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ABSTRACT

In this series of papers, we study the structure of the atomic-to-molecular transition in the giant atomic-molecular
complexes that are the repositories of most molecular gas in galaxies, with the ultimate goal of attaining a better
understanding of what determines galaxies’ molecular content. Here we derive an approximate analytic solution for the
structure of a photodissociation region (PDR) in a cloud offinite size that is bathed in an external dissociating radiation
field.Our solution extends previouswork, whichwith few exceptions has been restricted to a one-dimensional treatment
of the radiation field. We show that our analytic results compare favorably to exact numerical calculations in the one-
dimensional limit. However, our more general geometry provides a more realistic representation than a semi-infinite
slab for atomic-molecular complexes exposed to the interstellar radiation field, particularly in environments such as
low-metallicity dwarf galaxies, where the curvature and finite size of the atomic envelope cannot be neglected. For
clouds that are at least 20%molecular, we obtain analytic expressions for the molecular fraction in terms of properties
of the gas and radiation field that are accurate to tens of percent, while for clouds of lowermolecular content we obtain
upper limits. As a side benefit, our analysis helps to clarify when self-shielding is the dominant process in H2 formation,
and under what circumstances shielding by dust makes a significant contribution.

Subject headinggs: ISM: clouds — ISM: molecules — molecular processes — radiative transfer

1. INTRODUCTION

In galaxies such as the Milky Way, where atomic and mo-
lecular phases of the interstellarmedium (ISM) coexist,molecular
clouds represent the inner parts of atomic-molecular complexes
(Elmegreen & Elmegreen 1987). The bulk of the volume of the
ISM is filled with far-ultraviolet (FUV) photons capable of dis-
sociating hydrogen molecules, and this radiation field keeps the
majority of the gas atomic. Gas that is predominantly molecular
is found only in dense regions where a combination of shielding
by dust grains and self-shielding by hydrogenmolecules excludes
the interstellar FUV field. These molecular regions are bounded
by a photodissociation region (PDR) in which the gas is pre-
dominantly atomic (Hollenbach & Tielens 1999 and references
therein).

To date, most work on the structure of PDRs has been limited
to one-dimensional geometries, including unidirectional or bi-
directional beams of radiation impinging on semi-infinite slabs
or purely radial radiation fields striking the surfaces of spheres
(e.g., Federman et al. 1979; van Dishoeck &Black 1986; Black&
van Dishoeck 1987; Sternberg 1988; Elmegreen 1993; Draine &
Bertoldi 1996; Hollenbach & Tielens 1999; Browning et al. 2003;
Allen et al. 2004). For these one-dimensional problems, the
literature contains both detailed numerical solutions and ana-
lytic approximations for the problem of radiative transfer and

H2 formation-dissociation equilibrium. These approaches yield
good results for PDRs that are thin compared to the cloud as a
whole or that are in close proximity to hot stars whose radiation
and winds have compressed the PDR into a slablike geometry.
Many nearby well-studied PDRs, such as the Orion bar, fall into
this latter category. However, the one-dimensional approximation
is much less appropriate for giant clouds that are being dissociated
by the combined starlight of many distinct stars and star clusters,
particularly when the atomic region constitutes a significant frac-
tion of the total cloud volume. The problem is especially severe in
galaxies with low metallicities and interstellar pressures, where
the predominantly molecular parts of cloud complexes generally
constitute a small part of the total mass and volume (e.g., Blitz &
Rosolowsky 2006). In this case, one cannot neglect either the
curvature of the PDR or the finite size of the molecular region,
and a higher dimensional approach is preferable. Previous work
in one dimension is therefore of limited use for the problem on
which we focus: determining the atomic and molecular content
of galaxies on large scales, under the combined effects of all the
sources of dissociating radiation in that galaxy.

Considerably less work has focused on higher dimensional
geometries, since these require a treatment of the angular depen-
dence of the radiation field and its variation with position inside
a cloud. As a result, all treatments of two- or three-dimensional
radiation fields to date are purely numerical. Neufeld & Spaans
(1996) consider spherical clouds, and Spaans &Neufeld (1997)
allow arbitrary geometries, but their method applies only in1 Hubble Fellow.
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translucent clouds and involves an approximate numerical inte-
gration of the transfer equation. Similarly, Liszt & Lucas (2000)
and Liszt (2002) present models for PDRs in spherical clouds
involving angular integration over the radiation field in radial
bins, coupled with a relaxation method to determine the H2 abun-
dance at each radius. Neither of these approaches yields a simple
analytic estimate of the size of the PDR or the molecular region,
nor do they provide any insight into the dimensionless numbers
that can be used to characterize the problem of PDR structure.
Such estimates, and the accompanying physical insights, would
allow modeling of clouds over a wide range of galactic environ-
ments without the need for a complex and numerically costly
radiative transfer calculation to cover each case.

Our goal in this work is to revisit the problem of determining
the size of a PDR in a finite cloud embedded in a multidimen-
sional radiation field, and to derive analytic approximations for
the structure of a PDR that will yield gross yet observable quan-
tities such as the total atomic hydrogen column around a molec-
ular region and the fraction of a cloud’s volume in the atomic and
molecular phases. As part of this work, we determine the impor-
tant dimensionless numbers that characterize the problem, and
we provide a rough classification of PDRs based on them. The
model we develop is capable of spanning the range from galaxies
where the gas in atomic-molecular complexes is predominantly
molecular and for which a slab treatment is appropriate, to dwarf
galaxies where only a tiny fraction of the ISM is in the molecular
phase. In Paper II (Krumholz et al. 2008), we will provide a more
detailed application of the results derived here to the problem of
determining the atomic-to-molecular ratios in galaxies. Before
moving on, we note that our focus on an analytic solution with a
multidimensional radiation field, characterized by a few dimen-
sionless numbers, has a price: our approach to the chemical and
thermal physics of PDRs is significantly simpler thanmuch pre-
vious work. We do not account for factors such as the temper-
ature dependence of rate coefficients or H2 dissociation by cosmic
rays. Our work is therefore less suited to making detailed pre-
dictions of the structures of individual PDRs than it is to making
predictions for galactic-scale trends in atomic and molecular
content.

We approach the problem of finite clouds by idealizing to
the case of a spherical cloud embedded in an isotropic radiation
field, since this allows us to explore the effects of finite cloud
size and curvature while at the same time keeping the problem
simple enough to admit an approximate analytic solution. Our
approach is as follows. In x 2, we state the formal problem and
introduce some physical approximations that are independent
of geometry. In x 3, we derive an approximate analytic solution
to the one-dimensional semi-infinite slab case, which allows us to
demonstrate the underlying physical principles of our approach.
In this section, we also compare to a grid of numerical solutions
and show that our approach produces good agreement. Then in
x 4, we extend our approach to handle the case of a spherical
cloud embedded in an isotropic radiation field. Finally, we
summarize and draw conclusions in x 5.

2. THE FORMAL PROBLEM

Consider a region of hydrogen gas where the number density
of hydrogen nuclei is n, mixed with dust that has a cross section
to radiation of frequency � of �d;� per H nucleus. The hydrogen
is a mix of atoms and molecules, with a fraction fH i of the nuclei
in the form of H i and a fraction fH2

¼ 1� fH i in the form of H2.
We consider frequencies � that fall within the Lyman-Werner
(LW) band from �1 ¼ c/1120 8 to �2 ¼ c/912 8, such that

photons of that frequency can be resonantly absorbed by hy-
drogen molecules.
The equation of radiative transfer for a beam of radiation in

direction ê passing through this gas is

ê = :I� ¼ �n
1

2
fH2
�H2;� þ �d;�

� �
I�; ð1Þ

where I� is the radiation intensity at frequency �, and �H2;� is
the cross section for absorption of radiation at frequency � by a
molecule of hydrogen. The value of �H2;� may change with po-
sition as the fraction of H2molecules in different quantum states
changes. The total fraction of the gas in the molecular phase is
determined by the balance between the rate of H2 formation and
dissociation,

fH in
2R ¼ fH2

2
n

Z
d�

Z �2

�1

d�
I�

h�
�H2;� fdiss;�; ð2Þ

whereR is the rate coefficient for formation of H2 molecules on
dust grain surfaces, and fdiss;� is the fraction of absorptions at
frequency � that yield dissociation of the H2 molecule rather
than decay back to a bound state.
Note that we do not include a source term in the transfer

equation (eq. [1]), because although most FUV photons absorbed
by H2 molecules do decay through a vibrational ladder via photon
emission, the photons released in this process do not fall into the
LWband. Thus, the transfer equationwe havewritten is only valid
for frequencies in the LW band.We have also neglected scattering
of FUV photons by dust grains. Since scattering is highly for-
ward peaked at FUV wavelengths (e.g., Roberge et al. 1981),
this approximation is reasonable as long as we take �d;� to be the
absorption cross section, not the total cross section. We have also
omitted H2 dissociationmechanisms other than LWphotons, such
as cosmic-ray collisions and chemical reactions. These are sig-
nificant only in nearly fully molecular regions where no signifi-
cant numbers of LW photons are present.
Equations (1) and (2), togetherwith the atomic and dust physics

that specify �H2;� and �d;� , and a boundary condition that spec-
ifies I� on all rays entering the surface of a cloud, fully determine
I� and fH2

at all positions. We cannot solve them exactly, but we
can obtain an approximation that exposes the basic physical
outlines of the solution. We begin by making two standard ap-
proximations, following Draine & Bertoldi (1996), to simplify
the atomic physics.
First, it is convenient to simplify the transfer equation (eq. [1])

by dividing by h� to transform from intensity to photon number,
and then by integrating over frequency in the LW band. In so
doing, we can exploit the fact that for realistic dust, �d;� is nearly
independent of frequency in the LW band (Draine & Bertoldi
1996); we can therefore replace �d;� with a constant value �d .
This gives

ê = :I � ¼ �n�dI
� � 1

2
nfH2

Z �2

�1

d� �H2;�I
�
� ; ð3Þ

where I �� ¼ I� /(h�) is the photon number intensity, i.e., the num-
ber of photons per unit time per unit area per unit solid angle per
unit frequency that cross a given surface, and I � ¼

R �2
�1

d� I �� is
the photon number intensity integrated over the LW band.
Second, we note that fdiss;� varies only weakly when integrated

over frequency and over positionwithin a PDR.Draine&Bertoldi
(1996) show that over the width of a PDR, it stays roughly within
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the range 0.1Y0.2. Its value in free space depends on the assumed
radiation spectrum; Draine & Bertoldi (1996) find fdiss ¼ 0:12
in free space for their fiducial choice, while Browning et al.
(2003) suggest fdiss ¼ 0:11 as a typical value. For simplicity,
we adopt a constant value fdiss;� ¼ fdiss ¼ 0:1 and take this con-
stant out of the integral, reducing the dissociation equation to

fH in
2R ¼ fH2

fdiss

2
n

Z
d�

Z �2

�1

d� I �� �H2;�: ð4Þ

It is convenient at this point to produce a combined transfer-
dissociation equation from equations (3) and (4). If we integrate
equation (3) over solid angle d�, we obtain

: =F� ¼ �n�dcE
� � 1

2
fH2

n

Z
d�

Z �2

�1

d� �H2;�I
�
� ; ð5Þ

where

E � � 1

c

Z
d� I �; ð6Þ

F� �
Z

d� êI � ð7Þ

are respectively the photon number density and photon number
flux integrated over the LW band. We can then use equation (4)
to substitute for the last term, yielding the combined transfer-
dissociation equation

: =F� ¼ �n�dcE
� � fH in

2R
fdiss

: ð8Þ

3. SOLUTION IN ONE DIMENSION

3.1. Analytic Solution

We start by giving an approximate analytic solution to this
formal problem for unidirectional radiation impinging on a one-
dimensional semi-infinite slab in order to illustrate the physical
principles behind our approach. Consider a region of gas of den-
sity n filling the half-space z > 0 and subjected to a dissociating
radiation field of photon number intensity I � ¼ 4�J �

0 �(jê� ẑj)
that fills the half-space z < 0, where J �

0 is the angle-averaged
intensity in free space. The corresponding free-space photon
number density is E �

0 ¼ 4�J �
0 /c, and the magnitude of the free-

space photon flux is F �
0 ¼ cE �

0 . For simplicity, we neglect the
(relatively weak) temperature dependence of R.

Since the radiation intensity everywhere at all z remains prop-
ortional to �(jê� ẑj), it immediately follows that

F� ¼ F �ẑ ¼ cE�ẑ ð9Þ

at all points, and that the combined transfer-dissociation equation
reduces to

dF �

dz
¼ �n�dF

� � fH in
2R

fdiss
; ð10Þ

subject to the boundary condition that F � ¼ F �
0 at z ¼ 0. Since

numerical calculations show that the transition from predomi-
nantly atomic gas to predominantly molecular gas in a PDR gen-
erally occurs in a thin band bounded by much larger regions in
which the gas is either predominantly atomic or predominantly
molecular, we can obtain a good approximation to the exact so-
lution by treating fH i as having a constant value near unity over

the bulk of the PDR, and then dropping to zero as a step function
once the fully molecular surface is reached. For constant fH i ¼ 1,
we can nondimensionalize equation (10) to

dF
d�

¼ �F � 1

�
; ð11Þ

where F ¼ F � /(F �
0 ) is the fraction of the free-space flux remain-

ing, � ¼ n�dz is the dust optical depth from the slab surface, and

� ¼ fdiss�dcE
�
0

nR : ð12Þ

Equation (11) has the exact solution

F (�) ¼ 1

�
e�(���H i) � 1
� �

; ð13Þ

where

�H i ¼ ln 1þ �ð Þ ð14Þ

is the depth at which the flux goes to zero, which we take to be
the optical depth through the H i region. Of course, in reality the
flux should never go to zero exactly. That it does in our solution
is an artifact of our choice to treat fH i as constant. Nonetheless,
provided the transition from fH i � 1 to fH i � 0 is sharp, zH2

¼
�H i /(n�d) should be a good approximation of the depth at which
the gas becomes predominantly molecular. Also note that our pa-
rameter� is very similar to the�G parameter of Sternberg (1988).

The dimensionless parameter�/ fH i is the ratio of the two terms
on the right-hand side of equation (10), with F � set equal to its
value 4�I �0 at the slab edge. This makes its physical meaning
clear: �/ fH i represents the ratio of the absorption rate of LW
photons by dust grains to the absorption rate by H2 molecules
for a parcel of gas exposed to the unattenuated free-space radiation
field. If the gas at the edge of free space is predominantly atomic,
as is the case, for example, at the edge of an atomic-molecular
complex, then fH i � 1, and this ratio is simply given by �. For
� > 1, absorptions by dust grains dominate, while for � < 1
absorptions by H2 molecules dominate.

For a giant molecular cloud in the Milky Way and its outer
atomic envelope, typical values of the number density, dust cross
section, and H2 formation rate coefficient are n � 30 cm�3, �d �
10�21 cm2, and R � 3 ; 10�17 cm3 s�1, respectively (Draine &
Bertoldi 1996). Using the Draine (1978) functional form for the
local FUV radiation energy density as a function of wavelength,

kEk ¼ 6:84 ; 10�14k�5
3

; 31:016k23 � 49:913k3 þ 19:897
� �

erg cm�3; ð15Þ

the free-space photon number density from 912 to 1120 8 is
E �
0 ¼ 7:5 ; 10�4 cm�3. For an H2 molecule in the ground state,

this corresponds to a free-space dissociation rate of 3:24 ;
10�11 s�1. (In principle, for a slab computation we should divide
the observed value of E �

0 by 2 to account for the fact that one can
only see half the sky at the surface of an opaque cloud, but we
do not do so here because in x 4 we will account for this effect
self-consistently.) Thus, for Milky Way conditions not near a
local strong source of FUV, a � of order a few might be typical.
Thus, in the Milky Way dust shielding is marginally significant
in determining the structure of atomic-molecular complexes.

3.2. The Two-Zone Approximation

We can integrate the transfer-dissociation equation (eq. [8])
directly in one dimension because, due to the constant angular
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distribution of the radiation, there is a trivial relationship between
E � and F �. In multiple dimensions, however, there is no simple
relationship between the two, because the angular distribution of
the radiation intensity is not constant with position inside a cloud.
To overcome this problem, we adopt what we call the ‘‘two-zone
approximation’’.When the photon number densityE � is large, the
first term on the right-hand side of equation (8), which represents
absorptions of photons by dust grains, is much larger than the
second term, which represents absorptions by H2 molecules. This
makes intuitive sense: in regions where many dissociating pho-
tons are present, the molecular fraction will be very low, so there
will be few H2 molecules available to absorb LW photons, and
most photons will be absorbed by dust. In regions where E � is
small, the number of molecules will increase, and for any appre-
ciable number of molecules thesewill dominate the absorption rate.

In the two-zone approximation, we divide the cloud into a
zone where dust absorption dominates and a zone where mo-
lecular absorption dominates. In the dust-dominated region,
we drop the molecular absorption term in the radiative transfer or
transfer-dissociation equations (eqs. [3] or [8]), and approximate
the opacity as having a constant value n�d . In the zone where
molecular absorptions dominate, we drop the dust absorption term
in equation (8) and approximate the molecular absorption term
by �n2R/ fdiss , where � > 1 is a constant of order unity (whose
precise value we determine below), which we include to account
for the fact that some LW photons will be absorbed by dust grains
even in the molecule-dominated region. We define a boundary
between these two zones by the condition that the dust and mo-
lecular absorption terms be equal, which is satisfied when

E �

E �
0

¼ �

�
� 1

 
; ð16Þ

where we have set fH i ¼ 1, because at the point of equality the
molecular fraction isT1; for convenience, we have defined the
modified dust-to-molecular absorption ratio  ¼ �/�. With this
approximation, the one-dimensional nondimensionalized transfer-
dissociation equation becomes

dF
d�

¼ �
F ; F > 1= ;

1= ; F < 1= :

�
ð17Þ

We shall see in x 4 how the two-zone approximation enables
us to solve the problem in the spherical case. First, however, we
examine the solution in the one-dimensional case. If  < 1,
thenF < 1/ is satisfied everywhere, and equation (17) has the
trivial solution

F ¼  � �

 
: ð18Þ

The flux goes to zero at a depth �H i ¼  . If  > 1, the solution is

F ¼
e�� ; � < �d;

 �1(�H i � �)=(�H i � �d); � > �d;

�
ð19Þ

where

�d ¼ ln  ; ð20Þ
�H i ¼ 1þ ln  : ð21Þ

Here, �d represents the dust depth into the slab at which the ab-
sorption begins to be dominated byH2molecules, while �H i is the

optical depth at which we expect a transition from mostly atomic
to mostly molecular gas. Combining the two cases, we have

�H i ¼
 ;  < 1;

1þ ln ;  > 1:

�
ð22Þ

We now turn to the question of determining the constant �.
Physically, we expect to have �! 1 for �T1, because in that
case dust absorptions contribute negligibly throughout the cloud.
For �31, we expect � to asymptotically approach a value
greater than unity, accounting for the contribution of dust to
absorptions even in the molecule-dominated region. A compar-
ison of the limiting behavior of the analytic solution (eq. [14])
with the two-zone approximation (eq. [22]) confirms this physical
argument, and suggests that the appropriate limiting behavior is
�! 1 as �! 0 and �! e as �! 1. We therefore adopt

� ¼ 2:5þ �e

2:5þ �
; ð23Þ

which has the correct limiting behavior, and where the value 2.5
is chosen to optimize agreement between the two-zone approx-
imation and the analytic solution in the intermediate-� region.

3.3. Comparison to Numerical Calculations

Before using the two-zone approximation to compute the
case of a finite cloud with an isotropic radiation field, we check its
accuracy for the one-dimensional case by comparing it to detailed
numerical calculations made using the Browning et al. (2003) H2

formation and radiative transfer code. We refer readers to that
paper for a full description of the physics included in this cal-
culation, but a brief summary is that the code numerically in-
tegrates the frequency-dependent equation of radiative transfer
for a unidirectional beam of radiation incident on an isothermal,
constant-density slab of gasmixedwith dust. The transfer equation
is coupled to a statistical equilibrium calculation that determines
the populations of H i atoms and a large number of rotational and
vibrational levels of the H2 molecule that are excited by LW-band
photons in each computational cell. The output of this calculation
is the fraction of H nuclei in molecules as a function of depth
within the cloud. The code we use here differs from that described
in Browning et al. (2003) only in that the earlier version accounted
for dust grain absorptions of LWphotons bymodifying the photo-
dissociation ratewith themethodof vanDishoeck&Black (1986),
whereas the version we use here computes radiation attenuation
by dust grains directly from the radiative transfer equation.
For the models presented here, we use a density and tempera-

ture of n ¼ 5000 cm�3 and T ¼ 90 K. These values are chosen
purely for computational convenience and have no significant im-
pact on the results. The incident radiation field is a unidirectional
beam of photons uniformly distributed in frequency over the
wavelength range 912Y1120 8. The frequency-dependent pho-
ton flux in this beam is F �

� , so E �
0 ¼ F �

� (�2 � �1)/c and J �
0 ¼

F �
� (�2 � �1)/(4�). We adopt a dust extinction curve following

the functional form of Cardelli et al. (1989) scaled to give a dust
cross section per H nucleus at 1000 8 of � ¼ �d;MWZ

0, where
Z 0 is the metallicity relative to solar, and we take �d;MW ¼ 6:0 ;
10�22 cm2 or 2:0 ; 10�21 cm2 to be two fiducial dust opacities
for the Milky Way. These two values of �d;MW correspond to
the estimated attenuation cross sections at 10008 estimated by
Draine & Bertoldi (1996) for dense and diffuse clouds in the
Milky Way, respectively. We adopt a rate coefficient for H2

formation on grain surfaces of R ¼ RMWZ
0, where RMW ¼

3 ; 10�17Z 0 cm�3 s�1 is our fiducial Milky Way value (Wolfire
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et al. 2008). We do our computations for a grid of models running
from F �

� ¼ 10�7 to 10�3 photons cm�2 s�1 Hz�1 in nine steps of
0.5 dex, from Z 0 ¼ 10�2 to 100:5 in six steps of 0.5 dex, and for
the two values of �d;MW mentioned above. These values F �

� are
significantly higher than what is typical in the Milky Way, but
are chosen so that, in conjunction with our choice of n, the ratio
E �
� /n that appears in � is within the typical Milky Way range.

With this parameterization,

� ¼ 0:75(�d;MW;�21=RMW)(E
�0

0 =n2) ð24Þ
¼ 4:07�d;MW;�21F

�
�;�5; ð25Þ

where �d;MW;�21 ¼ �d;MW/10�21 cm2 is the Milky Way 1000 8
dust absorption opacity normalized to 10�21 cm2,E �0

0 ¼ E �
0 /7:5 ;

10�4 cm�3 is the free-space dissociating photon number density
normalized to theMilkyWay value, n2 ¼ n/100 cm�3 is the num-
ber density of hydrogen nuclei in units of 100 cm�3, and F �

�;�5 ¼
F �
� /10

�5 photons cm�2 s�1 Hz�1. Thus, the calculation covers
a broad range of parameters from strongly dust dominated to
strongly molecule dominated, thereby bracketing the realMilky
Way value of � � 1. Note that � is independent of Z 0 because
for the parameterization we have chosen, the Z 0-dependences of
�d andR cancel out. Since we predict that the dust optical depth
through the PDR, �H i ¼ n�dzH2

, depends only on �, and � in
turn depends only on the ratio �d /R, �H i should be independent
of Z. Since we use a range of 102:5 in Z 0, our numerical calcu-
lations represent a strong test of this prediction.

Figure 1 shows fH2
versus depth within a cloud as computed

numerically for a sample of our input parameters, overlaid with
the corresponding locations of the atomic-to-molecular transition,
as calculated via the two-zone approximation.As the figure shows,
the two-zone approximation does a very good job of reproducing
the location of this transition over an extremely broad range of
parameters.

To quantify the quality of the approximation, we must define
a fiducial measure for the depth of the H2 region in the numerical
calculations, since in these runs fH i approaches but never reaches
unity. The most reasonable measure is

NH i ¼
Z 1

0

dz fH in; ð26Þ

the total H i column integrated through the cloud. Since the ra-
diation field is attenuated exponentially or faster, and fH i is pro-
portional to radiation intensity in the region where fH2

� 1, this
integral is guaranteed to converge. In the limit where the tran-
sition from H i to H2 is sharp, it approaches the total gas column
up to the transition point. In practice, we cannot continue the
numerical integration to z ¼ 1, so we truncate the integral at
the value of z where fH i ¼ 5 ; 10�3; using fH i ¼ 10�2 instead
changes the value by less than 8% for all our runs, and by less than
2% for all runs with � > 0:1, so our evaluation of the integral
should be accurate to this level.

We plot the dust opacity through this hydrogen column,NH i�d ,
and the corresponding value �H i predicted by the two-zone ap-
proximation, in Figure 2. As the figure shows, the two-zone
approximation recovers the numerically computed H i column
to better than 50% accuracy over almost a five-decade range in �.
The error in the two-zone approximation is generally comparable
to, or smaller than, the spread between models with different dust
opacities but the same value of �.

The error in our approximation is largest at small �, and ex-
amination of Figure 1 suggests the reason why: by evaluating the
equations with fH i ¼ 1 inside the PDR, we have assumed that the

transition from atomic tomolecular is sharp. This is true for� � 1
or greater, but begins to fail for �T1. In our runs with � � 1,
typically 95% of the gas is atomic in the region where fH i > 0:5;
even at the depth where fH i drops to 5 ; 10�3, more than half the
gas column above that point is atomic. This indicates a very sharp
atomic-molecular transition, so our approximation that fH i ¼ 1
until the gas is almost entirely molecular is a good one. For � �
0:01, on the other hand, roughly 80% of the gas at fH i < 0:5 is
atomic, and H i contributes only 10% of the total gas column
above fH i ¼ 5 ; 10�3. The transition from atomic tomolecular is
therefore much more gradual, and our accuracy suffers as a result.

Nonetheless, we note that �T1 does not appear to be phys-
ically realized in normal galactic environments. For MilkyWay
molecular clouds, � � 1 or greater, and reducing � to 0.01 would
require some combination of reducing the interstellar radiation
field and increasing the atomic gas density by a factor of 100.
Such a combination of very high atomic ISM density and very
low radiation field is generally not observed. We conclude that,
for realistic physical parameters, and given that these parameters
(such as �0 andR) are themselves uncertain at a factor of a few
levels (e.g., Wolfire et al. 2008), the error in the two-zone approx-
imation is unlikely to be the dominant one.

4. SOLUTION FOR SPHERICAL CLOUDS

We now extend the two-zone approximation to a spherical
cloud of radius R embedded in a uniform, isotropic radiation field
of angle-averaged intensity J �

0 (note that this radiation field has
the same LW photon number density as the unidirectional radia-
tion field considered in x 3, so it gives the same dissociation rate in

Fig. 1.—Plots of fH2
vs. dust optical depth � ¼ n�dz for our numerical radi-

ative transfer calculations, with log Z 0 ¼ �1:5 (dashed lines), log Z 0 ¼ �0:5 (solid
lines), and log Z 0 ¼ 0:5 (dot-dashed lines). The gray vertical lines indicate the
optical depth of the transition to fully molecular, as calculated with the two-zone
approximation (eq. [22]). Each cluster of three curves plus a vertical line indicating
a prediction corresponds to a radiation flux log F �

� ¼ �7,�5, or�3, as indicated.
The two panels are for the cases �d;MW;�21 ¼ 0:6 (top) and 2.0 (bottom).

THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. I. 869No. 2, 2008



free space). Figure 3 illustrates the basic geometry of the problem
and our approximation: we consider the dust-dominated region to
run from radius r ¼ rd to r ¼ R, and the molecular self-shielding
region to run from r ¼ rH2

to r ¼ rd . For convenience, we intro-
duce the dimensionless position variables x ¼ r/R and y ¼ 1� x,
and we define the dust optical depths from the surface to rd and
to rH2

as �d and �H i, respectively.
In xx 4.1 and 4.2, we develop the basic equations that describe

the two-zone approximation for clouds with and without dust
opacityYdominated envelopes. We then explore three limiting
cases of these equations.We consider the behavior at the boundary
between the presence and absence of a dust-dominated zone in
x 4.3, and we explore several interesting limits in x 4.4. We then
give a numerical solution and an analytic approximation to it in
x 4.5. In x 4.6, we compare our solution for a finite cloud to the
standard slab approximation to determine when the slab approx-
imation is valid and when it fails. In x 4.7, we address the level
of uncertainty introduced by the approximations wemake in the
spherical case. Finally, in x 4.8 we present some example cal-
culations using our analytic approximation.

4.1. Clouds with Dust-dominated Zones

First we consider the case where is large enough for there to
be a dust-dominated zone in the outer part of the cloud, where
molecular self-shielding is negligible, i.e., rd < R. The transfer
equation in this region becomes

ê = :I � ¼ �n�dI
�; ð27Þ

which for rays originating at the cloud surface and staying en-
tirely within the dust-dominated region has the trivial solution

I �(x; 	) ¼ exp (��R
)J �
0 ; ð28Þ

where �R ¼ n�dR is the center-to-edge dust optical depth of the
cloud,


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 þ x2	2

p
� x	

� �
; ð29Þ

is the distance, normalized to the cloud radius, from radius r to
the cloud surface on a ray that makes an angle � relative to the
radial vector (see Fig. 3), and 	 ¼ cos � ¼ �ê = r̂. This solution
applies for 	 > 0. On the other hand, if 	 < 	H2

, where

	H2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xH2

xd

� �2
s

; ð30Þ

then the ray passes through a part of the cloud that is fully
molecular. Since the fully molecular region will be extremely
opaque, I �(x; 	) ¼ 0 to good approximation along these rays.
Finally, rays for which 0 > 	 > 	H2

pass through the region
where the opacity is dominated by molecules rather than dust,
but where the gas is not yet fully molecular. Again, we use the
approximation that the transition from a low molecular fraction
to fully molecular is sharp, so that over most of this region, the
molecular fraction is not vastly larger than it is at the region’s
edge. This is consistent with numerical solutions of the problem
(e.g., Fig. 1), which show that the atomic fraction fH i is nearly
constant through the bulk of the PDR and rises from its free-
space value to unity over a small region. Thismeans that the opacity
is not much greater than its value of n�d at the outer edge of the
molecule-dominated region. We therefore approximate that the
optical depth along these rays is the same as it is for those in
the dust-dominated region, �R
. This approximation is perhaps
the least certain part of our calculation, and we quantify the level

Fig. 3.—Illustration of the two-zone approximation in spherical geometry.

Fig. 2.—Top: Dust opacity NH i�d through the numerically determined H i

column as a function of �. The values of Z 0 and �d;MW;�21 for each calculation
are indicated by the various symbols. This is compared to the optical depth �H i

computed from the two-zone approximation (eq. [22]; thin solid line) and com-
puted using the analytic solution (eq. [14]; thick dashed line). Bottom: Error in
the two-zone approximation, defined as error ¼ NH i�d /�H i � 1; the dotted line
indicates zero error.

KRUMHOLZ, McKEE, & TUMLINSON870 Vol. 689



of uncertainty that it produces in x 4.7. Combining these three
regions, we have an approximate intensity

I �(x; 	) ¼
exp (��R
)J �

0 ; 	 > 	H2
;

0; 	 < 	H2
:

(
ð31Þ

The location of xd , the crossover point from dust- to molecule-
dominated absorption, is defined by the condition that E � /E �

0 ¼
1/ (eq. [16]). For convenience, we define the function �0 by

E �(xd)

E �
0

¼ �0(xd; xH2
; �R) ¼

1

2

Z 1

	H2

d	 exp ��R
dð Þ; ð32Þ

where 
d ¼ 
(xd). We show that �0 can be evaluated in terms of
exponential integrals in Appendix A. The first equation for the
two-zone approximation is therefore

�0(xd; xH2
; �R) ¼

1

 
: ð33Þ

Inside xd , we drop the dust opacity term, so that the combined
transfer-dissociation equation (eq. [8]) becomes

1

r 2
d

dr
(r 2F �) ¼ �n2R

fdiss
; ð34Þ

where we have again assumed that fH i � 1 outside the fully mo-
lecular region, and for convenience we have inverted the sign
by defining F� ¼ �F �r̂. The solution is

F � ¼ �R
3 

x 1� xH2

x

� �3
	 


F �
0 ; ð35Þ

where we have chosen the constant of integration by requiring
that F � ¼ 0 at x ¼ xH2

. To determine xH2
from the boundary

conditions, however, we must determine the flux at some other
location. Thus, we evaluate the flux F � at xd by integrating the
intensity over solid angle using equation (31). For convenience,
we define the function �1 by

F �(xd)

F �
0

¼ �1(xd; xH2
; �R) ¼

1

2

Z 1

	H2

d		 exp ��R
dð Þ: ð36Þ

As with �0, in Appendix Awe evaluate �1 in terms of exponential
integrals. Combining equation (36) with (35) gives an implicit
equation for xH2

:

�1(xd ; xH2
; �R) ¼

�Rxd
3 

1� xH2

xd

� �3
" #

: ð37Þ

Together, equations (33) and (37) constitute two equations for the
two unknowns xd and xH2

, and thus fully determine the location of
the transition from predominantly atomic to predominantly mo-
lecular in the two-zone approximation.

4.2. Clouds without Dust-dominated Zones

Now consider the case where  is small enough for there to be
only one zone, because even gas at the edge of the cloud is suf-
ficiently molecular for absorptions by molecules to outnumber
those by dust grains. In this case, equation (35) applies throughout
the cloud, so we must fix xH2

directly from the boundary con-
ditions. To do so, we need to know the flux F �(1) at the cloud

surface. This is not simply F �
0 ¼ cE �

0 , as in the case of a uni-
directional radiation field; for an isotropic radiation field in free
space, F � vanishes, and F �(1) is nonzero only because rays
passing through the cloud do not carry the same intensity as rays
that do not pass through it, preventing the integral over angle from
vanishing. Thus, for a sufficiently transparent cloud, F �(1) ap-
proaches zero, its value in free space. Conversely, at the surface
of a cloud that is opaque and extremely large, F �(1) ¼ F �

0 /4. The
factor of 1/4 relative to the unidirectional case arises because half
the solid angle is blocked by an opaque object (providing one
factor of 1/2), and because in the part of the sky that is not blocked
the radiation is isotropic, and one must average over all the di-
rections in which photons are traveling to find the fraction of that
motion in the �r̂ direction (providing another factor of 1/2).

The problem of determining the intensity is exactly the same
as in x 4.1. At the surface of the cloud, rays at angles 	 > 0 do not
pass through the cloud and therefore contribute the unattenuated
free-space intensity I �0 . Those with 	 < 	H2

¼ �(1� x
2
H2
)1
=2 pass

through the fully molecular region and therefore contribute zero
intensity. For rays at angles 	H2

< 	 < 0, we make the same
approximation as in x 4.1, that the molecular absorption rate per
unit distance that a photon travels is roughly constant until one
approaches the sharp transition from atomic to molecular. Thus,
the molecular opacityYdominated part of the PDR has a constant
effective opacity, which we can determine by computing its value
at the cloud surface. For convenience, we characterize this opacity
via an effective cross section per H nucleus �e. By examining the
transfer-dissociation equation (eq. [8]), it is clear that for fH i � 1
this opacity is

�e ¼
�nR

fdisscE �(1)
: ð38Þ

With this approximation, the transfer equation through the
region outside where the gas becomes fully molecular is simply
equation (27), with �d replaced by �e, and the solution for the
intensity along each ray is given by equation (31), with �R re-
placed by �eR ¼ (�e /�d)�R. The photon number density and flux
at the cloud surface are therefore given by

E �(1)

E �
0

¼ �0(1; xH2
; �eR); ð39Þ

F �(1)

F �
0

¼ �1(1; xH2
; �eR): ð40Þ

With these arguments, evaluating equations (A11) and (A12)
shows that �0 and �1 reduce to

�0(1; xH2
; �eR) ¼

1� e2	H2
�eR

4�eR
þ 1

2
; ð41Þ

�1(1; xH2
; �eR) ¼

(1� 2	H2
�eR)e

2	H2
�eR � 1

8� 2
eR

þ 1

4
: ð42Þ

Using these values of E �(1) and F �(1) in equations (38) and (35),
we find

1� e2	H2
�eR

4�eR
þ 1

2
¼ �R
 �eR

; ð43Þ

(1� 2	H2
�eR)e

2	H2
�eR � 1

8� 2
eR

þ 1

4
¼ �R

3 
1� x3H2

� �
: ð44Þ
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We therefore again have two equations and two unknowns, with
the unknowns in this case being �eR and xH2

. Note that in this
case, 	H2

can be isolated in the first equation to give

	H2
¼ 1

2�eR
ln 1þ 2�eR�

4�R
 

� �
: ð45Þ

Together with the relation between 	H2
and xH2

(eq. [30]), this
reduces the problem to a single nonlinear equation, which is con-
venient for numerical solution.However, the two-equation form is
more convenient for an analytic approach.

At this point, it is worth making a few remarks about the be-
havior of equations (43) and (44). First, equation (43) implies that
�R /( �eR) > 1/2, so the argument of the logarithm in equation (45)
is always less than unity, and 	H2

is negative. Second, in all of
these equations �R and  appear only in the combination �R / , so
values of xH2

and �eR must be constant on lines of constant �R / .
Finally, note that in x 4.5we give an approximate analytic solution
to equations (43) and (44).

4.3. The Dust-dominated Zone Boundary

We first identify the boundary between the presence and
absence of a dust-dominated region. In the case of a perfectly
beamed radiation field impinging on a semi-infinite planar slab,
which we treated in x 3, this is  ¼ 1. The result is more complex
in the case of an isotropic radiation field and a cloud of finite size.
The boundary between the two cases is defined by the condition
that xd ¼ 1 or �eR ¼ �R, i.e., that the crossover between dust-
dominated andmolecule-dominated absorptions occur at the cloud
surface, or equivalently that the dust and molecular effective opac-
ities at the cloud surface be equal. It is immediately obvious that
equations (33) and (37) become identical to equations (43) and
(44) in this limit. If we set �eR ¼ �R, then equations (45) and (44)
define a curve in the (�R;  ) plane that corresponds to the point
where the dust-dominated layer disappears. Above the curve,
the radiation field is strong enough for the outer part of the cloud
to be dust opacity dominated, while below it, molecular opacity
dominates throughout. Along the bounding curve,

xH2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4� 2
R

ln 1þ 2�R �
4�R
 

� �	 
2s
: ð46Þ

We show the curve at which the dust-dominated layer vanishes,
and the value of xH2

along the curve, in Figure 4.
That along this curve  ! 1 for �RT1 and ! 2 for �R 31

makes intuitive sense. If �RT1, the dust optical depth through
the cloud is tiny, and so the radiation field has its unattenuated,
free-space value regardless of position in the cloud. Thus, the
condition that dust shielding andmolecular shielding contribute
equally at the cloud surface (xd ¼ 1) can only be fulfilled if they
are equal or nearly equal in free space, which is simply a require-
ment that  ¼ 1. Similarly, if �R 31, then the cloud is effectively
a semi-infinite slab whose curvature is negligible. In this case, the
radiation field at the cloud surface only receives contributions
from rays with 	 > 0, i.e., from those that never pass through the
cloud; rays with 	 < 0 are infinitely attenuated. Thus, the ra-
diation field has exactly half its free-space value, the molecular
fraction has double its free-space value, and the condition that
dust shielding and molecular shielding be equal reduces to the
requirement that  ¼ 2.

These considerations suggest that a function that interpo-
lates between these two limiting behaviors is likely to produce a

good approximation. Numerical experimentation shows that the
curve

 � 1:4þ 2�R
1:4þ �R

ð47Þ

reproduces the true value of  along the curve xd ¼ 1, �eR ¼ �R
to better than 3% for all �R. We show this approximate solution
with the thick dashed curve in Figure 4.

4.4. Limiting Cases

We can better understand the behavior of PDRs in finite clouds
by exploring several limiting cases of our equations, which cor-
respond to clouds that are very large or very small, and to radiation
fields that are very strong or very weak.
Case 1: Strong Radiation Fields.—The first limit we consider

is one in which the radiation field is so strong that there is no fully
molecular core, so xH2

¼ 0. It is easy to verify that if there is no
dust-dominated region, such that equations (43) and (44) apply,
then there are no finite values of  and �R such that xH2

¼ 0.
(However, see x 4.7, where we show that this behavior is prob-
ably not physical.) On the other hand, if there is a dust-dominated
region, equations (33) and (37) apply, and xH2

¼ 0 can be reached
at finite  and �R. This becomes clear if we note that xH2

¼ 0
implies that 	H2

¼ �1 (following eq. [30]), and equation (37)
then admits the solution xd ¼ �1(xd ; 0; �R) ¼ 0. Since xd ¼ 0, it
immediately follows that 
d ¼ 1 and �0(0; 0; �R) ¼ e��R . Equa-
tion (33) then gives ¼ e�R . The physicalmeaning of this solution
is that  ¼ e�R is the critical curve along which xH2

¼ xd ¼ 0; at
this value of  or larger, the radiation field is too intense for a fully
molecular core to exist. We plot the critical curve in Figure 4. In
Appendix B, we solve equations (33) and (37) perturbatively in
the vicinity of the critical curve and show that near the strong-
radiation boundary the solution is

xd ¼
6

�R(�R þ 2)

e�R

 
� 1

� �	 
1=2
; ð48Þ

xH2
¼ 1536

25�R(�R þ 2)3

	 
1=4
e�R

 
� 1

� �5=4

: ð49Þ

This solution obviously only applies for e�R �  .

Fig. 4.—The thin black curves show the boundaries in the (�R;  ) plane atwhich
xd ¼ 1, �eR ¼ �R, and xH2

¼ 0, as indicated by the text accompanying each curve.
The thick dashed curve shows our approximation to the xd ¼ 1 curve (eq. [47]).
The asterisks along the curve for xd ¼ 1 mark the points at which xH2

¼ 0:1, 0.3,
0.5, 0.7, and 0.9, as indicated.
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Case 2: Small Clouds.—Before analyzing this case, we warn
that in x 4.7 we show that our solution in this case should be
regarded as giving an upper limit on the molecular fraction rather
than a direct estimate. However, it is still useful to consider this
case, both in order to derive upper limits and to provide expres-
sions that can be incorporated into approximations in parts of
parameter space where our method does provide estimates rather
than upper limits. We have shown that for  > 1, there is a finite
value of �R at which the fully molecular core vanishes, and con-
versely that if  < 1 there is no finite �R for which xH2

¼ 0. How-
ever, one can easily verify that when there is no dust-dominated
zone ( < 1) and equations (43) and (44) apply, xH2

! 0 as
�R ! 0. Physically, this corresponds to the case of a cloud that
is so small that its dust is optically thin to LW photons. In Ap-
pendix C, we show that in this limit the solution may be approx-
imated by

�eR ¼ �R
 

þ � 2
R

2 2
þ � 3R

4 3
þ 7� 4R

60 4
; ð50Þ

xH2
¼ �Rffiffiffi

3
p

 
þ 2

ffiffiffi
3

p
� 2
R

5 2
: ð51Þ

Note that by definition �eR /�R ¼ ½E �
0 /E

�(1)�/ , so equation (50)
is effectively a series expansion for the photon number density
at the cloud surface: E �(1) ¼ E �

0 ½1� � 2
R /(2 )þ : : :�. Thus, the

leading-order approximation reduces to the statement that a small
cloud blocks no radiation in any direction, and soE �(1) ¼ E �

0 , the
unattenuated value. The next-order correction accounts for the
small fraction of photons that are blocked at the cloud surface.

Case 3: Large Clouds.—Our final limiting case is that of a
cloud so large that the transition from atomic to molecular gas
occurs in a thin layer at the cloud surface, so that the cloud’s
curvature is negligible. Before proceeding, we note that this case
is not the same as the case of a one-dimensional slab subject to a
unidirectional beam of radiation, which we analyzed in x 3. The
difference is that here the radiation field is isotropic, so it has an
angular dependence that can varywith depth within the cloud. For
this reason, the large-cloud limit with an isotropic radiation field is
a two-dimensional problem, even if the cloud is a semi-infinite
slab. To analyze this case, we perform a series expansion around
the limit �R ! 1, but with a finite yH2

�R, so that there is a finite
optical depth to the molecular region. If  > 2, then a dust-
dominated zone exists, and we solve this problem by starting
from equations (A11) and (A12), and series expanding �0 and
�1 to first order in ��1

R . Doing so gives

�0(xd; xH2
; �R) ¼

E2(�d)

2
þ e��d þ �dE2(�d)

4�R
; ð52Þ

�1(xd; xH2
; �R) ¼

E3(�d)

2
þ �dE3(�d)

2�R
; ð53Þ

where �d ¼ yd�R. Equation (33) therefore becomes

1

 
¼ E2 �dð Þ

2
þ e��d þ �dE2 �dð Þ

4�R
ð54Þ

to first order in ��1
R , which is straightforward to solve numerically

in order to determine �d for a given  and �R. Alternatively, one
may obtain a purely analytic expression by dropping the 1/�R
correction term. In this case, the equation becomes E2(�d) ¼ 2/ ,
which has the approximate solution

�d � 0:83 ln (0:2 þ 0:6); ð55Þ

this expression is accurate to better than 2% for 2 �  � 100.
Since xd ¼ 1� �d /�R, this fixes xd . Similarly, once �d is known,
it is straightforward to solve equation (37) to first order in ��1

R to
obtain

xH2
¼ 1� �d þ  

2
E3(�d)

	 

��1
R : ð56Þ

For  < 2, there is no dust-dominated zone, and we must in-
stead solve equations (43) and (44) in the limit �R ! 1. We note
that for a very large cloud E �(1) ¼ E �

0 /2, because the cloud
blocks half the sky, and it therefore follows immediately from
the definition of �e (eq. [38]) that

�eR ¼ 2�R
 
; ð57Þ

i.e., that the effective molecular opacity is a factor of 2 larger
than its free-space value because the radiation intensity at the
cloud surface has half its free-space value. Similarly, the flux is
F �(1) ¼ F �

0 /4 because half the sky is blocked, and the radiation
direction is random over the other half. Using this boundary con-
dition to integrate the one-dimensional transfer-dissociation equa-
tion (eq. [10]) with �d ¼ 0 and with the molecular absorption rate
multiplied by �, we have

xH2
¼ 1�  

4�R
: ð58Þ

We verify that these intuitive arguments in fact give the correct
leading-order terms in the series expansion in Appendix C.
Thus, we have the limiting solution to first order in ��1

R for both
 < 2 and  > 2. We illustrate this solution for �R ! 1 in
Figure 5.

4.5. Numerical Solution and Analytic Approximation

Wenowproceedwith a numerical treatment of the general case.
We solve equations (33) and (37), or (43) and (44), on a grid of

Fig. 5.—Solution in the large-cloud limit. The curves shown are the dust
optical depth to the fullymolecular region �H i ¼ �R(1� xH2

) (solid curve), the dust
optical depth to the point of dust-molecular absorption equality �d ¼ �R(1� xd)
(dashed curve to the right of  ¼ 2), and the ratio of the effectivemolecular opacity
to the dust opacity �eR /�R (dashed curve to the left of  ¼ 2). The dotted vertical
line at ¼ 2 indicates the boundary between the presence and absence of a dust-
dominated zone in the weak radiation limit.
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points in the (�R;  ) plane, and plot the results in Figure 6. In
addition to plotting xH2

and either xd or �eR , we also show two
derived quantities of interest. The first is the dust optical depth
to the molecular transition along a radial trajectory, �H i ¼ nR(1�
xH2

)�d . We may think of this as the H i ‘‘shielding column’’ times
the dust cross section. The second is x3H2

, which is the fraction of
the cloud’s volume that is within the predominantly molecular
region.

The general behavior of these curves can be understood intu-
itively. If one fixes the cloud density n and dust opacity �d, then
as the cloud radius increases, so does �R, and for a fixed external
radiation field  , the molecular transition moves outward, but
the H i column to that transition approaches a constant value.
Similarly, at fixed cloud size and hence fixed �R, increasing the
external illumination  raises the amount of atomic hydrogen that
is required to shield the molecules. Thus, xH2

drops when  in-
creases at fixed �R.

These curves also enable us to determine under what circum-
stances dust makes a significant contribution to shielding the gas,
a subject that has been discussed considerably in the literature
(e.g., van Dishoeck & Black 1986; Draine & Bertoldi 1996). To
evaluate the importance of dust, we consider how the molecular
and atomic volumes change as �d ! 0. In terms of our param-
eters, this amounts to taking the limit as �! 0 and �R ! 0, but
the ratio �/�R remains constant. Graphically, this is equivalent
to sliding toward the lower right of Figure 6, along a trajectory
that is close to a line of slope unity (although it is not precisely a
line of slope unity because of the slight nonlinearity of the rela-
tionship between  and �). In Figure 7, we plot the factor by
which dust shielding changes the radius of the molecular zone or
the radial path length—whichever is larger—through the atomic
zone. As the figure shows, dust shielding changes the radius of the

molecular zone by a factor of �2 only when  is of order unity
or larger, or when �R is very large, which is about what one might
expect. Dust shielding can affect the size of the molecular region
even if there is no dust-dominated zone, because we have allowed
for dust absorptions even in the molecular shielding region. How-
ever, the effect is at most tens of percent. A larger change is
possible only if the radiation field is intense enough to create a

Fig. 6.—Contours showing the solution as a function of �R and  for the structure of the PDR in the two-zone approximation. The values shown are xH2
(top left), xd

or �R /�eR (top right), �H i (bottom left), and x3H2
(bottom right). Hatched regions are those in which there is no primarily molecular part of the cloud. Dotted lines indicate

the boundaries between the presence and absence of dust-dominated zones. In the top right panel, the contours above the dotted line indicate the value of xd , while those
below it show the value of �R /�eR; on the dotted line, both of these quantities are exactly 1.0.We caution that the contours for xH2

¼ 0:1, xH2
¼ 0:3, and x3H2

¼ 0:1 should
be regarded as upper limits on xH2

, not precise estimates; see the discussion in x 4.7.

Fig. 7.—Contours showing the factor bywhich dust shielding changes the atomic
or molecular volume at a given (�R;  ). The quantity plotted is max ½xH2

/xH2 ;nd;
(1� xH2;nd)/(1� xH2

)�, where the subscript ‘‘nd’’ indicates the value with no dust
shielding in the limit, i.e., in the limit �d ! 0. The quantity plotted is therefore
the fractional amount by which dust shielding increases the radius of the molecular
zone or decreases the radial path length through the atomic zone, whichever is
larger.
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dust-dominated zone (i.e.,  k 1) or if the cloud is so large
(i.e., �R 31) that even weak dust shielding becomes significant
because it attenuates the radiation exponentially rather than in
a power-law fashion as molecules do.

We can deduce approximate analytic fitting formulae for xH2

by interpolating between the solutions for the limiting cases. The
following fitting formulae are reasonably accurate and can be
evaluated with no numerical iteration:

xH2
�

 4xs þ (3�R)
4x‘

 4 þ (3�R)
4

;  < 1;

max (xs; x‘); 1 <  <  b;

x�3=2
s þ x

�3=2
‘

� ��2=3
;  b <  < 2;

x�3
s þ x�3

‘

� ��1=3
; 2 <  < e�R ;

0; e�R <  ;

8>>>>>>>>>><
>>>>>>>>>>:

ð59Þ

where  b ¼ (1:4þ 2�R)/(1:4þ �R) is the approximate value of
 at the boundary between the existence and nonexistence of a
zone of dust-dominated opacity,

x2s ¼

�Rffiffiffi
3

p
 
þ 2

ffiffiffi
3

p
� 2
R

5 2

� �2

;  < 1;

1� 1

4� 2
b

ln 1þ 2�b � 4
�b
 

� �	 
2
; 1 <  <  b;

1536

25�R(�R þ 2)3

	 
1=2
e�R

 
� 1

� �5=2

;  b <  

8>>>>>>>>><
>>>>>>>>>:

ð60Þ

is the approximate value of xH2
in the strong-radiation (for > 1)

or small-cloud (for  < 1) limits (note that we only evaluate xs
when  < e�R ), and

x2‘ ¼

max 1�  

4�R
; 0

� �	 
2
;  <  b;

1� 1

4� 2
b

ln 1þ 2�b � 4
�b
 

� �	 
2
;  b <  < 2;

1� �d þ
 e��d

4þ 2�d

� �
1

�R

	 
2
; 2 <  

8>>>>>>>><
>>>>>>>>:

ð61Þ

is the approximate value of xH2
in the large-cloud limit. Here,

�d ¼ E�1
2

2

 

� �
� 0:83 ln (0:2 þ 0:6) ð62Þ

is the approximate optical depth to the dust-molecular opacity
crossover in the large-cloud limit in the case when dust shielding
is important, the quantity

�b � 1:4
 � 1

2�  
ð63Þ

is the value of �R at the dustYno dust boundary for a given  ,
and for convenience we have used the approximation E3(x) �
e�x /(2þ x). Note that these approximations can fail if one is very
near the dustYno dust boundary, because the approximation �b �
1:4( � 1)/(2�  ) is insufficiently accurate; in this case, onemay
still use the approximate expressions by replacing �b with a more
accurate value of �R on the dustYno dust boundary, computed as
described in x 4.3.

Figure 8 shows the error in our analytic approximation as a func-
tion of �R and  , where we define the error as jxH2

� xH2;approxj/
max (xH2

; 1� xH2
), and where xH2

is the solution obtained by nu-
merically solving the appropriate equations. As the plot shows,
the fitting formulae are generally good to the �10% level, which
is as good as the two-zone approximation itself. The maximum
error over the range 0:1 < �R < 100 and 0:1 <  < 100 is 24%,
and occurs near �R ¼ 1:8,  ¼ 1:9.

We can also obtain an even simpler approximation formula if
we specialize to the case where there is no or almost no dust-
dominated zone and xH2

k 0:5, which we will show in Paper II
to be the most common case in nearby galaxies. Consider equa-
tion (44), which describes the surface flux for the case of no dust.
The two terms on the left-hand side represent the contributions
to the flux from rays that do and do not pass through the cloud,
respectively. If the cloud has a significant molecular core (i.e., if
xH2

k 0:5), then only for a small range of angles do rays pass
through the cloud but not strike the opaque molecular core, and
thus the first term on the left-hand side is small in comparison to
the second. For convenience, we define

� ¼
1� (1� 2	H2

�eR)e
2	H2

�eR

2� 2
eR

; ð64Þ

which enables us to rewrite equation (44) as

x3H2
¼ 1� 3 

4�R
1� �ð Þ � 1� 3 

4�R

1

1þ �

� �
; ð65Þ

where � is a small, positive number. Now consider how � varies
with �R. We show in x 4.4 that for either small or large �R, to first
order �eR / �R / . If we consider the series of expansion of �,
this implies that � approaches a constant at small �R and varies
as  2 /� 2

R for large �R. To generate our approximation, we adopt
an intermediate scaling

� � a
 

�R
; ð66Þ

Fig. 8.—Error in the approximate analytic fit given in x 4.5 as a function of �R
and  . The different regions, from no shading to darkest shading, indicate errors
below 2.5% , 2.5%Y5%, 5%Y10%, 10%Y20%, and >20%. The maximum error is
24%. The dotted lines show the boundaries of our different approximation regions:
 < 1, 1 <  <  b,  b <  < 2, and 2 <  . The hatched region is  > e�R ,
where there is no predominantly molecular core. Note that the error jumps at the
� ¼ 1 and � ¼ 2 lines because the fitting formula is slightly discontinuous there.
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where a is a constant chosen to optimize the approximation.
This gives

x3H2
� 1� 3 

4(�R þ a )
: ð67Þ

For the choice a ¼ 0:2, equation (67) agrees with the numerical
solution to equations (33) and (37) or equations (43) and (44) to
better than 15%whenever < 3, and equation (67) gives x3H2

>
0:15. A corresponding approximate formula for the optical depth
through the atomic layer is

�H i �
�R 

4�R � a0 
; ð68Þ

where a0 ¼ 3/2ð Þ � 4a. For a ¼ 0:2, this expression agrees with
the numerical solution to better than 15% for  < 3 whenever
equation (67) gives x3H2

> 0:1.

4.6. Comparison to the One-dimensional Case

Now that we have solved the spherical case, we are in a po-
sition to compare to the case of a one-dimensional beam of ra-
diation striking an infinite slab, often treated in the literature. This
will allow us to determine when this approximation yields rea-
sonably accurate results and when it gives significantly different
results. Figure 9 shows a comparison between our solution with
isotropic radiation and varying cloud sizes versus the most com-
mon approximation in the literature: an infinite cloud and a beam
of radiation whose photon number density is half the free-space
value. In the calculations for finite clouds and isotropic radiation,
we end each curve at the value of  for which the fully molecular
region vanishes. For the beamed-radiation and infinite-cloud case,
we use the analytic solution described in x 3.1.

As the plot shows, when �RT , the one-dimensional slab
approximation can produce estimates of the depth of the dust
shielding layer significantly different from those of our higher
dimensional approach. The difference becomes larger as we con-
sider smaller clouds. For �R > 1, the slab approximation generally
underestimates the depth of the atomic layer by tens of percent,
primarily because it neglects the photodissociation provided by
nonradial rays. Even for a cloud that is infinitely large (�R ¼ 1),
this difference between an isotropic radiation field and a beamed
one can be significant at moderate  , because even though there
are no rays reaching a given position from the ‘‘back side’’ of the
cloud (	 < 0), when the radiation field is isotropic there are still
nonradial rays that raise the photodissociation rate at a given
position above what it would be in a purely beamed radiation field
of lesser intensity.

For �R < 1, the sign of the error depends on  . When the ra-
diation field is weak, the slab approximation also underestimates
the depth of the atomic layer for the same reason as it does when
�R > 1. When the radiation field becomes strong, however, the
sign of the error reverses, although as we discus in x 4.7, our
fiducial model is of limited accuracy for small �R and large  .

Physically, clouds of a wide range of sizes and densities are of
course present in the ISM. For the atomic envelopes of giant mo-
lecular clouds in theMilkyWay, a typical density is n � 30 cm�3,
and a typical dust cross section is 10�21 cm2, so that �10 pc of
path provides an optical depth of about 1. Since these envelopes
are a few tens of pc in size, a typical envelopemight have a �R of a
few, in which case the slab treatment underestimates the true size
of the envelope at the tens of percent level. In low-metallicity

galaxies with low molecular fractions, however, the error is likely
to be much worse, because �R will be significantly smaller.

4.7. Uncertainties in Spherical Geometry

We have shown that in the case of a one-dimensional beam of
radiation impinging on a slab, the two-zone approximation is
capable of determining the neutral hydrogen shielding column
to better than �50% accuracy. This characterizes the level of
error imposed by most of our physical assumptions. However, in
spherical geometrywe have an additional uncertainty, imposed by
the fact that we must assign an effective optical depth to rays
that pass at arbitrary angles through the region where molecular
shielding dominates, but where the gas is not yet fully molecular.
In particular, rays from the ‘‘back side’’ of our cloud, those with
	 < 0, contribute to the energy density and flux throughout the
cloud. Such rays are absent in the case of an infinite planar cloud,
because rays with 	 < 0 pass through the fully molecular region
and are therefore infinitely attenuated.
In this section, we seek to determine how much additional

uncertainty is introduced into our calculations in spherical geom-
etry by this complication. To do so, we note that in our treatment
above we assume that the opacity in the molecular shielding re-
gion will be roughly equal to that at its surface, i.e., that it does
not rise sharply until one is very close to the transition to fully
molecular gas. This represents a minimum attenuation along
	 < 0 rays. To check the importance of that assumption, we con-
sider an extreme assumption in the opposite direction: that all rays
with 	 < 0 are infinitely attenuated. This assumption is obviously

Fig. 9.—Top: Dust optical depth to the point where the gas becomes pre-
dominantly molecular �H i for an isotropic radiation field of normalized intensity 
and various values of �R (solid lines), and for a unidirectional radiation field of
normalized intensity  /2 (dashed line). Bottom: Fractional difference between
the results for finite �R and isotropic radiation, and for an infinite slab illuminated by
unidirectional radiation, defined as diAerence ¼ (�H i;iso � �H i;beam)/�H i;iso. In all
cases, the curves for finite �R end at the value of  for which the fully molecular
region disappears ( ¼ e�R ).
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unphysical, since if it were true, then the transition to the fully
molecular region would occur as soon as self-shielding began to
dominate over dust shielding. However, it provides a worst case
with which we can compare our fiducial model as a way of char-
acterizing our uncertainty. Since, as we shall see, the value of xH2

that we obtain by making this assumption is always smaller than
what we obtain for the fiducial case, we may regard the fiducial
case as giving an upper limit on xH2

, and the casewe calculate here
as giving a lower limit.

If we take the intensity along rays with 	 < 0 to be zero, this
is equivalent to replacing �0(xd ; xH2

; �R) with �0(xd ; xd; �R) in the
equations derived in xx 4.1 and 4.2, and similarly for �1. Doing
this and simplifying gives

�0(xd; xd; �R) ¼
1

 
; ð69Þ

�1(xd; xd; �R) ¼
�Rxd
3 

1� xH2

xd

� �3
" #

ð70Þ

for  > 2 (when dust shielding is significant) and

xH2
¼ 1� 3 

4�R

� �1=3

ð71Þ

for  < 2 (when dust shielding is not significant). Note that in
the case when dust shielding is negligible it is possible to solve
the equations analytically, which we have done to obtain equa-
tion (71). It is immediately obvious from this equation that the
fully molecular region vanishes in the region 4�R /3 <  < 2.
We plot the solutions to equations (69)Y(71) in the (�R;  ) plane
in Figure 10, and we show the difference between this solution
and our fiducial one in Figure 11.

As the plots show, the difference between the two models is
negligibly small over most of parameter space; there is a sig-
nificant difference only in the region roughly bounded by the
curves  P e�R ;  k 4�R /3, and  P 2. Alternatively, we can
phrase these constraints in terms of values of x3H2

. This is partic-
ularly useful for  < 1, where the contours of both constant xH2

and constant uncertainty are straight lines, corresponding to fixed
 /�R. The 10%, 50%, and 100% uncertainty contours in x

3
H2
,

shown in Figure 11 (right), correspond to values of x3H2
¼ 0:47,

0.28, and 0.20, respectively, as computed using our fiducial
model. Since we have already established that the two-zone ap-
proximation is uncertain at the tens of percent level, the geometric
uncertainty is probably only dominant when  < 1 and when our
predicted molecular volume fraction x

3
H2

is less than about 1/4. If
 k 1, the errors at a given value of x3H2

are considerably smaller,
so the geometric uncertainty is not important except for clouds
with very small molecular fractions. At such molecular fractions,
one should interpret our fiducial case as giving only an upper limit
on the molecular content of a cloud.

The significant geometric uncertainty for such clouds is not
surprising, since these clouds are near the limit of having no mol-
ecules at all. For them, any change in our physical assumptions
that increases or reduces the amount of shielding by even a small
amount produces a significant change in the results. Indeed, our
fiducial calculation shows some unphysical behavior in this regime,
in that we find that for  < 1, there is no finite value of �R for
which the fully molecular region vanishes and the cloud remains
atomic throughout. This seems unlikely, given that for a chosen
value of  and very large �R, the thickness of the atomic region
approaches a finite value; one would expect that clouds much
smaller than this should be atomic throughout, regardless of their
shape. Indeed, under the assumption of infinite attenuation for
backside rays that we make in this section, the molecular core
always vanishes at some finite value of �R for any finite  .

Fig. 10.—Same as Fig. 6, but assuming infinite attenuation along rays that enter the molecular absorptionYdominated region (eqs. [69]Y[71]).
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Fortunately, as we discuss in x 4.8, for realistic parameters
describing giant atomic-molecular complexes, we generally have
 k 1, �R k 1, and, as we show in x 4.8, x3H2

k 0:5; in this part of
parameter space, the uncertainty introduced by the 	 < 0 rays
in spherical geometry is P10%.

4.8. Example Calculations

Here, we provide examples that illustrate the use of our analytic
approximations for PDR structure. Since these calculations are
intended to be illustrative rather than to analyze real situations
(whichwewill discuss in Paper II), we choose parameters to yield
examples that span the possible combinations of parameters with-
out worrying how well they agree with observations. As a first
case, consider a ‘‘typical’’ Milky Way cloud, with �d ¼ 1:1 ;
10�21 cm2, n ¼ 30 cm�3, R ¼ 3 ; 10�17 cm3 s�1, and cE �

0 ¼
108 cm�2 s�1. Note that we have used a value of E �

0 somewhat
larger than the solar neighborhood value because most molec-
ular clouds are closer to the galactic center, where the radiation
field is more intense. This combination of parameters gives � ¼
fdiss�dcE

�
0 /(nR) ¼ 12:2 and  ¼ �(2:5þ �)/(2:5þ �e) ¼ 6:3.

Now consider a giant molecular cloud complex with a radius
R ¼ 50 pc, which gives �R ¼ n�dR ¼ 4:64. Since  > 2, this
cloud has a significant dust shielding zone, and since  < e�R , it
also has a fully molecular core, as we expect. Using the approx-
imation equations (59)Y(61) for this case, we find �d ¼ 0:52,
x‘ ¼ 0:74, xs ¼ 14:1, and an approximate value of xH2

� 0:74.
Note that although xH2

is strictly less than unity, it is possible for
xs to be larger than unity, because we only retained a finite
number of terms in the series expansion used to generate it. How-
ever, due to the way xs and x‘ are combined, our approximate
expression for xH2

is always less than unity. A numerical solution
for these parameters gives xH2

¼ 0:70. Such a cloud is 34%mo-
lecular by volume, and is shielded by an atomic column that is
15 pc deep and has a column density of NH i ¼ 1:4 ; 1021 cm�2

from the edge of the cloud to the edge of the molecular zone.
Now consider moving this cloud to a point farther out in the

Galaxy, where the ambient FUV radiation field is weaker, so
that all cloud parameters remain the same, but now cE �

0 ¼ 2 ;
107 cm�2 s�1, a factor of 5 below our previous value. In this case,
we have the same �R, but � ¼ 2:44 and  ¼ 1:43. For this �R, we
have  b ¼ 1:40 (slightly smaller than  ), so this cloud just barely
has a dust-dominated zone. Evaluating equations (59)Y(61), we
have x‘ ¼ 0:87 and xs ¼ 95, which gives an approximate value of
xH2

� 0:87; the numerical solution is xH2
¼ 0:92. Thus, moving

the cloud to this reduced-radiation environment raises the mo-

lecular volume fraction to 77% and reduces the H i shielding
column to a layer 4 pc deep containing a column of NH i ¼ 3:7 ;
1020 cm�2 hydrogen atoms. If the cloud were slightly denser,
n ¼ 40 cm�3 instead of 30, then �R would increase from 4.64
to 6.18, and  would decrease from 1.43 to 1.11. Since b ¼ 1:82
in this case, the cloud would be dominated by molecular absorp-
tion throughout. Evaluating the approximation equations gives
x‘ ¼ 0:95, xs ¼ 0:35, and xH2

� 0:95; the numerical solution is
xH2

¼ 0:95. Thus, the increase in density would slightly increase
the molecular volume to 87% and the column density through the
shielding layer to NH i ¼ 5:2 ; 1020 cm�2.
Finally, we consider a cloud in a low-pressure dwarf galaxy

with a very low star formation rate, such that the cloud has lower
density and metallicity than a Milky Way cloud (n ¼ 10 cm�3,
�d ¼ 2:2 ; 10�22, andR ¼ 6 ; 10�18) and is exposed to a lower
level of radiation (cE�

0 ¼ 106 cm�3 s�1).We keep the cloud radius
unchanged. This cloud has �R ¼ 0:31 and  ¼ 0:29, which from
our approximate formulae gives x‘ ¼ 0:77, xs ¼ 1:4, and xH2

�
0:77. The numerical solution is xH2

¼ 0:73. This cloud would be
38% molecular by volume, and would have a shielding layer of
NH i ¼ 4:2 ; 1020 cm�2, 14 pc deep.

5. SUMMARY AND CONCLUSION

In this paper, we develop an approximate analytic solution to
the problem of determining the size of the PDR that bounds a
cloud of gas embedded in a dissociating background radiation
field. This is a reasonable approximation to the problem of finding
the location of the transition between the atomic envelope and
the molecular core in a giant atomic-molecular cloud complex,
such as those which contain the bulk of the molecular gas in the
Milky Way.
We show that the location of the transition is determined by

two dimensionless parameters. These are �R, the dust optical
depth through the cloud, and �, the ratio of the rate at which
dissociating photons are absorbed by dust grains to the rate at
which they are absorbed by H2 molecules in the absence of any
shielding. We may intuitively think of these parameters as char-
acterizing the size of the cloud and the intensity of the radiation
field to which it is subjected. Within this parameter space, we
identify two critical curves that define the boundaries at which a
fully molecular region in the cloud center appears and at which
dust shielding begins to contribute significantly to the shielding
of H2 molecules. We develop the equations that determine the
sizes of the molecular and atomic regions in this parameter
space, and we provide an approximate analytic solution for them

Fig. 11.—Difference between �H i and x
3
H2

computed under the fiducial assumption that the opacity throughout the molecule-dominated region is equal to that at its
surface (xx 4.1 and 4.2) and under the assumption of infinite attenuation in this region (x 4.7). The difference is defined as j�H i;Bducial� �H i;attenuatedj/�H i;Bducial, and
similarly for x3H2

. The hatched region is the region in which there is no predominantly molecular core under either assumption; the difference in this region is obviously zero.
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(eqs. [59]Y[61] and eqs. [67] and [68]). Our solutions are accurate
to tens of percent for clouds that are k20%molecular by volume,
and provide upper limits on the molecular content at this accuracy
for cloudswith lowermolecular content. Using this formalism,we
find that � � 1 for typical giant atomic-molecular complexes in
the Milky Way, which indicates that dust shielding and self-
shielding each make contributions of order unity to determining
the location of the atomic-molecular transition.

Our work shows that the procedure of determining the structure
of PDRs by treating them as semi-infinite slabs illuminated by
unidirectional beams of dissociating radiation is a reasonable ap-
proximation for extremely opaque clouds, but that it fails badly
for small clouds or weak-radiation fields, i.e., in cases where the
transition from atomic to molecular is sufficiently far inside the
cloud that the cloud’s curvature cannot reasonably be neglected.
In such cases, the slab approximation can either overestimate or
underestimate the size of the atomic layer by factors of order unity,
depending on the particular parameters of the cloud and the am-
bient radiation field.

The development of an analytic model for the structure of the
atomic envelopes of finite molecular clouds opens up the pos-
sibility of developing a more general theory of the atomic-to-
molecular ratio in galaxies. In a galaxy, the mean interstellar
radiation field and the conditions in the atomic portion of the ISM
are determined by the star formation rate, which determines the
abundance of young, hot stars. In turn, the star formation rate

depends on the fraction of the ISM in that galaxy that is in mo-
lecular form and therefore available for star formation. At some
level, therefore, star formation in galaxiesmust be a self-regulating
process, with the formation and dissociation of molecular clouds
representing one step in that regulation. Developing a simple
model for how the molecular fraction in a cloud is determined by
its properties and those of the ambient radiation field represents
a step toward a complete theory of the star formation rate. In future
work, we plan to develop this theory further by applying the
model demonstrated here to molecular clouds in galaxies.
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APPENDIX A

EVALUATION OF �0 AND �1

Here, we evaluate the two functions

�0(xd; xH2
; �R) ¼

1

2

Z 1

	H2

d	 exp (��R
); ðA1Þ

�1(xd; xH2
; �R) ¼

1

2

Z 1

	H2

d		 exp (��R
): ðA2Þ

To evaluate the integrals, we change the variable of integration from 	 to 
. Using the definition of 
 (eq. [29]), we find that

	 ¼ (1� xd)(1þ xd)� 
2

2xd

ðA3Þ

and

d	

d

¼ � (1� xd)(1þ xd)þ 
2

2xd
2
: ðA4Þ

Making the change of variable, we find that

�0(xd; xH2
; �R) ¼ � 1

4xd

Z 1�xd


H2

d
 exp (�
�R)þ (1� xd)(1þ xd)

Z 1�xd


H2

d
 
�2 exp (�
�R)
" #

; ðA5Þ

�1(xd; xH2
; �R) ¼

1

8x2d

Z 1�xd


H2

d
 
 exp (�
�R)� (1� xd)
2(1þ xd)

2

Z 1�xd


H2

d
 
�3 exp (�
�R)
" #

; ðA6Þ

where


H2
� 
(xd; 	H2

) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2d þ x2d	

2
H2

q
� xd	H2

: ðA7Þ
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Of these integrals, the first one for �0 may be evaluated directly, while the first one for �1 may be evaluated by parts. The second integral
on each line may be evaluated via the identityZ x1

x0

dx x�ne�ax ¼
Z 1

x0

dx x�ne�ax �
Z 1

x1

dx x�ne�ax ðA8Þ

¼ x1�n
0

Z 1

1

du u�ne�ax0u � x1�n
1

Z 1

1

dv v�ne�ax1v ðA9Þ

¼ x1�n
0 En(ax0)� x1�n

1 En(ax1); ðA10Þ

where in the second step we make the change of variables u ¼ x/x0 and v ¼ x/x1, and En is the exponential integral function of order n
defined by En(x) ¼

R1
1

t�ne�xt dt. Using this identity gives

�0(xd; xH2
; �R) ¼

1

4xd

e�yd�R � e�
H2 �R

�R
þ (1þ xd) E2( yd�R)�

yd


H2

E2(
H2
�R)

	 
� �
; ðA11Þ

�1(xd; xH2
; �R) ¼

1

8x2d

(1þ 
H2
�R)e

�
H2 �R � (1þ yd�R)e
�yd�R

� 2
R

þ (1þ xd)
2 E3( yd�R)�

y2d

2H2

E3(
H2
�R)

" #( )
; ðA12Þ

where yd � 1� xd . Note that exponential integrals obey the recurrence relation nEnþ1(x) ¼ e�x � xEn(x), so alternatively we could
have written these in terms of E1(x) or the classical exponential integral EI(x) ¼ �E1(�x).

APPENDIX B

SOLUTION BY SERIES EXPANSION IN THE STRONG-RADIATION LIMIT

Here, we solve equations (33) and (37) in the strong-radiation limit, i.e., xH2
T1, xdT1, and 	H2

þ 1T1, by means of series
expansion. Let  ¼ xd�R and � ¼ 1þ 	H2

. Then we have

e��R
 ¼ e��R 1þ 	 þ 1

2�R
þ �R þ 1

2�R
	2

� �
2 þ 1

2�R
	þ �R � 3

6�R
	3

� �
3 þ O( 4)

	 

: ðB1Þ

Note that we have retained terms out to order 3. We shall see below that this is required for a consistent solution. Using this expansion
in the integrals

�0(xd; xH2
; �R) ¼

1

2

Z 1

��1

d	 e��R
; ðB2Þ

�1(xd; xH2
; �R) ¼

1

2

Z 1

��1

d		e�R
; ðB3Þ

and expanding in powers of �, we find

�0(xd; xH2
; �R) ¼

e��R

2
2� � þ � þ �R þ 2

3�R
2 þ O( 4)þ O(�2)þ O(� 2)

	 

; ðB4Þ

�1(xd; xH2
; �R) ¼

e��R

2

2

3
 þ � � � þ �R þ 2

15
3 þ O( 4)þ O(�2)þ O(� 2)

	 

: ðB5Þ

If we similarly expand the right-hand sides of equations (33) and (37) in powers of  and �, we obtain the two equations

e��R

2
2� � þ � þ �R þ 2

3�R
2

	 

¼ 1

 
þ O( 4)þ O(�2)þ O(� 2); ðB6Þ

e��R

2

2

3
 þ � � � þ �R þ 2

15
3

	 

¼ 

3 
þ O( 4)þ O(�2)þ O(� 2): ðB7Þ

If we combine these two equations by eliminating the common factor e�R / , we obtain an equation for the relationship between 
and �:

� �

2
þ �

2
þ �R þ 2

6�R
2 ¼ 3

2

�



� �
� 3

2
� þ �R þ 2

10�R
2 þ O(3)þ O(�)þ O

� 2



� �
: ðB8Þ
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The only way for this equation to have a consistent solution in which the orders on both sides balance is if � is of order 3. In this case,
the leading order on both sides is 2 (an order we retained only by performing the expansion in eq. [B1] to order 3), and balancing the
leading-order terms gives

� ¼ 2�R þ 4

45�R
3: ðB9Þ

Since we now know the order of all terms, we can solve equation (B6) to leading order to obtain

xd ¼


�R
¼ 6

�R(�R þ 2)

e�R

 
� 1

� �	 
1=2
: ðB10Þ

Similarly, we know that

xH2

xd

� �2

¼ 1� 	2H2
¼ 2� þ O(� 2): ðB11Þ

Substituting equation (B9) for � and equation (B10) for xd and rearranging, we obtain to leading order

xH2
¼ 1536

25�R(�R þ 2)3

	 
1=4
e�R

 
� 1

� �5=4

: ðB12Þ

APPENDIX C

SOLUTION BY SERIES EXPANSION IN THE LARGE- AND SMALL-CLOUD LIMITS

Here we solve equations (43) and (44) by series expansion in the limits �R ! 0 and �R ! 1. We approach this problem by defining
 ¼ �eR /�R, so that with some rearrangement the equations are

1� e2	H2
�R þ 2�R �

4

 
�R ¼ 0; ðC1Þ

1� 2	H2
�R

� �
e2	H2

�R � 1þ 22� 2
R � 8

3 
2� 3R 1� (1� 	2H2

)3=2
h i

¼ 0: ðC2Þ

For the case �R ! 0, we then let

 ¼ 0 þ 1�R þ 2�
2
R þ : : : ; ðC3Þ

	H2
¼ 	0 þ 	1�R þ 	2�

2
R þ : : : : ðC4Þ

Expanding equations (C1) and (C2) to leading order in �R and rearranging gives

20(1� 	0)�
4

 
¼ 0; ðC5Þ

22
0 (1� 	20) ¼ 0; ðC6Þ

which has the solution 	0 ¼ �1, 0 ¼ 1/ . Using these values and continuing the expansion to the next order, we obtain

�21þ
1þ 	1 

 2
¼ 0; ðC7Þ

4	1
 2

¼ 0; ðC8Þ

so 	1 ¼ 0 and 1 ¼ 1/(2 2). Continuing to one more order, we have

42�
2þ 62 

2

3 3
¼ 0; ðC9Þ

�1þ 6	2 
2 ¼ 0; ðC10Þ
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so 	2 ¼ 1/(6 2) and 2 ¼ 1/(4 3). It improves the accuracy of the approximation for xH2
significantly at small  to include one more

order, so we do so:

43 þ
1

3 4
� 2

 
	3 ¼ 0; ðC11Þ

4

 2
	3 �

8

5 5
¼ 0; ðC12Þ

giving 	3 ¼ 2/(5 3) and 3 ¼ 7/(60 4). Therefore, to order � 4R we have

�eR
�R

¼ 1

 
þ �R

2 2
þ � 2

R

4 3
þ 7� 3R

60 4
; ðC13Þ

	H2
¼ �1þ � 2

R

6 2
þ 2� 3R

5 3
; ðC14Þ

xH2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2H2

q
¼ �Rffiffiffi

3
p

 
þ 2

ffiffiffi
3

p
� 2
R

5 2
: ðC15Þ

For the case �R ! 1, we let

 ¼ 0 þ �1=2�
�1=2
R þ �1�

�1
R þ : : : ; ðC16Þ

	H2
¼ 	0 þ 	�1=2�

�1=2
R þ 	�1�

�1
R þ : : : ; ðC17Þ

and if we expand equations (C1) and (C2) in powers of ��1
R , then the leading-order equations are

20 �
4

 
¼ 0; ðC18Þ

� 8

3 
1� (1� 	20)

3=2
h i

¼ 0: ðC19Þ

Therefore, 0 ¼ 2/ and 	0 ¼ 0. Continuing the expansion to the next order,

2�1=2 ¼ 0; ðC20Þ

� 16

 3
	2�1=2 þ

8

 2
¼ 0; ðC21Þ

so �1=2 ¼ 0 and 	�1=2 ¼ �
ffiffiffiffiffiffiffiffi
 /2

p
. Continuing one more order,

1þ 2�1 ¼ 0; ðC22Þ
16

ffiffiffi
2

p

 5=2
	�1 ¼ 0; ðC23Þ

so �1 ¼ �1/2 and 	�1 ¼ 0. Thus, to order ��1
R in the limit �R ! 1, we have

�eR
�R

¼ 2

 
; ðC24Þ

	H2
¼ �

ffiffiffiffiffiffiffiffi
 

2�R

r
; ðC25Þ

xH2
¼ 1�  

4�R
: ðC26Þ
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