Cartesian Tensors

Cartesian Tensors

Reference: Jeffreys Cartesian Tensors

1 Coordinates and Vectors

Coordinates x;, i = 1,2, 3
Unit vectors: ,1 = 1, 2,3

General vector (formal definition to follow) denoted by compo-
nentse.g. u = u,

Summation convention (Einstein) repeated index means summa-
tion:
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Cartesian Tensors

2 Orthogonal Transfor mations of
Coordinates

a;; = Transformation Matrix
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Cartesian Tensors
Position vector
r= X6 = X;€
U a;ixe; = xg
Xi(a;i€)) = x€
U & = g€
I.e. the transformation of coordinates from the unprimed to the

primed frameimpliesthe reverse transformation from the primed to
the unprimed frame for the unit vectors.

Kronecker Delta
5 = 1if i =]

= 0 otherwise

2.1 Orthonormal Condition:
Now impose the condition that the primed reference is orthonormal
i€ =0; and e -*e =9
Use transformation
e & = a e Ea,je,'

= aa,;€ [k

= 3,30y

= A Ay

NB the last operation is an example of the substitution property of
the Kronecker Delta.

Since g [E; = 9, then the orthonormal condition on &;; is
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Cartesian Tensors
aidy = O
In matrix notation:
ala = |
Also have
— T —

1)

2.2 Reverse transfor mations
(% =a;%) 0 agX = apayX; = dX; = X,
Ox = apeX O X = a;X;

I.e. the reverse transformation is simply given by the transpose.

Similarly,

& = g€
2.3 Interpretation of a;
Since

e = a.e

I ij~]

then the a;; are the components of e wrt the unit vectors in the
unprimed system.
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3 Scalars, Vectors & Tensors
3.1 Scalar (f):
f(xi) = f(x)

Exampleof ascalarisf = r2 = x;x. Examplesfrom fluid dynam-
ics are the density and temperature.

3.2Vector (u):
Prototype vector: X
General transformation law:
C=ax 0w = U

3.2.1 Gradient operator
Supposethat f isascaar. Gradient defined by

(grad £), = (Of), = T

Need to show thisis avector by its transformation properties.

of _ of an
aXi’ aXJaXI'
Since,
Xj = X
then
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0X,

] — —
ax = a0 = &
and ﬂ = a..ﬂ
OX: 1ox,

|
Hence the gradient operator satisfies our definition of a vector.
3.2.2 Scalar Product

ull = uv; = uvy+ UV, + UgVs
is the scalar product of the vectors u; and v;.

Exercise

Show that u Oy isa scalar.

3.3 Tensor
Prototype second rank tensor X; X;
General definition:

i = ad Ty
Exercise

Show that u;v; isasecond rank tensor if u; and v; are vectors.

Exercise:

_ oy,
i,j_a—xj

6 C54H - Astrophysical Fluid Dynamics



Cartesian Tensors

Is a second rank tensor. (Introduces the comma notation for partial
derivatives.) In dyadic form thisiswritten as grad u or [u.

3.3.1 Divergence
Exercise:
Show that the quantity
_ ov,
OO =divv = —
0X;
Isascalar.

4 Products and Contractions of Tensors

It is easy to form higher order tensors by multiplication of lower
rank tensors, e.g. j; = T;;uy isathirdrank tensor if T;; isasecond
rank tensor and u, is a vector (first rank tensor). It is straightfor-
ward to show that T;,has the relevant transformation properties.

Similarly, if T;;, Isathird rank tensor, then T;;; is a vector. Again
the relevant trdansformation properties are easy to prove.

5 Differentiation following the motion

Thisinvolves acommon operator occurring in fluid dynamics. Sup-
pose the coordinates of an element of fluid are given as a function
of time by

X, = X(t)
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The velocities of elements of fluid at all spatial locations within a
given region constitute a vector field, i.e. v; = v;(X;, t)

If we follow the trgjectory of an element of fluid, then on a partic-
ular trajectory x. = X;(t) . The acceleration of an element is then

given by:

dv; vi ov; dx; _ oV, i
fi=a - _V'(X (0.1 = 5 ax dt ot Vigx,

Exercise: Show that f; is avector.

6 The permutation tensor ¢,

gjx = 0 ifanyofi, j, k areequal
= 1 ifi, j,kunequa andin cyclic order
= -1 if i, j, k unequa and not in cyclic order

e.g.

€110 = €123 = €321 = —1
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Cartesian Tensors
Is¢g;, atensor?

In order to show thiswe have to demonstrate that €;;,, when defined

the same way in each coordinate system has the correct transforma-
tion properties.

Define

Ei'jk = € mni1 &jmAkn
= €1238i18j23 T €310@i38)18> T €3135813
+ €5138i58)13 + €391 R385 T €13>81338
= 3j;(8j28y3 — aj382) — A2(3j18%3 — @j382)
+83(818; — @j281)
i Qi A3
= | a1 &, a3

A1 Ao A3

Inview of the interpretation of the &;, the rows of this determinant

represent the components of the primed unit vectors in the
unprimed system. Hence:

Eijk = € LB xg

Thisiszeroif any 2 of , j, k areequdl, is+1 for a cyclic permuta-
tion of unequal indices and -1 for a noncyclic permutation of une-

qual indices. Thisisjust the definition of &, . Thus g;;, transforms
as atensor.
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6.1 Uses of the permutation tensor
6.1.1 Cross product
Define
Ci = &;j,a;by
then
C; = €p38b3 +€13,330, = a,b;—agh,
Cy = €3830; +€538,03 = a3b; —a;b;
C3 = €308y, +€3513,0; = a;b, —ayb,
These are the componentsof ¢ = a xb.

6.1.2 Triple Product

In dyadic notation the triple product of three vectorsis:
t = ullyxw

In tensor notation thisis

6.1.3 Curl
0y
(curl u), = Eijka—xj
e.g.
0us du, du; du,

curl U); = €,99=——+E€ = -
( )1 1236X2 1326X3 axz 6X3

etc.
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6.1.4 Thetensor ¢, &

mps

Define

Tikmp = 8iks€mps
Properties.
« Ifi = korm = pthen Tjpn, = o

e If I = m weonly get acontribution from theterms s#i and
K#1i,s. Consequently k = p. Thusg;,, = +1 and
Emps = Eiks = *1 andtheproduct &€ = (x1)? = 1.
e Ifi = p, sSimilar argument tells us that we must have s# i and
k=mz#i.Hence, €, = 1, €56 =F1U E)Emps = —1 .
0,
l=mk=p0 1 unlessi=kOO0
Il =p,k=m0 -1 unless i =k O

These are the components of the tensor 9,0y, — 9;,Om-

U € ksgmps =0 imékp - 6ip6km
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6.1.5 Application of ¢, &

mps

0 0
(curl (uxv)); = Eijka—xj(eklmulvm) = 8ijk£klma—xj(ulvm)

- (5.5 5 5 Loy, s ov
= (90— Oim jl)%vm ”'a_ij

_ oy y Vauj+u6vm uavi
X 710X, 0%y, 10X

_ oy ov, s ov;  0u;

~ Vigx, ~ Yiax “iaxj_"iax.

j
= (vu—-u Mv+ul Ovr—vO L),

7/ The Laplacean

2 2 2
chp:a([)_l_a(p_'_a([):ﬂ
0xf 0x3 O0x5  0X0X
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8 Tensor Integrals

8.1 Green’s Theorem

In dyadic form:

‘!’m vdV = [(v [h)dS

In tensor form:

ou.
a_'dv = ‘[uinidS = Flux of u through S
X.

Extend this to tensors:

aT,
['—”dv = .[Tijnjds = Flux of T;; through S
0X;
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8.2 Stoke's Theorem

In dyadic form:

l(curl u) hds = l’u [tds
ouy
[eijka—xjnids = ‘[uitids

In tensor form:
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