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In this supporting text we describe our physical model, numerical method, and simulation
analysis in more detail.

1 Evolution Equations
For clarity, in this section we write scalars in italics (e.g. a), vectors in bold (e.g. a), tensor
contractions over single indices as dots (e.g. a·b = aibi), and tensor products of vectors without
any operator symbol (e.g. (ab)ij = aibj). We write quantities evaluated in the rest frame of the
computational grid without subscripts, and quantities evaluated in the frame comoving with the
gas with subscript zero.

Our protostellar core is governed by the equations of gravito-radiation hydrodynamics. For
the radiative part of the evolution, since the structures we form are extremely optically thick
(τ ∼ 100 through the disk), we adopt the flux-limited diffusion approximation (see § 6 for more
details). With this approximation the state of the gas at every position is specified by a vector
of quantities (ρ, ρv, ρe, E), where ρ is the gas density, v is the gas velocity, e is the gas specific
energy including thermal and kinetic, but not gravitational, components, and E is the radiation
energy density in the rest frame of the computational grid. The computational domain also
includes a number of star particles (1,2), each of which is a point mass characterized by a mass
M , a position x, a momentum p, and a luminosity L.

We write the evolution equations for the gas quantities in the conservative, mixed-frame
form, retaining terms to order v/c. We use the form of the equations appropriate to the static
diffusion limit, since for our problem v/c is small compared to one over the optical depth of the
system (3):
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Equations (1), (2), (3), and (4) are the equations of mass conservation, momentum conservation,
and gas and radiation energy conservation, respectively. The corresponding evolution equations
for the point masses are

d

dt
Mi = Ṁi (5)

d

dt
xi =

pi

Mi

(6)

d

dt
pi = −Mi∇φ+ ṗi. (7)

In these equations Ṁi, ṗi, and Ėi represent the rates at which gas mass, momentum, and me-
chanical (thermal plus kinetic) energy are transferred from the gas onto the ith point mass, Li is
the luminosity of that point mass, W (x) is a dimensionless weighting function whose integral
is unity that defines the spatial region over which transfer between the point particles and the
gas occurs, and the summations in equations (1) – (4) and all subsequent equations run over all
point masses. Equations (5) – (7) describe point particles moving under the influence of gravity,
while accreting mass and momentum from the gas.

The gravitational potential φ is given by the Poisson equation

∇2φ = 4πG

[
ρ+

∑
i

Miδ(x− xi)

]
, (8)

and the gas pressure P is given by

P =
ρkBTg

µ
= (γ − 1)ρ

(
e− 1

2
v2
)
, (9)

where Tg is the gas temperature, µ is the mean particle mass, and γ is the ratio of specific heats
of the gas. We adopt µ = 2.33mH, appropriate for a gas of molecular hydrogen and helium
mixed in the standard cosmic abundance. Since over most of the computational domain the gas
is too cool to excite the rotational levels of hydrogen, we approximate γ = 5/3. In practice this
choice makes little difference, because the gas temperature and thus the pressure are controlled
almost completely by radiative rather than mechanical effects.

The quantities κ0P and κ0R represent the comoving-frame specific Planck- and Rosseland-
mean opacities of the gas, which we determine from our dust grain model as described below.
The quantity B is the Planck function, B = caRT

4
g /(4π). Finally, the quantities λ and R2 are

the flux limiter and the Eddington factor, respectively. We adopt the Levermore & Pomraning
form for these quantities (4):

λ =
1

R

(
cothR− 1

R

)
(10)
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R =
|∇E|
κ0RρE

(11)

R2 = λ+ λ2R2. (12)

2 Models for Dust and Protostars
The primary source of opacity in our calculation is dust suspended in the gas. We adopt Planck-
and Rosseland-mean opacities from a six-species dust model for dense interstellar environments
in the Milky Way (5). The opacities in the model depend on the grain temperature, since differ-
ent species sublime at different temperatures. We take the grain and radiation temperatures to
be equal, and the radiation temperature is given by Tr = (E/aR)1/4. For convenience we fit the
tabulated opacities with simple piecewise-linear analytic formulae (2). Our fit is

κ0P =



0.3 + 7.0 (Tr/375), Tr ≤ 375
7.3 + 0.7 (Tr − 375)/200, 375 < Tr ≤ 575
3.0 + 0.1 (Tr − 575)/100, 575 < Tr ≤ 675
2.8 + 0.3 (Tr − 675)/285, 675 < Tr ≤ 960
3.1− 3.0 (Tr − 960)/140, 960 < Tr ≤ 1100
0.1, Tr > 1100

(13)

κ0R =



0.1 + 4.4Tr/350, Tr ≤ 350
3.9, 350 < Tr ≤ 600
0.7, 600 < Tr ≤ 700
0.25, 700 < Tr ≤ 950
0.25− 0.15 (Tr − 950)/50, 950 < Tr ≤ 1000
0.1, Tr > 1000

. (14)

For brevity we have omitted units from these equations; in them Tr is in units of K and κ0P

and κ0R are in units of cm2 g−1. At high temperatures where the dust has sublimed, our choice
to set κ0P = κ0R = 0.1 cm2 g−1 is purely a numerical convenience we use to represent a
“small” opacity. The true opacity depends in detail on the radiation spectrum and the physical
state of the gas (molecular, atomic, or ionized); if the gas were fully ionized it would have the
Thompson opacity κ0P = κ0R = 0.4 cm2 g−1, but there are few places in our simulation domain
that are likely to be strongly ionized. At our high accretion rates the ionized bubble around the
star will be confined to scales much smaller than our grid cells (6). There may be significant
ionization inside the radiation bubbles, where radiation-driven shocks can heat the gas to high
temperatures, but the densities inside the bubbles are so low that the gas is transparent and its
pressure is negligible regardless of its opacity. In the rest of the flow, gas above 1000 K is at
high density and is therefore likely to be mostly neutral. As a result it will have an opacity
dominated by the lines of molecules and metal ions. These sources produce opacities that are
certainly much smaller than the opacity due to dust grains. However, sharp opacity gradients
make it difficult for our radiation iterative solver to converge, so the choice of 0.1 cm2 g−1 is a
compromise between physical realism and numerical efficiency. If anything, this choice causes
us to overestimate radiative forces in parts of the flow that are above ∼ 1000 K but neutral.

The final ingredient to our physical model is a method for determining the accretion rates
and luminosities of protostars. We compute the mass accretion rate using an Eulerian sink
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particle algorithm (1) in which we fit the flow in the vicinity of each protostar to a Bondi
accretion flow, and use the accretion rate Ṁ corresponding to the best fit. Once we have found
the accretion rate, we set the momentum and energy accretion rates ṗ and Ė so that, in the frame
comoving with the accreting particle, the accretion process leaves the radial velocity, tangential
momentum, and mechanical energy of the gas unchanged. We also choose the weight function
W (x) via our Bondi flow fit, with the requirement that W (x) = 0 for |x| larger than four times
the cell size on the finest grid. Particles can also accrete by merging with one another; this
happens if one particle enters another’s computationally-defined accretion radius.

Given the accretion history for each particle, we must determine its luminosity. When a
sink particle first forms its mass is generally very small. Since objects smaller than ∼ 0.05 M�
do not undergo prompt collapse to stellar densities (7, 8), we do not count these as stars in our
analysis or allow them to radiate. Once a sink particle reaches 0.05M�, we attach a protostellar
evolution model to it (2, 9). Under this model we describe the star as a polytropic sphere
characterized by a radius, central temperature, and poytropic index. These evolve following
the equation of energy conservation, including terms that describe the gravitational and internal
chemical energy of the incoming gas, Kelvin-Helmholtz contraction of the protostar, and the
energy released by deuterium and hydrogen burning. Evolution continues until the radius of
the star contracts down the radius of a main sequence star of the same mass. At that point we
consider the star to have ignited hydrogen and stabilized on the main sequence, and we simply
take the star’s luminosity to be that of a main sequence star of equal mass.

3 Numerical Methods
We solve the evolution equations (1) – (7) using the ORION adaptive mesh refinement (AMR)
code. The code consists of four main physics modules, which operate sequentially in each
update step.

The first is the hydrodynamics module (10–12), which solves the Euler equations of gas
dynamics (equations 1 – 3) without any of the terms involving sink particles or radiation (i.e.
without terms involving E, Ṁ , ṗ, or Ė). This update uses a conservative Godunov scheme with
an approximate Riemann solver (13), is second-order accurate in time and space for smooth
flows, and requires very little artificial viscosity to handle shocks. The second module is the
gravity solver, which solves the Poisson equation (8) for the gravitational potential using a
multigrid iteration scheme (11, 12, 14).

The third module is the radiation update, which updates the gas state based on the radiative
terms (those involving E and L) in equations (2) – (4). This step uses an operator splitting
approach in which we separate the terms describing radiation diffusion, heating, and cooling,
which are dominant, from those describing radiation force, work, and advection, which are non-
dominant (3). We first update the state based on the dominant terms implicitly using a pseudo-
transient continuation scheme (15), and then perform an explicit update for the non-dominant
terms. This two-step approach is computationally cheaper than a fully implicit treatment, but
remains stable and accurate as long as the force, work, and advection terms are subdominant,
which they always are in our problem. We use our dust and protostellar models to compute the
opacities κ0P and κ0R and protostellar luminosities L in this step.

The fourth module is the star-particle update. In this step we first compute the accretion rates
of mass, momentum, and energy onto each protostar and the weight functionW (x) by fitting the
density and velocity field around the star to a Bondi flow (1). We then update the properties of
the gas and protostars using the terms in equations (1) – (7) involving accretion (those involving
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Ṁ , ṗ, and Ė), and update the protostellar positions and momenta using equations (6) – (7). We
compute the gravitational accelerations of particles and the resulting reflex accelerations of the
gas using a direct cell-by-cell and particle-by-particle calculation of the 1/r2 gravitational force.
This ensures that our particle update conserves momentum, angular momentum, and energy to
machine precision, and it is not too computationally costly because the number of particles is
small. Next, we update the protostellar evolution model to determine a new set of protostellar
properties for each star (2). Finally, we create a new star in any cell whose density exceeds
the Jeans density on our finest level of refinement (see § 4). Cells that meet this condition
are necessarily in regions of gravitationally-bound converging flow. Rather than converting the
cell entirely to a point particle, we only convert enough mass into a point particle to bring the
density back below the Jeans density, although this star subsequently accretes additional mass if
inflow into the cell continues. More details on our sink particle method are given in Krumholz,
McKee, & Klein (1).

All of these modules operate within the overall AMR framework (16–18) in which we dis-
cretize the computational domain onto a series of levels l = 0, 1, 2, . . . , L. Here l = 0 is the
coarsest level, on which cells have a linear size ∆x0, and the cells in each subsequent level are a
factor f = 2 smaller in linear extent, so that they have sizes ∆xl = ∆x0/f

l. Each level consists
of a union of rectangular grids, which need not be contiguous, but which are nested, such that
every grid on level l is fully contained within one or more grids on level l − 1.

Each level advances with its own time step ∆tl, but the time steps are synchronized so that
∆tl = ∆tl−1/f . The process of advancing the calculation is recursive: we first advance all grids
on level 0 through a time step of size ∆t0, and then we advance all the grids on level 1 through
f time steps of size ∆t1 = ∆t0/f . However each time we advance the level 1 grids, we must
advance each level 2 grid through f time steps of size ∆t2 = ∆t1/f , and so forth down to the
finest level present. Every time we advance a level l through f steps, so that it reaches the same
evolution time as level l− 1, we perform a synchronization procedure between it and level l− 1
to ensure that mass, momentum, and energy are conserved across the interface between the two
levels. We set the overall time step by computing the Courant condition, including a contribution
to the effective sound speed from radiation pressure (2), on each level at the beginning of each
coarse time step. We then set the time step on level 0 equal to ∆t0 = min(f l∆tl) and the time
steps on all other levels to ∆tl = ∆t0/f

l. The ensures that we obey the Courant condition on
each level and that time steps on different levels are related by ∆tl = ∆tl−1/f .

4 Initial, Boundary, and Refinement Conditions
As described in the main text, our initial core is a 100 M� sphere of gas with a temperature
of 20 K, a radius of 0.1 pc, and a density profile ρ ∝ r−1.5. We place this core at the center
of a cubical computational domain 0.4 pc on a side. Outside the core is an ambient medium
with a temperature of 2000 K and a density equal to 1% of the density at the edge of the core,
so the core and ambient medium are in pressure balance. To prevent it from undergoing fast
radiative cooling, and from inhibiting the escape of radiation from the core, we set the Planck
and Rosseland opacities of the ambient medium to zero. The entire computational domain is
filled with radiation with a uniform energy density E0 = 1.2 × 10−9 erg cm−3, corresponding
to a 20 K blackbody field.

We use symmetry boundary conditions for the hydrodynamics, although this has no signif-
icant effect on the calculation because no part of the core ever approaches the boundary. For
the gravity module, we use Dirichlet boundary conditions, with the gravitational potential at the

5



edge of the computational domain set equal to−GMc/r, whereMc = 100M� is the core mass,
and r is the distance of a given point on the boundary of the computational domain from the
core center. The radiation module uses a Marshak boundary condition, under which the flux out
of the computational domain at the face of each cell at the boundary is set equal to c(E−E0)/4,
whereE is the energy density in that cell. This effectively bathes the computational domain in a
20 K background radiation field, but allows excess radiation generated within it to escape freely.

Our level 0 base grid has 1283 cells, and we refine any cell with a density greater than half
the initial edge density of the core to level 1. Thus the initial core is resolved by at least 64 cells
per core radius. Thereafter we refine based on three conditions. The first, and by far the most
restrictive, is that we refine any computational cell on level l in which

∆xl|∇E|
E

> 0.15, (15)

i.e. anywhere the local gradient in the radiation energy density exceeds 15% per cell. We find
that artificial radiation pressure forces develop whenever steep gradients in the radiation energy
density coincide with boundaries between AMR levels, and this condition prevents such forces
from appearing by guaranteeing that regions of sharp gradients in E never coincide with level
boundaries. The second condition is that we refine any cell whose distance from the nearest sink
particle is less than 16∆xl, so that the regions around stars are always well-resolved. Finally,
we refine any cell whose density is high enough to violate the Jeans condition,

ρ > ρJ = J2 πc2s
G∆x2

l

, (16)

where we use a Jeans number J = 1/8, and cs is the isothermal sound speed of the gas.
We allow refinement to continue up to a maximum level L = 6, at which the cell size

is ∆xL = 10 AU, giving an effective resolution of 81923. Cells whose densities exceed ρJ

at the highest level of resolution form star particles (1). We take no action when one of the
other refinement conditions is violated on the highest level. For the radiation gradient condition
this causes no harm, because the condition’s primary purpose is to ensure that there are no
level boundaries created by other conditions that coincide with sharp gradients in E. For the
condition that we always refine the volume around sink particles, the consequence of our failure
to do this indefinitely is that very close to a sink particle we start to suffer from artificial angular
momentum loss, and that we cannot resolve sink particle orbits that are below a certain size.
We discuss these issues below.

With these choices of resolution and refinement condition, the simulation we present in this
paper required approximately 250,000 CPU-hours, running in parallel on 128 or 256 processors.

5 Resolution Issues
Our minimum cell size of 10 AU has important implications for which physical processes we
can and cannot resolve. As we discuss in § 5.4, this cell size is more than adequate for the ra-
diation dominated-bubbles and radiation-Rayleigh-Taylor fingers. However, there are three im-
portant physical processes that our simulations cannot address due to limited resolution, which
we discuss in § 5.1 – 5.3.
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5.1 The Dust Destruction Front
One problem we cannot address is the structure of the dust destruction front. Close to the star
the temperature of a dust grain in equilibrium with the radiation field exceeds the sublimation
temperature for even the most refractory species, so no dust is present. As a result the opacity of
the gas to non-ionizing radiation is small, and stellar visible and ultraviolet light can free-stream
outward. As one moves away from the star the equilibrium dust temperature drops below the
sublimation temperature, and dust re-appears. Since the dust opacity to visible and UV light is
very large, all the stellar radiation is absorbed in a thin layer at this dust destruction front, where
it is down-converted to infrared and re-radiated to diffuse outward through the core. We refer to
the transition layer in which direct stellar radiation is reprocessed and dust is destroyed as the
dust destruction front.

The radius of the front increases with the stellar luminosity as roughly r ∝ L1/2, but even
at our peak luminosity of a few 105 L� it is at most ∼ 50 AU (19), with a far smaller thickness.
In our simulation we do find a ∼ 50 AU region at the center of the accretion disk in which the
temperature is well above 1000 K, the temperature at which our dust model opacity falls to its
floor, but at our resolution of 10 AU this region is at best marginally resolved. The boundary
of the high temperature region, where UV and visible radiation are reprocessed, is not resolved
at all. As a result, we cannot study the structure of the front, nor can we address the “UV”
radiation pressure problem (20): at the front the large UV / visible opacity makes the radiation
pressure force very large. Since the front is of very small thickness, the force is applied over
a very short length and time, so it can be approximated as delivering an impulsive kick to the
gas. If the accretion flow has insufficient inward momentum, the kick may reverse it. However,
analytic calculations of this effect show that if the accretion rate is ∼ 10−4 M� yr−1 or higher,
as it is for all of our simulation (Fig. 2 of main text), then even if it is spherically symmetric the
inflow always contains enough momentum to fall through the dust destruction front and onto
the star (19). The non-sphericity of our inflow, which arrives primarily through a disk, will
further relax this requirement, since the inflowing gas will intercept only a fraction of the stellar
radiation.

Finally, it is worth noting that, even with better resolution, a realistic simulation of the dust
destruction front would require a considerably more sophisticated approach to radiative transfer
than the gray flux-limited diffusion approximation we use. Simulating the dust destruction front
requires the ability to treat a radiation field that is non-blackbody and highly beamed, neither
of which is possible with a gray flux-limited diffusion approximation. (We discuss these issues
in more detail in § 6.) No simulation to date has studied the dust destruction front even in 2D.
The closest are those of Yorke & Sonnhalter (21), which include a multi-frequency treatment of
the radiation field, one of the necessary components. However, they too use a diffusion method
and thus cannot handle beamed radiation fields, and their simulations also have significantly
lower resolution than ours, so the entire dust destruction front is confined to a single cell of
their simulation.

5.2 Angular Momentum Transport and Fragmentation in the Disk
Our maximum resolution of 10 AU also sets the size scale outside which our disks are dominated
by physical angular momentum transport due to gravitational instability, and inside which they
are dominated by numerical angular momentum transport induced by finite resolution. Numer-
ical angular momentum transport leads to artificially fast accretion in regions of the disk where
it dominates, which in turn produces an unphysically smooth and low surface density disk that
is less prone to fragmentation than it should be.
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We have measured the effective numerical viscosity in our code experimentally (1). Param-
eterizing this in terms of the standard viscosity parameter α, our effective grid viscosity for a
disk in Keplerian orbit is (2)

α ≈ 3.5∆x−2.85
L,1 M0T

−1
2 r−3.85

2 (17)

where ∆xL,1 = 1 is the size of a cell on our finest level L in units of 10 AU, M0 is the mass of
the central star in units of 1 M�, T2 is the gas temperature in the disk in units of 100 K, and r2
is the distance from the central star in units of 100 AU. To determine when this is important, we
must compare it to the dominant source of physical angular momentum transport: gravitational
instabilities that produce spiral arms. These can produce an effective α ∼ 1 for a rapidly-
accreting disk (2, 22). Since M0/T2 ∼ 1 in our disks for most of the simulation, we expect
numerical angular momentum transport to become negligible compared to physical transport at
radii larger than about 100 AU.

Because of this effect, we likely overestimate the accretion rate and underestimate the
amount of fragmentation and spiral structure at early times, when the disk radius is small.
As the run continues, however, the solid-body rotation curve we impose as an initial condition
causes the circularization radius of the infalling material to grow. As the time-sequence of the
evolution shows, by the time radiation effects become significant, the disk is several hundred
AU in radius, and has a well-developed spiral arm-pattern, indicating that physical angular mo-
mentum transport has become dominant and numerical viscosity is negligible. At this point,
even though we are still overestimating the accretion rate in the inner ∼ 100 AU of the disk,
this does not raise the total accretion rate. Simulations exploring the effects of numerical viscos-
ity and artificial accretion in disks show that even completely evacuating the inner, numerical
viscosity-dominated region does not cause any significant accretion from the outer parts if they
are stable and rotationally-supported (1). Physically this is because the rate-limiting step for
accretion is the delivery of mass from the outer parts of the disk to their inner parts. Speeding
up accretion in the inner part of the disk does not remove this bottleneck.

It is also worth noting that none of this discussion of numerical viscosity applies to the star
particles that we create in our simulation. Numerical viscosity in our code arises for the same
reason it does in any numerical method, either grid- or particle-based: fluid properties are al-
ways averaged over some finite size scale, and when the averaging scale becomes comparable
to the orbital radius of a given fluid element, either artificial angular momentum transport or ar-
tificial angular momentum loss occurs. However, our star particles are in fact point masses and
not fluid elements of finite size, so they do not suffer from the averaging problem. As discussed
in § 3 of the Supplementary Text, we use an operator-split approach to update the gas and the
particles, and the particle update conserves angular momentum to machine precision. Thus our
sink particles do not suffer from numerical viscosity. They do interact with the gas gravitation-
ally, however, so even though their motions are dissipationless, they can still be dragged inward
by dynamical friction with the gas. This is the dominant accretion mechanism for disk-born
stars, which all form outside the ∼ 100 AU zone where numerical viscosity affects the gas.
Until formation of the massive binary companion, all the stars in th disk are too small to open
gaps in the disk. The disk itself is accreting rapidly due to gravitational instability, so the stars
undergo rapid type I migration inward.

5.3 Close Binaries
The final area in which our resolution compromises our ability to model the physics is in our
treatment of tight binaries. O star binaries are generally detected either visually (23), spectro-
scopically (24), or by eclipses (25,26). Visual binaries are easiest to find if they have separations
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of at least ∼ 100 AU, while spectroscopic and eclipse techniques are most sensitive to binaries
closer than ∼ 1 AU. Companions to O stars in the intermediate regime are extremely difficult
to detect, and we lack a good census for them. Surveys indicate that ∼ 40% of O stars have
companions in the visual binary regime (23), with ∼ 1000 AU as a typical separation, while
at least 60% have companions in the spectroscopic / eclipse regime (24). Our sink particle al-
gorithm merges stars whose 40 AU-sized accretion zones overlap, so while we resolve visual
companions easily, closer spectroscopic or eclipsing binaries are unresolved in our simulation.
As a result, we cannot model the formation of tight binaries or make any statements about how
common we expect such systems to be.

Both the first star to form in our simulation and its disk-borne wide companion undergo a
number of mergers, although these contribute only a small fraction of their total mass. It seems
likely that at least some of the mergers should instead result in the formation of close binaries
below our resolution limit. The net effect of this would be to reduce the relative strength of
radiation pressure. Far away from such a tight binary the gravitational force is the same as it
would be for a single star of the same mass, but the strong non-linear dependence of luminosity
on mass means that two 20 M� stars in a tight binary produce less light than a single 40 M�
star. Consequently, our limited resolution means that, if anything, we overestimate the radiation
pressure force. Since we find that radiation cannot stop accretion even in this case, a higher-
resolution treatment of tight binaries would only strengthen our result.

5.4 Resolution of Bubbles and Rayleigh-Taylor Features
In contrast to the issues of the dust destruction front, inner disk, and close binaries, our reso-
lution is more than adequate to simulate the radiation-dominated bubbles and the appearance
of Rayleigh-Taylor instabilities within them. We can quantify this two ways. Most simply, we
note that, at the onset of instability in the bubbles above and below the accretion disk, they are
∼ 1500 AU in diameter (Fig. 1C–1D of main text). Since at the onset of instability the entire
bubble wall is refined to the maximum level, this means that the bubble circumference is re-
solved by ∼ 500 cells. Numerical studies of classical (as opposed to radiative) Rayleigh-Taylor
instability find that perturbation growth rates converge once the perturbations are resolved by
roughly 8 cells per wavelength (27). It not entirely clear what perturbations play a dominant role
in initiating Rayleigh-Taylor instability in our problem, but examination of Movie S1 suggests
they have sizes that are comparable to the bubble radius, and thus should be extremely well-
resolved by our ∼ 500 cells. If there are smaller modes that we are missing due to inadequate
numerical resolution, then our Rayleigh-Taylor instability sets in too slowly in the simulation,
and our conclusion that instability allows continuing accretion would be strengthened.

One could also worry about our refinement criteria, and in particular whether mesh refine-
ment could be initiating the Rayleigh-Taylor instabilities we see. We note first that, even if this
were true, it would not necessarily make our results unphysical, since in any real collapsing
core there will be inhomogeneities present that are much larger than those induced by our mesh
refinement. However, we can also check this possibility simply by overlaying the mesh refine-
ment on top of the density field to look for correlations between instability features and level
boundaries. Fig. S4 shows such an overlay; there is clearly no correlation between features of
the instability and boundaries between AMR levels. Regions of inflow and Rayleigh-Taylor
fingers do not correlate with resolution. While this is not definitive proof that our instability is
not numerical in origin, it does provide strong circumstantial evidence against the hypothesis.
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6 Limitations of the Radiative Transfer Methodology
Our simulation uses a gray flux-limited diffusion approximation for radiation. This is necessary
to render the calculation computationally feasible, and is a reasonable approximation for a first
three-dimensional calculation, but it is important to consider the extent to which this might
influence our result. We consider the grayness and diffusion approximations separately.

The assumption behind a gray treatment of the radiation field is that the radiation always has
a thermal spectrum, and to the extent that it is not fully thermalized our approximation will be
in error. The error is likely to be largest close to the star, where the radiation has not yet passed
through much dust, but deviations from a blackbody spectrum will be present everywhere. Dust
opacity is highest at short wavelengths, so short-wavelength radiation is both the most effective
at delivering momentum to the gas and the most easily collimated by it. Conversely, the core is
optically thin to radiation whose wavelength is sufficiently long, and this radiation will escape,
increasing the cooling rate but also hardening the spectrum of the remaining, trapped radiation.
As a result, gray treatments of the radiation have two effects on the dynamics, which act in
opposite directions. First, by assuming instantaneous thermalization of the radiation field, they
artificially soften the radiation spectrum and underestimate the radiation force in regions where
the true spectrum is harder than thermal (28). This is worst close to the star, and it artificially
favors accretion. On the other hand, the assumption of instantaneous thermalization reduces
the energy loss rate by neglecting the escape of long wavelength radiation, and also tends to
isotropize the radiation field artificially, because it neglects the extra collimation provided by
high opacities at short wavelengths. Both effects tend to make accretion more difficult, since
the former raises the amount of radiation trapped in the core and the latter makes it harder for
the gas to form self-shielding structures that exclude the radiation field like the Rayleigh-Taylor
fingers we find in our simulation.

The best way to assess which of these effects is dominant is to compare the results of pre-
vious two-dimensional simulations with gray and with multi-group radiative transfer (21). (In a
multi-group approach, one integrates the radiation-hydrodynamic equations over some number
of intervals in frequency space, and tracks each frequency group independently.) These show
that a multi-group treatment of the radiation field in 2D increases the maximum stellar mass
that is formed from 22.9 M� to 42.9 M�, so in 2D artificial trapping and isotropization of the
radiation field under the gray assumption is much more important than underestimation of the
radiation force by artificial spectral softening. While only a 3D multi-group simulation can fully
answer the question of whether this continues to be true in three dimensions, it seems likely.
Trapping and softening are both spectral effects and not geometric ones, so it is unclear why
they would be sensitive to dimensionality. For the isotropization effect, if anything the 3D sim-
ulation is more vulnerable than the 2D ones. In 2D, the only collimation that occurs is by the
disk and the walls of the polar cavities, which are relatively large-scale features that are reason-
ably optically thick even to thermalized radiation. In contrast, in 3D we also have collimation
by Rayleigh-Taylor fingers, which are much smaller in scale, less optically thick, and therefore
more vulnerable to artificial leakage of radiation due to an underestimate of their opacity by the
gray approximation. Thus the amount of extra collimation provided by a frequency-dependent
treatment should be at least as great in 3D as in 2D, and multi-group radiative transfer would
again enhance accretion.

The impact of the diffusion approximation is more difficult to assess, because there have
been no 2D simulations of massive star formation using radiative transfer methods other than
diffusion. Since the core is extremely optically thick even at infrared wavelengths, the radiation
field should be close to the diffusion limit everywhere except near the core surface and inside
the dust destruction front. Near the core surface beaming is unlikely to be important, since
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radiation forces are small there and we care only about the total energy loss rate, which the
flux-limited diffusion approximation computes reasonably well. Within the dust destruction
front beaming would be a more significant effect. The weight function W (x − xi) we use to
add radiation from our stars to the grid is spherically-symmetric, so it adds radiation in and
outside of the disk in an unbiased manner. However, that radiation is then free to diffuse, and
little of its diffuses through the disk because of the disk’s high optical depth. In reality, within
the dust destruction front the radiation should be highly beamed, and this probably results in
more radiation striking the inner edge of the disk than our diffusion method would compute.
However, as noted in § 5.1 of the Supplementary Text, this “UV” radiation pressure problem is
not significant if the accretion rate is even close to as high as we are finding. Moreover, since
we lack the resolution to study the dust destruction front in any event, our omission of radiation
beaming there does not worsen the situation.

7 What Fraction of Mass is Processed by Radiative Rayleigh-
Taylor Instability?

Once radiation bubbles and the associated Rayleigh-Taylor instability forms, gas can reach the
accretion disk and thence the stars in three ways. First, gas can fall into the equatorial plane and
then strike the outer rim of the disk before it encounters the radiative shock. Second, it can strike
the shock, then slide along the outer wall of the radiative bubble until it reaches the disk. Third,
it can strike the shock, penetrate into the bubble interior as part of a Rayleigh-Taylor finger,
and then reach the disk. The distinction between these channels is somewhat fuzzy, but since
only the third channel represents true Rayleigh-Taylor instability, assessing the importance of
Rayleigh-Taylor instability requires that we roughly estimate their relative contributions.

To do so we compute the mass flux across three surfaces. First, we draw a spherical shell
of radius r1 centered on the stars’ center of mass that surrounds the radiative shock as closely
as possible. We estimate the angle αe around the equatorial plane over which incoming gas can
strike the disk directly rather than passing through the radiative shock. We refer to the region
within angle αe of the equatorial plane as the equatorial region, and the region outside this is
the polar region (Fig. S5). We compute the inward mass flux through the equatorial region via

Ṁeq = −2πr2
1 sinαe

∑
ρvr∆V∑

∆V
, (18)

where vr is the radial velocity, ∆V is the cell volume, and the sums run over all cells within
an angle α < αe of the equatorial plane and whose radii are within 2.5% of r1, and which are
not covered by cells on a finer AMR level. (This last restriction is to avoid double-counting the
same volume that is represented on multiple AMR levels.) We compute the mass flux through
the polar region Ṁpo in an analogous fashion, by summing over cells with α > αe. The ratio
Ṁeq/(Ṁeq + Ṁpo) gives the fractional contribution of gas that strikes the disk directly, without
encountering the shock.

Second, we draw a shell of radius r2, again centered at the stars’ center of mass, chosen to
be as large as possible subject to the constraint that the shell be entirely contained inside the
bubble interior, and exclude the points where the bubble walls connect to the disk. Within the
interior of this sphere we construct a pair of conical surfaces, which make angles of 45◦ relative
to the equatorial plane and meet at the sphere’s center (Fig. S5). The cones represent a rough
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estimate of the “disk surface”. We compute the mass flux through them via

Ṁds = −
√

2πr2
2

∑
ρvn∆V∑

∆V
, (19)

where vn is the component of the velocity normal to the cone surface (which is simply the neg-
ative θ component of the velocity for the upper cone, and the positive θ component for the lower
cone), and the sum runs over all cells at positions (x, y, z) whose angles θ = tan−1(z/

√
x2 + y2)

relative to the polar axis are within 20% of 45◦. We also exclude cells at radii r =
√
x2 + y2 + z2 <

100 AU from the sum, since our resolution on such small scales is poor. The ratio Ṁds/Ṁpo

tells us what fraction of the mass that strikes the radiative shock reaches the disk surface via
Rayleigh-Taylor fingers inside the bubble, rather than through the bubble walls. (Strictly speak-
ing this assumes that the mass flux is constant, since we are computing Ṁds at a smaller radius
than Ṁpo and Ṁeq, but since the accretion rate on large scales varies slowly compared to the
time required to travel from r1 to r2, this effect is small.)

There are two important points to note about this definition of the flux through the disk
surface. The first is that the 45◦ opening angle we assume for the disk surface is much larger
than the opening angle αe ≈ 10◦ we use to distinguish the equatorial from the polar region when
discussing the outer disk. The reason is clear from Fig. S5: the inner disk is strongly flared due
to radiative effects, so its scale height is larger than that of the outer disk beyond the bubble
walls. A cone with an opening angle of ∼ 10◦ is above the disk surface outside the bubble, but
not inside it. That said, our result is not very sensitive to the choice of 45◦; varying this by∼ 10◦

has little effect on the qualitative conclusion. The second point is that Ṁds probably represents
only a lower limit on the mass accreted through the disk surface in the bubble interior. That
is because we must choose r2 so that it is smaller than the smallest radius at which the bubble
outer wall hits the disk surface. However, the bubble is not cylindrically symmetric, so there
are regions of disk surface which are well inside the radiative bubble but which are outside r2.
Our estimate for Ṁds does not include accretion onto these regions of the disk surface through
Rayleigh-Taylor instability, so it is only a lower limit.

At 51.1 kyr, the time illustrated in Fig. S5, this procedure yields mass fluxes Ṁpo = 1.5 ×
10−3 M� yr−1, Ṁeq = 5.1×10−4 M� yr−1, and Ṁds = 7.9×10−4 M� yr−1. Thus, we find that
75% of the incoming mass encounters the radiative shock rather than accreting directly onto
the disk. Of this, at least 52% reaches the disk via Rayleigh-Taylor fingers that pass through
the disk surface, rather than by traveling along the shock. This calculation uses r1 = 3900
AU, r2 = 1100 AU, and αe = 8◦ (Fig. S5). Varying these choices within reasonable limits
causes these numbers to vary by only ∼ 10%. We therefore conclude, that, at the time shown
in Fig. S5, accretion via Rayleigh-Taylor fingers is the largest single mode, accounting for 40%
of the total accretion. Accretion of gas that slides along the bubble walls is second, providing
35% of mass flux, and accretion of gas the reaches the disk without encountering the shock
is third at 25%. As noted above, since the disk surface flux we calculate is a lower limit, the
true Rayleigh-Taylor contribution is probably somewhat larger than 40%, and the bubble wall
contribution somewhat lower than 35%.

At first this large flux via Rayleigh-Taylor fingers might seem surprising, given the relatively
low density inside most of the disk surface region shown in Fig. S5. However, the appearance
is somewhat deceptive. First, the velocity of gas passing through the disk surface is typically
significantly larger than the velocity of gas passing through the polar and equatorial regions
further out, and this partly compensates for the lower density. Second, most of the accretion
through the disk surface arrives via thin filaments, and because these are wrapped around the
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polar axis by rotation, only small segments of a few filaments are visible in any given slice. For
example, in the upper panel of Fig. S5 one can see a filament of dense gas passing through the
upper left cross-hatched region. However, the volume rendering in Fig. S3 makes it clear that
there are many such filaments, each contributing to the mass flux onto the disk surface. Any
single slice misses most of these.

Performing the same exercise at other times after the onset of Rayleigh-Taylor instability
(between the times shown in Fig. 1D–1E) yields results that are either similar or show an even
larger fraction of the mass reaching the disk via Rayleigh-Taylor instability. In contrast, the
results are quite different before the noticeable onset of Rayleigh-Taylor instability. For example
at 34.0 kyr, the time shown in Fig. 1C, we find Ṁpo = 1.6× 10−3 M� yr−1, Ṁeq = 4.5× 10−4

M� yr−1, and Ṁds = 1.9× 10−4 M� yr−1. Thus only∼ 10% of the mass reaching the radiative
shock accretes through the disk surface inside the bubble, while the remaining ∼ 90% reaches
it through the bubble walls. This changes qualitatively between 34.0 and 41.7 kyr, when visible
Rayleigh-Taylor fingers appear.
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Supp. Fig. 1. Five snapshots of the simulation domain at the same times as those shown in Fig.
1 of the main text: (A) 17.5 kyr, (B) 25.0 kyr, (C) 34.0 kyr, (D) 41.7 kyr, (E) 55.9 kyr. In each
panel the four frames all show slices of density through the simulation domain in a plane along
the rotation axis. The leftmost frame shows a (0.3 pc)2 region, and each step to the right reduces
the size of the region shown by a factor of 4 in linear dimension, so that the rightmost box shows
a region (966 AU)2 in size. The color scale is logarithmic, running from 10−19− 10−12 g cm−3.
Plus signs mark projected star positions. For clarity we only show stars in the rightmost two
frames.
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Supp. Fig. 2. Snapshots of the simulation domain at the same times as Fig. 1 and Fig. S1. In
each panel the four frames all show the column density projected onto a plane orthogonal to the
rotation axis. The leftmost frame shows a (0.3 pc)2 region, and each step to the right reduces the
size of the region shown by a factor of 4 in linear dimension, so that the rightmost box shows a
region (966 AU)2 in size. The color scale is logarithmic, running from 10−1−103 g cm−2. Plus
signs mark projected star positions. For clarity we only show stars in the rightmost two frames.
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Supp. Fig. 3. Volume renderings of the density field in a (4000 AU)3 region of the simulation
at 55.0 kyr of evolution. The color scale is logarithmic and runs from 10−16.5 − 10−14 g cm−3.
The left panel shows a polar view, and the right panel shows an equatorial view. The Rayleigh-
Taylor fingers feeding the equatorial disk are clearly visible.
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Supp. Fig. 4. Three snapshots of the simulation domain at the same times as those shown in
Fig. 1C – 1E in the main text. In this figure, the times are (A) 34.0 kyr, (B) 41.7 kyr, and
(C) 55.9 kyr. Each panel shows a slice of density in the same plane and using the same color
scale as in Fig. S1. The box shown is (5000 AU)2 in size. The overlayed rectangles show the
locations of boundaries of our AMR grids where they cross the plane shown by the snapshots.
Thick lines show level 6, the finest resolution level. Thin unbroken lines show level 5, and thin
dashed lines show level 4.
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Supp. Fig. 5. Snapshots of density in two different slices through the simulation domain at 51.1
kyr of evolution. Color indicates density from 10−18 − 10−14 g cm−3 on a logarithmic scale.
Plus signs show projected stellar positions. The upper and lower panels show two orthogonal
planes that intersect at the rotation axis; the region shown in both cases is (9000 AU)2. The
three hatched regions show the surfaces through which we compute the polar mass flux Ṁpo

(vertical hatch), equatorial mass flux Ṁeq (horizontal hatch), and disk surface mass flux Ṁds

(cross hatch), and the dashed lines show an angle αe above and below the equatorial plane. The
regions shown correspond to r1 = 3900 AU, r2 = 1100 AU, and αe = 8◦.
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Supp. Movie. 1. An animation of the full simulation. The left column column shows column
density projected onto the equatorial plane, and the right column shows volume density in a
slice perpendicular to the equatorial plane. The top two frames show a (0.25 pc)2 region, and
the bottom two show a (4000 AU)2 region. The color scales are logarithmic. Starting from the
upper left image and proceeding clockwise, the ranges used for the color scale are 10−2 − 102

g cm−2, 10−19 − 10−15 g cm−3, 10−19 − 10−13 g cm−3, and 100 − 102.5 g cm−2.
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