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1 Introduction

 

Emission processes give us diagnostics with which to estimate important parameters, such as the density, and
magnetic field, of an astrophysical plasma. Fluid dynamics provides us with the capability of understanding
the transport of mass, momentum and energy. Normally one spends more than a lecture on Astrophysical Fluid
Dynamics since this relates to many areas of astrophysics. In following lectures we are going to consider one
principal application of astrophysical fluid dynamics – accretion discs. Note also that magnetic fields are not
included in the following. Again a full treatment of magnetic fields warrants a full course.

 

2 The fundamental fluid dynamics equations

 

The equations of fluid dynamics are best expressed via conservation laws for the conservation of mass, mo-
mentum and energy.
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2.1 Conservation of mass

 

Consider the rate of change of mass within a fixed volume. This
changes as a result of the mass flow through the bounding surface.

Using the divergence theorem,

 

The continuity equation

 

Since the volume is arbitrary,

V
S

vi

ni

Control volume for as-
sessing conservation of 
mass.

t∂
∂ ρ Vd
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∫ ρvini Sd
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2.2 Conservation of momentum

 

Consider now the rate of change of momentum within a vol-
ume. This decreases as a result of the flux of momentum
through the bounding surface and increases as the result of
body forces (in our case gravity) acting on the volume. Let

and 

then

There is an equivalent way of thinking of , which is often useful, and that is,  is the  component

of the force exerted on the fluid exterior to  by the fluid interior to .

ni

Π ij nj

V

S Π ij Flux of i  component of momentum in the j  direction=

f i Body force per unit mass=

t∂
∂ ρvi Vd

V
∫ Π ij n j S ρ f i Vd

V
∫+d

S
∫–=

Π ij Π ij n jdS ith

S S
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Again using the divergence theorem,

 

Gravity

 

For gravity we use the gravitational potential

For a single gravitating object of mass 

t∂
∂ ρvi( )

xj∂
∂Π ij+

 
 
 

Vd
V
∫ ρ f i Vd

V
∫=

t∂
∂ ρvi( )

xj∂
∂Π ij+⇒ ρ f i=

f i xi∂
∂φG–=

M

φG
GM

r
---------–=
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and for a self-gravitating distribution

where  is Newton’s constant of gravitation.

 

Expressions for 

 

The momentum flux is composed of a bulk part plus a part resulting from the motion of particles moving with
respect to the centre of mass velocity of the fluid . For a perfect fluid (an approximation often used in as-

trophysics), we take  to be the isotropic pressure, then

The equations of motion are then:

∇ 2φG 4πGρ=

φG⇒ G
ρ xi ′( )
xi xi ′–
-------------------d3x′

V′
∫–=

G

Π ij

vi( )
p

Π ij ρvivj pδij+=

t∂
∂ ρvi( )

xj∂
∂ ρvivj pδij+( )+ ρ

xi∂
∂φG–=

t∂
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xj∂
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xi∂
∂p– ρ

xi∂
∂φG–=
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There is also another useful form for the momentum equation derived using the continuity equation.

Hence, another form of the momentum equation is:

On dividing by the density
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Differentiation following the motion

This is a good place to introduce differentiation following the motion. For a function , the variation of

 following the motion of a fluid element which has coordinates

is given by:

Hence, the momentum equation can be written compactly as

f xi t,( )
f

xi xi t( )=

df
dt
-----

t∂
∂ f

xi∂
∂ f dxi

dt
-------+

t∂
∂ f

vi xi∂
∂ f

+= =

ρ
dvi

dt
-------

xi∂
∂p– ρ

xi∂
∂φG–=
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2.3 Thermodynamics

Before going on to consider the consequences of the conservation of
energy, we consider the thermodynamics of a comoving volume ele-
ment. (See the  figure at left.)

Define:

m

S

U

V
p

Element of fluid and the variables 
used to describe its state.

m Mass of element=

ε Internal energy density per unit volume=

P pressure (as above)=

s entropy per unit mass=

T temperature (in degrees Kelvin)=
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We have the following quantities for the volume element:

The second law of thermodynamics tell us that the change in entropy of a mass of gas is related to changes in
other thermodynamic variables as follows:

U Total internal energy mε
ρ

-------= =

S Entropy ms= =

V volume m
ρ
----= =

kTdS dU pdV+=

kTd ms( )⇒ d
mε
ρ

------- 
  pd

m
ρ
---- 

 +=

kTds⇒ d
ε
ρ
--- 

  pd
1
ρ
--- 

 +
1
ρ
---dε ε p+( )

ρ2
-----------------dρ–= =

ρkTds⇒ dε ε p+( )
ρ

-----------------dρ–=
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Specific enthalpy

A commonly used thermodynamic variable is the specific enthalpy:

In terms of the specific enthalpy, the equation

becomes

For a parcel of fluid following the motion, we obtain, after dividing by the time increment of a volume element,

h
ε p+

ρ
------------=

kTds d
ε
ρ
--- 

  pd
1
ρ
--- 

 +=
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ρ
------------ 
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p
ρ
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 – pd
1
ρ
--- 
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ρ
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ds
dt
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-----
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ρ
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dt
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ds
dt
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dt
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1
ρ
---dp
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The fluid is adiabatic when there is no transfer of heat in or out of the volume element:

The quantities , ,  etc. are perfect differentials, and these relationships are valid relations from point to
point within the fluid. Two particular relationships we shall use in the following are:

2.3.1 Equation of state
The above equations can be used to derive the equation of state of a gas in which the ratio of specific heats
( ) is a constant. Consider the following form of the entropy, internal energy, pressure relation:

kT
ds
dt
----- 0=

dε
dt
-----

ε p+( )
ρ

-----------------dρ
dt
------– 0=

dh
dt
------

1
ρ
---dp

dt
------– 0=

⇒

ds dε dp

ρkT
t∂

∂s
t∂

∂ε
h

t∂
∂ρ

–=

ρkT
xi∂

∂s ρ
xi∂

∂h
xi∂
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γ cp cv⁄=

ρkTds dε ε p+( )
ρ
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In a perfect gas,

where  is the mean molecular weight and 

Hence,

(We can discard the  since the origin of entropy is arbitrary.)

p
ρkT
µmp
-----------=

µ

p γ 1–( )ε= ε p+⇒ γε=

µmp γ 1–( )εds dε γε
ρ
-----dρ–=

µmp γ 1–( )ds⇒ dε
ε

-----
γ
ρ
---dρ–=

µmp γ 1–( ) s s0–( )⇒ ε γ ρln–ln=

ε
ργ
-----⇒ µ mp γ 1–( ) s s0–( )[ ]exp µmp γ 1–( )s[ ]exp= =

s0



Fluid Dynamics 13/22 

We therefore have,

The function  is often referred to as the pseudo-entropy. For a completely ionised monatomic gas

.

2.4 Conservation of energy
Take the momentum equation in the form:

and take the scalar product with the velocity:

ε µmp γ 1–( )s[ ]exp ργ×=

p γ 1–( ) µmp γ 1–( )s[ ] ρ γ×exp=

K s( )ργ=

K s( )
γ 5 3⁄=

ρ
t∂

∂vi ρvj xj∂
∂vi+ P∂

xi∂
-------– ρ

φG∂
xi∂

---------–=

ρvi t∂
∂vi ρvjvi xj∂

∂vi+ vi
P∂
xi∂

-------– ρvi

φG∂
xi∂

---------–=

ρ
t∂

∂ 1
2
---vivi 

  ρvj xj∂
∂ 1

2
---vivi 

 +⇒ vi xi∂
∂P

– ρvi

φG∂
xi∂

---------–=
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That is,

Before, we used the continuity equation to move the  and  outside the differentiations. Now we can use

the same technique to move them inside and we recover the equation:

The aim of the following is to put the right hand side into some sort of divergence form.

Consider first the term

ρ
t∂

∂ 1
2
---v2

 
  ρvj xj∂

∂ 1
2
---v2

 
 + vi xi∂

∂p
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φG∂
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∂ 1

2
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2
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∂p

– ρvi

φG∂
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vi xi∂
∂P

– ρkTvi xi∂
∂s ρvi xi∂

∂h
–=

ρkT
ds
dt
----- ρkT

t∂
∂s

– ρvi xi∂
∂h

–=

ρkT
ds
dt
-----

t∂
∂ε– h

t∂
∂ρ ρvi xi∂

∂h
–+=



Fluid Dynamics 15/22 

We now eliminate the  term using continuity, viz

and we obtain

t∂
∂ρ

t∂
∂ρ

xi∂
∂ ρvi( )–=

vi xi∂
∂p

– ρkT
ds
dt
-----

t∂
∂ε– h

xi∂
∂ ρvi( )– ρvi xi∂

∂h
–=

ρkT
ds
dt
-----

t∂
∂ε–

xi∂
∂ ρhvi( )–=
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The term

When the gravitational potential is constant in time,

Hence, the energy equation 

ρvi xi∂
∂φG–

xi∂
∂ ρφGvi( )– φG xi∂

∂ ρvi( )+=

xi∂
∂ ρφGvi( ) φG t∂

∂ρ
––=

xi∂
∂ ρφGvi( )

t∂
∂ ρφG( ) ρ

t∂
∂φG+––=
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∂φG 0= ρvi xi∂
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∂ 1

2
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 
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2
---ρv2vj 
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– ρvi

φG∂
xi∂

---------–=
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becomes

Bringing terms over to the left hand side:

When the fluid is adiabatic

and we have the energy equation for a perfect fluid:

t∂
∂ 1

2
---ρv2

 
 

xj∂
∂ 1

2
---ρv2vj 

 + ρkT
ds
dt
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t∂
∂ε–

xi∂
∂ ρhvi( )–=

xi∂
∂ ρφGvi( )

t∂
∂ ρφG( )––

t∂
∂ 1

2
---ρv2 ε ρφG+ + 

 
xj∂
∂ 1

2
---ρv2vj ρhvj ρφGvj+ + 

 + ρkT
ds
dt
-----=

ρkT
ds
dt
----- 0=

t∂
∂ 1

2
---ρv2 ε ρφG+ + 

 
xj∂
∂ 1

2
---ρv2vj ρhvj ρφGvj+ + 
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The total energy per unit volume is

and the energy flux is

3 Fluids with viscosity

In most astrophysical contexts we do not have to consider molecular viscosity since it is generally small. How-
ever, we do need to consider viscosity in circumstances where it is important to discuss the means whereby
energy is dissipated in a fluid.

3.1 The momentum flux in a viscous fluid
The starting point for considering viscosity is the momentum flux. We put

E
1
2
---ρv2 ε ρφG+ + Kinetic + internal + gravitational energy= =

FE i,
1
2
---ρv2vi ρhvi ρφGvi+ + ρ 1

2
---v2 h φ+ + 

  vi= =

Kinetic + enthalpy + gravitational fluxes=

Π ij ρvivj pδij σij–+=
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where, the viscous stress tensor, , is given by

The tensor

is the (trace-free) shear tensor of the fluid and

is the dilation, which is important in compressible fluids.

The complete equations of motion are therefore:

σij

σij η vi j, vj i,
2
3
---δij vk k,–+ 

  ζδij vk k,+=

2ηsij= ζδij vk k,+

sij
1
2
--- vi j, vj i,

2
3
---δij vk k,–+ 

 =

vk k,

t∂
∂ ρvi( )

xj∂
∂ ρvivj( )+

xi∂
∂p–

xj∂
∂σij ρ

xi∂
∂φG–+=
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3.2 Energy conservation

If we now take the scalar product of the momentum equation with  we obtain

that is, the same as before, but with the additional term

Hence the energy equation becomes

vi

ρ
t∂

∂ 1
2
---v2

 
  ρvj xj∂

∂ 1
2
---v2

 
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x j∂
∂
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∂ 1

2
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 
xj∂
∂ 1

2
---ρv2vj ρhvj ρφGvj viσij–+ + 

 +

ρkT
ds
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The quantity  is interpreted as the work done on the fluid by the viscous force; hence its appearance

with terms that we associate with the energy flux. This is not the full story, however. When there is momentum
transport associated with viscosity, there is also a heat flux,  which is often represented as being proportional
to the temperature gradient with a heat conduction coefficient , i.e.

We then write the full energy equation as

Conservation of energy is expressed by:

and the entropy changes according to

viσij n j

q
κ

qi κ
xi∂

∂T
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∂ 1

2
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 
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∂ 1

2
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xj∂
∂ 1

2
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The term  represents viscous heating and the term  represents escape of heat from the volume re-

sulting from the heat flux. The viscous heating term can be written:

remembering the definition of the shear tensor:

 

vi j, σij q j j,

σij vi j, 2ηsij sij ζvk k,
2+=

sij
1
2
--- vi j, vj i,

2
3
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