Summary of the Equations of Fluid Dynamics

Reference:
Fluid MechanicsL.D. Landau & E.M. Lifshitz

1 Introduction

Emission processes give us diagnostics with which to estimate important parameters, such as the density, an
magnetic field, of an astrophysical plasma. Fluid dynamics provides us with the capability of understanding
the transport of mass, momentum and energy. Normally one spends more than a lecture on Astrophysical Fluic
Dynamics since this relates to many areas of astrophysics. In following lectures we are going to consider one
principal application of astrophysical fluid dynamics — accretion discs. Note also that magnetic fields are not
included in the following. Again a full treatment of magnetic fields warrants a full course.

2 The fundamental fluid dynamics equations

The equations of fluid dynamics are best expressed via conservation laws for the conservation of mass, mo
mentum and energy.
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2.1 Conservation of mass

Consider the rate of change of mass within a fixed volume. This
changes as a result of the mass flow through the bounding surface.

a = —_—
mipdv = gpvinids

Using the divergence theorem,

Control volume for as- 9 pdV + i(pvi)dV =0
sessing conservation of ot 0X;
mass.

[] 5%—?+ai)(i(pvi)%dv =0

The continuity equation
Since the volume is arbitrary,

dp, 0 _
at +a_xl(pv|) =0
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2.2 Conservation of momentum

Consider now the rate of change of momentum within a vol-
ume. This decreases as a result of the flux of momentum
through the bounding surface and increases as the result of
body forces (in our case gravity) acting on the volume. Let

M.. = Flux of i component of momentum in thedirection

f, = Body force per unit mass

then
0 _
a&pvidv = —gl‘lijnjd8+£pfidv

There is an equivalent way of thinking IEI{J- , which is often useful, and tHﬁFj iIdeS i8the component

of the force exerted on the fluid exteriorSo by the fluid interiobto
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Again using the divergence theorem,

J;%(pv) +_dev J;pf \Y;

an”
2w+ D
J
Gravity

For gravity we use the gravitational potential

(= 2%
L ox
For a single gravitating object of mdgls
GM
O = —
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and for a self-gravitating distribution
0% = 4TGp

P(X")
X — X'

0 @~ = -G d3x’
=7

whereG is Newton’s constant of gravitation.

Expressions for 1 i

The momentum flux is composed of a bulk part plus a part resulting from the motion of particles moving with
respect to the centre of mass velocity of the f{vid . For a perfect fluid (an approximation often used in as-

trophysics), we takp to be the isotropic pressure, then

M.

j = PViVj* PO

The equations of motion are then:

9 d _ 9%
m(pvi) +6—Xj(pvivj + péij) = —pa—xi

9 9 _ dp 9%
[ E(pvi”a—xj(pvivi) = ax ani
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There is also another useful form for the momentum equation derived using the continuity equation.

0 0 _dp, Vi 9 oV,
attPY) * o (PYY) = Vigy * Pt Vigy (PYI) * PV

=it x(pv)} {pat PVigx;

ov. ov.

| |

= nND— +pV.——

Pat ~ PYiax.
Hence, another form of the momentum equation is:

v, al __dp 09g

Pat p"Jax T Toax Pox

On dividing by the density
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Differentiation following the motion
This is a good place to introduce differentiation following the motion. For a funt(ient) , the variation of
f following the motion of a fluid element which has coordinates
X = X(t)

IS given by:

df _of L of 9% _of  of

dt ot ox dt ot '0X;
Hence, the momentum equation can be written compactly as

dv. 0Q
Vi _o o0p G
Pat T Tax, Pax
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2.3 Thermodynamics

Before going on to consider the consequences of the conservation of
energy, we consider the thermodynamics obmovingvolume ele-
ment. (See the figure at left.)

Element of fluid and the variables

used to describe its state. .
Define:

= Mass of element

= Internal energy density per unit volume
pressure (as above)

= entropy per unit mass

= temperature (in degrees Kelvin)

— ¢ T o 3
1
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We have the following quantities for the volume element:

U = Total internal energy= %c'

S = Entropy = ms

m
V = volume = E

The second law of thermodynamics tell us that the change in entropy of a mass of gas is related to changes i
other thermodynamic variables as follows:

kTdS= dU+ pdV

0 kTd(mg = dEmSD+ pd2E

EbD
0, nqdl0 — (e+ D)
0 kTds = dEH]+ pd[ﬁ] pde 02 —=2dp

0 pkTds= de —(E;pp)dp
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Specific enthalpy
A commonly used thermodynamic variable is the specific enthalpy:
E+p

P

h =

In terms of the specific enthalpy, the equation

KTds = c%% + pd%

KTds = GE“ o _ EbD+ pd% e

For a parcel of fluid following the motion, we obtain, after dividing by the time increment of a volume element,

becomes

TR~ @t p  dt
ds _ dh_1dp
det ~ dt pdt
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The fluid isadiabaticwhen there is no transfer of heat in or out of the volume element:

de _(e+p)dp _

«rdS=og 9t P ot
dt d_h_l'd_p =0
dt pdt

The quantitiesls € dp etc. are perfect differentials, and these relationships are valid relations from point to
point within the fluid. Two particular relationships we shall use in the following are:

s _ de ,0p
PKTSE = 5t Mot
os _ oh 0p

PKTEx = Pax, ~ax

2.3.1 Equation of state

The above equations can be used to derive the equation of state of a gas in which the ratio of specific heat
(y = cp/cv) Is a constant. Consider the following form of the entropy, internal energy, pressure relation:

okTds= d— @dp
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In a perfect gas,

wherell is the mean molecular weight and

p=(y-1)el e+ p ¢
Hence,

um (y—1)eds = c —%c'dp

_de_y
[] pmp(y—l)ds = ?—F—)dp

0 umy(y-1)(s-g) = la ¥ Ip
0 p% = expl m(y—1)(s—5)] = explum (y—1)s]

(We can discard thg, since the origin of entropy is arbitrary.)
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We therefore have,
e = exp[umy(y—1)s] x pY
p = (y-1explum,(y-1)s| xpY¥
= K(s)pY

The functionK(s) is often referred to as the pseudo-entropy. For a completely ionised monatomic gas
y = 5/3.

2.4 Conservation of energy
Take the momentum equation in the form:

Iy i

Pat " PYiax, T Tax,~ Pox,

and take the scalar product with the velocity:

ov; ov; oP 0Qs

| i

orl. .0 ol g_ _op 09
[ pﬁ[QViViDJ’ija_XjEQViViD = —Vi—— :
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That is,

ol 2, oy @ L - _ 0 __ %
+
Pate 07 PYigx "0 = ~Vigx,~ Piax;
Before, we used the continuity equation to movegthe [:m]d outside the differentiations. Now we can use
the same technique to move them inside and we recover the equation:
ol 0 (L2 ,p 9%
S5PV T ax. 27" ) Vi ~Vigx ~PYigx

The aim of the following is to put the right hand side into some sort of divergence form.
Consider first the term

oP _ 0s oh
“Vigx - PKTY, ax ~Pligx,
_ ds 0s oh
= PKT G~ PKTa —PV '0x;
_ ds ae op oh
= PRt ~at " Mot ~PViax,
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We now eliminate th%% term using continuity, viz

9P _

0

and we obtain

op _ ds o 0 _ ., 0h
Vigx, = PXTat gt Max PV PVigx,
_ ds o 0
= PTG 5t ~ax P
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The term
_ 0 0
_pVi—aX = a—xi(p(PGVi)"'(PGa—Xi(pVi)
_ 0 _ . op
= —a—xi(p(PGVi) (Pc;m

0Qg
= (p(PGV) at(p(PG) pat

When the gravitational potential is constant in time,

_ % _ o G
It =00 —pv,=— Frvi —a—xi(p(PGVi)—a(p(PG)
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becomes

Oy 0 a0 L S %0 o

_EQpVD+_j pvev kadt 5t aXi(phvl)
0 0
_a—xi(p(PGVi) _m(pq’@)

Bringing terms over to the left hand side:

ds

OrlL .2 0, 0 2
pVv +s+pchD+—E2pvv +phy; +pchv kadt

otk

When the fluid is adiabatic

ds
kadt 0

and we have the energy equation for a perfect fluid:

9 %pv2+s+pcpq]+i%pv2v +phy, +pchvD =0
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The total energy per unit volume is
E = %pv2 +€&+p@g = Kinetic + internal + gravitational energy

and theenergy fluxs

Fe

1
QDVZVi +phv, +p@gv; = p%VZ +h+ (FEVi

Kinetic + enthalpy + gravitational fluxes

3 Fluids with viscosity

In most astrophysical contexts we do not have to consider molecular viscosity since it is generally small. How-
ever, we do need to consider viscosity in circumstances where it is important to discuss the means whereby
energy is dissipated in a fluid.

3.1 The momentum flux in a viscous fluid
The starting point for considering viscosity is the momentum flux. We put

I'Iij = PVt péij —0j;
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where, the viscous stress tensq{, , IS given by

= 2rlsij +Z5iij, K

The tensor

_1 2
S = 30k Vi~ 5%V 10
is the (trace-freeghear tensoof the fluid and

Yk, k
is the dilation, which is important in compressible fluids.
The complete equations of motion are therefore:

ax ax. Pox

0 0 _
a(pvi) +6—Xj(pvivj) =
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3.2 Energy conservation
If we now take the scalar product of the momentum equationwvith  we obtain

0 (L a0 ol _ 0P ach ac;;
P5iV'D *pVJa—ijzVD‘ Viox, “PViax " Viax,

that is, the same as before, but with the additional term

% o,

—(v.o )—v o

] ij

Hence the energy equation becomes

0 0
atE;‘pv2 +g+ pcpcg + —%pvzv +phv; +p@gy; VIGIE

B ds
= kad_t_V iGij
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The quantityvioij n; is interpreted as the work done on the fluid by the viscous force; hence its appearance

with terms that we associate with the energy flux. This is not the full story, however. When there is momentum
transport associated with viscosity, there is also a heatflux, which is often represented as being proportiona
to the temperature gradient with a heat conduction coeffigient , i.e.

A
i 0X;

We then write the full energy equation as

ol o 0, 0l 2 (]
otpPY T E T PR T G P T PRV * P9V} —Vi i * A
_ ds
= PTG Vi1 * 9,

Conservation of energy is expressed by:
ol .2 O, 0 d..2 O _
ataPY "o PR 5 PV phv; +p@gV; —V;0j; +qj7 = 0

and the entropy changes according to

ds _
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The termv; iOij representsscous heatingnd the termqj j represents escape of heat from the volume re-

sulting from the heat flux. The viscous heating term can be written:
— 2
GijVi,J Znslj 1] +ka,k

remembering the definition of the shear tensor:

Sij = zEﬁ j 5qu K
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