
Radiation from a Moving Charge

1 The Lienard-Weichert radiation field

For details on this theory see the accompanying background notes on
electromagnetic theory (EM_theory.pdf)

Much of the theory in this chapter can be applied to many cases of
radiating charges. Its main use will be in the application to synchro-
tron radiation.

Other reading: Rybicki & Lightman, Radiative Processes in Astro-
physics, on which the following development is mainly, but not en-
tirely, based. In particular, the emissivity in the Stokes parameters is
not dealt with in R&L.
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1.1 Retarded time and position

O

x
X t 

X t 

x X t –

x X t –

Field point P

Trajectory of charge

Source point
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In the above diagram:

(1)

O Arbitrary coordinate origin=

P Field point=

t time=

t Retarded time=

x Position vector of field point=

X t  Position vector of moving charge (source point)=

X t  Position vector of moving charge at retarded time=
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Retarded time and retarded position vector

The retarded time is defined as the time of emission of an electro-
magnetic wave from the particle which arrives at the field point at
time , i.e.

(2)

The retarded position vector is:

(3)

t

t t x X t –
c

------------------------+=

t t
x X t –

c
------------------------–=

r x X t –=
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The corresponding unit vector pointing from the retarded source
point to the field point is:

(4)

Velocities

(5)

n x X t –
x X t –
------------------------=

Velocity of charge X· t =

 t  X· t 
c

----------=

 t  X· t 
c

------------=
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1.2 The scalar and vector potential (Lienard- Weichert 
potentials)

(6)

Electromagnetic field

(7)

Scalar potential  t x  q
40r
----------------- 
  1

1  t  n– 
-----------------------------------= =

Vector potential A t x 
0q

4r
-----------

X· t 
1  t  n– 

-----------------------------------= =

E –
A
t

------–= B curl A=
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The result of the differentiations is:

(8)

E x t  q

40r2
-------------------- 1  n–  3– =

n –  1 2–
r· n

c
-----------------+ 

  r·  1  n– 
c

--------------------------------------–

B c 1– n E =
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Many of the terms in these expressions decrease as . These cor-
respond the Coulomb field of the moving charge. However, the

terms proportional to the acceleration only decrease as . These
are the radiation terms:

(9)

Note that

(10)

 

r 2–

r 1–

Erad
q

4c0r
--------------------

n – ·  n ·  1  n– – 
1  n– 3

---------------------------------------------------------------------------------=

Erad n 0=
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Poynting flux

The Poynting flux of the Lienard-Weichert electromagnetic field is
given by:

(11)

This can be understood in terms of equal amounts of electric and

magnetic energy density ( ) moving at the speed of light in

the direction of . This is a very important expression when it
comes to calculating the spectrum of radiation emitted by an accel-
erating charge.

S
E B
0

--------------
E n E 

c0
------------------------------ c0 E2n E n E– = = =

c0E2n= for the radiation component

0 2 E2

n
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2 Radiation from relativisti-
cally moving charges – Relativ-
istic beaming

Note the factor  in the
expression for the electric field. Ex-
pressing

 (12)

where  is the angle between  and
, we can see that this factor is small

when

•   – the particle is relativistic

•   – the field point is in the direction of the particle

Trajectory of 
particle

2 

n

Illustration of the 
beaming of radia-
tion from a rela-
tivistically mov-
ing particle.

1  n–  3–

1  n– 1  cos–=

 
n

 1

 0
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When  the contribution to the electric field is large be-

cause of the factor  in the expression for the electric
vector.

We quantify this further as follows:

 (13)

1  n– 0

1  n–  3–

1  n– 1   1 1
1

22
--------– 

  1
1
2
---2– 

 –cos–=

1 1
1

22
--------

2

2
------–– 

 –=

1

22
--------

2

2
------+=

1

22
-------- 1 22+ =
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The minimum value of  is  and the value of this
quantity only remains near this for . This means that the ra-
diation from a moving charge is beamed into a narrow cone of angu-
lar extent . This is particularly important in the case of

synchrotron radiation for which  (and higher) is often the
case.

1  n– 1 22 
 1 

1 

 104
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3 The spectrum of a moving charge

3.1 Fourier representation of the field

Consider the transverse electric field, , resulting from a moving
charge, at a point in space and represent it in the form:

(14)

where  and  are appropriate axes in the plane of the wave. (Note

that in general we are not dealing with a monochromatic wave, here.)

We approach the problem of determining the spectrum by using Fou-
rier analysis.

E t 

E t  E1 t e1 E2 t e2+ E t e= =  1 2=

e1 e2
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The Fourier transform relations for the electric field:

(15)

The condition that  be real is that

(16)

Note: We do not use a different symbol for the Fourier transform.
The transformed variable is indicated by its argument.

E   eitE t  td
–


=

E t  1
2
------ e it– E   d

–


=

E t 

E –  E
*  =
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3.2 Spectral power in a pulse

Outline of the following calculation

• Consider a pulse of radiation

• Calculate total energy per unit 
area in the radiation.

• Use Fourier transform theory to 
calculate the spectral distribution 
of energy.

• Show that this can be used to 
calculate the spectral power of the 
radiation.

E t 

t

Diagrammatic representa-
tion of a pulse of radiation 
with a duration .t

t
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Nitty-gritty

The energy per unit time per unit area of a pulse of radiation is given
by:

(17)

where  and  are the components of the electric field wrt (so far

arbitrary) unit vectors  and  in the plane of the wave. We refer

to the two components of the transverse electromagnetic wave as dif-
ferent modes of polarisation. 

dW
dtdA
------------ Poynting Flux c0 E2 t = =

c0  E1
2 t  E2

2 t + =

E1 E2

e1 e2
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Note that there is a difference here from the Poynting flux for a pure
monochromatic plane wave in which we pick up a factor of .

That factor results from the time integration of  which comes

from, in effect, . This factor, of course, is not evalu-

ated here since the pulse has an arbitrary spectrum.

The total energy per unit area in the –component of the pulse is

(18)

(The reason for the  subscript is evident below.)

1 2

tcos2

E   2 d
0






dW
dA

--------------- c0  E
2 t  td

–


=


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From Parseval’s theorem,

(19)

The integral from  to  can be converted into an integral from 0
to  using the reality condition: For the negative frequency compo-
nents, we have

(20)

so that

(21)

E
2 t  td

–




1
2
------ E   2 d

–


=

– 


E –  E
* –  E

*   E   E   2= =

E
2 t  td

–




1

--- E   2 d

0


=
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The total energy per unit area in the pulse, associated with the 
component, is

(22)

We identify the spectral components of the contributors to the Poynt-
ing flux by:

(23)



dW
dA

--------------- c0 E
2 t  td

–




c0


-------- E   2 d
0


= =

dW
ddA
---------------

c0


-------- E   2=
High Energy Astrophysics: Radiating charges                                       19/42



The quantity  represents the total energy per unit area per unit

circular frequency in the entire pulse, i.e. we have accomplished our
aim and determined the spectrum of the pulse. 

We can use this expression to evaluate the power associated with the
pulse. Suppose the pulse repeats with period , then we define the
power associated with component  by:

(24)

This is equivalent to integrating the pulse over, say several periods
and then dividing by the length of time between pulses.

dW
ddA
---------------

T


dW
dAddt
--------------------

1
T
---

dW
dAd
--------------

c0
T
-------- E   2= =
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3.3 Emissivity
The emissivity is defined in the folowing way:

Energy radiated in polarisation mode  into solid angle , circular
frequency range  in time 

  (25)

The total emission coefficient  is defined by

(26)

 d
d dt

dW
dddt
--------------------- d d dt=

j

 j

dW11
dddt
---------------------

dW22
dddt
---------------------+=
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Consider the surface  to be located 
at a distance that is large compared to 
the distance over which the particle 
moves when emitting the pulse of radi-

ation. Then  and

(27)

Variables used to define the 
emissivity in terms of emitted 
power.

Region in which particle 
moves during pulse

dA r2d=

d
r

dA

dA r2d=

dW
dAddt
--------------------

1

r2
-----

dW
dddt
---------------------=

dW
dddt
--------------------- r2

dW
dAddt
--------------------=
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Emissivity corresponding to the  component of pulse.

 (28)

3.4 Independence of radius
Note that

(29)

e

dW
dddt
---------------------

c0r2

T
-------------- E   2=

c0r2

T
--------------= E  E

*   (Summation not implied)

dW
dddt
--------------------- r2 E   2
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However, we know that for the electric field of a radiating charge

(30)

so that 

(31)

E t  1
r
--- E   1

r
---

dW
dddt
--------------------- is independent of r
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3.5 Relationship to the Stokes parameters
We generalise our earlier definition of the Stokes parameters for a
plane electromagnetic wave to the following:

(32)

I

c0
T
-------- E1  E1

*   E2  E2
*  + =

Q

c0
T
-------- E1  E1

*   E2  E2
*  – =

U

c0
T
-------- E1

*  E2   E1  E2
*  + =

V
1
i
---

c0
T
-------- E1

*  E2   E1  E2
*  – =
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The definition of  is equivalent to the definition of specific inten-

sity in the Radiation Field chapter.

Also note the appearance of circular frequency resulting from the
use of the Fourier transform.

To aid the following theoretical development, we define the polari-
sation tensor by:

(33)

I

I   1
2
---

I Q+ U iV–

U iV+ I Q–

c0
T
--------E  E

*  = =
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In the above development, we calculated the emissivities,

 (34)

 corresponding to each wave mode. More generally, we define:

(35)

and these are the emissivities related to the components of the polar-
isation tensor . 

dW
dddt
---------------------

c0
T
--------r2E  E

*  =

dW
dddt
---------------------

c0
T
--------r2E  E

*  =

I
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In general, therefore, we have

(36)

dW11
dddt
--------------------- Emissivity for  

1
2
--- I Q+ 

dW22
dddt
--------------------- Emissivity for  

1
2
--- I Q– 

dW12
dddt
--------------------- Emissivity for  

1
2
--- U iV– 

dW21
dddt
---------------------

dW12
*

dddt
--------------------- Emissivity for  

1
2
--- U iV+ =
High Energy Astrophysics: Radiating charges                                       28/42



Consistent with what we have derived above, the total emissivity is

(37)

and the emissivity into the Stokes  is 

(38)


I

dW11
dddt
---------------------

dW22
dddt
---------------------+=

Q


Q

dW11
dddt
---------------------

dW22
dddt
---------------------–=
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Also, for Stokes  and :

(39)

Note that the expression for  is independent of ra-

dius, , because of the  dependence of the Electric field.

U V


U

dW12
dddt
---------------------

dW12
*

dddt
---------------------+=


V i

dW12
dddt
---------------------

dW12
*

dddt
---------------------–

 
 
 

=

dW dddt

r r 1–
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4 Fourier transform of the Lienard-Weichert radiation 
field

The emissivities for the Stokes parameters depend upon the Fourier
transform of 

(40)

where 

(41)

rE t  q
4c0
---------------

r
r
---- 
  n n –  ·  

1  n– 3
------------------------------------------------=

t t
r
c
----–= r x X t –=
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The aim of this section is to find the most convenient way of express-
ing the Fourier transform of  in terms of the motion of the
charge. To begin with we ignore the difference between  and 
since the distance to the field point is large compared to the distance
over which the charge moves, i.e. . 

Transformation to retarded time

The Fourier transform involves an integration wrt . We transform
this to an integral over  as follows:

(42)

To prove that , we proceed as follows:

rE t 
r r

r r 1

t
t

dt
t
t

------dt 1  n– dt= =

t
t

------ 1  n– =
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The relationship between field point time  and source point time (re-
tarded time) is given by:

(43)

Differentiate wrt :

(44)

Now,

t

t t x X t –
c

------------------------+=

t

t
t

1
1
c
---

t


x X t –+=

t


x X t –
t


xi Xi t –  xi Xi t –  1 2/=
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(45)

Hence,

(46)

1
2
---

1
x X t –
------------------------ 2 xi Xi t – 

t


– Xi t ( )=

t
t 1 i t ni– 1  n–= =

rE   q
4c0
---------------

n n –  ·  
1  n– 3

------------------------------------------------eit 1  n–  td
–


=

q
4c0
---------------

n n –  ·  
1  n– 2

------------------------------------------------eit td
–


=
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Integrand in terms of retarded time

The next part is to express

(47)

in terms of retarded time .

Since 

(48)

eit i t r
c
----+ 

 exp=

t

r x X t – x   when   x X t »=
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then we expand  to first order in  around . Thus,

(49)

Note that it is the unit vector  which enters here, rather than

the retarded unit vector  

r X Xi 0=

r xj Xj t – r 0  r
Xi

--------Xi+= =

r
Xi

--------
xi Xi t – –

r
--------------------------------

xi
r
---- at Xi– 0= = =

r r
xi
r
----Xi– r niXi– r n X t –= =

n
r
r
--=

n
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Hence,

(50)

The factor  is common to all Fourier transforms 

and when one multiplies by the complex conjugate to obtain

 this factor gives unity. This also shows why we ex-

pand the argument of the exponential to first order in  since the
leading term is eventually unimportant.

it exp i t r
c
--

n X t 
c

--------------------–+ 
 exp=

i t n X t 
c

--------------------– 
  ir

c
--------expexp=

ir
c

--------exp rE  

E  E
*  

X t 
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Convenient form of integrand

The remaining term to receive attention in the Fourier Transform is

(51)

We only need to expand the unit vector  to zeroth order in  be-

cause the zeroth order term does not disapear. Hence

(52)

Therefore, 

(53)

n n –  ·  
1  n– 2

------------------------------------------------

n Xi

n n

n n –  ·  
1  n– 2

------------------------------------------------
n n –  ·  

1  n– 2
---------------------------------------------
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It is straightforward (exercise) to show that 

(54)

Hence,

(55)

d
dt
------

n n  
1  n–

-----------------------------
n n –  ·  

1  n– 2
---------------------------------------------=

rE   q
4c0
---------------e

ir c d
dt
------

n n  
1  n–

-----------------------------
–


=

i t n X t 
c

--------------------– 
 exp dt
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One can integrate this by parts. First note that

(56)

since we are dealing with a pulse. Second, note that,

(57)

n n  
1  n–

-----------------------------
–

 0=

d
dt
------ i t n X t 

c
--------------------– 

 exp i t n X t 
c

--------------------– 
 exp=

i 1  n– 
High Energy Astrophysics: Radiating charges                                       40/42



and that the factor of  cancels the remaining one in the
denominator. Hence, our final result:

(58)

In order to calculate the Stokes parameters, one selects a convenient
coordinate system (  and ) adapted to the physical situation. The

motion of the charge enters through the terms involving  and
 in the integrand.

1  n– 

rE   iq–
4c0
---------------e

ir c
n n  

–


=

i t n X t 
c

--------------------– 
 exp td

e1 e2

 t 
X t 
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Remark on relativistic beaming

The feature associated with radiation from a relativistic particle,
namely that the radiation is very strongly peaked in the direction of
motion, shows up in the previous form of this integral via the factor

. This dependence is not evident here. However, when
we proceed to evaluate the integral in specific cases, this dependence
resurfaces.

1  n–  3–
High Energy Astrophysics: Radiating charges                                       42/42


	Radiation from a Moving Charge
	1 The Lienard-Weichert radiation field
	1.1 Retarded time and position
	(1)
	Retarded time and retarded position vector
	(2)
	(3)
	(4)

	Velocities
	(5)


	1.2 The scalar and vector potential (Lienard- Weichert potentials)
	(6)
	Electromagnetic field
	(7)
	(8)
	(9)
	(10)

	Poynting flux
	(11)



	2 Radiation from relativistically moving charges – Relativistic beaming
	Trajectory of particle
	(12)
	• – the particle is relativistic
	• – the field point is in the direction of the particle
	(13)


	3 The spectrum of a moving charge
	3.1 Fourier representation of the field
	(14)
	(15)
	(16)

	3.2 Spectral power in a pulse
	Outline of the following calculation
	• Consider a pulse of radiation
	Diagrammatic representation of a pulse of radiation with a duration .

	• Calculate total energy per unit area in the radiation.
	• Use Fourier transform theory to calculate the spectral distribution of energy.
	• Show that this can be used to calculate the spectral power of the radiation.

	Nitty-gritty
	(17)
	(18)
	(19)
	(20)
	(21)
	(22)
	(23)
	(24)


	3.3 Emissivity
	(25)
	(26)
	Variables used to define the emissivity in terms of emitted power.

	(27)
	(28)

	3.4 Independence of radius
	(29)
	(30)
	(31)

	3.5 Relationship to the Stokes parameters
	(32)
	(33)
	(34)
	(35)
	(36)
	(37)
	(38)
	(39)


	4 Fourier transform of the Lienard-Weichert radiation field
	(40)
	(41)
	Transformation to retarded time
	(42)
	(43)
	(44)
	(45)
	(46)

	Integrand in terms of retarded time
	(47)
	(48)
	(49)
	(50)

	Convenient form of integrand
	(51)
	(52)
	(53)
	(54)
	(55)
	(56)
	(57)
	(58)

	Remark on relativistic beaming



