
Synchrotron Radiation II

1 Synchrotron radiation from Astrophysical Sources.

1.1 Distributions of electrons
In this chapter we shall deal with synchrotron radiation from
two different types of distribution of electrons. It is instruc-
tive to deal first with emission from a monoenergetic distri-
bution of electrons. We use a similar diagram as we used for
the calculation of the total emission from an electron.
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In this case however, the direction  is fixed but we are cal-
culating the integrated emission from a number of different
electrons with velocities which point near the direction of 
but which are nevertheless different.

1.2 Pitch angle distribution
Although the particles are monoenergetic they may have dif-
ferent pitch angles, . We take  and  as the polar angles
describing the direction of the velocity vector of an electron.
We know that

n
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High Energy Astrophysics: Synchrotron Radiation II    3/93



The corresponding elementary solid angle is

Note that this is different from the solid angle we have been
using for the radiation field.

Particle distribution in solid angle

The distribution of particles in direction, wrt the magnetic
field is described by: 

dp ddsin=

N k dp N k  ddsin=

No density of particles with velocities pointing 

within solid angle dp about the direction k
=
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If the distribution of electrons is isotropic, then  is con-
stant and the number density is

 . 

Hence

N k 

N k  d


4N k =

N k  n
4
------=

No of particles within ranges d and d n
4
------ ddsin=
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1.3 Calculation of emissivity

Outline

1. We wish to calculate the emission into a solid angle 
around the direction . This involves contributions from 
electrons of different pitch angles as illustrated. Electrons 
which have a pitch angle close to the direction of  will 
contribute more to the emission about  than electrons 
whose velocity points further away from .

2.The number density of electrons determines the number of 
electrons passing through the relevant direction per unit 
time, thence the number of pulses per unit time emitted by 
electrons in the direction of , thence the emissivity.
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3.The radiation from different electrons moving with differ-
ent pitch angles is integrated over pitch angle to determine 
the total emission into that solid angle.

No of pulses per unit time

In calculating the energy in a pulse emitted by a relativistic
electron, we used as a parameter, , the minimum angle be-
tween the velocity vector and the direction to the observer, .
Each particle has angular velocity 


n

d
dt
------ B=
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where

Let us estimate the number of particles passing  within the
range  in time . The range of  corresponding
to particles that are about to pass the direction  in time  is

B
eB
me
---------  1– 0= = 0

eB
me
------

Non-relativistic

gyrofrequency
= =

n
  d+ dt 

n dt

d d
dt
------dt=
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Hence the number of particles passing  in time  is

This is the number of pulses of radiation that are emitted from
within this range of pitch angles in time  and from the range
of pitch angles . Hence,

n dt

n
4
------ ddsin

n
4
------ dd

dt
------dtsin

n
4
------B ddtsin= =

dt
d

No of pulses per unit time
n

4
------B dsin=
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Contribution of particles of a given pitch angle

The contribution to the emissivity from particles within the
range  is:

We know that the important range of  is  and that 
is usually large. Hence we put

  d+

dj
Energy per unit frequency per

unit solid angle per pulse

No of pulses

per unit time
=

dj
n

4
------B 

dW  

dd
-----------------------dsin=

 1  

   += d d=
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The emissivity is

The parallel and perpendicular emissivities are very similar to
what we calculated before for the total single electron emis-
sion.

j
n

4
------B 

dW  

dd
-----------------------dsin

0


=

n
4
------ B sin 

dW  

dd
----------------------- d

–
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Since

dW||
dd
---------------

2q2

123c0

---------------------
a

c2
-------- 
  2

 2K1 3
2  =

dW
dd
---------------

2q2

123c0

---------------------
a

c2
-------- 
  2


4K2 3

2  =
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then

j||   n
4
------ B sin  2q2

123c0

--------------------- a

c2
-------- 
  2

=

 2K1 3
2   d

–




j   n
4
------ B sin  2q2

123c0

--------------------- a

c2
-------- 
  2

=


4K2 3

2  
–


 d
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We have given the results for the integrals already:

 2
2K1 3

2    d
–





3

-------x 2– F x  G x – =


4K2 3

2    d
–





3

-------x 2– F x  G x + =

x

c
------=
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Collecting terms and factors, using

we obtain the result:

a
c

B sin
--------------------

c
0 sin
-------------------= = where 0

eB
me
------=

c
3
2
---0

2 sin=

j ||   3ne2

6430c
--------------------- 0 sin  F x  G x  =
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2 Polarisation of monoenergetic electron emissivity

2.1 Stokes parameters
To a good approximation the integrated circular polarisation
of synchrotron emission is zero because of the approximately
equal contributions from  and .

Remember that (see chapter on radiation field):

 0  0

jI   j   j+
||
 =

jQ   j   j||  –=
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Hence

It is readily shown, under the assumptions that we have intro-
duced that  (exercise).

jI   3ne2

3230c
--------------------- 0 sin F x =

jQ   3ne2

3230c
--------------------- 0 sin G x =

jU   0
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The fractional polarisation of the emissivity (the intrinsic po-
larisation) is

r  
jQ  

jI  
---------------

G x 
F x 
------------= =
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The function 
 is 

plotted at left. Note 
that the polarisation 
is very high (greater 
than 50%) and ap-
proaches unity as 

.
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2.2 Direction of polarisation
Since 

the radiation is linearly polarised with the major axis of the
polarisation ellipse in the direction of , i.e. in the direction

perpendicular to the projection of the magnetic field onto the
plane of propagation.

We shall revisit this topic later after discussing emission from
a power-law distribution of electrons.

jV   jU   0= =

e
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3 Emission from a power-law distribution of electrons

In many astrophysical environments, the spectrum of syn-
chrotron radiation is a power-law over a large region in fre-
quency, i.e. the flux density is well approximated by

where  is called the spectral index. (Often the opposite con-

vention  is used. The reason for the above conven-

tion is that most optically thin nonthermal spectra have 
when  is defined using the first convention.)

F  –



F 

 0
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Example: Integrated flux density of Pictor A
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Interpretation

The power-law spectra of many sources is conventionally in-
terpreted as synchrotron radiation from an ensemble of elec-
trons with a power-law distribution in energy. Sometimes this
is represented by

where  is the electron spectral index and  represents
the number density of electrons with energies between  and

. The energies  and  are the lower and upper cut-

off energies. 

N E  CE a–= E1 E E2 

a N E dE
E

E dE+ E1 E2
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Because of the direct connection between Lorentz factor and
frequency of emission, we shall use

where  has the dimensions of number density.  is
the number density of electrons with Lorentz factors between

 and  and  and  are the lower and upper cutoff

Lorentz factors. Sometimes however, we wish to relate the
two and putting

N   K a–= 1  2 

K N  d

  d+ 1 2

N E dE N  d= N E  N   d
dE
-------

1

mc2
----------N  = =
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Usually , i.e. we normally only consider synchrotron

radiation from relativistic electrons. However, all of the for-
mulae are relevant for radiation from charged particles of any
mass. For a power-law distribution of particles:

with the cutoff energies and Lorentz factors related by:

m me=

N E  K

mc2
----------

E

mc2
---------- 
  a–

K mc2 a 1– E a–= =

C K mc2 a 1–=

E1 1mc2= E2 2mc2=
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Such power-law distributions are nonthermal. The distribu-
tion of particle energies is not that described by say a Max-
wellian distribution described by a fixed temperature. This is
still the case for a relativistic Maxwellian distribution.
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3.1 Isotropic distributions

We generally assume
that the electron distri-
bution is isotropic. We
take 

as the number density
of electrons within 
about  and within
solid angle  about

Illustrating the distribution 
of electrons in direction. 
The directional distribution 
corresponds to a distribu-
tion in pitch angle.

dp

k

N  k dd

d


dp
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the direction . Then the distribution is isotropic if  is
independent of . In this case,

since the integral of  over all solid angle gives .

k N  k 
k

N  k  1
4
------N  =

N  k  N  

N  k  d
4


1
4
------ N   d

4
 N  = =
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Monoenergetic -> Distribution

Given the way that we defined a monoenergetic distribution,
then the transition from monoenergetic to a distribution in en-
ergy is effected by:

3.2 Integral quantities

Number density

The total particle number density is determined from:

N k  N  k d

n N   d
1

2
 K  a– d

1

2
= =
High Energy Astrophysics: Synchrotron Radiation II    30/93



where  and  are respectively the lower and upper limits

to the electron distribution. In many sources we do not really
know the value of  and we only have an approximate idea

of . However, many properties of the radiation do not de-

pend upon these quantities.

1 2

1

2
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The above integral is easy:

n
K

a 1– 
---------------- 1

a 1– – 2
a 1– –– =

K
a 1–
------------1

a 1– – 1
2
1
-----
 
 
  a 1– –

–=

K
a 1–
------------1

a 1– –
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The form of the integral we have taken here is for . Usu-
ally (but not always; the Galactic Centre is an exception)

. For  the number density is dominated by low en-
ergy particles. For , the high energy part of the expres-

sion can be neglected.

a 1

a 2 a 1
2 1»
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Energy density

 Energy density K  a– mc2 d
1

2
= =

Kmc2 1 a– d
1

2


Kmc2

a 2–
-------------- 1

a 2– – 2
a 2– –– = =

Kmc2

a 2–
--------------1

a 2– – 1
2
1
-----
 
 
  a 2– –

–= for a 2

Kmc2
2
1
-----
 
 
 

                           for   aln= 2=
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For  (the usual case), the energy density is also dominat-
ed by the lowest energy particles. When , the energy di-
verges as  so that a cutoff at upper energies is

required, in this case. Theoretically, for , the distribution
of energies can extend to infinity. However, it seldom does
because of radiative losses considered later.

The tip of the iceberg

In principle, nonthermal distributions can extend down to
, whereas what we observe via radio astronomy (or

higher energy bands) corresponds to  or thereabouts.
Hence radio astronomy samples the “tip of the iceberg”.

a 2
a 2

2 

a 2

 1 10–

 104
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Pressure

The pressure of a relativistic gas satisfies

4 Synchrotron emission from a power-law

4.1 Some general points
The integrated emission from a power-law distribution of
electrons follows straightforwardly from the expressions de-
rived for a monoenergetic electron distribution.

p
1
3
---=
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We use the correspondence:

4.2 Isotropic distribution of electrons

For an isotropic distribution,  and we use

the expression for a monoenergetic distribution

dn
dp
---------- N  k d

n N  d

N  k  1
4
------N  =

j ||   3ne2

6430c
--------------------- 0 sin  F x  G x  =
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with  and integrating over Lorentz factor.

This gives:

We now change the variable of the integration from  to
. 

n Nd

j ||   3

6430c
---------------------

e2 0 sin 

me
------------------------------ F x  G x  N   d

1

2
=


x  c=
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Recall our expression for the critical frequency:

c
3
2
--- 0 sin 2=

2 2
3
--- 0 sin  1– c

2
3
---


0 sin
------------------- 
  

c
------ 
  1–

= =

2
30 sin
----------------------- 
  x 1–=
High Energy Astrophysics: Synchrotron Radiation II    39/93



Therefore,

 2
3
---


0 sin
------------------- 

  1 2/
x 1 2/–=

d 1
2
---

2
3
---


0 sin
------------------- 

 –
1 2/

x 3 2/– dx=
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Hence,

j ||   3

1283
---------------

e2

0c
--------
 
 
 

0 sin  2
30 sin
----------------------- 
  1 2/

=

x 3 2/–
x2

x1
 F x  G x  N  x  dx
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Collecting terms:

The limits of integration are determined by the values of 
corresponding to the upper and lower Lorentz factors:

 

j ||   21 2/

1283
--------------- 
  e2

0c
--------
 
 
 

0 sin  
0 sin
------------------- 
  1 2/

=

x 3 2/–
x2

x1
 F x  G x  N  x  dx

x

x1 2
2
3
---


0 sin
------------------ 

  1 2
2–=
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Note that  because of the dependence of  on the in-

verse square.

x2 x1 x
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This expression is valid for any isotropic distribution of elec-
trons. We now take a power-law distribution: 

so that

N   K a– K
2
3
---


0 sin
------------------- 

  a 2/–
xa 2/= =
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j ||   3

1283
---------------

e2

0c
--------
 
 
 

K 0 sin  2
3
---


0 sin
------------------- 

 
a 1– 

2
----------------–

=

x

a 3–
2

---------

x2

x1
 F x  G x  dx

3

a
2
---

2

a 1– 
2

----------------–

1283
----------------------------

e2

0c
--------
 
 
 

K 0 sin 
a 1+

2
------------


a 1– 

2
----------------–

=

x

a 3–
2

---------

x2

x1
 F x  G x   dx
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The integrand involves a power multiplied by the functions
 and . 

To begin with, we assume that the frequency of interest is
such that the values of  and  are well outside the region

 which dominates the integral. Consider

F x  G x 

x1 x2

x 1

x1


c 1 
-----------------= x2


c 2 
-----------------=
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Hence, if  then  and if , then

. That is, if the frequency of interest is well inside the

the range of critical frequencies defined by  and  then we

may take  and . 

We then use the following results (derived from the integral
properties of Bessel functions):

 c 1 » x1   c 2 «

x2 0

1 2

x2 0= x1 =

xF x  xd
0




2 1+

 2+
-------------- 

2
---

7
3
---+ 

   
2
---

2
3
---+ 

 =

xG x  xd
0


 2 

2
---

4
3
---+ 

   
2
---

2
3
---+ 

 =
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In the integrals we have encountered above,

 a 3–
2

------------=  1+
a 1–

2
------------=  2+

a 1+
2

------------=


2
---

7
3
---+

a
4
---

19
12
------+=


2
---

2
3
---+

a
4
---

1
12
------–=


2
---

4
3
---+

a
4
---

7
12
------+=
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4.3 Total emissivity
The total emissivity is:

j   j   j||  +=

3

a
2
---

2

a 1– 
2

----------------–

643
----------------------------

e2

0c
--------
 
 
 

K 0 sin 
a 1+

2
------------


a 1– 

2
----------------–

=

x

a 3–
2

------------
F x  xd

0
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Using the above integral relations and a little bit of algebra:

j   3a 2/

323
------------

 a
4
---

19
12
------+ 

   a
4
---

1
12
------– 

 

a 1+
--------------------------------------------------

e2

0c
--------
 
 
 

K 0 sin 
a 1+ 

2
-----------------

=


a 1– 

2
----------------–
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4.4 Spectral index
One immediately obvious feature of the above expression is
the spectral index of the emission, given by the exponent of

, i.e.

Hence a value of  corresponds to a spectral index of
. Typically spectral indices in synchrotron sources are

about  corresponding to values of . In
these cases, we do not need to worry about the divergence of
expressions for the energy density if we take .



 a 1–
2

------------= a 2 1+=

a 2=
0.5

0.6 0.7– a 2.2 2.4–

2 =
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4.5 Polarisation

The emissivity in Stokes  is given byQ

jQ   j   j||  –=

3

a
2
---

2

a 1– 
2

----------------–

643
----------------------------

e2

0c
--------
 
 
 

K 0 sin 
a 1+ 

2
-----------------


a 1– 

2
----------------–

=

x

a 3–
2

------------
G x  xd

–


 88
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The only difference between this expression and that for the
total emissivity is the integral; all of the leading terms are the
same. Hence, the fractional polarisation is:

q  
jQ
jI
-----

x

a 3–
2

------------
G x  xd

–




x

a 3–
2

------------
F x  xd

–




------------------------------------------= =
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Using the above expressions for the integrals:

The  function is defined by 

and satisfies the recurrence relation

q
 2+

2
------------

 
2
---

4
3
---+ 

   
2
---

2
3
---+ 

 

 
2
---

7
3
---+ 

   
2
---

2
3
---+ 

 
---------------------------------------------=



 x  tx 1– e t– td
0


=

 x  x 1–  x 1– =
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Hence,

and

 
2
---

7
3
---+ 

  
2
---

4
3
---+ 

   
2
---

4
3
---+ 

 =

q    2+

 2
3
---+

-------------
a 1+

a 7 3+
-------------------= =
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Three features of   syn-
chrotron polarisation:

1.The polarisation is 
frequency independent. 

2. The major axis of 
the polarisation ellipse 
is perpendicular to the 
projection of the mag-
netic field on the sky.

3.The polarisation is 
high – about 69% for . This plot represents polarisa-
tion as a function of .
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5 Simplified expression for 

5.1 Standard expression

We have the expression for the total emissivity :

j

j  

j   3a 2/

323
------------

 a
4
---

19
12
------+ 

   a
4
---

1
12
------– 

 

a 1+
--------------------------------------------------=

e2

0c
--------
 
 
 

K 0 sin  
0 sin
------------------- 
 

a 1– 
2

----------------–
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which we write in the following way in order to separate the
physical parameters from simple numerical ones:

j   3a 2/

323
------------

 a
4
---

19
12
------+ 

   a
4
---

1
12
------– 

 

a 1+
--------------------------------------------------=

e2

0c
--------
 
 
 

K 0 sin 

a 1+
2

------------


a 1– 
2

----------------–
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Notes

1.The magnetic field dependence enters through 

2.The particle density through  ( ). 

0
eB
m
------=

K N   K a–=
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Emissivity in terms of linear frequency

For relation to observations we require  and we

also put  in the above expression. This gives:

j 2j  =

 2=

j C1 a  e2

0c
--------
 
 
 

K 0 sin 
a 1+

2
------------


a 1– 

2
----------------–

=

C1 a  e2

0c
--------
 
 
 

K 0 sin 1 +  –=
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where:

5.2 Randomly oriented magnetic field
An approximation which is often used for synchrotron sourc-
es is that the magnetic field is randomly oriented (or “tan-
gled”) along the line of sight through the source. This is a
justifiable approximation if the mean direction of the magnet-

C1 a  3a 2/ 2

a 7+ 
2

-----------------–


a 3+ 
2

-----------------–  a
4
---

19
12
------+ 

   a
4
---

1
12
------– 

 

a 1+
--------------------------------------------------=
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ic field varies significantly along the line of sight or if the
plasma is highly turbulent so that the magnetic field direction
changes direction significantly from point to point.

For a magnetic field which varies in direction we compute an
ensemble-averaged value of the emissivity as follows. The
magnetic field direction enters through the factor

 in the expression for the emissivity. We take 
as a random variable and compute the mean over solid angle:

sin a 1+  2 
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sin a 1+  2  1
4
------ sin

a 1+
2

------------

0


  dsin d

0

2
=

1
2
--- sin

a 3+
2

------------
d

0


=


2

-------

 5 a+
4

------------ 
 

 7 a+
4

------------ 
 

----------------------=
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The angle-averaged emissivity for a randomly inclined mag-
netic field is given by:
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6 Models for a synchrotron-emitting plasma

6.1 Slab model

To observerUniform field Random field

B

B
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The diagram illustrates the different approximations we use
for radiative transfer in a synchrotron-emitting region. When
the emission is optically thin:

the latter approximation being valid for a region with approx-
imately constant properties.

For a constant magnetic field direction:

I j sd
0

L
 jL=

I C1 a  e2

0c
--------
 
 
 

KL 0 sin 
a 1+

2
------------


a 1– 

2
----------------–
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For a random magnetic field:

7 Estimation of magnetic fields and number densities

7.1 Minimum energy density and minimum energy – the 
last resort of rogues and scoundrels
The surface brightness or total power alone does not give us
enough information to determine the parameters of a source
– specifically the number density of emitting particles and the
magnetic field. However, one can minimise the total energy

I C2 a  e2

0c
--------
 
 
 

KL0

a 1+
2

------------


a 1– 
2

----------------–
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density subject to the constraints provided by the synchrotron
emission to get an estimate of the minimum energy in parti-
cles and field. The corresponding values of energy density in
particles and the magnetic field have often been used in re-
search as estimates for the source parameters, albeit with little
detailed justification. One needs another independent diag-
nostic to reliably determine plasma parameters. This is pro-
vided by the observation of inverse Compton emission – to be
considered later.
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7.2 Minimum energy density from surface brightness 
observations
Take the expression for the surface brightness of a plasma
with an embedded random magnetic field:

I C2 a  e2

0c
--------
 
 
 

KL0

a 1+
2

------------


a 1– 
2

----------------–
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The parameter  can be related to the relativistic energy den-
sity by:

K
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Hence  is expressed in terms of the electron density by:

We allow for the possible presence of other particles by tak-
ing the total particle density

Notes

1.For an electron/positron plasma , since the surface 

brightness and linear polarisation are the same for positrons 
as for electrons.

K

K
e

mec2
------------f 1– a 1 2  =

p 1 cE+ e=

cE 0=
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2.If there are relativistic protons in the plasma,  could be 

of order 100.

3.Thermal plasma can also contribute to the particle energy 
density. This can have other observable consequences 
through internal Faraday depolarisation.

4.In extragalactic radio sources we frequently take .

5.Supernova remnants are frequently regarded as the source 
of cosmic rays in the galaxy. The percentage of relativistic 
electrons in cosmic rays is typically 1%. Therefore, for 
supernova remnants,  may be appropriate.

cE

cE 0 1

cE 100
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Back to calculation:

The total energy density is:

tot p
B2

20
---------+ 1 cE+ e

B2

20
---------+= =
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For a given surface brightness, the electron energy density is
a function of the magnetic field. Differentiating the total en-
ergy density with respect to the magnetic field to determine
the parameters of the minimum calculation:

B

tot
B

p B
0
------+ 0= =

B

p B
0
------–=
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Now consider the equation for the surface brightness in the
form:

Solving for the electron energy density times a power of :
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The particle energy density is just  times  so that:

The right hand side of the last equation is independent of .
Taking logs and using , gives:
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Since, 

then
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For the values of  which are normally relevant, the particle
energy density is comparable to the magnetic energy density,
i.e. the particles and field are close to equipartition. Exact eq-
uipartition is represented by

Minimum energy parameters

Since,
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and 

then
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5
-----
Hence,

Using  and  gives:
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The corresponding particle density
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Notes

1.For , the values of  and  only depend 

weakly upon the input parameters.

2.Since , the dependence upon  is very 

weak.

3.As estimates of particle energy density and magnetic field 
these estimates have to be treated with caution. The only 
physical argument that these parameters are close to reality 
is that if a plasma is given enough time, the particles and 
field will come into equipartition as a result of the inter-
change of energy between the particles and field.

a 2 Bmin p min

f 1
a 2– – 1
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4.Similar expressions hold for the minimum total pressure 
of a synchrotron emitting plasma where the total pressure is 
defined by

5.While one has to be careful about using these minimum 
energy estimates in order to estimate the parameters of 
radio sources, they certainly provide us with an estimate of 

ptot 1 cp+  1
3
---rel B2

20
---------+=
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the total minimum energy

Emin p min

Bmin
2

20
------------+ Volume=
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7.3 Example: Minimum energy: Hot-spot of Pictor A

The western hot spot of Pic-
tor A at 3.6 cm wavelength
and  resolution.

Contours spaced by a factor

of  between 0.071 and
70.71 % of the peak intensi-
ty of 0.94 Jy/beam.

Figure from Perley et al.
1997, A&A, 328, 12-32

1.5

21 2/
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The calculations for Pictor A are set out in the template
spreadsheet Pictor A.xlsx available from the course web
page.

Note that for the distance through the hot spot we take the
contour corresponding to the FWHM of the peak surface
brightness. This is an approximation that could be refined but
the actual inferred values of energy density are insensitve to
values around this estimate.

The results of this calculation for  are:

Minimum energy magnetic field:

10.3 nT =  G

cE 0=

1.3
4–10
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Minimum energy particle energy density:

 J/m3=  ergs cm-3.4.9
11–10 4.9

10–10
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