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Compton Scattering I

 

1 Introduction

 

Compton scattering is the process whereby photons gain or
lose energy from collisions with electrons. It is an important
source of radiation at high energies, particularly at X-ray to

-ray energies.

In this chapter, we consider the total energy radiated by rela-
tivistic electrons as a result of scattering of soft photons.
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2 Scattering from electrons at rest

2.1 Classical approach (Thomson scattering)

 

When a flux of electro-
magnetic radiation im-
pinges on an electron,
the electron oscillates
and radiates electro-
magnetic radiation
(photons) in all direc-
tions. 

Θ
Incident photons Sca

tte
red

 ph
oto

ns

Oscillating electron



 

High Energy Astrophysics: Compton Scattering I

 

    

 

3

 

/

 

59

 

We concentrate on the 

 

number

 

 flux of photons. Let

The differential number of scattered photons is defined in
terms of the 

 

cross-section

 

 by:

dN inc
dtdA
--------------

Incident no of photons per unit time

per unit area
=

dNscat
dtdΩ

----------------
No of photons per unit time per steradian

scattered by the electron
=

dNscat
dtdΩ

----------------
dN inc
dtdA
--------------

dσT
dΩ
----------=
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The 

 

differential cross section

 

 for Thomson scattering is:

dσT
dΩ
----------

1
2
---r0

2 1 Θcos2+( )=

r0 Classical electron radius=

e2

4πε0mec2
------------------------- 2.818

15–×10 m= =
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The classical electron radius, , is the “radius” derived by

treating the electron as a classical particle and assuming that
the its rest-mass is equal to its electrostatic potential, i.e.

 

Units

 

Note the units for the equation describing Thomson scattering

r0

e2

4πε0r0
------------------ mec2=

Number per unit time 

per unit solid angle

 Number per unit time

per unit area

Area per unit

solid angle
×=
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The total cross-section for scattering into all solid angles is
given by

The quantity  is the Thomson cross-section.

dNscat
dt

---------------- σT

dN inc
dtdA
--------------=

σT

dσT
dΩ
---------- Ωd

4π
∫

2πr0
2

2
------------ 1 Θcos2+( ) Θd

0
π
∫

8π
3

------r0
2= = =

6.65
29–×10   m2=

σT
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2.2 Quantum-mechanical particle approach
The above can
be derived by
approximating
photons classi-
cally as an elec-
tromagnetic
wave. It is also
useful to treat

the scattering from a particle point of view. To do so, we con-
sider the collision between a photon and an electron in the rest
frame of the electron, as described in the figure.

Θε hν=

ε1 hν1=

EElectron
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The parameters describing the collision are:

ε hν Initial photon energy= =

ε1 hν1 Final photon energy= =

mec2 Initial electron energy=

E Final electron energy=

Θ Angle of deflection of photon=
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Treatment of collision using 4-vectors

The conservation of momentum and energy gives the final
photon energy in terms of the initial energy. This can be de-
rived in the following way.

In relativity, the conservation of energy and momentum be-
comes the conservation of four momentum. As we described
in the chapter on relativistic effects, the 4–momentum of a

particle with energy  moving in the direction of
the unit vector  is described by:

E γmc2=
n
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Limiting case of photon

In the limit where the mass goes to zero and  but the en-
ergy  remains finite, we have a photon with 4–momentum

P γmc γmv
E
c
--- E

c
---v

c
--= =

E
c
--- 1 βn,[ ]=

n Unit vector in the direction of motion=

β 1→
ε

P
ε
c
-- 1 n,[ ]=
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Let

Conservation of 4-momentum, tells us that

Pγi Initial 4-momentum of the photon
ε
c
-- 1 nγi= =

Pγf Final 4 momentum of the photon
ε1
c
----- 1 nγf= =

Pei Initial 4-momentum of the electron mec 0= =

Pef Final 4-momentum of the electron
E
c
--- 1 nef= =

Pγi Pei+ Pγf Pef+=
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We can rearrange this equation in such a way that the electron
momentum drops out. First put

then take the 4-dimensional modulus of this equation.

Remember that 

1. The modulus of a vector  is given by

2. The scalar product of  and  is

Pef Pγi Pei Pγf–+=

Aµ

A2 ηµν AµAν A0( )2– A1( )2 A2( )2 A3( )2+ + += =

A B

A B⋅ ηµν AµBν A0B0 A1B1 A2B2 A3B3+ + +–= =
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3. The magnitude of the 4-momentum of a particle is given 
by:

4. Magnitude of 4-momentum of a photon is:

P2 m2c2–=

P2 0=
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Now take the modulus of the equation for :Pef

Pef
2 Pγi Pei Pγf–+ 2=

me
2c2–⇒ Pγi

2 Pei
2 Pγf

2+ +=

2+ Pγi Pei 2Pγi Pγf 2 Pei Pγf⋅( )–⋅–⋅

me
2c2– 0 me

2c2– 0 2 ε
c
--– mec 

 + +=

2
εε1

c2
--------–

εε1

c2
--------n

i
n f⋅+

 
 
 

– 2 m– ec
ε1
c
----- 

 –
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This simplifies to:

εme

εε1

c2
--------

εε1

c2
-------- Θcos–

 
 
 

– meε1– 0=

ε1 mec2 ε 1 Θcos–( )+[ ] ε=

ε1
ε

1
ε

mec2
------------

 
 
 

1 Θcos–( )+

-------------------------------------------------------=
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One can see immediately from this equation that:

2.3 Energy and wavelength change
The wavelength of a photon is given by:

The above equation for the energy can be expressed as:

ε mec2« ε1 ε≈⇒

ε hc
λ
------= λ⇒ hc

ε
------=



High Energy Astrophysics: Compton Scattering I    17/59

The wavelength change after scattering is of order the Comp-
ton wavelength. For long wavelengths, , the change in

wavelength is small compared to the initial wavelength.

Equivalently, when  energy is conserved  to

a good approximation. 

The above treatment follows very closely the treatment given
in the text book Special Relativity by W. Rindler.

λ1 λ– λc 1 θcos–( )=

λc
h

mec
--------- Compton wavelength of electron 0.0246 A≈= =

λ λ c»

ε mec2« ε1 ε=( )



High Energy Astrophysics: Compton Scattering I    18/59

2.4 The Klein-Nishina cross-section

When  as well as the relativistic effects implied by

conservation of energy and momentum, quantum mechanical
effects also change the electron cross-section from the classi-
cal value. The differential cross-section is given by the Klein-
Nishina formula:

ε mec2∼

dσKN
dΩ

---------------
r0

2

2
-----

ε1
2

ε2
-----

ε1
ε
----- ε

ε1
----- Θsin2–+

 
 
 

=
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As

ε ε1→

dσKN
dΩ

---------------
r0

2

2
----- 2 Θsin2–( )→ 1

2
---r0

2 1 Θcos2+( )
dσT
dΩ
----------= =
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Integrating the above expression over solid angle gives the
following expression for the total Klein-Nishina cross-sec-
tion:

σKN
3
4
--- 1 x+

x3
------------ 2x 1 x+( )

1 2x+
----------------------- 1 2x+( )ln–

 
 
 

=

1
2x
------+ 1 2x+( ) 1 3x+( )

1 2x+( )2
-----------------------–ln

x
hν

mec2
------------=
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Limits

Nonrelativistic regime :

Extreme relativistic regime :

That is, electrons are less efficient scatterers of high energy
photons.

x 1«( )

σ σT 1 2x– 26x2

5
------------+ 

 =

x 1»( )

σ 3
8
---σT x 1– 2xln 1

2
---+ 

 =

0  as  x ∞→→
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3 Scattering from electrons in motion

The above applies to an electron at rest. For most applica-
tions, the electrons are moving, sometimes with relativistic
velocities so that we need to consider the details of electron
scattering in this case. We do so by extending the results for
scattering by a stationary electron to moving electrons using
a change of frame defined by the Lorentz transformation.
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3.1 Rest frame and electron frame
Here we use a device that it used a lot in High Energy Astro-
physics, we determine the energy transfer in an arbitrary
frame by Lorentz transforming to and from a frame in which
the electron is at rest. In this application “something” is the
electron.

Assume that in the rest frame 

so that the energy change in the rest frame can be neglected.
The photon-electron collision in the two frames is as depicted
in the following diagram:

S ′( )

hν′ mec2«



High Energy Astrophysics: Compton Scattering I    24/59

Notation:

θ1
θ1 ′θ′

ε hν=

ε1 hν1=

ε′

ε1 ′

Electron scattering in laboratory 
frame and rest frame of electron

Note that all angles are measured clockwise from the
positive -axis defined by the electron velocity.

θ

 (rest frame)S ′ (lab frame)
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ε Initial photon energy in lab frame=

θ
Angle between initial photon direction 

and electron velocity in lab frame
=

ε′ Initial photon energy in electron frame=

θ′
Angle between initial photon direction

and electron velocity in rest frame
=

ε1 Scattered photon energy in lab frame=

θ1 Scattered photon angle in lab frame=

ε1 ′ Scattered photon energy in rest frame=

θ1 ′ Scattered photon angle in rest frame=
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3.2 Transformation between frames
The frame  is the frame in which the electron is at rest. The
various angles refer to the angle between the direction of the
photon (pre- or post-collision) and the -axis. In the lab frame

 the electron has velocity  and Lorentz factor

 

 

S ′

x
S v

γ 1 v2

c2
-----– 

  1 2/–
1 β2–( ) 1 2/–= =

β v
c
--=
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Recall the transformation between energies between two rel-
atively moving frames. For massive particles:

where  is the energy of the particle and  is its velocity. 

For photons (where we denote energy by ):

The Lorentz factor . 

E ′ γE 1 β
vp
c

------ θcos– 
 =

E vp

ε

ε′ γε 1 β θcos–( ) γε 1 βµ–( )= =

where µ θcos=

γ 1 β2–( ) 1 2/–=
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The reverse and forward transformations are:

Hence, except for values of  near 0 ( ), the photon picks
up a factor of  when we transform to the rest frame and ex-
cept for values of  near  ( ), we pick up a further

factor of  when we transform the energy of the scattered
photon back to the lab frame. 

ε′ γε 1 β θcos–( ) γε 1 βµ–( )= =

ε1 γε1 ′ 1 β θ1cos+( ) γ ε1 ′ 1 βµ1+( )= =

θ µ 1≈
γ

θ1 π µ1 1–≈

γ
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Energy gain from Thomson scattering

Assuming that Thomson scattering applies in the rest frame,
(i.e. ) then the ratios of energies in going from lab

frame to rest frame and then back to lab frame are of order

Hence, in being scattered by an electron, a photon increases

in energy by a factor of order . Obviously for relativistic
electrons, this can be substantial.

ε1 ′ ε′=

1:γ:γ2

γ2
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Condition for Thomson scattering in the rest frame

Since, the energy of the photon in the rest frame is of order
, then the condition for Thomson scattering to apply in the

rest frame is:
γε

γε mec2 γhν mec2«⇒«

hν
mec2

γ
------------«
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Example

Consider scattering of radio emitting photons by electrons

with a Lorentz factor of order . First, assuming that the
Thomson limit applies in the rest frame, the typical photon
frequency produced is

i.e. X-ray frequencies. 

104

γ2ν 108 109×  Hz 1017 Hz∼ ∼
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Is the condition for the Thomson limit satisfied? We require
the initial soft photon energy to satisfy:

and this is easily satisfied for radio photons.

ν
mec2

hγ
------------«

9.11
31–×10 3

8×10( )2×

6.6
34–×10 104×

--------------------------------------------------------- 1016= =
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4 Emitted power resulting from inverse Compton 
scattering

The scattering of photons by energetic electrons, frequently
results in a transfer of energy from the electrons to the pho-
tons. When this is the case, the process is known as inverse
Compton scattering.
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4.1 Single electron power
Isotropic distribution of photons

Photons impinging on a population of electrons have a distri-
bution of directions. For simplicity and with physical appli-
cations in mind, we consider a distribution of photons which
is isotropic in the lab frame. Let 

In the lab frame, where the photons are assumed isotropic:

f p( )d3 p No density of photons within range d3 p=

n ε( )dε No density of photons within dε=

4πp2 f p( )dp n ε( )dε=
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The calculation of the single electron power follows the fol-
lowing scheme.

Isotropic distribu-
tion of photons in 
lab frame

Anisotropic distribu-
tion of photons in 
rest frame of electron

Compute power in rest 
frame, using conserva-
tion of energy in rest 
frame

Transform back to lab 
frame and calculate 
power in that frame
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We consider the geometry at
the left. Consider photons in-
cident at an angle  to the -
axis which are scattered into a
range of angles indicated by

. Consider the incident

flux on the electron due to

photons within a region 
of momentum space, where 

θ1 ′θ′

S ′′′′

ε′

ε1 ′
Electron rest frame

θ′ x

θ1 ′

d3 p ′

d3 p ′ p ′2dp ′ θ′ dφ′sin=
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The number density of photons in this region of momentum
space is:

Therefore:

δn f p ′( )d3 p ′=

Incident photon flux per unit area

per unit time  
δn c× cf p ′( )d3 p ′= =

No of photons scattered per unit time σT cf p ′( )d3 p ′×=
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In the rest frame the energy of the scattered photons remains
the same. Hence, the energy per unit time, i.e. the power, of
the scattered radiation contributed by a single electron, is:

Integrating over all momenta in the rest frame:

Transformation back to lab frame

We know that the distribution function is invariant under
Lorentz transformations:

δP ′ σT ε′ cf ′ p ′( )d3 p ′××=

P ′ cσT ε′ f ′ p ′( )d3 p ′∫=

f ′ p ′( ) f p( )=
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We also need to determine the transformation law for  and

 as a result of the Lorentz transformations between  and

. Determining the transformation of  involves deter-
mining the Jacobean of the transformation from  to .Using
the transformations for photons derived from the 4-momen-
tum, we have for the spatial momentum components:

ε
d3 p S

S ′ d3 p
S ′ S
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px ′ γ px
ε
c
--β– 

  γ px pβ–( )= =

py ′ py= pz ′ pz=

px ′∂
px∂

----------- γ 1
p∂
px∂

---------β– 
  γ 1

px
p

------β– 
 = =

γ 1 β θcos–( )= γ 1 βµ–( )=

px ′∂
py∂

----------- γβ
py
p

------–=
px ′∂
pz∂

----------- γβ
pz
p

-----–=

py ′∂
py∂

-----------
pz ′∂
pz∂

---------- 1= =
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For the energy

Jacobean of the transformation between lab mo-
mentum space and rest frame momentum space

ε′ γ ε βc px–( ) γε 1 β
px
p

------– 
 = =

γε 1 β θcos–( ) γε 1 βµ–( )==

J
γ 1 βµ–( ) γβ

py
p

------– γβ
pz
p

-----–

0 1 0

0 0 1

γ 1 βµ–( )= =
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Hence,

 

The power radiated in the rest frame is:

d3 p ′ γ 1 β θcos–( )d3 p=

ε′ f p ′( )d3 p ′ γ2 1 β θcos–( )2εf p( )d3 p=

P ′ cσT εf p ′( )d3 p ′∫ cσT γ2 1 β θcos–( )2εf p( ) p2 pd Ωd∫= =

cσT γ2

4π
---------------- 1 β θcos–( )2εn ε( ) ε θsind θd φd∫=
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The integral is over variables in the lab frame where the pho-
ton distribution is isotropic.

We obtain for the power:

The quantity

is the photon energy density in the lab frame.

P ′ cσT γ2 1 β2

3
------+ 

  εn ε( ) εd
0
∞
∫=

Uph εn ε( ) εd
0
∞
∫=
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Emitted power in the lab frame

How does the power emitted in the rest frame relate to the
power emitted in the lab frame? We can write these powers as

where  and  are the energies in bundles of radiation

emitted in time intervals  and  respectively. 

From the Lorentz transformation between the electron rest
frame and the lab frame:

P ′
dE1 ′
dt ′

------------= P
dE1
dt

----------=

dE1 dE1 ′

dt dt ′
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since in the rest frame of the electron, . 

Consider a bunch of photons emitted with energy  and

-momentum  at the angle . The

Lorentz transformed energy of this bunch of photons in the
lab frame is

dt γ dt ′ βdx ′
c

-----------+ 
  γdt ′= =

dx ′ 0=

dE1 ′

x dpx ′ dE1 ′ c⁄( ) θ1cos= θ1 ′

dE1 γ dE1 ′ βcd px ′+( ) γ dE1 ′( ) 1 β θ1 ′cos+( )= =
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However, scatterings with  and  are

equally likely, because of the symmetry of the Thomson
cross-section, so that the averaged contribution to  is

Hence the power in the lab frame is:

That is,

θ1 ′cos 0> θ1 ′cos 0<

dE1

dE1〈 〉 γdE1 ′=

dE1〈 〉
dt

---------------
γdE1 ′
γdt ′

--------------
dE1 ′
dt ′

------------= =

P P ′=



High Energy Astrophysics: Compton Scattering I    47/59

Hence the scattered power in the lab frame is

4.2 Number of scatterings per unit time
In the electron rest frame:

P cσT γ2 1 β2

3
------+ 

  Uph=

dN ′
dt ′
--------- Number of scatterings per unit time=

cσT f p ′( )d3 p ′∫=
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Again we transform this equation to the lab frame:

where the photon number density is

 

dN ′
dt ′
--------- cσT γ 1 β θcos–( ) f p( ) p2 pd θsin θd φd∫=

2πγcσT
4π

-------------------- 1 β θcos–( )n ε( ) ε θsind θd∫=

γcσT Nph=

Nph n ε( ) εd∫=
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In transforming  to the lab frame, we note that  is
a number and so is Lorentz invariant, so that

4.3 Nett energy radiated
We write the above equation as

dN ′ dt ′⁄ dN ′

dN
dt
------- γ 1– dN ′

dt ′
--------- cσT Nph= =

dN
dt
------- cσT Nph cσT n ε( ) εd∫= =
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Hence, the number of scatterings per unit time per unit pho-
ton energy by a single electron is . Hence the energy

removed from photons within  is . Hence, the

energy removed from the photon field is given by:

cσT n ε( )

dε cσT εn ε( )dε

dE1
dt

---------- cσT εn ε( ) εd∫– cσT Uph–= =
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Therefore, the nett energy radiated is:

where we have used

dErad
dt

-------------- Pcompt cσT Uph γ2 1
1
3
---β2+ 

  1–= =

4
3
---σT cγ2β2Uph=

γ2β2 γ2 1–=
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4.4 Comparison of synchrotron and inverse Comp-
ton power
We already know that the synchrotron power of an electron
is given by

Hence,

Psynch
4
3
---σT cγ2β2UB=

UB
B2

2µ0
---------=

Pcompton
Psynch

----------------------
Uph
UB
----------=
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From this expression, we can see that the inverse Compton
power can be comparable to the synchrotron power, when the
photon energy density is comparable to the magnetic energy
density. This is often the case at the bases of jets, so that these
regions are often strong X-ray emitters.

5 Inverse Compton emission from the microwave 
background

A regime in which inverse Compton emission is important is
in the extended regions of radio galaxies, where the energy
density of the microwave background radiation may be com-
parable to the magnetic energy density.
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Consider the energy density of blackbody radiation:

This is equal to the energy density of a magnetic field when 

For the microwave background, . 

Therefore, when

εBB aT 4= a
8π5k4

15h3c3
------------------ 7.57

16–×10 J m 3–  K 4–= =

B2

2µ0
--------- aT 4= B⇒ 2µ0aT 2 4.4

11–×10 T 2= =

T 2.7 K=

B Bcrit< 3.2
10–×10 T 3.2µG= =
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the radiation from inverse Compton emission is more impor-
tant than synchrotron radiation as an energy loss mechanism
for the electrons.

6  Inverse Compton emission from a thermal 
plasma

The above expressions are derived without any restriction on
the energies of the electrons. If we consider a thermal distri-
bution, then,

γ2 1≈ β2〈 〉 v2〈 〉
c2

----------- 3kT

mc2
----------= =



High Energy Astrophysics: Compton Scattering I    56/59

Hence, the total Compton emission from a single electron is
given by:

The volume emissivity from the plasma with electron number
density  is:

PCompton
4kT

mc2
---------- 

  cσT Uph=

ne

jCompton
4kT

mc2
---------- 

  cσT neUph=
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Compton scattering of “soft” photons by hot thermal elec-
trons in the coronae of accretion disks is thought to be respon-
sible for the X-ray emission from AGN and for the X-ray
emissivity of galactic black hole candidates.

7 Mean energy of scattered photons

By dividing the radiated power by the number of scattered
photons per unit time, we can calculate the mean energy per
scattered photon.
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ε1〈 〉

4
3
---σT cγ2β2Uph

cσT Nph
-------------------------------------=

4
3
---γ2β2

Uph
Nph
---------- 4

3
---γ2β2 ε〈 〉= =
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Inverse Compton emission from relativistic elec-
trons

Thus for photons scattering off relativistic electrons, the

mean amplification of energy per scattering is , sup-

porting the order of magnitude estimate of  for this param-
eter. 

Clearly, for relativistic electrons, the energy gain is substan-
tial, underlining the importance of inverse Compton emission
as an astrophysical process.

4γ2 3⁄
γ2


