased fragmentation (Bate 2009b;
Krumholz et al. 2007a).

Gas eventually becomes optically thick at densities orders
of magnitude above the molecular cloud mean, and radiative
cooling is no longer efficient. To investigate this transition,
Masunaga et al. (1998) modeled a spherically symmetric core
collapse including angle-dependent multi-frequency radiative
transfer, resolving scales down to the accretion shock. They
halted the calculation at the end of the first collapse phase,
prior to the dissociation of H2 and before protostellar feedback
commences. The authors reported a characteristic transition
density of ∼10−13 g cm−3 for initially 10 K gas, above which the
temperature increased with increasing density. In many turbulent
simulations, rudimentary heating due to gas compression is
frequently represented using an equation of state (EOS; Li
et al. 2003; Bate et al. 2003; Bate & Bonnell 2005; Jappsen
& Klessen 2005; Bonnell et al. 2006; Offner et al. 2008;
Clark et al. 2008; Bate 2009a). Although such an equation
typically fits a more exact radiative transfer solution such as that
reported by Masunaga et al. (1998), it neglects the instantaneous
mean-free path, multi-dimensional effects, dust chemistry, and
time dependence of stellar sources. In fact, the subsequent
paper, Masunaga & Inutsuka (2000), demonstrated that gas
temperatures may become significantly warmer as a result of
protostellar feedback and that the temperature distribution is
quite sensitive to the accretion luminosity.

To compromise between physics and computational expense,
a few hybrid methods include heating by solving explicit dif-
fusion approximations, estimating the instantaneous radiative
cooling, or extrapolating from previously tabulated tempera-
tures (Stamatellos et al. 2007; Banerjee & Pudritz 2007; Bonnell
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& Rice 2008). Such methods are computationally cheaper and
reproduce radiative heating for simple geometries. However, the
suitability of these approximations is unclear for radiative prob-
lems involving clustered star formation in a turbulent medium,
where the problem is highly nonlinear, involves complex ge-
ometry, and the column density may not be a good indicator
of the cooling rate. In addition, many of these approaches also
neglect heating by stellar sources, which are crucial as we will
show in this paper. The unknown accuracy of radiation approx-
imations and the deficiencies in handling temporal and spatial
variations motivates our use of a full radiative transfer method,
albeit one based upon the gray flux-limited diffusion (GFLD)
approximation.

Relatively few authors have pursued three-dimensional calcu-
lations including radiative transfer. These authors always adopt
the flux-limited diffusion approximation and assume that the
radiation field is frequency independent, i.e. gray. By modeling
star formation with GFLD, it has been shown that a barotropic or
polytropic EOS can underestimate the true heating at high densi-
ties even for simple, non-turbulent collapse problems (Boss et al.
2000; Whitehouse & Bate 2006). The issue of radiative feedback
is particularly acute for high-mass stars, which emit prodigious
luminosities while forming (Krumholz 2006; Krumholz et al.
2007a, 2009). To explore this point, Krumholz et al. (2007a)
contrasted simulations of collapsing, turbulent high-mass cores
using an isothermal EOS to those using GFLD radiation transfer.
The authors demonstrated that simulations with radiative trans-
fer are able to produce a massive star formed from gas accretion,
while barotropic or isothermal calculations may only produce a
massive star via mergers of many smaller bodies. Comparisons
of the temperature distribution, assuming a barotropic EOS in
lieu of radiative transfer, showed significant underestimation of
the volume of heated gas and a much lower local maximum gas
temperature.

In the regime of low-mass star formation, Bate (2009b)
modeled several small clusters forming low-mass stars with
the smoothed particle hydrodynamics (SPH) radiative transfer
method developed by Whitehouse & Bate (2006). The author
compared these with previously published simulations using
identical initial conditions and a barotropic EOS. The calcula-
tions including radiation transfer showed a substantial decrease
in the number of brown dwarfs from 50% of the number of
objects to <10%. This agrees with the prediction of Matzner
& Levin (2005), who assert incorrect disk fragmentation may
produce brown dwarfs if irradiation is not included. Accretion
luminosity, which is emitted at the protostellar surface, gen-
erates a significant portion of the luminosity during the early
stages of protostar formation. Indeed, Bate (2009b) found in-
creased heating and fewer brown dwarfs at higher resolution
but reported little difference in the final stellar distribution for
resolutions of 0.5 AU versus 5.0 AU. Since 0.5 AU is much
larger than protostellar radii, significant accretion heating was
neglected. As Bate (2009b) also neglected deuterium burning,
the calculations represent a lower limit on the effects of radiative
feedback.

In this paper, we model the formation of low-mass stars in
a turbulent molecular cloud including GFLD using the ORION
adaptive mesh refinement (AMR) code. We address the issue of
radiative feedback, including all the important energy sources,
and how it influences low-mass star formation. Our study differs
from previous work in that we use source terms to account for
accretion luminosity down to the stellar surface and include a
stellar evolutionary model (Tan & McKee 2004). We contrast

a GFLD simulation to one without radiative transfer. We also
perform a less time-evolved calculation with resolution eight
times higher to characterize the dependence of the solutions with
and without radiative transfer on resolution. We describe our
method in Section 2. In Section 3, we compare and contrast the
four simulations. We discuss caveats to our method in Section 4
and summarize our conclusions in Section 5. Comparisons to
observations will appear in a subsequent paper.

2. METHODOLOGY AND INITIAL CONDITIONS

2.1. Numerical Methods

For the purpose of comparison, we perform two calculations
with identical resolutions and characteristic parameters. The
first, which we denote by RT, includes radiative transfer and
feedback from stellar sources. The second, henceforth NRT,
uses an EOS to describe the thermal evolution of the gas. We
perform both simulations using the parallel AMR code, ORION.
ORION utilizes a conservative second order Godunov scheme
to solve the equations of compressible gas dynamics (Truelove
et al. 1998; Klein 1999):

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

∂(ρv)

∂t
+ ∇ · (ρvv) = −∇P − ρ∇φ, (4)

∂(ρe)

∂t
+ ∇ · [(ρe + P )v] = ρv∇φ − κRρ(4πB − cE), (5)

where ρ, P, and v are the fluid density, pressure, and velocity,
respectively. The total fluid energy is given by e = 1/2ρv2 +
P/(γ − 1), where γ = 5/3 for a monatomic ideal gas.6

The total radiation energy density is denoted by E, and B is the
Planck emission function. ORION solves the Poisson equation
for the gravitational potential φ using multi-level elliptic solvers
with multi-grid iteration:

∇2φ = 4πG

[
ρ +

∑
n

mnδ(x − xn)

]
, (6)

where mn and xn are the mass and position of the nth star.
ORION solves the non-equilibrium flux-limited diffusion

equation using a parabolic solver with multi-grid iteration to
determine the radiation energy density (Krumholz et al. 2007b):

∂E

∂t
− ∇ ·

(
cλ

κRρ
∇E

)
= κPρ(4πB − cE) +

∑
n

LnW (x − xn),

(7)
where κR and κP are the Rosseland and Planck dust opacities,
and Ln is the luminosity of the nth star. W is a weighting
function that determines the addition of the stellar luminosity
to the grid (see Appendix A for details of the star particle
algorithm). The flux limiter is given by λ = 1

R
(coth R − 1

R
),

where R = |∇E/(κRρE)| (Levermore & Pomraning 1981).
We assume that the dust grains and gas are thermally well

coupled, an approximation we discuss further in Section 4.2.
We obtain the dust opacities from a linear fit of the Pollack

6 Most of the volume of the domain is too cold to excite any of the H2
rotational or vibrational degrees of freedom, and thus the gas acts as if it were
monatomic.
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et al. (1994) dust model, which includes grains composed of
silicates, trolites, metallic iron, organics, and H2O ices. For gas
temperatures 10 K � Tg � 350 K, the linear fit is given by

κR = 0.1 + 4.4(Tg/350) cm2 g−1, (8)

κP = 0.3 + 7.0(Tg/375) cm2 g−1. (9)

These fits give κR = 0.23 cm2 g−1 and κP = 0.49 cm2 g−1 at
the minimum simulation temperature, 10 K. Work by Semenov
et al. (2003) explores the effect of dust composition, porosity,
and iron content on the Planck and Rosseland average opacities.
For the different models, they find a spread of more than an order
of magnitude in the opacity at 10 K. The simplest model, based
upon the assumption that dust grains are homogeneous spheres,
produces the lowest value for the Rosseland opacity, κR � 0.02
cm2 g−1, while the most porous and non-homogeneous grain
models produce 10 K opacities as large as κR � 0.7 cm2 g−1.
For temperatures above 100 K, the different dust models are
more converged and the opacities are generally within a factor
of 2. As a result, the temperature range from 10 K to 100 K is the
most sensitive to dust assumptions. In this range, homogeneous
models increase roughly quadratically with temperature, while
fluffier grain models increase linearly. Our opacity fits are then
close to the mean value of κR = 0.16 for the Semenov et al.
(2003) models, although this value is more representative of
porous and aggregate grains. As a result, our dust model is
reasonable for the higher density regions of n � 107 cm3 typical
of protostellar cores, but we may overestimate the dust opacity
in the lower density cold gas by as much as a factor of 10.

In studies of low-mass star formation, it is reasonable to
neglect pressure exerted by the radiation field on the dust and
gas. This is because the advection of radiation enthalpy is small
compared to the rate the radiation diffuses through the gas:

∇ · ( 3−R2
2 vE

)
∇ ·

(
cλ

κRρ
∇E

) � 1, (10)

where R2 = λ + λ2R2 is the Eddington factor.
Without radiative transfer, the energy exchange term in

Equation (5) disappears, and we close the system of equations
with a barotropic EOS for the gas pressure:

P = ρc2
s +

(
ρ

ρc

)γ

ρcc
2
s , (11)

where cs = (kBT /μ)1/2 is the isothermal sound speed, γ = 5/3,
the average molecular weight μ = 2.33mH, and the critical
density, ρc = 2 × 10−13 g cm−3. The value of μ reflects an
assumed gas composition of nHe = 0.1nH. The critical density
determines the transition from isothermal to adiabatic regimes,
and we adopt a value to agree with the full angle-dependent one-
dimensional radiation-hydrodynamic calculation by Masunaga
et al. (1998) that agrees with the collapse solution prior to H2
dissociation.

We use the Truelove criterion to determine the addition of
new AMR grids so that the gas density in the calculations always
satisfies

ρ < ρJ = J 2πc2
s

G(Δxl)2
, (12)

where Δxl is the cell size on level l, and we adopt a Jeans number
of J = 0.25 (Truelove et al. 1997). In the case with radiative

transfer, it is important to adequately resolve spatial gradients in
the radiation field. Radiation gradients are primarily associated
with collapsing regions hosting a star but are not covered by the
Jeans gravitational criterion. We find that we adequately resolve
the radiation field and avoid effects such as grid imprinting
by refining wherever ∇E/E > 0.25. Although the simulation
box and gas behavior are periodic, we adopt Marshak boundary
conditions for the radiation field. This allows the radiation to
escape from the box as it would from a molecular cloud.

We insert sink, or star, particles in regions of the flow
that have exceeded the Jeans density on the maximum level
(Krumholz et al. 2004). These particles mark collapsing regions
and also represent protostellar objects. In the simulation with
radiative transfer, the particles act as radiative sources, and they
are endowed with a sub-grid stellar model. We describe the
details of this model and its implementation in Appendix B. By
construction, stars that approach within eight cells are merged
together. Small sink particles, such as those generated by disk
fragmentation, tend to accrete little mass and frequently merge
with their more substantial neighbors within a few orbital times.

2.2. Initial Conditions

We chose a characteristic three-dimensional turbulent Mach
number, M = 6.6, and assume that the cloud is approximately
virialized:

αvir = 5σ 2

GM/R
� 1. (13)

The initial box temperature is T = 10 K, length of the box L =
0.65 pc and the average density is ρ = 4.46 × 10−20 g cm−3,
so that the cloud satisfies the observed linewidth-size relation
(Solomon et al. 1987; Heyer & Brunt 2004). The total box mass
is 185 M	.

To obtain the initial turbulent conditions, we begin without
self-gravity and apply velocity perturbations to an initially
constant density field using the method described in Mac Low
(1999). These perturbations correspond to a Gaussian random
field with flat power spectrum in the range 1 � k � 2 where
k = kphysL/2π is the normalized wavenumber. At the end of
three cloud crossing times, the turbulence follows a Burgers
power spectrum, P (k) ∝ k−2, as expected for hydrodynamic
systems of supersonic shocks. We denote this time t = 0. We
then turn on gravity and follow the subsequent gravitational
collapse for one global free-fall time:

t̄ff =
√

3π

32Gρ̄
= 0.315 Myr, (14)

where ρ̄ is the mean box density. We continue turbulent
driving in the simulations, using a constant energy injection
rate to ensure that the turbulence does not decay and the cloud
maintains approximate energy equipartition.

The calculations have a 2563 base grid with four levels of
factors of two in grid refinement, giving an effective resolution
of 40963, where Δx4 = 32 AU. In Section 3.2, we describe
the results of a high-resolution core study using seven levels of
refinement for an effective resolution of 65, 5363 and minimum
cell size Δx7 = 4 AU. Generally, the calculations run on 128–256
CPUs.
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Figure 1. Log gas column density of the RT (left) and NRT (right) simulations
at 0.0, 0.25, 0.5, 0.75, and 1.0 tff . The log density weighted gas temperature for
the RT is shown in the center. The color scale for the column density ranges
from 10−1.5 to 100.5 g cm−2 and 10–50 K for the gas temperature. Animations
of the left and right panels are included in the online version.

(A color version and animations of this figure are available in the online journal.)

3. RESULTS

3.1. Radiative Transfer and Non-radiative Transfer
Comparison

In order to quantify the effects of radiative feedback on
low-mass star formation, we compare a simulation including
radiative transfer with a non-radiative one using an EOS. The
latter simulation is essentially isothermal throughout since the
highest density allowed by the Truelove criteria at the fiducial
maximum AMR level corresponds to ρ � 5 × 10−15 g cm−3.
With the adopted EOS, gas of this density is not heated above
11 K.

Images of the two simulations at different times are shown in
Figure 1. Although the simulations use identical forcing patterns
applied at the same Mach number, the details of the turbulence
differ as the two calculations have slightly different time steps
and turbulent decay rates. Both calculations begin at t = 0 with
a centrally condensed region that forms the first stars, an imprint

of the large wavenumber driving. Once gravity is turned on, we
continue driving the simulations with the same energy injection
rate, yielding three-dimensional Mach numbers of 7.0 and 8.6
at 1 tff for the NRT and RT calculations, respectively. Because
gravitational collapse causes non-turbulent velocity motions,
we chose to fix the energy injection rate rather than the total
kinetic energy. Thus, the root-mean-squared gas velocity no
longer exactly indicates the total turbulent energy, and the Mach
number increases above the initial value. In Tables 1 and 2, we
list the properties of the stars formed in each calculation at 1tff .

3.1.1. Temperature Distribution

At t = 0, the RT simulation is nearly isothermal and gas
temperatures are distributed between 10 and 11 K (Figure 2).
Evaluated at the mean box density, the gas is quite optically
thin with an average optical depth though the box of τL =
L× κRρ = 0.65 × 4.46 × 10−20 g cm−3 × 0.2 cm2 g−1 ∼ 0.02.
Since the box is so transparent, the gas cools very efficiently.
Small temperature variations arise in the initial state due to the
distribution of strong shocks. For reference, gas compressed by
a Mach 10 shock at 10 K will undergo net heating of <0.1 K
during a time step. Qualitatively, the change is so small because
the radiative cooling time is a factor of ∼103 smaller than the
time step.

Under the influence of gravity, collapsing regions begin to
become optically thick, where individual cells at the maximum
simulation densities reach optical depths of τ � 3 when
T = 100 K. Figure 2 shows the evolution of the gas temperature
distribution over a freefall time. There are three processes that
result in heating. First, there is the direct contribution from the
protostars, which we add as a source term in the radiation energy
equation. Second there is heating due to viscous dissipation,
which is given by

ėvis = −(σ ′ · ∇) · v, (15)

where σ ′ is the viscous stress tensor, σ ′ = η(S − 2
3I∇ · v) and

S = ∇v + (∇v)T (Landau & Lifshitz 1987). We assume that
the dynamic viscosity η = ρ|v|Δx/Reg , where the Reynolds
number Reg � 1 at the dissipation scale. However, turbulent
dissipation occurs over a range of the smallest scales on the
domain, where the largest amount of dissipation occurs on
the size scale of a cell. Thus, we expect this formula to be
uncertain to within a factor of 2. Third, the net heating due to
gas compression is given by

ėcomp = −P (∇ · v); (16)

the heating is negative (i.e., cooling occurs) in rarefactions.
Figure 3 shows the heating contributions summed over the en-
tire domain. At t = 0, the only source of heating is turbulent
motions. The figure demonstrates that after star formation com-
mences protostellar output rather than compression is respon-
sible for the majority of the heated gas, and at 1tff protostellar
heating dominates by an order of magnitude relative to viscous
dissipation and four orders of magnitude relative to gas com-
pression. Viscous dissipation dominates the heating prior to star
formation. After star formation is underway, viscous dissipation
occurs in the protostellar disks. In contrast, turbulent shocks then
contribute very little to the total.

Figure 2 shows the evolution of the gas temperature distri-
bution over a freefall time. The amount of heated gas (T >
12 K) increases with the number of stellar sources from 0.06%
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Table 1
RT Protostar Properties at 1 tff

m (M	) ṁf (M	 yr−1)a ṁf,2500 (M	 yr−1)b ¯̇m (M	 yr−1)c L (L	) Age (Myr)d

1.52 4.2 × 10−9 1.1 × 10−7 8.7 × 10−6 7.2 0.18
0.45 2.0 × 10−8 3.9 × 10−8 4.0 × 10−6 0.9 0.11
0.09 1.4 × 10−7 1.3 × 10−7 8.0 × 10−7 0.3 0.11
2.91 8.1 × 10−7 1.7 × 10−5 2.9 × 10−5 177.5 0.10
0.35 5.6 × 10−7 2.0 × 10−7 3.5 × 10−6 1.3 0.10
2.21 6.0 × 10−7 4.2 × 10−6 2.4 × 10−5 45.2 0.09
1.54 4.0 × 10−6 7.5 × 10−6 1.7 × 10−6 74.6 0.09
1.17 9.8 × 10−6 1.7 × 10−5 1.4 × 10−5 69.4 0.09
0.43 1.2 × 10−6 2.8 × 10−6 6.0 × 10−6 8.6 0.09
0.48 3.2 × 10−6 7.2 × 10−6 6.9 × 10−6 19.4 0.08
0.65 1.6 × 10−6 9.9 × 10−6 1.1 × 10−5 12.9 0.08
0.80 5.7 × 10−6 1.7 × 10−5 1.5 × 10−5 67.6 0.06
0.33 2.1 × 10−5 2.2 × 10−5 2.3 × 10−5 79.1 0.02
0.06 4.7 × 10−6 5.1 × 10−6 7.4 × 10−6 3.9 0.01
0.01 3.0 × 10−6 1.1 × 10−5 8.6 × 10−6 0.8 0.003

Notes.
a Instantaneous final accretion rate.
b Accretion rate averaged over the last ∼2500 yr.
c Mean accretion rate averaged over the protostar lifetime.
d Age calculated from the time of particle formation.

Table 2
NRT Protostar Properties at 1 tff

m (M	) ṁf (M	 yr−1)a ṁf,2500 (M	 yr−1)b ¯̇m (M	 yr−1)c Age (Myr)d

3.92 7.2 × 10−6 1.2 × 10−5 2.2 × 10−5 0.15
4.77 1.6 × 10−6 2.7 × 10−5 2.6 × 10−5 0.15
2.91 1.0 × 10−5 1.2 × 10−5 2.6 × 10−5 0.11
4.84 2.1 × 10−5 2.3 × 10−5 4.4 × 10−5 0.11
0.66 2.5 × 10−7 2.7 × 10−7 7.6 × 10−6 0.09
1.13 1.3 × 10−5 1.3 × 10−5 2.1 × 10−5 0.05
0.66 8.9 × 10−7 9.0 × 10−7 1.2 × 10−5 0.05
0.55 9.3 × 10−7 1.0 × 10−6 1.1 × 10−5 0.05
0.71 5.9 × 10−6 5.6 × 10−6 1.4 × 10−5 0.05
1.32 1.2 × 10−5 1.4 × 10−5 7.8 × 10−5 0.02
0.08 2.7 × 10−5 6.6 × 10−6 5.9 × 10−6 0.02
0.49 1.1 × 10−5 1.1 × 10−5 3.6 × 10−5 0.02
0.26 5.0 × 10−6 1.2 × 10−5 2.0 × 10−5 0.02
0.04 5.8 × 10−6 1.1 × 10−5 2.8 × 10−6 0.02
0.02 2.6 × 10−9 1.1 × 10−8 1.2 × 10−6 0.02
0.12 1.3 × 10−6 1.5 × 10−6 9.3 × 10−6 0.02
0.04 2.7 × 10−6 2.7 × 10−6 4.2 × 10−6 0.01
0.01 8.6 × 10−12 5.5 × 10−12 1.8 × 10−6 0.01
0.09 6.4 × 10−6 5.1 × 10−6 1.3 × 10−5 0.01
0.14 1.9 × 10−5 1.9 × 10−5 2.3 × 10−5 0.01
0.02 2.7 × 10−6 7.0 × 10−6 5.5 × 10−6 0.01
0.05 2.4 × 10−5 1.5 × 10−5 1.6 × 10−5 0.01

Notes.
a Instantaneous final accretion rate.
b Accretion rate averaged over the last ∼2500 yr.
c Mean accretion rate averaged over the protostar lifetime.
d Age calculated from the time of particle formation.

of the volume for one protostar at 0.5 tff to ∼4% at 1tff . The cor-
responding mass fractions of the heated gas are slightly higher
at 0.3% and 5%, respectively. As we have seen in the previous
figure, most of this heating is directly related to the protostars,
and it comprises a relatively small volume-filling fraction.

The temperature distribution as a function of distance from
the sources is shown in Figure 4. As illustrated, heating is
local and occurs within ∼0.05 pc of the protostar. Since the
remainder of the cloud remains near 10 K, additional turbulent
fragmentation is not affected by pre-existing protostars. How-

ever, radiative feedback profoundly influences the evolution of
the protostars, accretion disks, and stellar multiplicity as we will
show (see Sections 3.1.2 and 3.1.3). Our temperature profiles are
qualitatively similar to those of Masunaga & Inutsuka (2000),
who model one-dimensional protostellar collapse with radia-
tive transfer. During the formation of the low-mass protostar,
Masunaga & Inutsuka (2000) also find that heating above 10 K
is confined within 0.05 pc of the central source and that signif-
icant variation in temperature occurs as a function of density
and time. Additional studies using GFLD (Whitehouse & Bate
2006) or approximate radiative transfer methods (Stamatellos
et al. 2007; Forgan et al. 2009) find similar heating beyond that
expected from a barotropic EOS.

Due to temperature variation with both density and time, we
find that the gas temperature is poorly represented by a single
EOS with characteristic critical density and γ . Figure 5 shows
the distribution of cell temperatures as a function of cell density.
For reference, we also plot our fiducial EOS for the NRT simu-
lation as well as the EOS presented by Larson (2005). We find
that many cells at lower densities are heated due to close prox-
imity with a source. In fact, for the EOS described in Section 2,
which only includes the heating due to gas compression, and
the Larson (2005) EOS, none of the cells are predicted to heat
much above the initial 10 K temperature.

Nonetheless, at any given time a representative EOS can be
formulated by fitting the mean grid cell temperature binned as
a function of density. Figure 5 shows a least-squares fit of the
temperature data for two different times. The magnitude of the
error bars is given by the standard deviation of the temperatures
in each density bin. Because such an equation fits the average
temperature, there is necessarily a large scatter as illustrated
by the error bars. The two fits return different effective critical
densities and gamma values. Thus, a single EOS results in a
large fraction of cells unavoidably at the wrong temperature.

Since accretion luminosity is predominantly emitted at the
stellar surface, a low simulation resolution, when not augmented
for the missing source contribution, can significantly neglect a
large part of the heating (e.g., Bate 2009b). Typical pre-main-
sequence protostellar radii are expected to range from 3 to 5 R	
for low-mass stars (Palla & Stahler 1993; Robitaille et al. 2006).
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Figure 2. Histogram of the gas temperatures weighted by volume fraction for RT at 0.0, 0.5, 0.75, and 1.0 tff .

Figure 3. Magnitude of the heating rate due to all stellar sources, viscous
dissipation, and gas compression at the times shown in Figure 1.

Thus, the temperature at a distance, r, from an emitting source,
L∗, is given by

T =
(

L∗
4πσBr2

)1/4

, (17)

where σB is the Stefan–Boltzman constant, and the gas distribu-
tion is assumed to be spherically symmetric. Then the difference
in accretion luminosity for a simulation with minimum resolu-
tion of Rres = 0.5 AU versus a simulation resolving down to the
stellar surface at R∗ = 5 R	 is given by

ΔL = Gmṁ

Rres
×

(
Rres

R∗
− 1

)
� Gmṁ

Rres
× (20). (18)

Thus, the actual accretion luminosity at the higher resolution is
a factor of 20 larger. Since we adopt a stellar model to calculate

Figure 4. Gas temperature as a function of distance from the source for all
sources in the RT simulation at 1.0 tff . The sources are separated into two plots
for viewing, where the earlier forming sources are on the left. The line indicates
T ∝ r−1/2.

the protostellar radii self-consistently, we include the entire
accretion luminosity contribution down to the stellar surface
in our simulations. From (18), the difference in luminosity
corresponds to a factor of (20)1/4 or ∼2 underestimation of
the gas temperature. Nonetheless, this estimate is conservative
since it does not include the additional luminosity emitted by
the protostar, which may become significant during the class II
and late class I phases. Thus, we expect that the simulation
of Bate (2009b) may overestimate the extent of small-scale
fragmentation and BDs formed in disks.

3.1.2. Stellar Mass Distribution

The large temperature range in the RT simulation has a
profound effect on the stellar mass distribution. Figure 6 depicts
the total mass of the star–disk systems in each simulation, where
we define the surrounding disk as cells with ρ > 5 × 10−17
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Figure 5. Average gas temperature at 0.8 tff and 1.0 tff as a function of density. The error bars give the temperature dispersion in each bin. The dashed line is a
least-squares fit of Equation (11) which returns ρc and γ . The dot-dashed line plots Equation (11) with the original parameters: ρc = 1 × 10−13 g cm−3 and γ = 1.67.
The power-law density–temperature relation from Larson (2005) is also plotted.

Figure 6. Distribution of masses (star + disk) for the two simulations at
1.0 tff . The solid and dashed cross lines indicate the NRT and RT simulations,
respectively.

g cm−3. We find that this cutoff selects gas within a few hundred
AU of the protostars, visually identified with the disk, while
excluding the envelope gas. Increased thermal support in the
protostellar disk acts to suppress disk instability and secondary
fragmentation in the core. In contrast, protostellar disks in the
NRT calculation suffer high rates of fragmentation. Most of
these small fragments are almost immediately accreted by the
central protostar, driving temporarily large accretion rates onto
the central source. If we define the star formation rate (SFR) per
free-fall time as

SFRff = Ṁ∗
M/t̄ff

, (19)

where Ṁ∗ is the rate that gas is converted into stars and M
is the total gas mass (Krumholz & McKee 2005), then the
total SFR in the NRT simulation is 13% versus 7% in the RT
simulation. Thus, the RT SFRff is almost half the NRT value and
agrees better with observations (Krumholz & Tan 2007). Since
the simulations have the same numerical resolution, thermal
physics must be directly responsible. In the RT simulation, cores
containing protostars experience radiative feedback that slows
collapse and accretion.

Due to the small number statistics, we do not directly compare
with the shape of the observed IMF. Accurate comparison is
also problematic because many of the late-forming protostars
are still actively accreting. As shown in Table 1, by 1tff in the
RT case, about a third, or five of the protostars, have accretion
rates that are at least five times smaller than their individual
mean accretion rate, indicating that the main accretion phase
has ended. Adopting an efficiency factor of εcore = 1

3 to account
for mass loss due to outflows (Matzner & McKee 2000; Alves
et al. 2007; Enoch et al. 2008), we find that the mean protostellar
mass of these protostars is m̄ = 0.4M	, which is comparable to
the expected mean mass of the system IMF of ∼0.5 M	 (Scalo
1986; Chabrier 2005).

The dynamics of close bodies and embedding gas are difficult
to accurately resolve inside a small number of grid cells, so we
merge particles that pass within eight cells. Without this limit,
some of the small fragments would dynamically interact with the
central body and be ejected from the stellar system. These brown
dwarf size objects are commonly produced in simulations that
do not include a merger criterion, typically in larger numbers
than are observed in the stellar IMF (e.g., Bate et al. 2003; Bate
& Bonnell 2005; Bate 2009a). As a result, the simulation IMF
only resolves wide binaries with separations >300 AU.

Figure 7 shows a histogram of all created fragments in both
simulations, including the final mass of the objects that are
merged. Due to the low resolution of the disks in the simu-
lations, ∼10 cells, the many small bodies shown in the NRT
distribution indicate numerical disk instability rather than small
bodies forming from gravitational collapse. The large number
of particles that are created in the NRT case is directly re-
lated to the nearly isothermal EOS. Gravitational instability in
disks results in filamentary spiral arms. If the gas is isother-
mal, the filaments undergo indefinite collapse irrespective of
the numerical resolution (Truelove et al. 1997, 1998; Larson
2005; Inutsuka & Miyama 1992). In a numerical calculation,
this means that all the cells along a filament exceed the Jeans
criterion nearly simultaneously and trigger refinement. Once
the maximum refinement level is reached, sink particles are
introduced in cells with densities violating the Truelove crite-
rion (Truelove et al. 1997). Since our sink particle algorithm
is formulated to represent a collapsing sphere, it is not well
suited to filament collapse. Kratter et al. (2009) have addressed
this issue in their predominantly isothermal simulations by
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Figure 7. Distribution of particles formed as a function of mass for the RT (left) and NRT (right) simulations (solid line). These include the particles that are merged,
where the total particle number with final masses greater than 10−3M	 is 23 and 251, respectively. The dashed lines show the distributions of stellar masses at the
final time output.

Figure 8. Accretion rate, ṁ, as a function of time for the first forming object in the RT (left) and NRT (right) simulations. We average both simulations over 1 kyr for
consistency.

transitioning from an isothermal to an adiabatic EOS once the
density reaches a factor of four below the density at which sink
particles are created. This has the effect of forcing filaments
to fragment into quasi-spherical blobs prior to sink particle
creation, thereby allowing the collapsing objects to be faith-
fully represented by point-like sink particles. At higher res-
olution, the barotropic nature of our EOS is invoked and so
much of this fragmentation disappears (see Section 3.2.2). Sim-
ilarly, in radiative calculations filamentary collapse is halted
by heating due to radiative feedback, so that fragmentation is
described by spherical rather than filamentary collapse. For ei-
ther representation of heating, although numerical fragmenta-
tion in filaments is restricted, physical fragmentation may yet
occur.

The creation and fragmentation of filaments in the simulations
is a result of gravitational instability driven by rapid accretion.
The criterion for the onset of instability is similar to the
classic Toomre Q < 1 condition, slightly modified by the non-
axisymmetry of the instabilities and the finite scale height of the
disks, which is a result of turbulence driven by the accretion.
This sort of gravitational instability has been investigated by
Kratter et al. (2008, 2009), who point out that the presence
or absence of instability depends largely on the accretion
rate onto the disk. The rate of mass transport through an α
disk is

ṁ = 3

(
α

Q

)
c3

s,disk

G
, (20)

where Q is the Toomre parameter for the disk and cs,disk is
the sound speed within it. Gravitational instabilities produce a
maximum effective viscosity α ∼ 1. At early times, we find
that the accretion rate from a core onto the disk forming within
it can be � c3

s,core/G, where cs,core is the sound speed in the
core. If the sound speeds in the disk and core are comparable,
cs,disk ∼ cs,core, as is the case in the low-resolution NRT
simulation, then the disk can only deliver matter to the star
at a rate ∼c3

s,core/G while still maintaining Q > 1. As a result,
matter falls onto the disk faster than the disk can deliver it
to the star, and the disk mass grows, driving Q toward 1 and
producing instability and fragmentation, as is seen in the NRT
simulation. Conversely, if the disk is warmed, either by radiation
or by a switch from an isothermal to an adiabatic EOS, then
cs,disk > cs,core and the rate at which the disk can deliver gas
to the star increases. If the disk is sufficiently warm then it
can process all the incoming material while still maintaining
Q > 1. As a result the disk does not fragment, as illustrated by
both the low- and high-resolution RT simulations and the high-
resolution NRT simulation. This shows that the fragmentation in
the low-resolution NRT simulation is indeed numerical rather
than physical in origin, and that it is a result of the density
dependence of the EOS rather than of the resolution directly.

This analysis also sheds light on the importance of numerical
viscosity. Krumholz et al. (2004) show that in the inner few
cells of disks, numerical viscosity can cause angular momentum
transport at rates that correspond to α � 1. However, as
the analysis above suggests, increasing α tends to suppress
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fragmentation rather than enhance it. We find that fragmentation
is more prevalent in the low-resolution NRT simulation than
the high-resolution one, which is exactly the opposite of what
we would expect if numerical angular momentum transport
significantly influenced fragmentation. Therefore, we conclude
that numerical angular momentum transport is not dominant in
determining when fragmentation occurs in our simulations.

In isothermal calculations, the issue of filamentary collapse
is a problem for all sink particle methods and it is not unique
to grid-based codes. Due to the filamentary fragmentation in
the NRT case, we prefer to merge close particle pairs in
the simulations rather than follow their trajectories. Note that
particles are inserted with the mass exceeding the Truelove
criterion rather than the net unstable mass in the violating cells.
Particles created within a discrete bound mass typically gain
size quickly. Most particles formed in the unstable disk regions
form in a spiral filament and do not have significant bound mass,
so the particle mass is tiny when they are accreted by the central
object. However, if several small particles are created within the
merging radius each time step around a particular protostar, their
merging can significantly increase the instantaneous accretion
rate. As illustrated by the figure, there are only a handful of
objects that form and approach within a merging radius in the
RT simulation, whereas the NRT simulation produces a plethora
of such bodies.

Bate (2009b) finds a similar reduction in protostar number
with the addition of radiative transfer. As in our calculation, the
final number of stars including radiative transfer is sufficiently
small that a statistical comparison with the IMF is problematic.
Instead, we base our comparison on the mean stellar mass. Using
a resolution of 0.5 AU, Bate (2009b) finds m̄ ∼ 0.5 M	, which
does not include outflows or any scaling factor accounting for
their presence. Adopting a scaling factor of εcore = 1/3 would
produce a mean of m̄ ∼ 0.2 M	, lower than our RT mean mass
and the mean mass of either the system or individual stellar IMF
reported by Chabrier (2005). However, in Bate (2009b) a number
of the protostars continue to accrete and have not reached their
final mass. In addition, Bate (2009b) demonstrates that the mean
stellar mass increases as calculations approach higher resolution
and include a larger portion of the accretion luminosity. This
result is most likely because disk fragmentation decreases as
the gas becomes hotter, thus increasing accretion onto primary
objects. It is possible that if Bate (2009b) had included all the
accretion and stellar luminosity, the mean mass obtained would
be closer to the value we find.

Observations suggest that BDs compose ∼30% of the total
population of clusters (Andersen et al. 2006). Despite the
merger criterion we adopt, the NRT calculation produces a
significant number of BDs, >30% without scaling by εcore,
resulting in a slightly lower mean mass than the RT run. In
comparison, Bate et al. (2003) find that approximately half
of the objects formed are BDs, resulting in a mean mass
of ∼0.1 M	. This result persists for barotropic calculations
modeling more massive clusters with superior resolution (Bate
2009a). Calculations using a modified EOS that includes effects
due to the internal energy and dissociation of H2, ionization
state of H, and approximate dust cooling find increased disk
fragmentation, leading to numerous BDs (Attwood et al. 2009).
Thus, the overproduction of BDs in non-radiative simulations
substantiates the importance of radiative transfer and feedback
from protostars in accurately investigating fragmentation and
the IMF.

3.1.3. Accretion Rates

As indicated by the Toomre criterion given by Equation (2),
the local gas temperature is key to the stability of disks.
Clumpiness in the disks is directly reflected in the variability
of the protostellar accretion rate. Figure 8 shows the accretion
rates for the two first-forming protostars in each calculation
as a function of time. The RT protostellar accretion in the
left panel illustrates that once a protostar has accreted most
of the mass in the core envelope, its accretion rate diminishes
significantly. Protostars in both simulations show evidence of
variable accretion on short timescales. However, the accretion
bursts in the NRT simulation may vary by an order of magnitude,
while in the RT case variability is generally only a few. Disk
clumpiness may be magnified due to dynamical perturbations
by nearby companions. For the cases shown, the RT protostar is
single, while the NRT protostar has several companions. Similar
variability to the NRT protostellar accretion rate is also observed
by Schmeja & Klessen (2004). In their turbulent isothermal
runs, Schmeja & Klessen (2004) show that the magnitude of the
initial particle accretion rate is comparable to our calculations
at ṁ ∼ few × 10−5M	 yr−1 with variability by factors of 5–
10. However, the reported accretion rates appear to significantly
decrease within 0.1 Myr.

In principle, a sizable amount of the protostellar mass may be
accreted during the periods of high accretion. We define a burst
as an increase of 50% in the accretion rate over 1000 years,
where mergers of another protostar of mass m > 0.1M	 are
excluded. Using this metric, the NRT protostars accrete from
0%–13% of their mass during the bursts with a median of 5%.
The RT protostars accrete 0.0%–9% of their mass during bursty
accretion with a median amount of 1%. Thus, variable accretion
is not significant. Our data analysis is limited by the coarse level
time step of ∼100 yr, so that accretion rate variability on shorter
timescales will not be resolved in the analysis. For comparison,
Vorobyov & Basu (2006), modeling the formation and accretion
history of a protostar in two dimensions, find that >50% of the
protostellar mass is gained in short intense accretion bursts. In
their simulations, accretion occurs smoothly until t � 0.15 Myr,
where variability on timescales <100 yr begins, corresponding
to the accretion of ∼0.05M	 clumps. Although their time
resolution is finer, sampling at longer time increments, as in
our calculation, is unlikely to miss persistent cyclical variability
of 4–5 orders of magnitude in accretion rate. We find that when
the stellar mass is about half the final mass, large variability
in the RT accretion rates is rare, while it is more common in
the NRT case. RT protostars with ages comparable to t � 0.15
Myr experience the most variable accretion occurring over 1–
2 orders of magnitude. However, by this time, the majority of
the envelope mass has been accreted and the accretion rates
are ¯̇m ∼ 10−7M	 yr−1, so that accreting significant mass is
unlikely.

In Vorobyov & Basu (2009), the authors demonstrate that
simulations with a stiffer EOS and warmer disk exhibit variabil-
ity over at most two orders of magnitude. This finding is more
consistent with our results, and it supports the differences in
accretion we find between the NRT and RT calculations. How-
ever, bursty accretion due to disk instability also depends upon
the core rotation and the rate at which mass is fed into the disk
from the envelope (Vorobyov & Basu 2006; Boley 2009). Thus,
we expect that radiative effects alone cannot completely deter-
mine accretion behavior. Since the disks in our low-resolution
calculations are not well resolved, it is possible that we may not
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be able to resolve the disk clumpiness observed by Vorobyov &
Basu (2006). Their innermost cell is placed at 5 AU, which is
comparable to the cell size in our high-resolution runs, however,
they adopt logarithm spacing to concentrate cells in the inner
region of the disks. We note that their method also includes an
approximate treatment of magnetic fields that could influence
their results and which we neglect in our calculations.

Figure 9 shows that the NRT simulation exhibits slightly
higher average accretion. Note that we subtract the accretion
spikes caused by significant mergers. The mean accretion
rate over the protostars lifetime for the final protostars is
∼1 × 10−5M	 yr−1 versus ∼6 × 10−6M	 yr−1 for the RT
run. Without the added thermal support from radiation feedback
and with increased fragmentation, the NRT protostars accrete
their envelope mass more quickly. However, the protostars in
both calculations satisfy the same accretion–mass relationship,
with accretion increasing approximately linearly with star mass.
Using a least-squares fitting technique, we obtain power-law
relationships ¯̇m ∝ m0.92 and ¯̇m ∝ m0.64 for the RT and NRT
data, respectively, which have χ2 values of 67.6 and 18.0.7 We
include masses m � 0.1 M	 in the fit and weight the data by
the ages of the protostars. Thus, young protostars with only a
short accretion history are weakly weighted. As Figure 9 shows,
there is a significant amount of scatter about the fits. Schmeja &
Klessen (2004) find a similar trend between the mean accretion
rate and final masses for protostars forming in their isothermal
driven turbulence simulations.

The apparent correlation between stellar mass and average ac-
cretion rate occurs because protostars forming in more massive
cores tend to be more massive and also have higher accretion
rates. McKee & Tan (2003) derive a self-similar solution for the
accretion rate where the pressure and density each have a power-
law dependence on r, such that ρ ∝ r−kρ and P ∝ ργP ∝ r−kP ,
where γP = 2kP /(2 + kP ) and kρ = 2/(2 − γP ). Although the
simulated cores are not self-similar, it is possible to fit a power
law to the pressure of the core envelope in most cases. Both
RT and NRT cores have exponents in the range kP � 0–5 at
a few thousand AU from the protostar, with an average value
of kP ∼ 1 or kρ = 1.5. McKee & Tan (2003) show that the
accretion rate is then

ṁ∗ = 5.5 × 10−6φ∗A1/8, k
1/4
P ε1/4

core

(
m∗f

1 M	

)3/4

×
(

Ps,core/kB

106 K cm−3

)(
m∗
m∗f

)3(2−kρ )/[2(3−kρ )]

M	 yr−1,

(21)

where m∗f is the final stellar mass, Ps,core is the core surface
pressure, φ∗ and A are order unit constants describing the
effect of magnetic fields on accretion and the isothermal density
profile, respectively. Since we weight the fit by the protostellar
age, this selects for the case where m∗ � m∗f . Assuming that
Σcl is roughly constant, ṁ∗ ∝ m

3/4
∗f , that is similar to the slopes

produced by the least-squares fit.

3.1.4. Multiplicity

The number of stars with stellar companions is an important
observable that may directly relate to the initial conditions of

7 The χ2 value for the fit is given by χ2 = ∑N
i=1

yi−A−Bxi

σ 2
y

, where yi are the

age-weighted accretion rates, xi are the masses, A and B are the fit coefficients,
and σy is the standard deviation of the yi values.

star-forming regions. Among the population of field stars, most
systems are single with the number of systems containing mul-
tiple stars increasing as a function of stellar mass (Lada 2006).
Young pre-main-sequence stellar populations are observed to
contain more multiple systems than field stars suggesting that
the multiplicity fraction evolves over time (Duchêne et al. 2007).
Unfortunately, the initial stellar multiplicity is challenging to di-
rectly measure due to the difficulty of resolving close pairs and
limited sample sizes (Duchêne et al. 2007). The two dominant
effects influencing multiplicity are fragmentation and N-body
dynamics. While fragmentation in a collapsing core may re-
sult in multiple stars, systems with three or more bodies are
dynamically unstable, causing higher-order stellar systems to
rapidly lose members. Multiple stellar systems can also occur
via stellar capture, a mechanism most applicable to high-mass
stars forming in very clustered environments (Moeckel & Bally
2007). Goodwin & Kroupa (2005) suggest that that observed
higher-order multiple systems are initially members of open
stellar clusters rather than arising from the fragmentation of a
single core. In general, the number of such systems is observed
to be small, with only one in every 50 systems in the field having
at least four members (Duquennoy & Mayor 1991).

The RT and NRT calculations present very different pictures
of the initial stellar multiplicity. The large differences in temper-
ature and fragmentation have a significant effect on the fractions
of stars in single and multiple systems. As shown in Figure 10,
the majority of stars formed in the RT calculation are single,
while in the NRT calculation the majority of stars live in sys-
tems with two or more stars. This is mainly due to continued
disk fragmentation rather than long-lived stable orbital systems.
The field single star fraction (SSF), defined as the ratio of the
number of primary stars without a stellar companion to the
total number of stellar systems, is observed to be ∼70% (Lada
2006).8 The RT calculation produces an SSF of 0.8 + 0.2/−0.4,
while the NRT calculation has an SSF of 0.6 ± 0.4, where the
uncertainty is given by the Poisson error. Due to the resolution
of our calculation, we can only capture wide binary systems
of r > 300 AU. However, a number of protostars have under-
gone significant mergers, which we define as those in which
the smaller mass exceeds 0.1 M	. We find that about a third of
the stars in the RT simulation and a tenth of stars in the NRT
simulation have experienced significant past mergers. Assum-
ing that these would have resulted in multiple stellar system
revises the SSF values to 0.5 ± 0.3 and 0.6 ± 0.4, respectively.
Unfortunately, this is a very uncertain estimate as we have small
statistics, and we cannot know whether the systems with signifi-
cant mergers would have resulted in bound or unbound systems
in the absence of the mergers.

3.1.5. Stellar Feedback

Our model includes accretion luminosity and a sub-grid
stellar model estimating the contribution from Kelvin–Helmholz
contraction and nuclear burning (see Appendix B). The stellar
model includes four evolutionary stages. The earliest stage
occurs when the protostar begins burning deuterium within the
core at a sufficient rate to maintain a constant core temperature.
Once the initial deuterium in the core is depleted, burning occurs
at the rate that new matter convects inward; this is the steady core
deuterium state. In the third stage, the star burns the deuterium
remaining in the outer layers. Finally, the star ceases contracting
and reaches the zero-age main sequence (ZAMS).

8 The SSF does not include brown dwarfs in estimating multiplicity.
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Figure 9. Distribution of average accretion rates (crosses) as a function of final
star mass at 1 tff . The horizontal line indicates the Shu (1977) accretion rate
c3

s /G at 10 K. The dashed and dot-dashed lines indicate the age-weighted fit of
the average accretion rates for the RT and NRT runs, respectively.

Figure 10. System multiplicity for the two calculations, where N is the number
of stellar systems, and the plot is normalized to the total number of systems.
The multiplicity on the x-axis is the number of stars in each system.

Figure 11 shows the luminosity as a function of time for
three different protostars. At early times, accretion dominates
the luminosity, and variability in accretion is strongly reflected in
the total luminosity. At late times, accretion slows and Hayashi
contraction begins to make a substantial contribution. In general,
the total luminosity summed over all the stars is dominated by
those protostars with the highest accretion rates. For these young
sources, the stellar luminosity is quite small in comparison to
the accretion luminosity. Thus, the last panel in Figure 11 shows
that for all times, accretion luminosity is the main source of
luminosity.

For comparison, luminosity due to other physical processes
such as compression and viscous dissipation is small (see
Figure 3). Figure 12 shows the final luminosity as a function
of source mass. The luminosity increases roughly linearly with
mass but has a fairly large scatter. As indicated on the plot, two
of the stars have reached the ZAMS, which was due to increased
accretion resulting from significant mergers. Even in this low-
mass stellar cluster, there are individual stars with contributions
larger than the net viscous dissipation. This demonstrates that
any heating due to viscous dissipation is exceeded by modest
protostellar feedback.

Figure 11. Total luminosity as a function of time for three stars in the RT
simulation. The accretion luminosity contribution is shown by the dashed line,
and the masses are 1.5, 0.45, and 0.35 M	, respectively. The bottom plot shows
the total luminosity including all the protostars.

Figure 12. Distribution of luminosities (crosses) in the RT simulation as a
function of final star mass at 1.0 tff . The crosses, stars, and diamonds refer
to stars undergoing variable core deuterium burning, undergoing steady core
deuterium burning, or reaching the ZAMS.

3.2. Resolution and Convergence

The AMR methodology allows flexibility in both the depth
and breadth of resolution. An insufficient amount of resolution
may give inaccurate results, so it is important to gauge the
sensitivity of the result to the resolution. The large scope of the
problem and the expense of the radiative transfer methodology
limits the depth or maximum resolution of our calculation,
where the RT calculation cost is ∼70,000 CPU hr on 2.3 GHz
quad-core processors. To quantify the effects of resolution on
the solution, we run second RT and NRT calculations that evolve
the first formed object to a resolution eight times higher than the
overall calculation. We run these simulations for 0.12 tff after
the formation of the protostar. We adopt a fixed number of cells
for the closest resolved approach between two particles, so that
the high-resolution simulations have a merging radius of 32 AU,
a factor of 8 smaller than the low-resolution cases.

3.2.1. High-resolution Study with Radiative Feedback

The high-resolution and low-resolution calculations both
form single objects with stable, thermally supported disks.
Figure 13 shows a comparison of the densities, temperatures,
and radiation fields. The effective radiation temperature differs
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Figure 13. From left to right, the images show the log density, log radiation temperature, Tr = (Er/a)1/4, and log gas temperature for an RT protostellar system at
∼0.6tff followed with dx = 4 AU resolution (top) and dx = 32 AU (bottom). The image is 0.03 pc on a side, where we denote the star position with a black cross. The
color scale ranges are given by 10−19 to 10−14 g cm−3, 1–100 K, and 1–100 K, respectively.

(A color version of this figure is available in the online journal.)

by only a few percent outside the inner cells of the low-resolution
calculation. In both cases, the gas and radiation temperatures
are well coupled such that Tgas � Trad. However, the gas in the
high-resolution case is more centrally concentrated, and the disk
radius appears smaller. At the final time, the high-resolution star
has accreted 0.54 M	, while the low-resolution case has reached
0.50 M	. During the course of the run, the lower resolution case
forms a few fragments in the disk, which are almost immediately
accreted by the primary, while in the high-resolution case, no
additional particles are formed.

Figure 14 shows a comparison of the accretion and luminos-
ity as a function of time. Accretion is generally smooth, and
the rates are generally within a factor of 2. The luminosity in
the low-resolution run has slightly larger variation, but the two
approach a similar value at later times. Although there are devi-
ations in the history between the two runs, the evolution is not
significantly different at the higher resolution. Certainly, even
higher resolution is preferable for investigation of disk proper-
ties, but our main result—that radiative feedback is important
to the formation of low-mass stars—is insensitive to the simula-
tion resolution. High-resolution radiation-hydrodynamics sim-
ulations of low-mass disks including irradiation confirm that
such disks, with properties similar to ours, are stable against
fragmentation (Cai et al. 2008). Gravitational instability is ex-
pected to occur only in the regime where the mass of the disks
is comparable to the stellar mass (Cai et al. 2008; Stamatellos
& Whitworth 2008, 2009).

3.2.2. High-resolution Study with a Barotropic EOS

This higher resolution non-radiative study achieves maxi-
mum densities >5 × 10−13 g cm−3, several times higher than
the barotropic critical density. Consequently, dense gas is heated
to temperatures of ∼20–25 K. During the time we compare the
non-radiative simulations, both the high-resolution barotropic
calculation and the first collapsing core in low-resolution NRT
calculation form a similar mass primary object with protostellar
disk (see Figure 15). However, the low-resolution NRT system
experiences significantly more fragmentation. We find that the
protostellar disk in the NRT case fragments during approxi-
mately half of the time steps, while in the higher resolution
barotropic case fragmentation occurs very rarely, taking place
in less than <0.1% of the time steps.

Since the low-resolution NRT disks are essentially isother-
mal, we conclude that heating due to the barotropic approx-
imation is largely responsible for decreasing the number of
fragments. In contrast, the higher resolution disks are heated to
∼20 K. However, this is still significantly less heating than in the
RT case, and we find that numerical instability is not suppressed
completely even with high resolution. The radiative high-
resolution case experiences no disk fragmentation, underscoring
our conclusion that radiative feedback is crucial to representing
fragmentation or lack thereof in the star formation process.

Despite different merger radii, in both non-radiative cases
all of the fragments are eventually merged with the primary
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Figure 14. Accretion rate and luminosity as a function of time for the first
formed star in the RT calculation and the same object followed with dx = 4 AU
resolution. Temporal bins of 1 kyr are used.

Figure 15. Images show the log density (left) and log gas temperature (right)
for a NRT protostellar system at ∼0.5tff followed with dx = 4 AU resolution
(top) and dx = 32 AU (bottom). The image is 0.03 pc on a side, where we
denote the star position with a black cross. The color scale ranges are given by
10−19 to 10−14 g cm−3 and 1–50 K, respectively.

(A color version of this figure is available in the online journal.)

protostar so that the end result in both calculations is a single
protostar. This suggests that the fragmentation taking place at
low resolution is largely numerical rather than physical. We
emphasize that both significantly higher resolution than we
use and additional physics are required to study accretion disk
properties.

3.2.3. Convergence

The minimum breadth of resolution is determined by the
Truelove criterion. Due to the radiation gradient refinement cri-
terion we apply to resolve the radiation field, at 1 tff the RT sim-
ulation has ∼80% more cells, generally concentrated near the
protostars, than the NRT calculation. This extra refinement im-
proves the resolution regions near protostellar sources. Inverting
Equation (12) yields an expression for the effective Jeans num-

Figure 16. Histogram of the effective Jeans number, Jeff at 1.0 tff . The solid and
dashed lines indicate the NRT and RT simulations, respectively. Each histogram
is normalized to the total number of cells.

ber for each cell as a function of density, resolution, and sound
speed:

Jeff = (ρG)1/2Δxl

csπ1/2
. (22)

As shown in Figure 16, the RT simulation is shifted to lower
Jeff , where the vast majority of cells in both calculations are
resolved to better than Jeff = 0.1. The choice of base grid
resolution guarantees that Jeff is typically much smaller than
J for most of the cells on the domain. We use a fiducial value of
J = 0.25 to trigger additional refinement in both simulations,
so no cell has Jeff exceeding 0.25. Cells in the highest Jeff bin
are exclusively found on the maximum AMR level, and they are
generally at the highest gas densities. These cells, many located
in the disks around the protostars, are at the same resolution
in both calculations. Thus, the fragmentation results of the RT
and NRT calculations are not dissimilar due to differences in
effective resolution but are solely a result of differences in
thermal physics.

4. SIMPLIFYING ASSUMPTIONS

These numerical calculations neglect a number of arguably
crucial physical processes in low-mass star formation. In this
section, we discuss the implications for our results.

4.1. Chemical Processes

4.1.1. Dust Morphology

Our dust model neglects the evolution of dust grains due
to coagulation and shattering. In cold dense environments,
such as protostellar disks, the aggregation of dust grains may
significantly increase grain sizes on timescales as short as 100
years (Schmitt et al. 1997; Blum et al. 2002). Observations of
class 0 protostars indicate significant evolution of the dust size
distribution at average densities of n � 107 cm−3 by the class 0
phase (Kwon et al. 2009). Since we adopt a single dust model
for the entire domain, we are likely to either overestimate or
underestimate the dust grain size in different regions.

To examine the effect of the dust model on gas temperature,
we repeat the turbulent driving phase (without gravity) using a
conservative model more typical for non-aggregate dust grains:

κR = 0.015
(
T 2

g /110
)

cm2 g−1 for Tg � 110 (23)
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κP = 0.10
(
T 2

g /110
)

cm2 g−1 for Tg � 110. (24)

Using this model, we find that shocked gas may be heated as
high as 18 K after a crossing time. In comparison, gas in the
fiducial case is only heated to ∼11 K at the same densities (see
Figure 2 for the temperature distribution due to the fiducial dust
opacity model). However, the extent of the additional heating
is quite small since only 0.003% of the mass is heated above
11 K and thus differs from the fiducial case. This suggests
that the simulations may underestimate the gas temperature in
low density regions outside of cores (nH < 107) where the
dust distribution is not expected to evolve due to coagulation.
Significant discrepancy between the gas temperatures of the
two models is mainly confined to a small number of cells and
is mitigated by the importance of molecular cooling in these
regions, which we discuss in Section 4.1.2.

4.1.2. Gas Temperature at Low Density

To simplify the dust–gas interaction, we assume that dust
and gas are perfectly collisionally coupled such that their
temperatures are identical. In molecular clouds, there can be
significant variation between the dust and gas temperatures. For
example, dust in close proximity to stellar sources is radiatively
heated, while in strongly shocked regions of the flow, dust acts as
a coolant for compressionally heated gas. Below we will discuss
both the regime where dust cooling dominates, i.e., Tg > Td ,
and where molecular cooling dominates, i.e., Td > Tg .

When the gas is shock heated, the perfect coupling approx-
imation remains valid as long as the rate of energy transfer
between the gas and dust is balanced by the cooling rate of the
dust. The dust cooling per unit grain area by photon emission is

F (a, Td ) = 4〈Q(a, Td )〉σBT 4
d , (25)

where Td is the dust temperature, a is the grain size, and
〈Q(a, Td )〉 is the Planck-averaged emissivity (Draine & Lee
1984). Then for an ensemble of grains with dust opacity, κP , the
dust cooling is given by

n2Λd � 4κP ρσBT 4
d (26)

� 9 × 10−21

(
nH

1.6 × 104 cm−3

) (
Td

10 K

)6

erg cm−3 s−1.

(27)
In Equation (27), we substitute Equation (24) for κP and assume
that Tg ∼ Td . The rate at which energy is transferred from the
gas to the dust is given by

nΓd = 9 × 10−34nH
2T 0.5

g

[
1 − 0.8e

(
− 75K

Tg

)]
(28)

× (Tg − Td )

(
σd

2.44 × 10−21 cm−3

)

� 7.3 × 10−24

(
nH

1.6 × 104 cm−3

)2 (
Tg

10 K

)3/2

×
[

1 − 0.8e

(
− 75K

Tg

)] (
1 − Td

Tg

)
erg cm−3 s−1,

where we adopt σd = 2.44 × 10−21 cm−2 for the dust cross
section per H nucleus (Young et al. 2004). For a gas temperature
of 10 K the exponential term is very small, so we neglect it in

the following equation. Equating these expressions and solving
for the gas density at which heating and cooling balance gives

nH � 2 × 107

(
Td

10 K

)6 (
Tg

10 K

)−3/2 (
1 − Td

Tg

)−1

cm−3.

(29)
Thus, we demonstrate that the dust and gas are well coupled as
long as the gas densities are sufficiently high.

However, even in regions where the dust and gas may not
be well coupled, molecular line cooling is important. For gas
densities in the range nH = 103–105 cm−3, CO is the dominant
coolant. For these densities, the cooling rate per H, Λ/nH, is
approximately constant with density at fixed temperature. To
compare the magnitude of dust cooling consider a 2 km s−1

shock that heats the gas above 100 K. The cooling rate at
100 K is given by n2Λmol � 5 × 10−27nH erg cm−3 s−1,
where we adopt the cooling coefficient from Neufeld et al.
(1995). The characteristic cooling time is ∼1000 yr at the
average simulation density, which is approximately half the cell-
crossing time of such a shock, implying that molecules cool the
gas relatively efficiently. Since the shock temperatures on our
domain are limited by our resolution, which is much larger than
the characteristic cooling length, post-shock temperatures do
not surpass 20 K. In this regime, the dust cooling for perfect
dust–gas coupling is at least an order of magnitude larger
than the estimated molecular cooling. As a result, we likely
underestimate the temperatures in low-density strongly shocked
gas in comparison with similar shocks in molecular clouds.

In the regions near protostars, the perfect coupling assump-
tion is valid provided that gas heating by dust is balanced
by molecular cooling. This case is discussed by Krumholz &
McKee (2008), where the authors demonstrate that the differ-
ence between the dust and gas temperatures is

Td − Tg � 3.5 × 105

nH
K (30)

for gas temperatures around 10 K. For higher gas temperatures
around 100 K, we adopt the molecular cooling coefficient above
and find that the dust and gas are well coupled provided nH
exceeds ∼2 × 108 cm−3. Number densities of this magnitude
are exceeded in collapsing cores, so that regions near protostars
are guaranteed to have well-coupled dust and gas.

Thus, gas temperatures in our RT simulation are fairly accu-
rate for densities larger than the average density, but they may
be underestimated by a factor of ∼2 in strong shocks when the
molecular cooling rate is much smaller than the implemented
dust cooling rate. Since gas heating suppresses fragmentation,
our results may actually overestimate the amount of fragmenta-
tion. Consequently, our finding that radiative feedback reduces
fragmentation would generally be strengthened by a better treat-
ment of the thermodynamics.

4.2. Magnetic Fields

Observations indicate the presence of magnetic fields in
nearby low-mass star-forming regions (Crutcher 1999). How-
ever, the magnitude of the fields and their importance in the star
formation process remain uncertain. Observations by Troland
& Crutcher (2008) suggest that the energy contributed by mag-
netic fields on core scales is subdominant to the gravitational
and turbulent energies. On smaller scales, magnetic fields are
believed to be associated with disk accretion and the genera-
tion of protostellar outflows (Shu et al. 1994; Königl & Pudritz
2000).
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Numerical simulations have demonstrated that the presence of
magnetic fields may suppress disk fragmentation by supplying
additional pressure support (Machida et al. 2008; Price & Bate
2007, 2008). We find that the inclusion of radiative transfer has
a similar stabilizing influence on disks.

4.3. Multi-frequency Radiative Transfer

Due to the expense of the calculations, we adopt a gray radia-
tive transfer flux-limited diffusion approximation. By averaging
over angles and frequencies to obtain the total radiation energy
density, we sacrifice the direction and frequency information
inherent in the radiation field. As discussed in Krumholz et al.
(2009), these approximations touch on several competing effects
that influence the radiation spectrum. Since radiation pressure
is negligible for low-mass stars, it does not affect the gas dy-
namics. Instead, our main consideration is the extent to which
radiative heating may differ for a more sophisticated radiative
treatment. As we have discussed in previous sections, the gas
temperature and corresponding thermal pressure alone have a
significant relationship with accretion and fragmentation.

The first effect to consider is a more exact treatment of dust
opacity, which is strongly frequency dependent in the infrared
and increases toward lower wavelengths (e.g., Ossenkopf &
Henning 1994). Since long-wavelength radiation has a lower
optical depth, in a multi-frequency calculation the longest
wavelengths would be able to escape the core. Anisotropies
in the radiation field may also facilitate cooling. Radiative
beaming, for example via an outflow cavity, may allow photons
to escape along the poles (Krumholz et al. 2005). Thus, both
these effects will likely decrease the temperature in protostellar
cores.

The gray radiative transfer method also assumes that the
radiation field is thermalized, producing a Planckian radiation
spectrum everywhere. Although this is a fair assumption in
opaque regions where the number of mean-free paths is large, it
fails in optically thin regions. Since thermalization softens the
radiation spectrum, the assumed Planck spectrum is likely to
underpredict the heating rate.

Since the net effect of the approximations is somewhat un-
clear, comparison with more sophisticated radiative treatments
would be ideal. However, there have been no two-dimensional
or three-dimensional non-gray simulations of low-mass star for-
mation. To date, the most thorough investigation of protostellar
formation is presented by Masunaga & Inutsuka (2000). These
spherically symmetric simulations follow the formation of 0.8
and 1.0 M	 protostars. At radii of 60 AU, they find tempera-
tures ranging from 20 to 250 K during the main accretion phase,
while we find Tmax ∼ 90 K. Their maximum protostellar lumi-
nosity is 25 L	, which is entirely due to accretion. A few of the
protostars in the RT simulation have higher masses and higher
maximum luminosities, but the gas temperature distributions on
average appear similar (see Figure 4). However, the disparity in
maximum temperature may be attributable to either differences
in the radiation schemes or initial conditions and geometry.
Future work will investigate the effects of three-dimensional
multi-frequency radiative transfer on low-mass star formation.

5. CONCLUSIONS

We perform gravito-radiation-hydrodynamic simulations to
explore the effect of radiation feedback on the process of low-
mass star formation. We compare our calculation with a similar
one using an approximately isothermal EOS in lieu of radiative

transfer. We find that the inclusion of radiative transfer has a
profound effect on the gas temperature distribution, accretion,
and final stellar masses.

We confirm the finding of Bate (2009b) that additional heating
provided by radiative transfer stabilizes protostellar disks and
suppresses small-scale fragmentation that would otherwise
result in brown dwarfs. However, we also find that the vast
majority of the heating comes from protostellar radiation, rather
than from compression or viscous dissipation. Thus calculations
that neglect radiative feedback from protostars, either because
they use approximations for radiative effects that are incapable
of including it (e.g., Bate et al. 2003; Clark et al. 2008) or
because they explicitly omit it (e.g., Bate 2009b), significantly
underestimate the gas temperature and thus the strength of this
effect. More generally, we find that, due to significant variations
in the temperature with time, no scheme that does not explicitly
include time-dependent protostellar heating is able to adequately
follow fragmentation on scales smaller than ∼0.05 pc.

We find that due to the increased thermal support in the
protostellar disks, accretion is smoother and less variable with
radiative feedback. However, we show that for low-mass star
formation the heating is local and limited to the volume within
the protostellar cores. As a result, pre-existing sources do not
inhibit turbulent fragmentation elsewhere in the domain.

We find that the mean accretion rate increases with final stellar
mass so that the star formation time is only a weak function of
mass. This is inconsistent with the standard Shu (1977) picture,
but it is qualitatively consistent with the McKee & Tan (2003)
result for the turbulent core model, where the star formation
time varies as the final stellar mass to the 1/4 power.

The magnitude and variability of protostellar luminosity is
of significant observational interest. If accretion contributes a
substantial portion of the total luminosity emitted by young
protostars, then upper limits for protostellar accretion rates can
be inferred directly from the observed luminosity. This may give
clues about the formation timescale and the accretion process
while the protostars are deeply embedded and cannot be directly
imaged. In a future paper we will examine the “luminosity
problem” and compare with embedded class 0 and class I
protostars.

Our larger NRT and RT simulations are performed at a max-
imum resolution of 32 AU, so it is possible that a few of our
cores form stars that otherwise would have become thermally
supported or turbulently disrupted in a higher resolution calcu-
lation. Thus, higher resolution calculations would be desirable
for further work. Although we find that the inclusion of radiative
transfer has a similar impact as magnetic fields on fragmentation
and accretion, simulations examining the interplay of magnetic
fields and radiative transfer are important. To asses the accu-
racy of our radiative transfer approximations, further simula-
tions with multi-frequency treatment in multi-dimensions with
improved dust modeling are also necessary.
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APPENDIX A

THE STAR PARTICLE ALGORITHM

In this appendix we describe the details of our “star particle”
algorithm we use to represent protostars. Appendix A describes
how the star particle algorithm functions within the larger
ORION code, while Appendix B describes the protostellar
evolution code that we use to determine the luminosities of
our stars. This division is useful because, from the standpoint
of the ORION code, a star particle is characterized by only
four quantities: mass, position, momentum, and luminosity. The
luminosity is determined by the protostellar evolution model
outlined in Appendix B that is attached to each star particle, but
the only output of this model that is visible to the remainder of
the code is luminosity.

In a calculation using star particles, we add a set of additional
steps to every update cycle on the finest AMR level, so that the
cycle becomes

1. hydrodynamic update for gas,

2. gravity update for gas,

3. radiation update, including stellar luminosity, and

4. star particle update:

a) sink particle update,

b) stellar model update.

Steps (1)–(3) are the ordinary parts of the update that we
would perform even if no star particles were present. In steps (1)
and (2) star particles have no direct effect (since they do
not interact hydrodynamically, and we handle their gravita-
tional interactions with the gas in an operator split manner in
step (4a).

In step (3), star particles act as sources of luminosity, as indi-
cated in Equation (7). We implement this numerically as follows:
let Ln and xn be the luminosity and position of star particle n. Our
code uses the Krumholz et al. (2007b) radiation-hydrodynamic
algorithm, in which we split the radiation quantities into those
to be handled explicitly and those to be handled implicitly. We
therefore write the evolution equation to be solved during the
radiation step as

∂q

∂t
= fe−rad + fi−rad, (A1)

where q = (ρ, ρv, ρe,E) is the state vector describing the
gas and radiation in a cell, the explicit update vector fe−rad is
the same as in the standard Krumholz et al. algorithm (their

Equation (52)),9 and the implicit update is modified to be

fi−rad =

⎛
⎜⎜⎝

0
0

−κPρ(4πB − cE)

∇ ·
(

cλ
κRρ

∇E
)

+ κP(4πB − cE) +
∑

n LnW (x − xn).

⎞
⎟⎟⎠.

(A2)
Here W (x − xn) is a weighting function that depends on the
distance between the location of the cell center x and the
location of the star xn. The weighting function has the property
that the sum of W (x − xn) over all cells is unity, and that
W (x − xn) = 0 for |x − xn| larger than some specified value.
For the computations we present in this paper we use the same
weighting function as we use for accretion (Equation (13) of
Krumholz et al. 2004). However, we have experimented with
other weighting functions, including truncated Gaussians, top-
hats, and delta functions, and we find that the choice makes
very little difference because radiation injected into a small
volume of the computational grid almost immediately relaxes to
a configuration determined by diffusion. With this modification
to fi−rad, our update procedure is the same as described in
Krumholz et al. (2007b).

Step (4a) is the ordinary sink particle method of Krumholz
et al. (2004), so we only summarize it here and refer readers to
that paper for a detailed description and the results of numerous
tests. We first create new particles in any cell whose density
exceeds the Jeans density on the maximum AMR level (i.e.,
where Equation (12) is not satisfied.) Next we merge star
particles whose accretion zones, defined to be four cells in
radius, overlap. This ensures that we combine multiple sink
particles created in adjacent cells that simultaneously exceed
the Jeans density, or multiple sink particles created in the
same cell during consecutive time steps. Then we transfer the
mass from the computational grid onto existing sink particles.
Accretion happens within a radius of four cells around each
sink particle. The amount of mass that a sink particle accretes is
determined by fitting the flow around it to a Bondi flow, reduced
to account for an angular momentum barrier that would prevent
material from reaching the computational cell in which the sink
particle is located. The division of mass accreted among cells
inside the four-cell accretion zone is determined by a weighting
function. The accretion process leaves the radial velocity,
angular momentum, and specific internal energy of the gas on
the computational grid unchanged (in the frame co-moving with
the sink particle), and it conserves mass, momentum, and energy
to machine precision. Next we calculate the gravitational force
between every sink particle and the gas in every cell using a
direct 1/r2 force computation (since the number of particles is
small), and modify the momenta of the sink particles and the
momenta and energies of the gas cells appropriately. Finally we
update the positions and velocities of each sink particle under
their mutual gravitational interaction, using a simple N-body
code. Forces are again computed via direct 1/r2 sums.

Once the sink particle update is complete, we proceed to
update the protostellar evolution model that is attached to each
star particle.

9 Note that our notation here differs slightly from that of Krumholz et al.
(2007b), in that we follow the standard astrophysics convention in which κ is
the specific opacity, while Krumholz et al. (2007b) follow the
radiation-hydrodyanmic convention in which κ is the total opacity. As a result,
any opacity κ that appears in the Krumholz et al. (2007b) equations is replaced
by κρ here.
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APPENDIX B

THE PROTOSTELLAR EVOLUTION MODEL

Step (4b) of the update cycle described in Appendix A
involves advancing the internal state of each star particle. The
primary purpose of this procedure is to determine the stellar
luminosity for use in step (3). We determine the luminosity using
a simple one-zone protostellar evolution model introduced by
Nakano et al. (1995) and extended by Nakano et al. (2000) and
Tan & McKee (2004). The model has been calibrated to match
the detailed numerical calculations of Palla & Stahler (1991,
1992), and it agrees to ∼10%. The numerical parameters we use
for the calculations in this paper are based on this calibration,
but we note that after we began this work Hosokawa & Omukai
(2009) published calculations suggesting that slightly different
values would improve the model’s accuracy. We recommend
that Hosokawa & Omukai’s values be used in future work.

Before diving into the details of the numerical implementa-
tion, it is helpful to give an overview of the model. The model
essentially treats the star as a polytrope whose contraction is
governed by energy conservation. The star evolves through a
series of distinct phases, which we refer to as “pre-collapse,”
“no burning,” “core deuterium burning at fixed Tc,” “core deu-
terium burning at variable Tc,” “shell deuterium burning,” and
“main sequence.” The “pre-collapse” phase corresponds to the
very low mass stage (m � 0.01M	) when the collapsed mass
is not sufficient to dissociate H2 and produce second collapse
to stellar densities (Masunaga & Inutsuka 2000). During this
phase the object is not yet a star. “No burning” corresponds to
the phase when the object has collapsed to stellar densities, but
has not yet reached the core temperature Tc ≈ 1.5 × 106 K
required to ignite deuterium, and its radiation is powered purely
by gravitational contraction. During this phase the star is im-
perfectly convective. The next stage, “core deuterium burning
at fixed Tc,” begins when the star ignites deuterium. While the
deuterium supply lasts, core deuterium burning acts as a ther-
mostat that keeps the core temperature fixed and the star fully
convective. Once the deuterium is exhausted, the star begins the
“core deuterium burning at variable Tc” phase, during which
the core temperature continues to rise. The star remains fully
convective, and new deuterium arriving on the star is rapidly
dragged down to the center and burned. The rising core tem-
perature reduces the star’s opacity, and eventually this shuts off
convection in the stellar core, beginning the “shell deuterium
burning” phase. At the start of this phase, the star changes to
a radiative structure and its radius swells; deuterium burning
continues in a shell around the radiative core. Finally the star
contracts enough for its core temperature to reach Tc ≈ 107 K,
at which point it ignites hydrogen and the star stabilizes on the
main sequence, the final evolutionary phase in our model.

In the following sections, we give the details of our numerical
implementation of this model.

B.1. Initialization and Update Cycle

When a star is first created, its mass is always below 0.01M	
and thus in the “pre-collapse” state. We do not initialize our
protostellar evolution model until the mass exceeds 0.01M	—
prior to this point star particles are characterized only by a
mass and have zero luminosity. In the first time step when the
mass exceeds 0.01M	, we change the state to “no burning.”
Thereafter each star particle is characterized by a radius r, a
polytropic index n, and a mass of gas from which deuterium has

not yet been burned, md. We initialize these quantities to

r = 2.5 R	

(
Δm/Δt

10−5 M	 yr−1

)0.2

(B1)

n = 5 − 3

[
1.475 + 0.07 log10

(
Δm/Δt

M	 yr−1

)]−1

(B2)

md = m, (B3)

where Δt and Δm are the size of the time step when the star
passes 0.01M	 and the amount of mass accreted during it. If
this produces a value of n below 1.5 or greater than 3.0, we set
n = 1.5 or n = 3.0. These fitting formulae are purely empirical
calibrations designed to match Palla & Stahler (1991, 1992).
The choice of n intermediate between 1.5 and 3.0 corresponds
to imperfect convection.

Once a star particle has been initialized and its state set to
“no burning,” during each time step we perform the following
operations:

1. Update the radius and the deuterium mass.
2. Compute the new luminosity.
3. Advance to the next evolutionary phase.

We describe each of these operations below.

B.2. Evolution of the Radius and Deuterium Mass

Once a star reaches the “main sequence” evolutionary phase,
we simply set its radius equal to the radius of a ZAMS star of the
same mass, which we compute using the fitting formula of Tout
et al. (1996) for Solar metallicity. Before this point we treat the
star as an accreting polytrope of fixed index. For such an object,
in a time step of size Δt during which the star gains a mass
Δm, the radius changes by an amount Δr given by a discretized
version of Equation (8) of Nakano et al. (2000):

Δr = 2
Δm

m

(
1 − 1 − fk

agβ
+

1

2

d log β

d log m

)
r − 2

Δt

agβ

×
( r

Gm2

)
(Lint + LI − LD) r. (B4)

Here ag = 3/(5 − n) is the coefficient describing the gravita-
tional binding energy of a polytrope, β is the mean ratio of the
gas pressure to the total gas plus radiation pressure in the star, fk
is the fraction of the kinetic energy of the infalling material that
is radiated away in the inner accretion disk before it reaches the
stellar surface, Lint is the luminosity leaving the stellar interior,
LI is the rate at which energy must be supplied to dissociate and
ionize the incoming gas, and LD is the rate at which energy is
supplied by deuterium burning.

In this equation we adopt fk = 0.5, the standard value
for an α disk. For β, the low-mass stars we discuss in this
paper have negligible radiation pressure and so β = 1 to
very good approximation. In general, however, we determine
β and d log β/d log m by pre-computing a table of β values for
polytropes as a function of polytropic index n and mass m, and
then interpolating within that table. For n = 3 interpolation is
unnecessary and we instead obtain β by solving the Eddington
quartic

P 3
c = 3

a

(
kB

μmH

)4 1 − β

β4
ρ4

c , (B5)
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where Pc and ρc are the central pressure and density of the
polytrope (which are also stored in a pre-computed table as a
function of n), and μ = 0.613 is the mean molecular weight for
fully ionized gas of solar composition.

For the luminosity emanating from the stellar interior we
adopt

Lint = max (Lms, LH) , (B6)

where Lms is the luminosity of a main-sequence star of mass m,
which we compute using the fitting formula of Tout et al. (1996)
for solar metallicity, and LH = 4πr2σT 4

H is the luminosity
of a star on the Hayashi track, with a surface temperature
TH = 3000 K. For the luminosity required to ionize and
dissociate the incoming material we use

LI = 2.5 L	
(Δm/Δt)

10−5 M	 yr−1
, (B7)

which corresponds to assuming that this process requires
16.0 eV per hydrogen nucleus. The deuterium luminosity de-
pends on the evolutionary stage. In the “pre-collapse” and “no
burning” phases, LD = 0. In the “core burning at fixed Tc” phase,
we set the deuterium luminosity to the value required to keep
the central temperature at a constant value Tc = 1.5 × 106 K.
This is (Equation (13) of Nakano et al. 2000)

LD = Lint + LI +
Gm

r

Δm

Δt

{
1 − fk − agβ

2

[
1 +

d log(β/βc)

d log m

]}
,

(B8)
where βc = ρckBTc/(μmHPc) is the ratio of gas pressure to total
pressure at the center of the polytrope. In all subsequent phases,
deuterium is burned as quickly as it is accreted, so we take

LD = 15 L	
(Δm/Δt)

10−5 M	 yr−1
, (B9)

which corresponds to assuming an energy release of 100 eV per
gram of gas, appropriate for deuterium burning in a gas where
the deuterium abundance is D/H = 2.5 × 10−5. Finally, we
update the mass of material that still contains deuterium simply
based on LD. The change in unburned mass is

Δmd = Δm − 10−5M	

(
LD

15L	

) (
Δt

yr

)
. (B10)

B.3. Computing the Luminosity

From the standpoint of the rest of the code, the only quantity
of any consequence is the luminosity, since this is what enters
as a source term in step (3). The luminosity radiated away from
the star consists of three parts:

L = Lint + Lacc + Ldisk, (B11)

where Lint is the luminosity leaving the stellar interior as
defined above, Lacc is the luminosity radiated outward at the
accretion shock, and Ldisk is the luminosity released by material
in traversing the inner disk. These in turn are given by

Lacc = faccfk

GmΔm/Δt

r
(B12)

Ldisk = (1 − fk)
GmΔm/Δt

r
, (B13)

where fk = 0.5 as defined above, and facc is the fraction of the
accretion power that is radiated away as light rather than being
used to drive a wind. Although we do not explicitly include a
protostellar outflow in this calculation, we take facc = 0.5 so that
we do not overestimate the accretion luminosity by assuming
that the all the accretion power comes out radiatively rather
than mechanically. Thus, we assume a total radiative efficiency
of 75%. Although this value is consistent with x-wind models
(Ostriker & Shu 1995), neither x-wind or disk-wind models
definitively constrain the total conversion of accretion energy
into radiation, and we treat this as a free parameter.

B.4. Advancing the Evolutionary State

The final pieces of our protostellar evolution model are the
rules for determining when to change the evolutionary state,
and for determining what happens at such a change. Our rules
are as follows: if the current state is “no burning,” then at the
end of each time step we compute the central temperature by
numerically solving the equation

Pc = ρckBTc

μmH
+

1

3
aT 4

c , (B14)

where Pc and ρc are determined from the current mass, radius,
and polytropic index. If Tc � 1.5 × 106 K, we change the
evolutionary state to “core burning at fixed Tc” and we change
the polytropic index to n = 1.5.

If the current evolutionary state is “core burning at fixed Tc,”
then we check to make sure that md � 0 after we update the
unburned deuterium mass with Equation (B10). If not, then the
deuterium has been exhausted and we change the state to “core
burning at variable Tc.”

If the current state is “core burning at variable Tc,” we
decide whether a radiative zone has formed by comparing
the luminosity being generated by deuterium burning, LD, to the
luminosity of a ZAMS star of the same mass, Lms. We switch the
state to “shell deuterium burning” when LD/Lms > frad = 0.33.
At this point we also change the polytropic index to n = 3 and
increase the radius by a factor of 2.1, representing a swelling of
the star due to formation of the radiative barrier.

Finally, if the state is “shell burning,” we compare the radius r
at the end of every time step to the radius of a ZAMS star of the
same mass. Once the radius reaches the main-sequence radius,
we switch the state to “main sequence,” our final evolutionary
state.
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