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ABSTRACT

In this study, we investigate the formation and properties of prestellar and protostellar cores using hydrodynamic
self-gravitating adaptive mesh refinement simulations, comparing the cases where turbulence is continually driven
and where it is allowed to decay. We model observations of these cores in the C18O(2 → 1), NH3(1, 1), and
N2H+(1 → 0) lines, and from the simulated observations we measure the line widths of individual cores, the line
widths of the surrounding gas, and the motions of the cores relative to one another. Some of these distributions
are significantly different in the driven and decaying runs, making them potential diagnostics for determining
whether the turbulence in observed star-forming clouds is driven or decaying. Comparing our simulations with
observed cores in the Perseus and ρ Ophiuchus clouds shows reasonably good agreement between the observed and
simulated core-to-core velocity dispersions for both the driven and decaying cases. However, we find that the line
widths through protostellar cores in both simulations are too large compared to the observations. The disagreement
is noticeably worse for the decaying simulation, in which cores show highly supersonic infall signatures in their
centers that decrease toward their edges, a pattern not seen in the observed regions. This result gives some
support to the use of driven turbulence for modeling regions of star formation, but reaching a firm conclusion
on the relative merits of driven or decaying turbulence will require more complete data on a larger sample of
clouds as well as simulations that include magnetic fields, outflows, and thermal feedback from the protostars.
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1. INTRODUCTION

The origin of the stellar initial mass function (IMF) is one
of the most important problems in astrophysics. Since the
discovery of supersonic line widths in star-forming regions,
understanding turbulence has been crucial for developing the
theoretical framework for molecular cloud (MC) evolution, core
formation, and the IMF. Ongoing debate in this field concerns
whether the formation and destruction of MCs is dynamic and
non-equilibrium (e.g. Elmegreen 2000; Hartmann 2001; Dib
et al. 2007) or slow and quasi-equilibrium (Shu et al. 1987;
McKee 1999; Krumholz et al. 2006a; Krumholz & Tan 2007;
Nakamura & Li 2007). The former mode would be character-
ized by transient turbulence, dissipating quickly on timescales
comparable to the cloud lifetime so that giant molecular clouds
(GMCs) are destroyed within ∼ one dynamical time. The lat-
ter case corresponds to regenerated turbulence, perhaps injected
by the formation of the cloud, protostellar outflows, H ii re-
gions, external cloud shearing or supernova blastwaves, that is
sufficiently strong to inhibit global gravitational collapse over
many dynamical times. As shown by Offner et al. (2008) and
Krumholz et al. (2005), the presence or absence of turbulent
feedback directly relates to the physical mechanism of star for-
mation and determines whether stars form by the formation
and collapse of discrete protostellar cores (Padoan & Nordlund
2002; McKee & Tan 2002) or competitive accretion (Bonnell
et al. 2001). In the turbulent core model, the cloud remains near
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virial equilibrium on large scales and collapse occurs only lo-
cally in cores that are created and then mass-limited by the initial
turbulent compressions. In the competitive accretion model, tur-
bulence generates the initial overdensities, but without turbulent
support the cores are wandering accreting seeds, competing for
gas from a reservoir, limited only by the size of the MC as a
whole.

There have been a number of recent observational papers
investigating starless and protostellar core velocity disper-
sions, envelopes, and relative motions (André et al. 2007; Kirk
et al. 2007; Muench et al. 2007; Rosolowsky et al. 2007; Walsh
et al. 2004), quantities that provide important clues about the
core lifetimes and evolution, and about the turbulent state of
the natal MC. All of these results, which include observations
of a range of star-forming regions in different tracers, indi-
cate that observed low-mass cores have approximately sonic
central velocity dispersions, at most transonic velocity disper-
sions in their surrounding envelopes, and relative motions that
are slower than the virial velocity of the parent environment.
Such results potentially contradict core properties measured in
simulations in collapsing clusters exhibiting competitive accre-
tion (Ayliffe et al. 2007; Klessen et al. 2005; Tilley & Pudritz
2004).

In this paper we analyze the simulations described in Offner
et al. (2008), which follow the evolution of an isothermal turbu-
lent MC with and without continuous injection of energy to drive
turbulent motions. These simulations use the adaptive mesh re-
finement (AMR) code Orion (Truelove et al. 1998, Klein 1999).
The goal of our present work is to explore differences between
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cores forming in these two environments and to provide pre-
dictions of their properties for observational comparison. For
this purpose, we simulate observations of our cores using dust
continuum and molecular lines, with realistic telescope resolu-
tions. Unlike earlier comparisons of isothermal self-gravitating
simulations with observations (Ayliffe et al. 2007; Klessen
et al. 2005; Ballesteros-Paredes et al. 2003), we perform more
detailed radiative post-processing in order to simulate more ac-
curately synthetic observations of our data. We also compare
these observational measures for both driven and decaying tur-
bulence, which has not previously been investigated. Keto &
Field (2005) obtain post-processed simulated line profiles of
several common tracers modeled with a non-LTE radiative trans-
fer code and find good agreement with observed isolated cores.
However, their initial conditions are simple 1D non-turbulent
hydrostatic models and they halt the calculations when the cen-
tral cores velocity exceeds the sound speed. Further, we re-
port core-to-core centroid velocity dispersions of the simulated
cores, which has not previously been studied in turbulent sim-
ulations. Work by Padoan et al. (2001) comparing observed
large-scale gas motions with 1283 fixed-grid isothermal, non-
self-gravitating, MHD simulations found good agreement with
the gas centroid velocity dispersion–column density relation.
In our higher-resolution simulations, we instead focus on the
smaller physical scales of self-gravitating cores and their ob-
served properties, and we neglect the effects of MHD.

In Section 2, we describe our simulations in detail. Section 3
contains the methods of data analysis we use to simulate
observations of our AMR data. In Section 4, we present our
results on the central core dispersions, relative motions, and
dispersions of the surrounding core envelopes. In Section 5,
we present quantitative comparisons with observational data.
Finally, Section 6 contains our conclusions.

2. SIMULATION PARAMETERS

As described in Offner et al. (2008), our two simulations are
periodic boxes containing an isothermal, non-magnetized gas
that is initially not self-gravitating. We first drive turbulent mo-
tions in the gas for two box-crossing times, until the turbulence
reaches statistical equilibrium, i.e. the power spectrum and prob-
ability density function shapes are constant in time. We adopt a
1D Mach number of 4.9 (3D Mach number of 8.5). At the time
gravity is turned on, which we label t = 0, our two simulations
are identical. In one simulation, energy injection is halted and
the turbulence gradually decays, while in the other turbulent
driving is maintained so that the cloud remains in approximate
virial equilibrium. The initial virial parameter is defined by

5σ 2
1DR

GM
= αvir � 1.67, (1)

where σ1D is the velocity dispersion, M is the cloud mass,
and R = L/2 is the cloud radius. We use periodic boundary
conditions and four levels of refinement, which corresponds to
an effective 20483 base grid for an equal-resolution, fixed-grid
calculation.

Isothermal self-gravitating gas is scale free, so we give the key
cloud properties as a function of fiducial values for the number
density of hydrogen nuclei, n̄H, and gas temperature, T . It is then
easy to scale the simulation results to the astrophysical region
of interest. For the adopted values of the virial parameter and
Mach number, the box length, mass, and 1D velocity dispersion

are given by
L = 2.9T1

1/2n̄
−1/2
H,3 pc, (2)

M = 865T1
3/2n̄

−1/2
H,3 M�, (3)

σ1D = 0.9T1
1/2 km s−1, (4)

tff = 1.37n̄
−1/2
H,3 Myr, (5)

where we have also listed the free-fall time for the gas in the
box for completeness.

These equations are normalized to a temperature T1 =
T/10 K and average hydrogen nuclei number density n̄H,3 =
n̄H/(1 × 103 cm−3). For the remainder of this paper, all results
will be given assuming the fiducial scaling values of n̄H = 1.1×
103 cm−3 and T = 10 K (Perseus) or n̄H = 2.0 × 104 cm−3

and T = 20 K (ρ Ophiuchus; see Section 5) and assuming a
mean particle mass of µ = 2.33mH. These conditions place ρ
Ophiuchus slightly above the observed line width–size relation
(Solomon et al. 1987; Heyer & Brunt 2004):

σ1D = 0.5

(
L

1.0pc

)0.5

km s−1, (6)

where L is the cloud length (we assume that Perseus lies on this
relation; see Section 5).

Note that this relation differs somewhat from the relation
given by Heyer & Brunt (2004) since the length scale determined
from a principal component analysis is smaller than the actual
size of the region being sampled (see McKee & Ostriker 2007).
These parameters may be adjusted to different conditions using
Equations (2)–(5). However, once we simulate an observation of
the data for a given tracer, the scaling is fixed. Using these units,
the minimum cell size is ∼90 AU and 280 AU for ρ Ophiuchus
and Perseus, respectively.

In the simulations, we introduce sink particles in collapsing
regions that violate the Jeans condition (Truelove et al. 1997) at
the finest AMR level (Krumholz et al. 2004), where we adopt a
Jeans number of J = 0.25. Cores that contain sink particles are
analogous to observed protostellar cores, which contain a central
source, while cores without sink particles can be considered
prestellar. This distinction is an important one in some cases and
we discuss some differences in the two simulations in Section 4.
Note that due to our resolution and neglect of protostellar
outflows, the sink particles represent a mass upper limit for
any potentially forming protostar.

3. ANALYSIS

Since our goal in this paper is to contrast the simulations and
compare them with observations, we must attempt to replicate
an observer’s view of our simulation. Observations of core
kinematics, such as those of André et al. (2007, henceforth
A07), Kirk et al. (2007, henceforth K07), and Rosolowsky
et al. (2007, henceforth R07), generally trace the gas mass
using dust continuum data and obtain velocity information by
observing the same region in one or more molecular tracers. We
process our simulations using a rough approximation of these
techniques as follows. First, we select a fiducial cloud distance
of either 125 pc, corresponding to the distance to the Ophiuchus
star-forming MC, or 260 pc for comparisons with the Perseus
MC. Second, we select an appropriate telescope resolution of
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26′′ or 31′′ FWHM, corresponding to 0.02 pc and 0.04 pc at
our adopted distances, and approximate the telescope beam as
Gaussian in shape. We perform all line fits assuming 0.047
km s−1 velocity resolution per channel. Increasing the velocity
resolution further has little effect on the line fits. For simplicity,
we adopt the same resolution for observations in dust continuum
and in all molecular tracers. Our fiducial resolution is typical of
observations of core kinematics (e.g., A07, K07, R07).

For the dust continuum observations, since our gas and
dust are isothermal and the simulation domain is everywhere
optically thin at typical observing wavelengths of ∼1 mm,
the dust intensity emerging from a given pixel is simply
proportional to the column density in that pixel. We therefore
define a dust continuum map by computing the column density
and convolving the resulting map with the beam. To avoid
introducing unnecessary and artificial complications, we neglect
observational uncertainties in the conversion from an observed
dust continuum intensity to a column density and assume that
the column density can be reconstructed accurately except for
beam smearing effects. We identify cores by finding the local
maxima directly from the column density data. In the analysis,
we only consider local maxima with peak columns greater than
0.1 of the global maximum column of the smeared data. This
cutoff corresponds to ∼ twice the mean smeared column density.

To model molecular line observations, we choose three
representative lines, the J = 2 → 1 transition of C18O,
J = 1 → 0 transition of N2H+, and the NH3(1, 1) transition,
which have critical densities of 4.7×103 cm−3, 6.2×104 cm−3,
and 1.9 × 103 cm−3, respectively. (For this calculation and all
the others presented in this paper, we use molecular data taken
from the Leiden Atomic and Molecular Database6, Schöier et al.
2005.) These lines are often used in observing core kinematics
because they span a range of densities and, with the exception of
C18O along the densest sightlines, are generally optically thin in
low-mass star-forming regions. We discuss the issue of optical
depths in more detail in Section 5.2.

We generate a position–position–velocity (PPV) data cube
from our simulations in each of these lines using a two-step
procedure, which combines elements of Krumholz et al. (2007a,
2007b). The first step is to compute the emissivity as a function
of density. Since, as we shall see, the density dependence
of the molecular emission has important consequences, we
cannot assume that these species are in local thermodynamic
equilibrium (LTE). Instead, we assume that the gas is in
statistical equilibrium, that it is optically thin, and that radiative
pumping by line photons is negligible. Note that the advection
time of the gas is large compared to the molecular collisional
and radiative timescales, which are on the order of a few years
for the mean density of our simulations. Thus, the gas reaches
statistical equilibrium essentially instantaneously relative to
the gas motion. Collisional excitation dominates over radiative
excitation or de-excitation by line photons along lines of sight
where the density is above the transition critical density. Since
we are particularly interested in the high-density regions of the
cores, we need not consider radiative pumping in our analysis.
However, we do include radiative excitation and de-excitation
due to the cosmic microwave background (CMB), since this
can be significant for lines at very low frequencies such as
NH3(1, 1).

For a molecule like C18O with no hyperfine structure, under
these approximations the fraction fi of molecules of a given

6 See http://www.strw.leidenuniv.nl/∼moldata.

species in bound state i is given by the equations of statistical
equilibrium:∑

j

(nH2qji + Aji + BjiICMB)fj

=
[∑

k

(nH2qik + Aik + BikICMB)

]
fi (7)

∑
i

fi = 1, (8)

where nH2 is the molecular hydrogen number density, qij is the
collision rate for transitions from state i to state j , A and B
are the Einstein coefficients for this transition, and ICMB is the
intensity of the CMB radiation field (which is simply the Planck
function for a 2.73 K blackbody) evaluated at the transition
frequency. In this expression we adopt the convention that the
summations run over all bound states, the spontaneous emission
coefficient Aij = 0 for i � j , that Bij is the stimulated emission
coefficient for i > j , the absorption coefficient for i < j , and
is zero for i = j , and that qij = 0 for i = j . For molecules with
hyperfine structure, we show in the Appendix that with some
additional approximations Equation (7) continues to hold pro-
vided that the rate coefficients qij , Aij , and Bij are understood
as statistically-weighted sums over all the hyperfine sublevels
of states i and j .

For molecules without hyperfine structure, the net emission
minus absorption of the background CMB produced by a parcel
of gas along the line of sight is then given by

jij − χij ICMB = hνij

4π
XnH[fi(Aij + Bij ICMB) − fjBjiICMB],

(9)
where χij is the extinction of the CMB due to resonant
absorption, νij is the transition frequency, X is the abundance of
the species in question relative to hydrogen nuclei, and nH is the
number density of hydrogen nuclei. Physically, this quantity
represents the net radiation intensity added by transitioning
molecules over and above what one would see at that frequency
due to the CMB alone, under the assumption that the line
is sufficiently thin that the CMB dominates the intensity at
that frequency. It is the intensity one will observe in a line
after subtracting off the continuum. In the case of a molecule
with hyperfine structure, under the standard assumption that
the hyperfine sublevels are populated in proportion to their
statistical weight (see the Appendix), the intensity produced
by a single transition from level i, hyperfine sublevel α to level
j , hyperfine sublevel β is given by

jiαjβ − χiαjβICMB = hνiαjβ

4π
XnH

[
fi

giα

gi

(Aiαjβ + BiαjβICMB)

− gjβ

gj

fjBjβiαICMB

]
, (10)

where giα is the statistical weight of hyperfine sublevel α,
gi = ∑

α gi is the summed statistical weight of all the hy-
perfine sublevels of state i, and the combination of subscripts
iαjβ indicates the frequency or radiative coefficient for tran-
sitions from level i, hyperfine sublevel α to level j , hyperfine
sublevel β. If one neglects the very small differences in fre-
quency between the different hyperfine transitions (i.e. one takes
νiαjβ ≈ νij independent of α and β) and sums Equation (10)
over hyperfine substates α and β, then it immediately reduces to

http://www.strw.leidenuniv.nl/~moldata
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Equation (9) provided that the rate coefficients are understood to
be statistically-weighted sums of the individual hyperfine transi-
tion coefficients (per Equations (A6)–(A8)). Thus, Equation (9)
gives the total intensity summed over all hyperfine components.
In either the presence or absence of hyperfine splitting, to com-
pute the intensity from our simulations, we solve the system
of Equations (7) and (8) for our fiducial temperature T for a
wide range of molecular densities nH2 and tabulate the quanti-
ties (jij − χij ICMB)/X or (jiαjβ − χiαjβICMB)/X as a function
of nH2 .

The second step to generate the PPV cube from the simulation
data is to compute the emergent intensity in each pixel in each
velocity channel using our tabulated net emission function.
The specific emissivity minus absorption of the gas at a
frequency ν is (jij −χij ICMB)φ(ν) or (jiαjβ −χiαjβICMB)φ(ν), in
the absence or presence of hyperfine splitting, where φ(ν) is the
line-shape function. To determine φ(ν), we assume that the
molecules in each cell have a Maxwellian velocity distribution
with dispersion σv = √

kBT /m, where m is the mass of the
emitting molecule. For this velocity distribution, the line-shape
function for a fluid with bulk velocity v is

φ(vobs; v) = 1√
2πσ 2

ν

exp

[
− (v − vobs)2

2σ 2
ν

]
, (11)

where an observation at velocity vobs is understood to mean
an observation at frequency ν = (1 − vobs/c)νij and where
σν = (σv/c)νij . For optically thin emission with no hyperfine
structure at an observed velocity vobs, a cell of length ∆x
contributes a specific intensity above the continuum of

Iν = (jij − χij ICMB)∆xφ(vobs; v), (12)

where jij and χij are functions of the cell density nH and
φ(vobs; v) is a function of the cell velocity v. The intensity
averaged over a velocity channel that covers velocities in the
range v0 � vobs � v1 is

〈Iν〉chan = (jij − χij ICMB)
c∆x

4(v1 − v0)νij

×
[

erf

(
v1 − v√

2σv

)
− erf

(
v0 − v√

2σv

)]
. (13)

We compute the channel-averaged specific intensity along each
line of sight by summing 〈Iν〉chan over all the cells, each with
its own velocity v, along the line of sight. The final step in
constructing our PPV data cube is that we take the summed
intensity computed in this way and smear each velocity channel
using our Gaussian beam.

In the case of molecules with hyperfine structure, the equa-
tions are identical except that the subscripts ij are replaced by
iαjβ, and we note that, since the hyperfine components are
closely spaced in frequency, multiple components may con-
tribute significant intensity at the same frequency. However,
in the observations to which we wish to compare our simu-
lations, kinematic information is generally obtained by fitting
one or more well-separated individual hyperfine components
(e.g., A07, K07, although see R07, who use a more complex
procedure). Thus, in practice it is generally not necessary for
our purposes to consider more than a single hyperfine compo-
nent. For optically thin emission in hyperfine components with
no significant line overlap, this means that the procedures for
molecules with and without hyperfine splitting are the same.

Our procedure determines the emission only up to the
unknown abundance X, which in reality will depend on the
emitting species and on the density and temperature, and
probably also the thermal and density history, of a given fluid
element. For example, observations show that in the densest
cold regions CO and its isotopomers will be depleted, while
the abundance of N2H+ stays roughly constant (Tafalla et al.
2004a, 2004b). In order to approximate this effect, we adopt
a simple depletion model for each of the chemical species
that we simulate. For C18O, we assume an abundance of
X = 10−7 molecules per H2 molecule with depletion occurring
at nH2 = 5 × 104 cm−3 (Tafalla et al. 2004a). For N2H+, we
adopt X = 10−10 with depletion at nH2 = 5 × 107 cm−3 (K07;
Tafalla et al. 2002). Although depletion in nitrogenous species is
not generally observed, it is assumed that N2 begins to disappear
at number densities nH2 > 106 cm−3 (Walmsley et al. 2003).
For the NH3 measurements we compare to in Perseus, we use
X = 10−8 (E. W. Rosolowsky 2007, private communication)
with assumed depletion at the same density as N2H+.

We use these procedures to produce dust continuum/column
density maps and PPV cubes for each of our three molecular
lines. To increase our statistics, we generate data sets for each
cardinal direction at t = tff , and we treat the three orientations
as independent observations. Figure 1 shows a dust continuum
map in one particular orientation.

4. RESULTS

In the decaying simulation, at 1tff we identify a total of
109 cores, 54 of which can be considered protostellar due to
the presence of a sink particle within 0.1 pc of the core center.
In the driven simulation, we find 214 cores, 92 of which are
protostellar. A large central point mass can have a significant
effect on the core gas motion, so we separate out the “starless”
cores for comparison. The relative number of starless cores
to protostellar cores varies from star-forming cloud to cloud
depending upon the advancement of star formation in the region.
The ratios of prestellar to protostellar cores that we find in our
simulations are similar to the ratios observed in Perseus and
Ophiuchus (Young et al. 2006; Enoch et al. 2006). In these
simulations, the larger number of cores in the driven run is
significant because the ongoing turbulence creates more new
condensations, which also collapse more slowly.

For the sake of clarity, we will refer to the centroid velocities
of the cores as the “first moments” and the velocity dispersions
through the core centers as the “second moments.” Thus in the
following sections we will describe the measured distributions
of the first and second moments and report the dispersion of
the first moments (i.e., the core-to-core velocity dispersion).
We define transonic velocities as those falling in the range
cs � σ � 2cs, while supersonic dispersions have σ > 2cs.

4.1. Central Velocity Dispersions

In this section, we investigate the distribution of second
moments (central non-thermal velocity dispersions through the
core centers) in N2H+, a measure that is useful for determining
the level of turbulence and infall motion in the core. The total
dispersion along the line of sight is given by

σLOS =
√

σ 2
NT + σ 2

T , (14)

where σT = √
kBT/m and σNT is the non-thermal component

that we discuss here.
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Figure 1. Images show the decaying (left) and driven (right) log column densities (g cm−2) “observed” at a distance of 260 pc with beam size of 31′′.

Table 1
Central Velocity Dispersion Median and Mean for the Two Environments and Core Types at 1.0tff in N2H+ Normalized to the Conditions in Perseus

Decaying Driven

All Prestellar Protostellar All Prestellar Protostellar

Ncores 109 55 54 214 122 92
Median σNT/cs 1.0 0.6 2.9 1.1 0.9 2.1
Mean σNT/cs 2.2 0.6 3.8 1.8 1.2 2.7

We compute σLOS in the simulations by fitting a Gaussian
to the spectrum through the core center and then deriving the
second moment, σNT, from Equation (14). Table 1 gives the
median and means of σNT/cs, and we plot the total distribution
in Figure 2 and the prestellar and protostellar distributions in
Figures 3 and 4, respectively. The core populations appear fairly
similar in the two simulations, although there is evidence of the
increased turbulence in the driven simulation. Since the cores
are created by turbulent compressions in both environments, at
early times they should have similar second moments. However,
at late times, as the cores collapse and form protostars the
distributions are more dissimilar. Indeed, from Figure 4 we can
see that the protostellar distributions are much broader and less
peaked than the prestellar ones. The decaying protostellar core
population has almost twice as many cores in the tail (σNT > 4cs)
of the distribution, while the protostellar-driven population is
dominated by cores with σNT < 4cs.

To better characterize the differences between the two sim-
ulations, we perform a Kolmogorov–Smirnov (K-S) test com-
paring each of the core distributions. The K-S statistic gives
1 minus the confidence level at which the null hypothesis that
the two samples were drawn from the same underlying distri-
bution can be ruled out; e.g., a K-S statistic of 0.01 means that
we can reject the hypothesis that the two samples were drawn
from the same distribution at the 99% confidence level. We find

that the net driven and decaying velocity dispersion populations
have a K-S statistic of 18%, meaning that we can rule out the
hypothesis that they were drawn from the same population only
with 82% confidence. Individually, there is large disagreement
in both the protostellar populations (4 × 10−2%) and prestellar
core populations (2%).

The difference between the protostellar populations in the two
simulations is associated with the mass differences between the
sink particles: the decaying simulation has a median sink mass
that is approximately twice that of the driven simulation and
correspondingly larger accretion rates that are associated with
higher-velocity dispersions.

4.2. Core Envelopes and Surroundings

The velocity dispersions of the gas surrounding the central
column density maxima yield information about the relative
motion between core and envelope and may also reveal the
presence of shocks or strong infall that could limit core bound-
aries. Typically, observers only find small differences in veloc-
ity between the core and the surrounding gas envelope, which
rules out dynamical pictures of core accretion in which pro-
tostars may strongly gravitationally interact with their neigh-
bors (K07). In addition, although shocks are postulated to be
the origin of the original density compression, close observa-
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Figure 2. Fraction f of all cores binned as a function of second moments (non-thermal velocity dispersion), σNT, for a simulated observation of Perseus using
N2H+. The distribution on the left shows the cores in the decaying turbulence environment, while the distribution on the right gives the cores in the driven turbulence
environment.

Figure 3. Fraction f of starless cores binned as a function of second moments (non-thermal velocity dispersion), σNT, for a simulated observation of Perseus using
N2H+. The distribution on the left shows those cores in the decaying turbulence environment, while the distribution on the right gives the cores in the driven turbulence
environment.

tions have not revealed strong confining shocks surrounding the
cores. Generally, our simulations produce prestellar cores that
agree with the expectations from observations. However, the de-
caying protostellar cores exhibit supersonic internal velocities
that are not observed in the star-forming regions we compare
with.

In order to compare the two environments observed with
three common tracers, C18O, N2H+, and NH3, we calculate the
velocity dispersion through each pixel along the line of sight.
Figures 5 and 6 show the velocity dispersion of each pixel in the
vicinity of a single prestellar and protostellar core for decaying
turbulence, which represent typical examples of each type from
our sample, overlaid with contours of integrated intensity. The

large number of cores in our sample makes comparing the
populations by eye on an individual basis difficult. In order to
consolidate the data sets for each environment, we bin the pixels
by radial distance from the core center. We define 20 logarithmic
bins that range from 0.005 to 0.1 pc in projected distance from
the core center and then average together the velocity dispersions
of all pixels that fall into a given bin, including all prestellar or
protostellar cores in each case. The result is a single “averaged”
core for each tracer and environment. We have plotted this
averaged velocity dispersion as a function of distance from the
core center in Figures 7 and 8 for starless and protostellar cores,
respectively. There are several interesting points that may be
noted from these plots.
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Figure 4. Fraction f of protostellar cores binned as a function of second moments (non-thermal velocity dispersion), σNT, for a simulated observation of Perseus
using N2H+. The distribution on the left shows the cores in the decaying turbulence environment, while the distribution on the right gives the cores in the driven
turbulence environment.

First, gas sampled by low density tracers (e.g. C18O) around
prestellar cores has a higher-velocity dispersion than that sam-
pled by higher density tracers. This is reasonable given that the
lower-density gas is further from the core center and generally
more turbulent. Before collapse ensues, the cores have typi-
cally not developed strong high density peaks as is evident in
Figure 5. This difference between lower- and higher-density
tracers has been frequently exploited observationally to distin-
guish between the dense core and surrounding envelope (e.g.
K07; Walsh et al. 2004).

Second, Figure 7 shows that the starless cores forming in
the driven simulation tend to have a higher average velocity
dispersion than those in the decaying simulation. This is mainly
apparent in the tracer C18O, which traces the more turbulent
core envelope.

Most importantly, the average prestellar velocity dispersion
for both cases and for all tracers are approximately sonic. Even
the lowest-density tracer, C18O, remains, on average, below 2cs
for the range of column densities in the core neighborhood.

Finally, we note that there is only a small increase in the
dispersion with increasing radius. This is consistent with ob-
servations by Barranco & Goodman (1998) and Goodman
et al. (1998) who find that the velocity dispersion of the cores
on the scale of ∼0.1 pc is approximately constant, with a
small increase near the edge of this region of “coherence.”
The magnitude of the dispersion suggests that the starless
cores forming in a turbulent medium are not strongly con-
fined by shocks in the range of densities that are traced by
observers.

In contrast, some of these conclusions do not hold for proto-
stellar cores, when strong infall occurs. As shown in Figure 8,
protostellar cores exhibit significantly higher average velocity
dispersions than the prestellar counterparts. The tracers of the
protostellar cores behave differently as well. Due to the strong
infall, which occurs in the densest gas, the higher-density trac-
ers, N2H+ and NH3, show higher-velocity dispersions than the
C18O, which indicates that the lower-density envelope remains
transonic.

There is also clearly a significant difference between the
protostellar cores in the two environments. Those cores in
the driven environment have transonic to slightly supersonic
velocity dispersions in all tracers that do not vary significantly
with distance from the core center, which is consistent with the
coherent core structure observed. This indicates that the cores
still have residual turbulent pressure support at a global freefall
time and collapse more slowly. However, the protostellar cores
in the decaying turbulence environment, lacking this support,
have shorter lifetimes and proceed more quickly to collapse and
develop much higher, supersonic, central velocity dispersions
in N2H+ and NH3 as the cloud gas infalls to the high density
regions. At large radii, however, the velocity dispersion of the
protostellar cores in the decaying environment matches the
velocity dispersion of cores in the driven environment. A similar
time-dependent trend is obtained in decaying simulations by
Ayliffe et al. (2007).

In summary, prestellar cores forming in driven turbulence
have average dispersions of �1.5cs in all tracers, and this
dispersion is either flat or slowly decreasing with increasing
radius. In contrast, cores in decaying turbulence show small
(σNT < 1.0cs), flat dispersions for prestellar cores, but large
and radially decreasing dispersions for protostellar cores. This
is most likely due to infall of unbound gas from large distances
at late times, which is a signature of competitive accretion. We
do not observe this in the driven run because the cloud gas
dispersion is too high for Bondi–Hoyle accretion to be efficient
over large distances (Krumholz et al. 2006b).

The dispersions we obtain for the cores and their surrounding
envelopes are somewhat dissimilar to those obtained by Klessen
et al. (2005) in smoothed particle hydrodynamics (SPH) sim-
ulations. As we do, Klessen et al. investigate the velocity dis-
persions of cores forming in an isothermal, large-scale driven
turbulent environment. In their study, they derive clump prop-
erties when only 5% of the mass is in cores or at ∼0.4tff , a
much earlier time than we use. However, even for prestellar
cores with driving, they frequently find strong supersonic shocks
with σLOS ∼ 3 − 5cs bounding the cores, which is thus far not



No. 1, 2008 MC CORES IN THE PRESENCE OF TURBULENCE 411

Figure 5. The upper plot gives average velocity dispersion as a function of radius for a single decaying starless core at 1tff . The images below show a simulated
observation in C18O (left) and N2H+ (right). Contours indicate integrated intensity where each contour is a 10% linear change from the peak specific intensity in that
tracer. The color scale shows velocity dispersion, σNT/cs, and the circle indicates the FWHM beam size.

(A color version of this figure is available in the online journal)

supported by observations. In lieu of a simulated observation,
they use a column density cutoff to make the dispersion esti-
mates. We find that we obtain higher-velocity dispersions cal-
culating the velocity dispersion directly as Klessen et al. do
rather than fitting the line profile in the manner of observers.
The reason for the difference is that in some cases the spectra
resemble a fairly narrow peak, which is well fit by a Gaussian,
surrounded by a much broader base around the 10% level. The
magnitude of this extra spread is reduced substantially at the
higher densities as traced by N2H+, and it is likely neglected
in the fits performed by observers due to the inherent low-level
noise in the actual spectra. Another possibility for the difference
is the difficulties of SPH in rendering shocks and instabilities,
in particular shear flow instabilities (Agertz et al. 2007) that are
likely to be present in any compressible turbulent simulation
and may seriously affect accuracy. However, the extent that this
may contribute to the high dispersions found by Klessen et al. is
unclear.

4.3. Relative Motions

Observers frequently evaluate an intensity-weighted mean
velocity, or first moment, along the line of sight through the
core center. While the second moments are indicative of infall
motions, the first moments represent the net core advection.
The dispersion of the first moments indicates how much the
cores move relative to one another. Observations find that the
dispersion of first moments is generally smaller than the velocity
dispersion of gas that is not in cores, although how much it does
so varies from region to region. For example, A07 conclude that
the first-moment dispersion is sub-virial by a factor of ∼4 in
ρ Ophiuchus. K07 find that first-moment dispersion of starless
cores in Perseus is sub-virial by a factor of ∼2, which does not
rule out virialization.

In order to get an unbiased distribution for comparison, it is
necessary to subtract out any large gradients in the sample of
first moments. Thus, for each region we fit V = V0 + ∇V · x as
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Figure 6. The upper plot gives average velocity dispersion as a function of radius for a single decaying protostellar core at 1tff . The images below show a simulated
observation in C18O (left) and N2H+ (right). Contours indicate integrated intensity where each contour is a 10% linear change from the peak specific intensity in that
tracer. The color scale shows velocity dispersion, σNT/cs, and the circle indicates the FWHM beam size.

(A color version of this figure is available in the online journal)

a function of position, x. Generally, this turns out to be a fairly
small correction, but the net effect is to decrease the dispersion
of first moments relative to the gas

We plot the distribution of first moments for all cores in
both environments in Figure 9, and we plot the distributions
for prestellar and protostellar cores separately in Figure 10.
In these, we normalize to the “measured” gas dispersion and
correct for the velocity gradient in the box. The dashed line is a
Gaussian with the same dispersion as the core distribution. For
reference, we also plot a Gaussian with the gas dispersion. Note
that in the driven simulation the dispersion inferred from virial
arguments and the time-dependent gas dispersion are the same,
because by definition we fix the total kinetic energy to maintain
virial balance. However, for the decaying simulation, the time-
dependent gas dispersion is lower than would be derived from
a virial argument using the total gas mass and cloud size.

Again, we use K-S tests to characterize similarity in the pop-
ulations, which we report in Table 2. A K-S test indicates that
driven and decaying distributions of the net first moments agree
with 56% confidence, while the prestellar and protostellar core

first moments agree with 40% and 13% confidence. This is sig-
nificant enough to imply that the early core motions are not
widely different in the two environments, with the largest dif-
ference occurring between the protostellar first moments. Com-
paring these distributions with a Gaussian dispersion at the gas
dispersion yields good agreement for the distributions of the
prestellar-driven cores (54% confidence) and protostellar decay-
ing cores (56%), but low agreement for the other distributions.
In general, low agreement may be because the first-moment
distributions, although having a similar dispersion to the gas in
some cases, are not well represented by a Gaussian distribution.

In Table 3, we list the first-moment dispersions, both corrected
and uncorrected for large linear gradients. We find that the
corrected net core dispersion for the driven and decaying cores
are both sub-virial relative to the gas dispersion. Previous
simulations have shown that the dispersion of first moments
becomes sub-virial toward higher gas densities (Padoan et al.
2000), so the result is not unexpected. One interesting difference
between the simulations is that the decaying protostellar cores
are approximately virial, while the prestellar driven cores are
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Figure 7. Plots show the averaged dispersion of the prestellar cores binned over distance from the central core, where D denotes driven and U denotes undriven
turbulence.

Figure 8. Plots show the averaged dispersion of only the protostellar cores binned over distance from the central core, where D denotes driven and U denotes undriven
turbulence.

approximately virial. The former suggests that as the cloud loses
turbulent support and tends toward global collapse, that either
the core interactions increase, or that the cores retain some
memory of their natal gas dispersion. The inertia of the cores
implies that their velocity dispersions will tend to decay more
slowly than that of the gas as a whole. This is a potentially
testable signature of the competitive accretion model (Bonnell
et al. 2001). In the latter case, the prestellar cores may still
be forming out of the shocking gas and hence may still have
similar motions. In general, the sub-virial dispersion of the cores
may imply that they are not scattering sufficiently frequently
to virialize within the formation timescale. Elmegreen (2007)
reasons that if cores form at the intersection of two colliding
shocks, then their initial dispersion should be on average less
than the gas dispersion. Overall, our results imply that the
forming cores are at least somewhat sensitive to the actual
dispersion of the natal gas.

5. OBSERVATIONAL COMPARISONS

5.1. Scaling to Observed Regions

In this section, we compare our simulated observations with
three selections of cores observed in three standard molecu-
lar tracers in two different low-mass star-forming regions, ρ
Ophiuchus (primarily L1688) and the Perseus molecular cloud.
This comparison cannot be precise for several reasons: first, the
cloud is isolated, whereas our simulation is a periodic box; sec-
ond, we are using a single simulation with given values of the
virial parameter and the Mach number to compare with clouds
that have somewhat different values of each of these parame-
ters; and, finally, our simulations are isothermal, whereas the
temperature is observed to vary in the clouds. Furthermore, the
actual cloud is magnetized, whereas our simulations are purely
hydrodynamic. A variety of possible comparison strategies are
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Figure 9. Fraction f of all cores binned as a function of first moments, Vcent, for a simulated observation using N2H+ normalized to the large-scale gas dispersion.
Vg at t = tff . The distribution on the left shows the cores in the decaying turbulence environment, while the distribution on the right gives the cores in the driven
turbulence environment. The dashed line is a Gaussian with the same dispersion as the data while the dot-dashed line is a Gaussian with the gas velocity dispersion
(Vg = 2.2cs, Vg = 4.9cs, for the decaying and driven simulations, respectively).

Figure 10. Fraction f of prestellar cores (top) and protostellar cores (bottom) binned as a function of first moments, Vcent, for a simulated observation using N2H+

normalized to the large-scale gas dispersion, Vg. The distribution on the left shows those cores in the decaying turbulence environment, while the distribution on the
right gives the cores in the driven turbulence environment.

possible. We have chosen to use the same mean density in the
box as in the cloud, and to make the simulation temperature
agree approximately with the typical temperature observed in
the cloud cores. The size and mass of the simulation box then
follow from Equations (2) and (3). With this approach, the Jeans
mass will be about the same in the simulation and in the cloud,
but the size and mass of the overall cloud will generally differ
between the two.

A07 observed 41 starless cores in ρ Ophiuchus and made
maps of 26 of them using the tracer N2H+ (J = 1 → 0), which
are clustered in a region of area 1.1 pc2. The total gas mass
in this region with extinction greater than 15 mag is estimated

to be ∼615 M� (M. L. Enoch 2007, private communication;
Enoch et al. 2007) with peak column densities of NH2 = 1–8 ×
1023 cm−2 (Motte et al. 1998). The star-forming area of ρ
Ophiuchus is roughly circular with radius R � 0.6 pc; the
mean density and column density are therefore n̄H � 2 ×
104 cm−3 and NH = 5 × 1022 cm−2. As discussed above,
we adopt this density for our simulation. To fix the tem-
perature, we first note that dust temperatures in the prestel-
lar cores range from 12–20 K (A07). On the scale of the
entire L1688 cloud, the temperatures as measured for 12CO
and 13CO lines are 29 K and 21 K, respectively (Loren
1989a; in his notation, this region is R22). We therefore adopt
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Table 2
K-S Statistics for the Driven and Decaying Core First Moments (Centroid Velocities) Corrected for Large Velocity Gradients and the Gas

D: All (%) D: Prestellar (%) D: Protostellar (%) Gas: M1D = 4.9 (%)

U: All 56 23 44 2
U: Prestellar 68 40 89 54
U: Protostellar 53 54 13 1
Gas: M1D = 4.9 14 14 56 . . .

Notes. D: driven, U: undriven.

Table 3
Dispersion of First Moments (Centroid Velocities) Normalized to the Large-Scale Gas Dispersion

All Protostellar Prestellar

D U K07 R07 D U K07 D U A07 K07

σV/σ a
g 0.89 0.97 1.62 1.50 0.73 1.04 1.31 1.00 0.90 0.75 1.81

σVcor /σ
b
g 0.80 0.82 1.02 0.98 0.66 0.92 0.98 0.89 0.73 0.46 1.03

Notes. D: driven, U: undriven, K07: Kirk et al. (2007), R07: Rosolowsky et al. (2007), A07: André et al.
(2007).
a Uncorrected for linear gradients.
b Corrected for linear gradients.

T = 20 K for the simulation. Equations (2) and (3) give L =
0.9 pc and M = 550 M� for the simulation box, comparable
to, although somewhat less than, the observed values. The total
velocity dispersion measured from the 13CO line is 1.06 km s−1

(Loren 1989b), which lies above the standard line width–size
relation (Equation (6)). The corresponding 1D Mach number is
M1D = 3.9, slightly less than the value 4.9 in the simulation.
The virial parameter of the cloud is 1.25, also slightly less than
the simulation value of 1.67.

For the Perseus MC, K07 report central velocity dispersions
and centroid velocities measured from C18O and N2H+ pointings
for 59 prestellar and 41 protostellar cores. R07, also making
pointed observations of Perseus, obtain velocity dispersions
and centroid velocities for 199 prestellar and protostellar cores
using NH3 (2,2), NH3 (1,1), and C2S (2,1). They adopt a
dust temperature of 11 K, which is slightly lower than the
assumed temperature of 15 K used by K07. In comparison to
ρ Ophiuchus, the Perseus star-forming region is much larger,
5 pc × 25 pc, resembles a long chain of clumps with typical
column densities of NH2 ∼ 3 × 1022 cm−2, and contains a
total mass of ∼18,500 M� (Kirk et al. 2006). Using the total
mass and assuming a cylindrical geometry (L = 25 pc and
R = 2.5 pc) we obtain n̄H = 1.1 × 103 cm−3 for Perseus,
which we adopt for the simulation. We assume that Perseus
is approximately in the plane of the sky; if it were randomly
oriented then the expected value of the longest side of the
cloud would be 50 pc. We take a temperature of 10 K for
Perseus, since this is characteristic of the prestellar cores (R07).
Equations (2) and (3) then imply that the simulation box has
L = 2.8 pc and M = 825 M�, which is a relatively small
piece of the total cloud. Since we are simulating only a small
part of the Perseus cloud, we estimate the velocity dispersion in
actual molecular gas from the average line width–size relation
(Equation (6) for L = 5 pc), which gives σ = 1.1 km s−1 and
M1D = 5.9. In comparison, our simulation box scaled to the
Perseus average number density is less turbulent and only half
the length of the shorter dimension. This difference in Mach
number and cloud side yields a virial parameter for Perseus
of α � 1, which is about 60% of the value of our simulation
box.

Table 4
Total Optical Depth τ Through Core Centers for Each Normalization and

Simulated Racer

Perseus ρ Ophiuchusb

τtot
a Median Min Max Median Min Max

C18O 0.51 0.08 2.46 0.35 0.14 1.05
N2H+ 0.71 0.07 8.91 7.27 1.72 29.44
NH3 8.37 0.10 63.49 46.59 10.61 228.73

Notes.
a τtot is the sum of the optical depths through line center
for each hyperfine transition. For N2H+ and NH3 with
7 and 18 hyperfine transitions, respectively, the optical
depth is significantly reduced and generally optically thin
for individual transitions.
b Optical depths are reported for the distribution of
starless cores only.

5.2. Optical Depths

In our analysis we make the assumption that the line transi-
tions are optically thin. This approximation is observationally
validated for both the N2H+ and NH3 transitions. For example,
according to K07 the total optical depth τtot ∼ 0.1–13, where
τtot is the sum of the optical depths for each hyperfine transi-
tion. Thus, the average optical depth for a given N2H+ hyperfine
line is τ̄ = τtot/7 ∼ 0.01–2, so that the majority of the lines
are at least marginally optically thin. In particular, the isolated
101–012 hyperfine component used for velocity fitting has an
optical depth of τtot/9 and is therefore optically thin in all but the
very densest cores. A07 report similar N2H+ total optical depths
of τtot ∼ 0.1–30 for ρ Ophiuchus. R07 find τtot ∼ 0.4–15 for
NH3. The NH3 (1,1) complex has 18 hyperfine components so
that most of the lines are at least marginally optically thin. For
comparison, we report the total optical depth in our simulations
for all three tracers in Table 4. We derive the optical depth for
a given line by solving for the level populations as described in
Section 3. Once these are known, the opacity in each cell for
photons emitted in the transition from state i to state j is

κ = nX
fjBjiφ(vobs; v)

4π (v1 − v0)νij

, (15)
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Figure 11. Cumulative distribution function showing the total fraction f of cores with second moments, σNT, less than or equal to the x-coordinate value for simulated
observations of ρ Ophiuchus and Perseus in N2H+ and NH3. The legends indicate by first letter whether the distribution is taken from K07, A07, R07, undriven
simulation, or driven simulation. The tracer is also indicated when two different tracers are used.

where n, v, and X are the number density, velocity, and molecular
abundance in the cell, Bji and νij are the Einstein absorption
coefficient and frequency of the transition, and the observation
is made in a channel centered at velocity vobs that runs from
velocity v1 to v0. The optical depth is given simply by computing
this quantity in every cell, multiplying by the cell length to
obtain the optical depth of that cell, and then summing over
all cells along a given line of sight. As the table shows, for
the most part the average hyperfine transition is optically thin
in all tracers. The main exception is cores traced by NH3 in
ρ Ophiuchus, which is marginally optically thick. As a result,
we do not present results for NH3 using the higher density
ρ Ophiuchus scaling; the core velocity dispersion maps in
Figures 5–8 are normalized to Perseus.

In all other cases even the strongest hyperfine components
have optical depths of order unity, and comparison with more
detailed radiative transfer modeling that we perform indicates
this is unlikely to significantly affect our results. Tafalla et al.
(2002) model the emission and transfer of the same N2H+ and
NH3 lines that we use in a sample of starless cores in Taurus
and Perseus whose conditions are similar to those produced
by our simulations. They study the effect of the interplay
between hyperfine splitting and radiative trapping by analyzing
the two limiting cases of negligible radiative trapping (which we
assume) and neglect of hyperfine splitting (which maximizes
radiative trapping). They find that the difference in the level
populations they compute under these two assumptions is only a
few tens of percent, a level of error comparable to that introduced
by uncertainties in the collision rate coefficients. We expect
the errors introduced by our optically thin assumption to be
comparable.

5.3. Comparison of Second Moments

Observationally, the second moments of cores are predomi-
nantly subsonic in MCs, apparently independent of the amount
of turbulence. For example, A07, measuring second moments
in ρ Ophiuchus, find all values are smaller than 2cs with an
average σNT/cs = 0.5. Likewise, K07 report similar measure-

Table 5
K-S Statistics for the Driven and Decaying Core Second Moments (Velocity
Dispersions) Compared to the Observational Collections of Cores Using the

Appropriate Cloud Normalization and Simulated Tracer

Sample Cloud D (%) U (%)

Starless ρ Ophiuchus (A07) 8 × 10−4 2
Perseus (K07) 2 2 × 10−2

Protostellar Perseus (K07) 2 × 10−4 . . .

All Perseus (K07) 1 × 10−3 8 × 10−4

Perseus (R07) 1 . . .

ments for cores observed in Perseus, finding an average of
σNT/cs= 0.7 with a maximum value of 1.7. Both our simula-
tions find marginally subsonic distributions of second moments
with slightly larger means than the observations (see Table 1).
In comparison, protostellar cores are observed to have a some-
what broader distribution of second moments. K07 find that the
protostellar cores in Perseus have a mean second moment of
1.1cs and a maximum of 2.3cs. The protostellar objects that we
observe in our driven simulation tend to have transonic second
moments while in the decaying simulation they are supersonic.

We use a K-S test to compare the distribution of second
moments for each of the simulation core populations with the
observed core populations. We give the results in Table 5. Note
that the A07 sample is comprised of only prestellar cores,
while R07 observe both starless and protostellar cores but do
not distinguish between them. Figure 11 shows the cumulative
distribution functions of the core populations for some of the
simulations and observations. Although the medians of some
of the second-moment distributions are fairly similar, K-S tests
of the core populations show significant disagreement in some
cases. Overall, the distribution of second moments for the driven
run is closer to observations of Perseus, while the decaying run
is a better match for the ρ Opiuchus prestellar second moments.

The physical origin of the poor agreement between the simu-
lations and observations appears to be that the simulated proto-
stellar second-moment distributions in either case do not have
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Figure 12. Cumulative distribution function showing the total fraction f of cores with first moments, Vcent, less than or equal to the x-coordinate value for simulated
observations of ρ Ophiuchus and Perseus in N2H+ and NH3. Each line is normalized to the appropriate large-scale gas dispersion, Vg, either as measured (simulations)
or as derived from the line width–size relation in Equation (6). The legend format is similar to Figure 11.

sufficiently narrow peaks. The protostellar cores in the simu-
lations are at the centers of regions of supersonic infall, which
contradicts the observations that show at most transonic contrac-
tion. Although the decaying simulation has a larger population
of high dispersion protostellar cores, both simulations show al-
most equally bad agreement with the observations. Tilley &
Pudritz (2004), performing smaller decaying turbulent cloud
simulations at lower resolution with self-gravity, analyze the
line widths of their cores using a similar simple chemical mode.
They also find a number of cores with greater than sonic central
line widths. There are two possibilities for the discrepancy be-
tween the observed protostellar cores in our simulation and those
observed in Perseus. In reality, forming stars are accompanied
by strong outflows that may eject a large amount of mass from
the core, leading to efficiency factors between εcore = 0.25–0.75
(Matzner & McKee 2000). Such outflows limit the mass of the
forming protostar by this amount. Since we do not include out-
flows we naturally expect our sink particles to overestimate the
forming protostar mass by this factor and hence the maximum
infall velocity, characterized by the second moment through the
core center. If we adopt a sink particle mass correction of 3
(Alves et al. 2007), then the infall velocity will decrease by a
factor of

√
3. This correction substantially reduces the number

of protostellar cores with supersonic second moments from 53%
and 70% to 23% and 39% for cores in the driven and decaying
simulations, respectively. This correction brings the driven core
sample closer in agreement with those measured by R07 and
K07. A second possibility for the higher second moments is the
lack of magnetic fields in our simulations. Magnetic pressure
support could also retard collapse and decrease the magnitude
of the infall velocities. However, the importance of magnetic
effects is difficult to assess without further simulations.

5.4. Comparison of First Moments

In contrast, we find better agreement between simulations
and observations for bulk core motions. When comparing the
distributions of first moments, we first subtract out any large

Table 6
K-S Statistics for the Driven and Decaying Core First Moments (Centroid
Velocities) Compared to the Observational Collections of Cores Using the

Appropriate Cloud Normalization and Simulated Tracer

Sample Cloud D (%) U (%)

Starless ρ Ophiuchus (A07) 0.5 6
Perseus (K07) 48 12

Protostellar Perseus (K07) 6 85
All Perseus (K07) 0.8 7

Perseus (R07) 7 3

gradients in the sample as discussed in Section 4.3. This is
particularly important when comparing to a large elongated
cloud such as Perseus. We then shift the distributions so that
median centroid velocity falls at 0 and normalize the distribution
to the bulk gas dispersion. For Perseus, we infer the bulk gas
velocity dispersion for our simulation σ = 1.1 km s−1 by
assuming the cloud falls on the line width–size relation and
satisfies Equation (6) with L equal to the transverse size of
the cloud. For ρ Ophiuchus, we adopt the 13CO line velocity
dispersion of σ = 1.06 km s−1 (Loren 1989b).

In Table 6, we report the K-S agreement for the first mo-
ments of the observations and simulations. Since the simula-
tions themselves are statistically similar to one another, both
of the first-moment distributions generally either agree or dis-
agree with the observed population. Except in the case of the
N2H+ driven data for ρ Ophiuchus and the NH3 decaying data,
the velocity-corrected data are fairly statistically similar to the
observations. This suggests that the first-moment distributions
do not strongly depend upon the details of the turbulence. In
Figure 12, we have plotted the cumulative distribution function
of some of the first-moment distributions for comparison. The
net core distributions show substantial overlap for both simula-
tions and observational regions. The main source of disagree-
ment with observations is the generally larger dispersions of the
first moments in the simulations. In particular, the dispersion of
the prestellar core first moments is a factor of ∼2 larger than
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that found by A07 in ρ Ophiuchus. However, because in both
simulations the core-to-core velocity dispersion is smaller than
the virial velocity of the cloud on large scales, we conclude that
a sub-virial dispersion of first moments is not necessarily an
indicator of global collapse.

In some cases, the direct dispersion of the gas may be
poorly observationally constrained and so a virial argument is
used to infer the gas dispersion. We find that normalizing the
distributions to the virial gas dispersion rather than the measured
gas dispersion produces a significantly different result for the
decaying simulation. Since the cloud gas is becoming more
quiescent with time, the actual gas dispersion is sub-virial at
late times. Thus, relative to the virial gas dispersion the decaying
dispersion of first moments appears twice as sub-virial.

6. DISCUSSION AND CONCLUSIONS

We use isothermal AMR simulations to investigate the kine-
matics of cores in environments with and without driven tur-
bulence. We simulate observations of these cores in the trac-
ers C18O, N2H+, and NH3 for the star-forming regions ρ
Ophiuchus (125 pc distant), and Perseus (260 pc distant), with
beam sizes of 26′′ and 31′′, respectively. From the differences
between cores in the two environments and in conjunction with
observational results, we are able to draw a number of impor-
tant conclusions, some of which are relevant for observationally
distinguishing between driven and decaying turbulence in star-
forming clouds.

We find that in both simulated environments the prestel-
lar second-moment distribution is fairly narrow and peaked
about the sound speed. Significant broadness of the protostel-
lar second-moment distributions is due to strong infall, such
that many cores have central dispersions exceeding 2cs. Despite
these commonalities, a K-S test indicates that the driven and
decaying prestellar and driven and decaying protostellar popu-
lations are dissimilar to one another. In contrast to the second
moments, a K-S test indicates that the first-moment distributions
in the two environments have some overlap: 13% confidence for
protostellar cores and 44% confidence for prestellar cores. This
similarity is an indication that the bulk core advection is decou-
pled from the gas motions inside the core. The similarity of the
K-S tests suggests that core first moments are not a good method
for distinguishing the two environments.

Examining the gas dispersion in the core neighborhoods
reveals interesting differences in the two simulations. We find
that by the end of a global freefall time the averaged velocity
dispersion increases strongly toward the core center for decaying
protostellar cores. However, for decaying prestellar cores and
all driven cores this trend is fairly flat or slightly increasing.
Thus for both phases the driven cores are coherent, similar to
observed cores (Kirk et al. 2007; Barranco & Goodman 1998;
Goodman et al. 1998), while the supersonic velocities observed
in decaying protostellar cores are inconsistent with observations.
Thus, investigating the radial dispersion of protostellar cores
may make it possible to discriminate between clouds with and
without active turbulent energy injection.

We find that the majority of the combined prestellar and
protostellar distribution of second moments through the core
centers for both environments are below 2cs, which agrees with
the results of A07 and K07. However, neither prestellar core
distribution shows a significant confidence level of agreement
with the observations.

As shown in Table 5, we obtain sub-virial dispersions of the
first moments for both total core populations like A07, however

our core-to-core dispersions are approximately a factor of 2
closer to virial. Although both runs produce sub-virial core-to-
core dispersions, we have not shown that either driven turbulence
or the small virial parameter of decaying turbulence can produce
αvir as small as that found by A07.

One interesting finding is that the protostellar cores in the
decaying run have a core-to-core dispersion that is higher than
the gas dispersion measured after a free-fall time. This is a result
of the significantly larger dispersion of the protostellar cores
compared to the prestellar cores, which may be a result of either
increased scattering or of memory of the natal higher dispersion
gas. This is in contrast to the driven prestellar cores, which have
nearly the same dispersion as the gas, and the driven protostellar
cores, which have a sub-virial dispersion. Thus, comparing the
starless and protostellar core first-moment dispersion to the net
gas dispersion is potentially a means for distinguishing the two
environments.

An effect that we cannot rule out is the importance of mag-
netic fields, which we do not treat in our simulations. In addition
to seeding the initial clump mass spectrum, the turbulence in our
simulations provides support against the cloud’s self-gravity, a
role that could be filled by either sustained turbulence or mag-
netic fields or both. The very small number of cores observed
with supersonic second moments indicates that these cores are
collapsing very slowly, a condition that we find is promoted
by turbulent support but not throughout the entire core collapse
process. At present, little computational work has been done
to study line profiles for turbulent cores with magnetic fields.
Tilley & Pudritz (2007) present central line profiles for a few
cores formed in self-gravitating magnetohydrodynamic cloud
simulations but do not have many statistics. Our simulations
also neglect protostellar outflows, which may have an effect
on the total core mass and hence the velocity dispersion of the
infalling gas in the core center.

Another possible source of the quantitative disagreement
between observations and our simulations is geometry. Periodic
boundary conditions may do a poor job representing whole,
pressure confined MCs. Certainly, the star-forming region of
Perseus is more filamentary than round. Further, the cloud Mach
numbers for both regions are somewhat uncertain, and it may
be necessary to match the Mach number of the simulation to the
cloud more exactly to get better quantitative agreement.

Overall, we find that the driven simulation agrees better
with the cores in Perseus, while the decaying simulation
agrees slightly better with the prestellar cores in ρ Ophiuchus
(our data do not include protostellar cores there). Our results
indicate that the decaying simulation produces a population of
protostellar cores with supersonic velocity dispersions that is
largely inconsistent with the observations of protostellar cores in
Perseus. To reach a firmer conclusion on the validity of driven or
decaying turbulence will require more complete data on a larger
sample of clouds as well as simulations that allow for magnetic
fields, outflows, and thermal feedback from the protostars.
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APPENDIX

STATISTICAL EQUILIBRIUM FOR MOLECULES WITH
HYPERFINE STRUCTURE

As discussed in Tafalla et al. (2002) and Keto et al. (2004),
hyperfine splitting in a molecule introduces two complications
on top of the standard calculation of statistical equilibrium. First,
hyperfine splitting of a transition reduces its optical depth by
breaking the line into multiple components. The frequency sep-
aration between the components means that photons generated
by a transition from level iα to level jβ, where the Roman index
refers to the parent level and the Greek to its hyperfine sublevel,
have a reduced probability of being resonantly absorbed by
molecules in state j that are not in hyperfine sublevel β. Under
our assumption that all components are optically thin, however,
this effect is not significant. We discuss the extent to which this
approximation holds, and how our results might be modified in
cases where it fails, in Section 5.2.

A second, practical complication is that collision rate co-
efficients between different hyperfine sublevels are generally
unknown. Only the total rate coefficients summing over all hy-
perfine states are known. This makes it impossible to perform a
true statistical equilibrium calculation without introducing ad-
ditional assumptions, the most common of which is that the in-
dividual hyperfine sublevels are simply populated in proportion
to their statistical weights. Observations along some sightlines
show that this approximation generally holds for NH3 and that
deviations from it for N2H+ are only of order 10% (Tafalla et al.
2002; Keto et al. 2004).

Under the assumption of an optically thin gas, the equation
of statistical equilibrium for a molecular species with hyperfine
structure is∑

j

∑
β

(nH2qjβiα + Ajβiα + BjβiαICMB)fjβ

=
⎡
⎣∑

k

∑
β

(nH2qiαkβ + Aiαkβ + BiαkβICMB)

⎤
⎦ fiα

(A1)∑
i

∑
α

fiα = 1, (A2)

where a set of four subscripts iαjβ indicates a transition from
state i, hyperfine sublevel α, to state j , hyperfine sublevel β.
The assumption that the hyperfine sublevels are populated in
proportion to their statistical weight then enables us to write

fiα = giα

gi

fi, (A3)

where giα is the statistical weight of sublevel iα, gi = ∑
α giα

is the total statistical weight of all hyperfine sublevels of level

i, and fi = ∑
α fiα is the fraction of molecules in any of the

hyperfine sublevels of level i. If we make this substitution in
Equations (A1) and (A2), then they become∑

j

∑
β

[
(nH2qjβiα + Ajβiα + BjβiαICMB)

gjβ

gj

]
fj

=
⎡
⎣∑

k

∑
β

(nH2qiαkβ + Aiαkβ + BiαkβICMB)
giα

gi

⎤
⎦ fi

(A4)∑
i

fi = 1. (A5)

If the hyperfine sublevels of state i are populated in proportion
to their statistical weight, then the total transition rate from all
hyperfine sublevels of state i to any of the sublevels of state j
is given by

qij ≡
∑

α

∑
β

giα

gi

qiαjβ (A6)

Aij ≡
∑

α

∑
β

giα

gi

Aiαjβ (A7)

Bij ≡
∑

α

∑
β

giα

gi

Biαjβ . (A8)

Now note that (A4) represents one independent equation for
each state i and each of its hyperfine sublevels α. If we fix
i and add the equations for each hyperfine sublevel α, then
Equation (A4) simply reduces to∑

j

(nH2qji + Aji + BjiICMB)fj

=
[∑

k

(nH2qik + Aik + BikICMB)

]
fi, (A9)

the same as the equation for an optically thin molecule with-
out hyperfine splitting, provided that the rate coefficients are
understood to be summed over all hyperfine sublevels.
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