Electromagnetic Theory

Summary:

» Maxwell’s equations

* EM Potentials

 Equations of motion of particlesin electromagnetic fields

» Green’'s functions

e Lienard-Weichert potentials

» Spectral distribution of electromagnetic energy from an arbitrarily moving charge
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1 Maxwell’s equations

curlE = _98 Faraday’s law

ot
curlB = pyd + C—lzg—tE Ampere’s law
dve = 2 clctric hages
divB = 0 il

gy = 8.854x10 % Farads/metre Hg = 41 10~" Henrys/metre
ey = = ¢ = 2.998x10% m/s= 300, 000 ks
Conservation of charge

00, 41—
m+d|vJ =0
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Conservation of energy

Jrl E2+1BZD+d|v B0 - _(JmE)

€
atp0 O [l Ho []

Electromagnetic Poynting - Work done on

energy density flux particles by EM field
Poynting Flux
Thisis defined by

.. E.B
g = ExB S| ijk—j"k
Ho Ho
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Conservation of momentum

Momentum Maxwell’'s
density stress tensor

/
J aM'J = —pE. —(J x B).
atQ;ﬂ ax ! !
Rate of change of

momentum due to EM
field acting on matter

Electric part Magnetic part

[BB 2 _ [
Mi; = goEiE; ——E26IE I_ >3 &0
O Mo 2“0 O

= —Flux of i cpt. of EM momentum in j direction

2 Equations of motion

Charges move under the influence of an electromagnetic field according to the (relativistically correct)
eguation:

dp _ _ pxBO
o - A(E+vxB) = + Bt
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Momentum and energy of the particle are given by:
vZ1/2
= ymv = ml——
p=y V= -5

E = ymc?2 E2 = p2c?+ m2c?

3 Electromagnetic potentials

3.1 Derivation

divB =00 B = curl A

curlE = 0B [ curl% aAD =0

ot
0A _
[] E+ﬁ = —gradg
_ _0A
0 E = —gradg 3t
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Summary:

= —gradcp—g—f‘ B = curlA

3.2 Potential equations

Equation for the vector potential A
Substitute into Ampere’s law:

curl curlA = ppyJd + 123{ gradcp—g—ﬂ

2
10 A 10 _
L_Za? -0 A} NFT: ——grad@+ grad divA = pyJ

Equation for the scalar potential ¢

Exercise:
Show that

0A p
2 = =
e + d|vat .
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3.3 Gauge transformations

The vector and scalar potentials are not unigue. One can see that the same equations are satisfied if one
adds certain related termsto ¢ and A, specifically, the gauge transformations

A A-grady @ = g+ DY

leaves the relationship between E and B and the potentials intact. We therefore have some freedom to
specify the potentials. There are a number of gauges which are employed in electromagnetic theory.

Coulomb gauge

dvA =0
Lorentz gauge

100, .
— 1 + -
ot dvA =0
162A

0 ==— —[02A = pnJ
c20t? Ho
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Temporal gauge
=0
0

O giva = _P
] a,[dlvA .

2
10 A
——  +curl curlA = J
c20t2 Ho

The temporal gauge isthe one most used when Fourier transforming the electromagnetic equations. For
other applications, the Lorentz gauge is often used.

4 Electromagnetic waves

For waves in free space, we take
E = Egexp[i(k X —wt)]
B = Byexp[i(k Ix —wt)]
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and substitute into the free-space form of Maxwell’ s equations, viz.,

CurlE = —g—tB curlB = C%%E
dv =0 dvB =0
Thisgives.
. : kxEgq
IkxEy=iwBy0O By = 5
ikxBg = —C—lziooEOD kxB, = —C%EO

ik (E,=00 k[Ey =0
ik(B,=00 kB, =0

We take the cross-product with k of the equation for By:

(kxEg) (K [Eg)k —k%E, _ W

kxB~ = kX
0 W C2

Ey
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andsincek[EO =0

2
[(W* A= — —
> kDEo 00 w = xck

O

the well-known dispersion equation for electromagnetic wavesin free space. The - sign relatesto waves
travelling in the opposite direction, i.e.

E = Egexp[i(k IX + wt)]

We restrict ourselves here to the positive sign. The magnetic field is given by

k x E KXE
B. = 0 = l'ljf X E L = 0
0 W clk @ c
The Poynting flux is given by
S = ExB
Ho
and we now take the real componentsof E and B :
KXE,
E = Ejcos(k X —wt) B = cos(k [X — wt)
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where EO IS now real, then

E,ax(KXE
s= 2 ( O)cosz(ka—oot)
MoC

= cgq(E3K — (K [E) E) cos? (k X — wt)

= cggE3K cos?(k X — wt)
The average of cos?(k Ok — wt) over aperiod (T = 21 w) is 1/2 so that the time-averaged value of
the Poynting flux is given by:

CEO

2
2EK

[H]=

5 Equations of motion of particles in a uniform magnetic field

An important special case of particle motion in electromagnetic fields occurs for E = 0 and
B = constant. Thisisthe basic configuration for the calculation of cyclotron and synchrotron emission.

In this case the motion of arelativistic particle is given by:

P = qvxB) = [L(pxB)
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Conservation of energy
There are a number of constants of the motion. First, the energy:

P _
p Ui = 0
and since

then

de _ 2 SN
Edt_det_C%OEgl_tD_Ohere

Therefor E = ymc? is conserved and y is constant - our first constant of motion.

Parallel component of momentum

The component of momentum aong the direction of B is also conserved:

d _dp
dt%O[EE_dt ymBE(pr)_0

[] Py my, IS conserved
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where o is the component of momentum parallel to the magnetic field.
We write the total magnitude of the velocity
v =cCcf
and since y is constant, so is v and we put
V| = vcosa

where a isthe pitch angle of the motion, which we ultimately show is a helix.
Perpendicular components

Take the z—axis along the direction of the field, then the equations of motion are:

€ € &
dp _ g
dt — ym| Px Py Py
0 0B
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In component form:

dp, q
ar - ymPyB = NOsPy
dp
y - _9 - _
dt ymeB 98Py
_ 9B _
Qg = W = Gyrofrequency
n = a - Sign of charge

A quick way of solving these equationsis to take the second plus i times the first:

S, +ip,) = -inQg(p, +ip,)
This has the solution
p,+ip, = Aexp(igy) exp[-inQgt]
[ p, = Acos(nQgt + @) py = —Asin(NQgt + @)

The parameter @ is an arbitrary phase.
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Positively charged particles:
P, = Acos(Qgt + @y) py = —Asin(Qgt + @)
Negatively charged particles (in particular, electrons):
P, = Acos(Qgt + @y) py = Asin(Qgt + @)
We have another constant of the motion:

p)%+ py = A2 = pZSnZG = p%

where pg isthe component of momentum perpendicular to the magnetic field.

Velocity
The velocity components are given by:

Vy . Py sina cos(Qgt + @p) |
Yyl = ym|Py| T CB|-nsinasin(Qgt + @)
V7| P i cosQl |
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Position
Integrate the above velocity components:

cBsina . 1
- - Sin(Qpt + @)
X QB B 0 Xo
= ; +
y r]CBS'nacos(QBtﬂpo) Yo
z Qp z
- 0
i cBtcosa |
This represents motion in a helix with
_ cBsina

Gyroradius = r5 = o
B

The motion is clockwise for n >0 and anticlockwise for n <O.
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rsSin(Qgt)

-
X

In vector form, we write:

Ay
n<o
|
X
—1C0s(Qgt)|Qg
resin(Qgt)

X = XO+rG[sin(QBt+(po) ncos(Qgt + @p) O}

+cBteosa | 0 1

The parameter X represents the location of the guiding centre of the motion.
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6 Green’s functions

Green’' sfunctions are widely used in electromagnetic and other field theories. Qualitatively, the ideabe-
hind Green’ s functionsis that they provide the solution for a given differential equation corresponding
to a point source. A solution corresponding to a given source distribution is then constructed by adding
up anumber of point sources, i.e. by integration of the point source response over the entire distribution.

6.1 Green’s function for Poisson’s equation

A good example of the use of Green’s functions comes from Poisson’ s equation, which appearsin elec-
trostatics and gravitational potential theory. For electrostatics:

Pe(X)

2 ==
29(x) = —

where p,, isthe electric charge density.
In gravitational potential theory:
(2¢p(x) = 4nGp,(X)

where p,(X) isthe mass density.
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The Green'’ s function for the electrostatic case is prescribed by:
O(x —x")

02G(x, x') = -
0

where (X — x") isthethree dimensional deltafunction. When there are no boundaries, this equation has
the solution
G(x,x") = G(x—=x")
1
ATEyr

G(x) =

The general solution of the electrostatic Poisson equation is then

o(x) = | G(X —X")pg(X)d3X’
space
1 Pa(X)

= —— I —d3x’
4nsospace|x—x |

For completeness, the solution of the potential for a gravitating mass distribution is:

Pm(X")
o(x) = -G [ |x—x’|d3x’

space
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6.2 Green’s function for the wave equation

In the Lorentz gauge the equation for the vector potential is.

16A
=~ " _[2A = J
c29t2 Ho

and the equation for the electrostatic (scalar) potential is

1 9° , _
532t 0 - 020(t x) = 2

These equations are both examples of the wave equation

ﬁaazw(t x) - 02(t, x) = S(t, x)

Whentimeisinvolved a“point source” consists of asourcewhich isconcentrated at apoint for an instant
of time, i.e.
S(x, t) = Ad(t—t")d3(x—x")

where A isthe strength of the source, corresponds to a source at the point x = x' whichisswitched on
at =1t'.
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In the case of no boundaries, the Green’ s function for the wave equation satisfies:

01 52 ]
0 o2 OG(t—t', x—x") = 3(t—t")83(x —x")
[€20t2 0

The relevant solution (the retarded Green’ s function) is.
G(t, x') = i{)%_m
! ATr ¢

S0 that

' AN 1 ! |X_X'||:|
G(t—t', x—x') = 4__n|x—x’|6%_t -5

The significance of the delta function in this expression is that a point source at (t', x') will only con-
tribute to the field at the point (t, x) when
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of a pulse from the point x'. Equiva-

X —X'|
C

I.e. at alater time corresponding to the finite travel time

lently, a disturbance which arrives at the point t, x had to have been emitted at atime

_Ix=xI
C

t' =t

X =X|

Thetimet — IS known as the retarded time.

The general solution of the wave equation is

w(t, X) :fw dt [ G(t—t, x—x)S(t', X )d3x

space

_ 1 oo S XD IX=XI043y
B 4TJ_oo dt I X — X'| 6% C d™x
space

Electromagnetic Theory 22 /56



6.3 The vector and scalar potential

Using the above Green’ sfunction, the vector and scalar potential for an arbitrary charge and current dis-
tribution are:

o(t—t' —|x—=x"|/¢c)J(t', x')dgx,
space X = X'|

AL, x) = Z—ffm dt’

oo O(t—t' —|x=X'|/¢c)p(t', X'
4T[€OI—00 space |X — X'

7 Radiation from a moving charge — the Lienard-Weichert potentials

7.1 Deduction from the potential of an arbitrary charge distribution
The current and charge distributions for a moving charge are:

p(t, x) = qd3(x—X(t))
J(t, xX) = qud3(x —X(t))

where v is the velocity of the charge, g, and X(t) isthe position of the charge at time t.The charge q
Isthe relevant parameter in front of the deltafunction since

| o(t, x)d3x = q | 3 (x = X(1))d3x = q

space space
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Also, the velocity of the charge

v(t) = % = X(1)

so that
p(t, x) = qd3(x —X(t))
J(t, X) = gX(1)&3(x = X(t))

With the current and charge expressed in terms of spatial delta functionsit is best to do the space inte-
gration first.

We have
o(t—t' —|x—=x'|/c t', x' oty — ! 3(y' _ X(t'
( ,)pe( ) Byr = Ias(t U =X =X1/€)8¥(X = X(1)) g3,
X = X'| X = X'|
Space space
X =X(1)IT

_qé%_t_TD
- X —X(t')]
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Oneimportant consequence of the motion of the chargeisthat the delta function resulting from the space
integration is now amore complicated function of t', because it depends directly upon t' and indirectly
though the dependence on X(t'). The delta-function will now only contribute to the time integral when

_x=X(t")
C

t' =t

Theretarded timeis now an implicit function of (t, x), through X(t'). However, theinterpretation of t'
isstill the same, it representsthe time at which apulse leavesthe source point, X(t') to arrive at thefield
point (t, X).

We can now complete the solution for ¢(t, x) by performing the integration over time:

1 _g8H—t -

(L, x) = 41150.[_00 |x —X(t")| dr

This equation is not as easy to integrate as might appear because of the complicated dependence of the
delta-functionon t'.
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7.2 Aside on the properties of the delta function
The following lemmaiis required.

We define the delta-function by

f f(t)3(t—a)dt = f(a)

Some careisrequired in calculating Ioo f(t)d(g(t) —a)dt.

Consider

{7, 13(gm —a)at = [ F()3(a(0) ~a) 3o

= 15
[ 5 dl-a)

- fgH(a))
g(g~H(a)

where g~1(a) isthevalue of t satisfying g(t) = a.

Electromagnetic Theory
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7.3 Derivation of the Lienard-Wierchert potentials

In the above integral we have the deltafunction d(t —t' —|x— X(t")]/c) = d(t' +|x—X(t')|/c—1) so
that

g(t') = t' +|x=X(t")|/c—t
Differentiating this with respect to t':

do(t')_

0 |x—=X(t')
dtr g(t) =1+ atr

C

To do the partial derivative on the right, express |x — X (t')|2 in tensor notation:
X = X(t')[2 = %% — 2% X, (') + X (') Xi (t")
Now,

9 Ix—X(t')[2 = 2x X(t)lx—|x X(t")

ot’'

Differentiating the tensor expression for |x — X (t')|2 gives:

6t’|x X(1)12 = =2x Xj(t') + 2X (1) X;(t') = =2X;(t") (% = X; (1))
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Hence,

2x =X (1)) x I =X ()] = -2X(1) 0= X,(t")

d
ot’

X; (1) (% = X: (') _ X(t) Ox=X(t'))

- X—X(T) X—X(T)

X = X(t)] =

The derivative of g(t') istherefore:
Loy = 9 [x=X(t) _ ,  X(t)Ox-=X(t))/c
o) = 15 LT X))

X = X () = X(t") Ax=X(t'))/c
X = X(t")]

Hence the quantity 1/ (g(t')) which appearsin the value of the integral is

1 _ X = X(t")]
g(t')  |x=X(") = X(t") Ox=X(t"))/c

Electromagnetic Theory
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Thus, our integral for the scalar potential:

X =X({t)o
. R

(L, x) = 4n£0r_oo |x — X(t")| dr
__q |x—_X(t')| y 1
4“50|X_X(t,)| CX(t) E()((:—X(t’)) [x = X(t")

- _Q 1
4T[€O|X—X(t')| _ X(t') [()((:—X(t'))

where, it needs to be understood that the value of t' involved in this solution satisfies, the equation for
retarded time:

_x=X(t")
C

t' =1t

We also often use this equation in the form:

C
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7.4 Nomenclature and symbols
We define the retarded position vector:

r' = x—X(t")
and the retarded distance
r' = |[x=X(t).
The unit vector in the direction of the retarded position vector is:
I I —_— r_’
n'(t) =
Therelativistic 3 of the particleis
= X()
') = =2
B(t') = =

Electromagnetic Theory
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7.5 Scalar potential
In terms of these quantities, therefore, the scalar potential is:

q 1

t, = .
(p( X) 4T[£O|X_X(t’)|_x(tr) E(X—X(t'))
C
_ _q 1
 Amer' —B(t) O
090 1

rie,r'U[1-B(t') Ch']

This potential shows a Coulomb-like factor times afactor (1 —B(t') Ch')~1 which becomes extremely
important in the case of relativistic motion.
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7.6 Vector potential
The evaluation of the integral for the vector potential proceedsin an analogous way. The major differ-

enceisthe velocity X(t') in the numerator.

Hod X(t')

4Tt o X( — X(t'
X — X (t')] ( )E(>(<: (t))

A(t, X)

Hod  X(t)
ATr'[1—B(t') Th']

Hence we can write

_ .4 Xt) _1_g X(t)
Alt %) = Hofo ™ gme FIT_p(t) th] ~ c2dmeyr [1—B(t) C]

= cIB(t) (L, X)
Thisis useful when for expressing the magnetic field in terms of the electric field.
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7.7 Determination of the electromagnetic field from the Lienard-Wierchert potentials
To determine the electric and magnetic fields we need to determine

0A

E = —gradcp—a

B = curl A

The potentials depend directly upon x and indirectly upon X, t through the dependence upon t'. Hence
we need to work out the derivatives of t' with respect to both t and x.

I

Expression for %

Since,

t,+|X—X(t )| =t
C
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We can determine a—

Solving for ot'/ ot

by differentiation of thisimplicit equation.

T+ 2o x-x(1)) = 1

at' L (X=X(t)) X (t)ot' _
Y 5t |x X (1) EE c Uot ~

X(t) Ox=X(t')70t" _
[1_ c/x — X ()] Jat =1

o _ X=X (t")

o x—X(t') = (X(t')/c) Ox—=X(t))
"

rr—X(t')F'/c
ov_ _ 1
ot 1—B(t') h’

Electromagnetic Theory

34 /56



Expression for o Lt
X

Again differentiate the implicit function for t':

at' (x—X(t)) (X X(t))X (t')/c o

c|x X(t' )| |x X (t)] ax =0
ot’ B-(x - X, (t )) X; — X, ~
a_xi[l_ X - X(t)l J TX—X(O)
at'[|x X (1) —B(t) Ox - X(t))J X —%i
OX X — X(t")] clx — X(t")]
Lo _ —(% = Xi(t"))/c
0%, [x—=X(t")=B(t") (x = X(t'))
i e ot _ X' _ C_1ni'
- 0% ' _X(t')I'/c  1-B(t) I
. c1n’
or t" = 1-B(t)
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The potentials include explicit dependencies upon the spatial coordinates of the field point and implicit
dependencies on (t, x) viathe dependence on t’

The derivatives of the potentials can be determined from:

In dyadic form:

o9
axi

t
9A
ot

dA

|
dxj

X;

0A,
&ij KT
j

Hel, = Dol +

curl A,

= a_(p +a(p ﬂ

x|, Ot |%0%
_ Mor

ot' ot
_ OA +%£
_. ce. Ot %%
= Eijkge iik3x. ot

it J

09| gy 9A| - 0A| U
ot | ot [x ot |y Ot

= curl A, +0t" x gi‘
t’

X

Electromagnetic Theory

36 /56



Electric field

The calculation of the electric field goesasfollows. Some qualifierson the partial derivativesare omitted
since they should be fairly obvious

_ e OA _ 0., O[cTiB(t)q Pt
E=-lo ot HOly —5p ot’ (ot
= e 99 4 BOUT _@p O
= —Dele W[Dt +catJ CB(t)at
Theterms
v s B _ 1(M-p) o _ 1
c ot cl-p[h' ot (1-B[h')
Other useful formulae to derive beforehand are:
E = — -1 E = — -1 !
5 cfB Tt cBh

In differentiating T it is best to expressit in the form

1
(1—p N B
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With alittle bit of algebra, it can be shown that

g, = —94 =B d¢ _ _qc [Bh' —p2+clr'p (]
U 4meyr'2(1-pmn’)2 OU  4mgr'2 (1-Bh)?
Combining all terms:
- _ 0 [(M-B)(A-p?+crBh)—clrB(1-BCh)]
4TiEyr'? (1-Bh")3

Theimmediate point to note hereisthat many of thetermsin this expression decrease asr'—2. However,
the terms proportional to the acceleration only decrease as r'—1. These are the radiation terms:

_ g9 _[(n"=B)B —B(1-PBh)]
rad " Amcer (1-B[h')3
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Magnetic field

We can evaluate the magnetic field without going through more tedious algebra. The magnetic field is
given by:

_ ., 0A
B =curl A = curl A, +0t" x 3
= curl (clop), + Ot x 25
where
I:I.tr — _C_ln’ — _C_ln Xat’
1-B[h' ot
Now thefirst term is given by:
curl (clop) = c10g], x B
and we know from calculating the electric field that
nl
gl = —— P_ = ¢(n-p)

4meyr'2(1-PB h')? )
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Therefore,

ct0g|, xB = cHg(n"=B) xB = c1E(n'—P) x (B—n+n) = c1E(n'—B) xn’

= ¢ 10g|, x n’

Hence, we can write the magnetic field as:

oAt 0A
- ~—1 ! 1 — A1
B = cU@|, xn"—c™n S - ¢n ><[—Dcp|t,——a—J
Compare the term in brackets with
_ fol0) ,  O0A
E = -Og|,, + Ot — —
(p|t at, « at

Since [Ot' I n’, then
B = cl(n'xE)
This equation holds for both radiative and non-radiative terms.

Electromagnetic Theory
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Poynting flux

The Poynting flux is given by:

_ ExB _ Ex(n'xXE)
Ho CHg

S

= cgg[E2n' —(E [')E]

We restrict attention to the radiative termsin which E, 4 O r'—1

For the radiative terms,

E o= 9 [A=BO)(nB)-n BEA-BO)] _,
rad ATICE o1 (1-Bh')3

so that the Poynting flux,
S = cgyE%n’

This can be understood in terms of equal amounts of electric and magnetic energy density ((€,/2) E2)

moving at the speed of light inthe direction of n’. Thisisavery important expression when it comesto
calculating the spectrum of radiation emitted by an accelerating charge.
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8 Radiation from relativistically moving charges

Trajectory of
particle

2/y

_ " lllustration of the beaming of radi-
ationfromarelativistically moving
particle.

Note the factor (1—p [h')~ in the expression
for the electric field. When 1—-[3' [h' =0 the
contribution to the electric field islarge; this oc-
curs when ' [h' =1, i.e. when the angle be-
tween the velocity and the unit vector from the
retarded point to thefield point is approximately
zero.

We can quantify thisasfollows: Let 8 be the angle between 3(t') and n’, then

1-B'[h' = 1—|B|cosB=1— %L %L——Oﬂ

_ 1 84

- 1‘%‘2_\/2‘75
1 .62 _ 1

= — + — 1+ v202
22 2 y2( y<09)
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So you can see that the minimum value of 1 —B' [h' is 1/(2y2) and that the value of this quantity only
remains near thisfor 6 J1/y. This meansthat the radiation from amoving charge is beamed into a nar-
row cone of angular extent 1/y. Thisis particularly important in the case of synchrotron radiation for

which y 010% (and higher) is often the case.

9 The spectrum of a moving charge

9.1 Fourier representation of the field

Consider the transverse electric field, E(t), resulting from amoving charge, at apoint in space and rep-
resent it in the form:

E(t) = Eq(t)e; + Ex(t)e,

where e, and e, are appropriate axes in the plane of the wave. (Note that in genera we are not dealing
with a monochromatic wave, here.)
The Fourier transforms of the electric components are:

Ey() = [~ d9E (et Eg(t) = 21 (7 el (w)do
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The conditionthat E (t) bereal isthat

Eq(-w) = Ef(w)

Note: We do not use adifferent symbol for the Fourier transform, e.g. I~Ea (w). Thetransformed variable
Isindicated by its argument.

9.2 Spectral power in a pulse
Outline of the following calculation

AEq (1) Diagrammatic representation of a
pulse of radiation with aduration
At.
-t >
At t

» Consider a pulse of radiation

 Calculate total energy per unit areain the radia-
tion.

» Use Fourier transform theory to calculate the
spectral distribution of energy.

» Show this can be used to calculate the spectral
power of the radiation.

The energy per unit time per unit area of a pulse of radiation is given by:

dw
dtdA

= Poynting Flux = (ceq)E2(t) = (ceg)[E2(t) + E3(1)]
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where E; and E, are the components of the electric field wrt (so far arbitrary) unit vectors e; and e,
in the plane of the wave.

Thetotal energy per unit areain the a —component of the pulseis

dw %
5 A““ = (ceO)J'_ooEg(t)dt

From Parseva’ s theorem,
[ E2(t)ct = zi 7 |Eq(w)[2da

Theintegral from — to o can be converted into anintegral from 0 to oo using thereality condition. For
the negative frequency components, we have

Eq (—00) X Eg (—00) = Ep(0) x Eg (@) = |Eq(w)|?
so that

[ E2(t)ct = %J: ()] 2do
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Thetotal energy per unit areain the pulse, associated with the a component, is

dWaa ~ 0 _ C&y o 5
i = ol L E08 = T

(The reason for the aa subscript is evident below.)

[Note that there is a difference here from the Poynting flux for a pure monochromatic plane wave in
which we pick up afactor of 1/2. That factor results from the time integration of cos?wt which comes

from, in effect, foo ‘ E, (oo)‘ 2dw. Thisfactor, of course, is not evaluated here since the pulse has an arbi-

trary spectrum.]

We identify the spectral components of the contributors to the Poynting flux by:

dw ce
aa _ 70 2
dwdA T ‘Ea(oo)‘
. dWaa . . ; . .
The quantity JeodA represents the energy per unit area per unit circular frequency in the entire pulse,

i.e. we have accomplished our aim and determined the spectrum of the pulse.
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We can use this expression to evaluate the power associated with the pulse. Suppose the pulse repeats
with period T, then we define the power associated with component a by:

dw 1 dw Cce
oo _ 1 QW _ _O 2
JAdodt - TdAde T Eal®)

This is equivalent to integrating the pulse over, say several periods and then dividing by the length of
time involved.

9.3 Emissivity

= 12 Variables used to define the emis- :
dA = rida sivity in terms of emitted power. | COnsider the surface dA to be located a

r long distance from the distance over
which the particle moves when emitting

dQ
S dReg'O“ In which particle moves the pulse of radiation. Then dA = r2dQ
uring pulse and

ao 2 aa

dWq ~

L dw, . dw dw
dAdodt — r2d0dwdi - d0dwdt | dAdodt
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The quantity

dw,, _0802E , _ C& 2E o < _ _—
O dodt ‘ (oo)‘ = —7 Eq q(W)E, (w) (Summation not implied)

Is the emissivity corresponding to the e, component of the pulse.

9.4 Relationship to the Stokes parameters
We generalise our earlier definition of the Stokes parameters for a plane wave to the following:

_ Cgq . .
Iy = 77 [EL(W)E; () + Ex(w0) E5(w)]

CEO . .
Qu = ﬁ[El(w)El(w) — E,(w)E, (w)]

ceg
Up = —[El(m)Ez(w)+E1(w)E2(w)]

1050
Vo = T [E1 (W) Ex(w) - B4 (w) E5(w)]

w

The definition of 1 | isequivalent to the definition of specific intensity in the Radiation Field chapter.

Also note the appearance of circular frequency resulting from the use of the Fourier transform.
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We define a polarisation tensor by:

[Iw+Qw uw—ivui _ oo

U +ivy, 1,-Q,| T Eq (w)Ep ()

We have calculated above the emissivities,
2
dwW _ Cgqr

aa

dQdwdt T

E, (w)E, (w) (Summation not implied)

corresponding to E E; . More generally, we define:

dW,g

CEO 5
d0dodt E

= T[Tr CX((*))EE;((*))

and these are the emissivities related to the components of the polarisation tensor | ap”
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In general, therefore, we have

Wi rissvity for X1, +0)
dQdoat ZANCII
dW

22 oL 1
Ododt Emissivity for 2(I(JO—QOO)
W2 Emissvity for XU, —iV )
dQdodt Y1 50 =W
dwW,, dW7,

oL 1 :
— Emissivity for Q(UwJ"Vm)

dQdwdt dQdwdt

Consistent with what we have derived above, the total emissivity is
= dW 4 N dW,,
W dQdwdt dQdwdt

and the emissivity into the Stokes Q is

@ dQdwdt dQdwdt
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Also, for Stokes U and V:
v W, dwi,
@  dQdwdt dQdwdt

oW, dwg,
w LdQdwdt  dQdwdt

Note the factor of r2 in the expression for dWaB/ dQdwdt. In the expression for the E—vector of the
radiation field

£-_d [(n=B)(n'B)-B(L-Bh)]
ATiCE 5f (1-Bh")3

E O 1/r.HencerE and consequently rzEaEE areindependent of r, consistent with the above expres-
sions for emissivity.

The emissivity is determined by the solution for the electric field.
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10 Fourier transform of the Lienard-Wierchert radiation field

The emissivities for the Stokes parameters obviously depend upon the Fourier transform of

() = XL =B X
amceg  (1-B' ')
where the prime means evaluation at the retarded time t' given by
rl

t' = t—— r’ = |x—X(t'
- x=X(t)

The Fourier transform involves an integration wrt t. We transform thisto an integral over t' asfollows:

_ ﬂ r 1 1 — R ] ]
dt = 2ot = s—=dt’ = (1B’ [h")dt

using the results we derived earlier for differentiation of the retarded time. Hence,

g n'x[(n"=B)xPB] e e
rE(w) 4ncsOI_m (1-p )3 e'Wi(1—pB' [h')dt

_ g @ ' x[(0" =PB) X B icot g
4ncsOI_m (1-p' [h")?2 edt
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The next part is

et = exp[ioo%’ +%EJ
Since
r' = [x=X(t")=x when x»X(t")
then we expand r' to first order in X. Thus,

o' _ X =X(1) X

r'= |x;=X(t) X o caxp =0
- al" "y — XI "y = = '
rr=r+9" x X (t') = r—=X(t') = r—-nX; = r—nX(t)

Note that it isthe unit vector n = E which enters here, rather than the retarded unit vector n’

Hence,

oot = o -2 2LF] - - anfy 2L e
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Thefactor exp['—?} iscommonto all Fourier transforms r E  (w) and when one multiplies by the com-

plex conjugate it gives unity. This also shows why we expand the argument of the exponential to first
order in X(t") since the leading term is eventually unimportant.

The remaining term to receive attention in the Fourier Transform is

n' x[(n'=B') x B
(1-p' )2

Wefirst show that we can replace n’ by n by also expanding in powers of X.(t').

n.'

X = X;

5= X(t) % [ o
X _{

[

9 7 } X
Xl =X ()] Jx; =0
_.Aﬁ“*“ﬁ‘xﬂ} ‘X,
! ‘Xj —Xj(t') 3 X;=0 J
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So the difference between n and n’ isof order X/ r , i.e. of order theratio the dimensions of the distance
the particle moves when emitting a pulse to the distance to the source. This time however, the leading

term does not cancel out and we can safely neglect the terms of order X/r . Hence we put,

n'x[(n'=p)xP _ nx[(n—P') xB']
(1-p' )2 (1-p' h)?

It is straightforward (exercise) to show that

dnx(nxB) _ nx[(n—B")xf]
dt' 1-p'[h' (1-pB' )2

Hence,

_ g wr/ceo dnx(nxp') nD((t)D r
rE(w) = 4ncaoe ,r_oodt’ 1-p h exp[lco% Jdt

One can integrate this by parts. First note that

n x (nx B')[*
1-B'[h

=0

—00
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since we are dealing with a pulse. Second, note that,

%exp[iw%’—%%} = exp[iw%’—%%}xiw[l—ﬁ' [h]

and that the factor of [1—[3' [h'] cancelsthe remaining one in the denominator. Hence,

E0) = F2E Y 0 (oxBesioff -1 X o

In order to calculate the Stokes parameters, one selects a coordinate system (e, and e,) in which thisis

as straightforward as possible. The motion of the charge enters through the terms involving (3(t') and
X(t") intheintegrand.

Remark

Thefeature associated with radiation from arelativistic particle, namely that the radiation is very strong-
ly peaked in the direction of motion, shows up in the previous form of this integral via the factor

(1 - [h'")=3. This dependenceis not evident here. However, when we proceed to evaluate the integral
in specific cases, this dependence resurfaces.
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