Relativistic Effects

1 Introduction

The radio-emitting plasma in AGN contains electrons with

relativistic energies. The

trons are of order 102 —©

Lorentz factors of the emitting elec-

. We now know that the bulk motion

of the plasma 1s also moving relativistically — at least in some

regions although probab
10 or so. However, this |

y “only” with Lorentz factors about
nas an important effect on the prop-

erties of the emitted rad

1ation — principally through the ef-

fects of relativistic beaming and doppler shifts in frequency.
This in turn affects the inferred parameters of the plasma.
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2 Summary of special relativity

For a more complete summary of 4-vectors and Special Rel-
ativity, see Rybicki and Lightman, Radiative Processes in As-
trophysics, or Rindler, Special Relativity
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2.1 The Lorentz transformation

=Y
=Y

The primed frame 1s moving wrt to the unprimed frame with

a velocity v in the x—direction. The coordinates in the primed
frame are related to those in the unprimed frame by:
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x' = T'(x—vt) t' = F(t—ﬁ)
(32
y' =y z' =z (1)
V 1
=Y T =
¢ J1 -2

We put the space-time coordinates on an equal footing by

putting xY = c¢t. The the x — tpart of the Lorentz transforma-
tion can be written:

x' = F(x—BxO) XV = F(xO—Bx) (2)

The reverse transformation 1s:
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t = F(t’ + %) (3)
1.€.,
x = T(x'+BxY) XV =1EY +Bx) (4)
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2.2 Lorentz—Fitzgerald contraction

2.3 Time dilation

g I
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20 1r _
x<'—x LO

x2r_x1r — F[(xz—xl)— V(t2—f1)]

_ —1
Loy=1TL=L=1"L,
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Consider a clock at a stationary position in the moving frame
which registers a time interval 7|,. The corresponding time

interval 1n the “lab” frame 1s given by:

T=t,—t, =T[(t, —t;") = V(x, —x;")/c?]
(5)
= I'(t,) ~1,") = T'T,

1.e. the clock appears to have slowed down by a factor of I
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2.4 Doppler effect

~

R 204
d = VAtcosO ~ MNGY

~ G[‘p
~ D o \qf
~

e N

The Doppler effect 1s very important when describing the ef-
fects of relativistic motion 1n astrophysics. The effect 1s the
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combination of both relativistic time dilation and time retar-
dation. Consider a source of radiation which emits one period

of radiation over the time At it takes to move from P1 to P2°

If o 1s the emitted circular frequency of the radiation in the

rest frame, then

2T

(Dem

At =

(6)

and the time between the two events 1n the observer’s frame
1S:
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(7)

cm

However, this 1s not the observed time between the events be-
cause there 1s a time difference involved in radiation emitted

from P1 and P2° Let

D = distance to observer from P, (8)

and
t = time of emission of radiation from P1

(9)

ty = time of emission of radiation from P2
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Then, the times of reception, #1°¢ and trec are:
p 1

D + VAtcos0
rcC _—
h- =0t -

IS (10)
e = 1y + 2

C

Hence the period of the pulse received 1n the observer’s frame
1S
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D D+ VAtcos0
IrccC rcCc —
free 1 —(t2+;)—<t1+ )

C
= (t,—t )——VAtCOSG (11)
YRS
= At(l ——VCOSG)
C

Therefore,
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2T _ I 2T (1 ——VCOSO)
D obs Dem ¢
— B Oem B Oem (12)
obs  TI'(1—-PBcosb
F(l — EVCOSO) ( P )

The factor I' 1s a pure relativistic effect, the factor

(1 — BcosB) 1s the result of time retardation. In terms of lin-
ear frequency:

_ Vem
Vobs ['(1-PBcosH) (13)
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The factor

B 1
R ['(1 —PBcosO) (19

1s known as the Doppler factor and figures prominently in the
theory of relativistically beamed emission.

O

2.5 Apparent transverse velocity

Derivation

A relativistic effect which 1s extremely important in high en-
ergy astrophysics and which 1s analysed 1n a very similar way

to the Doppler effect, relates to the apparent transverse veloc-
ity of a relativistically moving object.
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Consider an object which moves from P, to P, in a time Az

in the observer’s frame. In this case, At need not be the time
between the beginning and end of a periodic wave. Indeed, in

practice, At is usually of order a year. As before, the time dif-
ference between the time of receptions of photons emitted at

P, and P, are given by:

B V
At .. = At(l —ECOSO> (15)
The apparent distance moved by the object 1s

[, = VAtsin® (16)
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Hence, the apparent velocity of the object is:

_ VAtsin© _ Jsin©

app

At(l — —VCOSG) (1 — —VCOSG)

C C
V. (17)
4 —sino

app _ C
C

(1 — —VCOSG)

C

Intermsof B = V/c
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Y S
app C C (18)
3 _ Psmb
app 1 —PBcosO
The non-relativistic limit1s just V- = Vsin0, as we would

app
expect. However, note that the additional factor 1s not a con-

sequence of the Lorentz transformation, but a consequence of
light travel time effects as a result of the finite speed of light.
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Consequences

For angles close to the line of sight, the effect of this equation
can be dramatic. First, determine the angle for which the ap-

parent velocity 1s a maximum:

dBapp _ (1 —PcosB)BcosO —PsinOfsinO

d (1-— [Scos@)2 (19)
_ BcosO - B2
B (1-— B(:OSO)2
This derivative 1s zero when
cosO = [ (20)
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At the maximum:

5 _Psind _BJ1-B2 B
app 1 —-BcosO 1 — B2 Jl—Bz

=IB (2l

IfI" » 1 then B = 1 and the apparent velocity of an object can
be larger than the speed of light. We actually see such effects
in AGN. Features 1n jets apparently move at faster than light
speed (after conversion of the angular motion to a linear
speed using the redshift of the source.) This was originally
used to argue against the cosmological interpretation of qua-

High Energy Astrophysics: Relativistic Effects 21/93



sar redshifts. However, as you can see such large apparent ve-
locities are an easily derived feature of large apparent

velocities.

The defining paper on this was written by Martin Rees in
1966 (Nature, 211, 468-470).
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The following 1mages are from observations of 3C 273 over
a period of 5 years from 1977 to 1982. They show proper mo-

tions i the knots C; and C, of 0.79£0.03 mas/yr and

0.99+0.24 mas/yr respectively. These translate to proper mo-
tions of 5.540.24 1c and 6.9+1.7h7 L¢ respectively.
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2.6 Apparent length of a moving rod

The Lorentz-Fitzgerald contraction gives us the relationship
between the proper lengths of moving rods. An additional
factor enters when we take into account time retardation.

M

—t

[ \e\')

~
~

d = AxcosO ~

Py y | Ax
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Consider a rod of length
L=r71L, (22)

in the observer’s frame. Now the apparent length of the rod 1s
affected by the fact that photons which arrive at the observer
at the same time are emitted at different times. -, corresponds

to when the trailing end of the rod passes at time 7, and P,

corresponds to when the leading end of the rod passes at time
t,. Equating the arrival times for photons emitted from P,

and P, at times 7, and 7, respectively,
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+D+Axcos@ D

(23)
_ Axcos©

When the trailing end of the rod reaches P, the leading end
has to go a further distance Ax — L which it does 1n 7, — ¢,

secs. Hence,
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VAxcosO

Ax—L =
C
24
— Ax = If (249
1 ——cos0
C

and the apparent projected length 1s

: L
. Lsin® 0
L = A 0 = = = O0L,(25
app e 1 —Bcos® T (1-PBcosb) 0(+)
This 1s another example of the appearance of the ubiquitous

Doppler factor.
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2.7 Transformation of velocities
The Lorentz transformation

|
N

x =I'(x"+Tt) y =y z ’
[ = F(t' + V_x) (26)

o2

can be expressed in differential form:
dx = I'(dx" + Vdt") dy = dy' dz = dz’
de’) (27)

c2

dt = F(dt’ +
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so that 1f a particle moves dx’ 1n time dt' in the frame S’ then
the corresponding quantities in the frame S are related by the
above differentials. This can be used to relate velocities 1n the
2 frames via

dx’

e /g
dx _ T(dx'+Vdt') _ di

“op(ar+ )1 LA
c 2 dt
(28)
—y_ = v
va’
1 +
2
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For the components of velocity transverse to the motion of §’,

dy _ = _ dy’ _ "y
i v Vdx" Vy !
F(dt " Cz) F(l +_xj
2
| (29)
dz _ L, = dz' _ V2
dt z , de') Vy !
F(dt N 2 F(l +—xj
2

In invariant terms (1.e. independent of the coordinate system),
take
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| = Component of velocity parallel to V

30
v, = Component of velocity perpendiciular to ¥ (30
then
v, +V .
1
e - B
1+ Vv, /c F(1+Vv|/c)

The reverse transformations are obtained by simply replacing
V by —V so that:

/c?

, V1
r(1- Vv||/c2)

[ A—

= (32)
| I 24",

v V
| 1
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and these can also be recovered by considering the differen-
t1al form of the reverse Lorentz transformations.

2.8 Aberration
Ay Ay’

S 1% S’ v’ ’

A% \%
/J + Y -
) )

e e
X x'
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Because of the law of transformation of velocities, a velocity
vector makes different angles with the direction of motion.
From the above laws for transformation of velocities,

/

v, V1 V' sin 0O

tan0 =

4l F(VH’ + V) - ['(vicosO+ 1) (33)

(The difference from the non-relativistic case 1s the factor of
[.)

The most important case of this is when v = v = ¢. We put
v, = ccosB v, = csinb
| 1

. (39

v“’ = c¢cos0’ v "= csimno’
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and

v
= — 35
B == (35)
and the angles made by the light rays in the two frames satis-
fy:
ccosO = CCOSVO i V:> cosO = 10256 +g,
1+ Ecos@’ pcos
LN csin®’ Lo sin 0’ (30)
csin@ = = sin@ = (1 + Bcos0)
F(l + EVCOSG)’)
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Half-angle formula

There 1s a useful expression for aberration involving half-an-
gles. Using the identity,

O  smn0
tan§ 1 +cosO (37)

the aberration formulae can be written as:

@ - (50w o
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Isotropic radiation source

Consider a source of radiation which emits 1sotropically 1n 1ts
rest frame and which 1s moving with velocity V' with respect
to an observer (in frame §). The source is at rest in §’ which
1s moving with velocity V' with respect to S.

P sin~1 P T
S /\’y S’
- @ - Q) —>
2
>
> >
X x'
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Consider a rays emitted at right angles to the direction of mo-

tion. Thishas 0 = J_rg. The angle of these rays in S are given

by the transformation for sin9, with 0’ = *+n/2. This gives:
sinf = =+

(39)
(40)

1
I
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These rays enclose half the light emitted by the source, so that
in the reference frame of the observer, half of the light 1s emit-

ted 1n a forward cone of half-angle 1/I". This is relativistic

beaming in another form. When I 1s large:0 = %

3 Four vectors

3.1 Four dimensional space-time

Special relativity defines a four dimensional space-time con-
tinuum with coordinates

XV = ¢t xl = x X< =y X3 =z (41)
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An event is the point in space-time with coordinates x* where
u=201,2,3.

The summation convention

Wherever there are repeated upper and lower indices, sum-
mation 1s implied, e.g.
3
T u
A“B Y A“B (42)
u=20
The metric of space-time 1s given by

2 _
ds< = nuvdx“dxv (43)
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where

1000 1000

My = 0100 Inverse = nHV = 0100(44)
H 0010 0010
0001 0001

(45)

Hence the metric

ds? = —(dxY)2 + (dx1)? + (dx?)? + (dx3)? (46)
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This metric 1s unusual for a geometry in that it 1s not positive
definite. For spacelike displacements 1t i1s positive and for
timelike displacements it 1s negative.

This metric 1s related to the proper time t by

ds? = —c?dr? (47)
Indices are raised and lowered with N,y €8 if A" is a vec-
tor, then
_ Y
AM n, VA (48)

This extends to tensors in space-time etc. Upper indices are
referred to as covariant;, lower indices as contravariant.
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3.2 Representation of a Lorentz transformation

A Lorentz transformation 1s a transformation which preserves
1s*. We represent a Lorentz transformation by:

;o Vv
xH =AM x

(49)

]
>
®
>
aq
<
=

nuv K

That 1s, a Lorentz transformation 1s the equivalent of an or-
thogonal matrix in the 4-dimensional space time with indefi-
nite metric.

Conditions:

e detA = 1 —rules out reflections (x — —x)
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» AY) > 0 — isochronous

For the special case of a Lorentz transformation involving a
boost along the x—axis

‘T Broo
0O 0 10
0 0 01

High Energy Astrophysics: Relativistic Effects 45/93



3.3 Some important 4-vectors
The 4-velocity

This 1s defined by

dxH
no— 4t
. dt [

The zeroth component

dxV dx’j

Ji
dt’ dt (D
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dxY dt - di
drt drt «/dtz _|__C—2[(dx1)2 4 (dx2)2 + (dx3)2]

o _ (52)
_ = ¢y

2
2

Note that we use I for the Lorentz factor of the transforma-
tion and y for particles. This will later translate into I for bulk

motion and y for the Lorentz factors of particles in the rest-
frame of the plasma.

||
o

|

||

The spatial components:
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dx! _ dx'di _ YV (53)

drt dt dt
so that
ult = [ye, '] (54)
The 4-momentum
The 4-momentum 1s defined by
pM = mqub = [yme, ymv'] = E,pl] (55)

where
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E = «/czp2+mzc4 = ym02 (56)

1s the energy, and
pl = ymovi (57)

1s the 3-momentum.

Note the magnitude of the 4-momentum
PPy = 07+ (2 + () + (pP)

_ _(92 £ p2 = w22 (%
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3.4 Transformation of 4-vectors

Knowing that a 4-component quantity is a 4-vector means
that we can easily determine its behaviour under the effect of
a Lorentz transformation. The zero component behaves like

xY and the x component behaves like x. Recall that:

X = F(x’+BxO’) XV = F(x0’+[3x’) (59)
Therefore, the components of the 4-velocity transform like
oV =V -pul
(U -pU") )

vl = T(-pu+ Ul

Hence,
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1
/ r V
cy' = T(ey-Byvh =7 = FY(I—B-C—)

yvl' = T(=Bey+yvhy=yvl" = Ty —cp)  (61)

yv?

Y'Y= gy

,YIVZI
3

Transformation of Lorentz factors

Putting vl = vcos6 g1ves

y' = Fy(l — BECOSO) (62)
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This 1s a useful relationship that can be derived from the pre-
vious transformations for the 3-velocity. However, one of the
useful features of 4-vectors 1s that this transformation of the
Lorentz factor is easily derived with little algebra.

Transformation of 3-velocities

Dividing the second of the above transformations by the first:

oo Dyvl=cp) _ 0l-ep) _ (-1 (63)

ry{1 ‘5‘%1) (1- Bv?l) (1 - V—sz

C

v

Dividing the third equation by the first:
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2 2

v2t = L7 - (64)

SR

C

and similarly for v3. These are the equations for the transfor-
mation of velocity components derived earlier.
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4 Distribution functions in special relativity

In order to properly describe distributions of particles 1n a rel-
WP

Distribution of momenta in
momentum space.

Py
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ativistic context and in order to understand the transforma-
tions of quantities such as specific intensity, etc. we need to
have relativistically covariant descriptions of statistical dis-
tributions of particles.

Recall the standard definition of the phase space distribution
function:
No of particles within an elementrary volume

fd3xd3p = (65)
of phase space
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4.1 Momentum space and invariant 3-volume

The above definition of f(x, ¢, p) 1s somewhat unsatisfacto-
ry from a relativistic point of view since 1t focuses on three
dimensions rather than four.

Covariant analogue of d3p

The aim of the following 1s to replace d> p by something that
makes sense relativistically.

Consider the space of 4-dimensional momenta. We express
the components of the momentum in terms of a hyperspheri-

cal angle y and polar angles 0 and ¢.
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p° = mccoshy
1 _ . .
= mcsinhy sio cos
p X ¢ (66)
p% = mesinhy sinOsind
p3 = mcsinhy cos0

The Minkowksi metric 1s also the metric of momentum space
and we express the mterval between neighbouring momenta

as M, ,dptdpY . In terms of hyperspherical angles:

N, dpMdpY = —(d(mc))* +
. (67)
+m2c2[(dy)? + sinh?y (d0? + sin?0dh?)]
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This 1s proved 1n Appendix A.

The magnitude of the 3-dimensional momentum is
p = mcsinhy (68)

A particle of mass m 1s restricted to the mass shell

m = constant. This 1s a 3-dimensional hypersurface in mo-
mentum space. From the above expression for the metric, it 1s
easy to read off the element of volume on the mass shell:

do = (mc)> sinh?y sin0d0dd (69)

This volume is an invariant since it corresponds to the invar-
lantly defined subspace of the momentum space,

m = constant.
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On the other hand, the volume element d° p refers to a sub-
space which 1s not invariant. The quantity

d>p = dp'dp*dp? (70)
depends upon the particular Lorentz frame. It 1s in fact the
projection of the mass shell onto pO = constant. However, it

1s useful to know how the expression for d> p 1s expressed 1n
terms of hyperspherical coordinates.

In the normal polar coordinates:

d3p = p?sin0dpdodd (71)
Putting p = mcsinhy 1n this expression,
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d3p = (mc)3 sinh?y coshy sin0dy d0dd = coshydw (72)

That 1s, the normal momentum space 3-volume and the invar-
1ant volume dw differ by a factor of coshy.

4.2 Invariant definition of the distribution function

The following invariant expression of the distribution func-
tion was first introduced by J.L. Synge who was one of the in-
fluential pioneers in the theory of relativity who introduced
geometrical and invariant techniques to the field.

We begin by defining a world tube of particles with momen-

tum pt (4-velocity ut).
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The distribution function f(x", p*) is defined by:

World tube of particles with 4-

velocity uM. The cross-sectional
3-area of the tube 1s d%,.
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The three-area of the world tube, d2, 1s the particular 3-area

that 1s normal to the world lines in the tube. Using dx,, we

define the distribution function, f(x", p"), by the following
definition:

Number of world lines within
the world tube with momenta = f(x*, p¥)dZ do (73

within do

This 1s expressed in terms of a particular 3-area, d2.,.
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Now consider the world lines intersecting an arbitrary 3-area

(or 3-volume) 4% that has a unit normal n". The projection
relation between dX and dZ 18

dZ, = dZ x (—c_lu“n“) (74)

Proof of last statement

First, let us define what 1s meant by a spacelike hypersurface.
In such a hypersurface every displacement, dx", is spacelike.
That is, n, ,dxHdx¥ > 0. The normal to a spacelike hyper-
surface 1s timelike. The square of the magnitude of a unit nor-
mal 1s -1:
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n..ntnY = -1 (75)
Example:
The surface

t = constant (76)

1s spacelike. Its unit normal 1s:

nM = (1,0,0,0) (77)

We can also contemplate a family of spacelike hypersurfaces
in which, for example

t = variable (78)
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This corresponds to a set of 3-volumes in which x I x2 and x3
vary, that are swept along 1n the direction of the time-axis. As
before the unit normal to this family of hypersurfaces 1s

nt = (1,0,0,0) and the corresponding 4-velocity is
_ (.dt _ _
uM = (Cd_r’ 0, 0, O) = (¢,0,0,0) = cnH (79)
In the present context, we can consider the set of 3-spaces
dZy corresponding to each cross-section of a world tube as a

family of such spacelike hypersurfaces. Each hypersurface 1s
defined as being perpendicular to the 4-velocity so that, in
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general, uy # (¢, 0, 0, 0). However, it is possible to make a
Lorentz transformation so that in a new system of coordinates
nH = (1,0,0,0) and u5‘ = (¢, 0,0,0).

The significance of dX

What 1s the significance of a surface dX as indicated in the
figure? This 1s an arbitrary surface tilted with respect to the

original cross-sectional surface d2.,. This surface has its own

unit normal n§& and 4-velocity, u§ = cné.
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In the coordinate system in which the normal to dZ has
components nb‘ = (1,0,0,0), let us assume that the 4-ve-

locity of d% is u§ = (yc, yv). That is, dX represents a sur-
face that 1s moving with respect to dX at the velocity v with

Lorentz factor, y. The unit normal to dX 1s

n& = (7, 7B) (80)

Relation between volumes in the two frames

Let d2 be the primed (moving) frame. The element of vol-
ume of dX 1s
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dy = dxl'dx?'dx3 (81)
At an 1nstant of time 1n the primed frame denoted by d¢' = 0
dxl = y(a’xlr +vdt') = ydxlr

, , (82)
dx? = dx? dx3 = dx>

Hence,
dz, = dxldx?dx® = ydxVdx?'dx® = yds  (83)

Expression of the Lorentz factor in invariant form

Consider the invariant scalar product
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ngng = (17B) - (=1,0,0,0) = —y (84)

Dropping the X subscript on n{ and using n,, 0w club we

have

y = —c_lu“nu (85)

Hence,
dz, = (-} ut'n )dT (86)
Note that the “projection factor” 1s greater than unity, perhaps

counter to 1ntuition.
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Number of world lines in terms of dX

We defined the distribution function by:

Number of world lines within
the world tube with momenta = f(x", pH)dX do (87)

within do

Hence, our new definition for an arbitrary d:

Number of world lines within
the world tube crossing dX = f(x“,p“)(—c_lu“n“)dZdoo

with momenta within do
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Counting 1s an invariant operation and all of the quantities ap-
pearing 1n the definition of f are invariants, therefore

f(xH, p¥) = Invariant (88)

4.3 An important special case

Take the normal to 2 to be parallel to the time direction 1n an
arbitrary Lorentz frame. Then

nY = (1,0,0,0) (89)

and

—u“n’“l = —(—u%n0) = 40 (90)
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Also
dy = d3x (91)

Now

pO = mccoshy = uY = coshy (92)

Theretfore,

flat, py(ubtn YdEdo = flak, pM)coshyd>xdo 03
= fxH, pMydxdp
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Our 1nvariant expression reduces to the noninvariant expres-
sion when we select a special 3-volume in spacetime. Thus
the usual definition of the distribution 1s Lorentz-invariant
even though 1t does not appear to be.

5 Distribution of photons

5.1 Definition of distribution function
We can treat massless particles separately or as a special case

of the above, where we let m — 0 and coshy — o 1n such a

way that mccoshy — h_v In either case, we have for pho-

C
tons,
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No of photons within d3x

S, pyd3xd3p = (94)

and momenta within - p

and the distribution function 1s still an 1nvariant.

5.2 Relation to specific intensity

From the definition of the distribution function, we have
Energy density of photons

= hvfd®p = hvfp?dpdQ (95)
within d°p
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The alternative expression for this involves the energy densi-
ty per unit frequency per unit solid angle, u, (£2). We know

that

1
u,(Q) = — (96)

Hence, the energy density within v and within solid angle d(2
1S

u dvdQ = ¢ 11 dvdQ (97)

Therefore,
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2
hvip?dpdQ = hv h—V) d(’ﬂ)dg = ¢, dvdQ

C C
(98)
h4v3

This gives the very important result that, since f 1s a Lorentz
invariant, then

I/

—\; = Lorentz invariant (99)
v

Thus, 1f we have 2 relatively moving frames, then

High Energy Astrophysics: Relativistic Effects 76/93



I, 1 3
v :_V:>[ :(X) I, (100)
(V’)3 V3 V '

Take the primed frame to be the rest frame, then
— 3
I, =01, (101)

where 0 1s the Doppler factor.

5.3 Transformation of emission and absorption
coefficients

Consider the radiative transfer equation:
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dl

N
dtv

~.

. . V
=S, 1, S = (102)

L= =
%y

Obviously, the source function must have the same transfor-

mation properties as /. Hence

S

<

= Lorentz invariant (103)

(Y

N
Emission coefficient

The optical depth along a ray passing through a medium with
absorption coetticient a, 1s, in the primed frame
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/ In S’ In S

l’ocv,
= /
¢ sin o’ (104)

The optical depth in the unprimed frame 1s
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locv

YT Sin6 (105)

and is identical. The factor e~ counts the number of photons
absorbed so that 1 1s a Lorentz invariant. Hence

[

v sin@’
o, sin@ (106)
V
The aberration formula gives
LN, s1in O s
SIn o (1 PBcos0) 0sIno (107)

High Energy Astrophysics: Relativistic Effects 80/93



and the lengths / and /" are perpendicular to the motion, so
that / = ['. Hence,

04 \%40.

Vo g1 \
Vo5l Y = (108)
OCV, V OLV,

1.6. VO v 1s a Lorentz invariant.

The emission coefficient

Sy Jy [y 1 .
— |(va )™ = Lorentz invariant (109)
\Y v3ocv ’

w|<

v
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Hence, j, / v2 is a Lorentz invariant.

5.4 Flux density from a moving source
The flux from an arbitrary source 1s given by

dQ
Observer

= [1,c080dQ= [ I dQ =
Q2 Q2
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Now relate this to the emissivity 1n the rest frame. Since

Jy .
> = Lorentz invariant
A% (111)
2
V .t _ '
Jv (\7) Sy T 82]\/'
Therefore,
F = ngzj' dV = 6—2jj’ dV (112)
YV DZV V DZV V

The apparent volume of the source 1s related to the volume in
the rest frame, by
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dv = 8dV’ (113)

This 1s the result of a factor of 0 expansion 1n the direction of
motion and no expansion in the directions perpendicular to
the motion. Hence the flux density 1s given in terms of the rest
frame parameters by:

8% dV——j] AV (114)

Effect of spectral index

For a power-law emissivity (e.g. synchrotron radiation),
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. , (vI\T& .
Jyr = V(—) = 8%, (115)

\
Therefore,
§3ta , ’
F = 5 j] yav (116)
D=y
This gives a factor of 83 * @ increase for a blue-shifted source

of radiation, over and above what would be measured 1n the
rest frame at the same frequency.

High Energy Astrophysics: Relativistic Effects 85/93



Example:

Consider the beaming factorina I' = 5 jet viewed at the an-
gle which maximises the apparent proper motion.

The maximum Bap p oceurs when cosO = f3.

Fr=5=p = Jl—l = 0.9798
52
1 1

C(1-Pcos®)  (1_p2)

(117)
=T

Hence,
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§3ta =536 = 33 (118)

for a spectral index of 0.6
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5.5 Plot of 5

10 Plot of the
' Doppler fac-
1 tor as a func-
| tion of view-

ing angle.

O —»

e
theta 0—»
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Appendix A

Line elementin momentum space in terms of hyper-
spherical angles

We have the hyperspherical angle representation of a point in
momentum Space:

0 —

p mccoshy

p mc sinhy sin0 cos ¢ (119)
p? = mecsinhy sinOsind
3 —

1 =

p mc sinhy cos 0

We can write:
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where
coshy
sinhy
4= | X sin B cos ¢
sinhy
X sinOsin@

dPO _d(mc)_

dp'| _ | dx

dp? d0

dp3 do i
mcsinhy 0
mccoshy mc sinhy

x sinOcosp X cosOcosd
mccoshy mc sinhy
x cosOsing  x cosOsing

sinhy cos® mccoshycos® —mcsinhy sinO

High Energy Astrophysics: Relativistic Effects

0
—mcsinhy
X s1n 0 cos ¢
mcsinhy

X s1n 0 cos ¢
0

(120)

(121)
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Hence

d(mc)

NdPtdpY = |d(me) dy do dg|AT4 Z’é (122)

do

where
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sinhy sinhy ,
—coshy . , . sinhy cos O
x sinBcosd  x sinOsin
, mccoshy mccoshy
—mcsinhy . "~ mccoshy cosO
AT = x sinOcosp x cosOsing (123)
sinh sinh
0 e X e X —mcsinhy sin©
x cosOcosp x cosOsind
0 —mcsinhy mc sinhy 0
x sinBcosd x sinBcosd

On matrix multiplication we obtain:

N, dptdpY = —[d(me)]? + (dy)? + sinh? [(d8)* + sin>6(d$)?1(124)
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10 0 0
01 0 0

00 sinhzx 0
0 0 0 sinh?ysin%0

ATA =
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