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1 Introduction

We see astrophysical objects in different wavebands from
radio through to optical to X-ray and gamma-ray because
of the radiation they emit, which propagates, both through
the source and the intervening medium. Therefore, it is  im-
portant to understand the properties of the radiation field
and the manner in which it is described.

One of the most important diagnostics of radiation from an
astrophysical source is that afforded by polarisation.
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For example, the direction of the magnetic field in a syn-
chrotron emitting source is perpendicular to the direction
of the -vector of the predominantly linear polarised radi-
ation. Polarisation is also affected by the medium through
which transverse waves travel (Faraday rotation). Hence it
is important to have a sound theoretical basis from which
to discuss polarisation. 

E
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2 Specific intensity and flux

2.1 Definition of specific intensity

n
d

dA

n

dA



d

dA dA cos=
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Specific intensity is defined by:

(1)

Electromagnetic energy

passing through surface  normal

to surface within elementary  

solid angle

IddAdtd=

Specific 
intensity

Solid angle
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In terms of circular frequency :

(2)

We often require the energy flowing through  at an an-
gle  to the normal. We can derive the relevant expression
in the following way. Consider the elementary surface 
which is

•normal to the ray, and
• the projection of  (see the above figure)



Electromagnetic energy

passing through surface  normal

to surface

IddAdtd=

dA


dA

dA
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Then

(3)

and 

(4)

We put

 (5)

dA dA cos=

Electromagnetic energy

passing through surface

at an angle  to surface

I    dcos dAdtd=

I I   =
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to emphasize the fact that the specific intensity can vary
with direction with respect to the normal .

Units of :

We have 

(6)

so that the units of  are:

(7)

n

I

Joules I frequency area time solid angle=

I

Watts m 2– Hz 1–  Str 1–
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or

(8)

2.2 Flux density

The flux density, , is the power per unit area of the radi-

ation field. It is therefore defined by

(9)

ergs s 1– cm 2– Hz 1– Sr 1–

F

dF I cos d=
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The flow of energy per unit area per unit time per unit fre-
quency through a surface with normal  is given by:

(10)

The density in this case refers to the “per unit frequency”
part. More about this below.

n

F Wm 2– Hz 1–  I cos d

=
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2.3 Relationship of flux density to power at telescope

I



Source of 
cosmic radi-
ation

Bundle of rays 
from sourcen

n
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The solid angle of the bundle of rays is usually defined by
the resolving power of the telescope. The power per unit

area received by the telescope is . Frequently

in radio astronomy, you will hear people refer to the flux
density of a source.

I cos d


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2.4 Surface brightness
For a small region of solid
angle normal to the direction
in which a telescope is point-
ing, we have:

(11)



dA

n

F I I
F

----------= =
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Hence, the specific intensity is the flux received per unit of
telescope area per unit of solid angle. For this reason, some
astronomers, and particularly radio astronomers, refer to
the specific intensity as surface brightness.

This equation is also frequently used to estimate surface
brightness of a source from an image when the image is
represented in terms of flux density per beam. More about
this later.
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Units of flux density

Often, especially in radio astronomy, we use the unit of a
Jansky (after one of the discoveries of cosmic radio radia-
tion)

(12)

2.5 Momentum flux density
Since the energy passing through a surface in a given direc-
tion is

(13)

1 Jansky (Jy) 10 26–  Wm 2– Hz 1–=

dE I ddtddAcos=
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then the magnitude of momentum passing through the sur-
face in the same direction is

(14)

However, momentum is a vector quantity. The component
of momentum in the direction of the normal is

(15)

dp
dE

c
----------

I
c
----- ddtddAcos= =

dp cos
I
c
----- cos2 ddtddA=
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The momentum flux density, , is the momentum per

unit time per unit frequency per unit area passing in all di-
rections through the surface, so that

(16)




1
c
--- I cos2 d

=
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2.6 Integration over frequency
The total flux of energy per unit area between two frequen-
cies  and  is just the integral of the flux density be-

tween these limits.

(17)

1 2

Total flux F Wm 2–  F d
1

2
==
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Pressure is force per unit area, or equivalently, momentum
flux density per unit area, so that the total radiation pres-
sure on the surface can be found by integrating the momen-
tum flux density over frequency.

(18)

 The total intensity is just the integral of the specific inten-
sity over frequency.

(19)

Pressure p Nm 2–   d
1

2
==

Intensity I Wm 2– Str 1–  I d
1

2
= =
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In particular the total flux is the frequency-integrated flux
density. Sometimes people loosely refer to flux density as
flux and I have seen pedantic thesis examiners insist on
such carelessness being expunged from a thesis before it
can be accepted.

2.7 Radiation energy density
Define

(20)u  dVdd
Energy in volume dV

solid angled
and frequency interval dv

=
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Consider a cylinder of length , cross-sectional area cdt dA

d

dA

cdt
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The energy of radiation in cylinder within a cone of solid
angle  is:

(21)

d

dE u  ddVd u  ddAcdtd= =

cu  ddAdtd=
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All of the radiation within the cylinder passes through 
in the time . Hence,

(22)

dA
dt

cu  ddAdtd IddAdtd=

cu   I=

u  
I
c
-----=
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Therefore, the total energy density at a point within the vol-
ume is given by:

(23)

u
1
c
--- I d

4


4
c

------J= =

where J
1

4
------ I d

4
 Mean intensity= =
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2.8 Constancy of specific intensity in free space

(24)

d1 d2

dA1
dA2

Ray

R

d1

dA2

R2
---------= d2

dA1

R2
---------=
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Consider the energy flux through an elementary surface
 within solid angle . Consider all of the photons

which pass through  in this direction which then pass

through . We take the solid angle of these photons to

be . By conservation of energy the energy passing

through both surfaces within the corresponding solid an-
gles is identical. Hence,

(25)

dA1 d1

dA1

dA2

d2

dE I
1dA1dtd1d1 I

2dA2dtd2d2= =
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The solid angles are given by:

(26)

This implies that:

(27)

Since , then

(28)

d1

dA2

R2
---------= d2

dA1

R2
---------=

d1dA1 d2dA2

dA1dA2

R2
--------------------= =

d1 d2=

I
1 I

2 constant along ray= =
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

2.9 Spontaneous emission
Various emission processes along a ray contribute to the
specific intensity. The emissivity, in principle, is angle-de-
pendent, e.g. synchrotron emission depends upon the angle
between the emission direction and the magnetic field. The
emissivity is defined by:

(29)

Energy radiated from volume dV

in time dt into freqency intervald
into solid angle d

dE jdVdtdd= =

Emissivity
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If the emissivity is isotropic, then

(30)

The emission may be considered to be isotropic for two
reasons:

1. The emission mechanism is independent of direction.

2.The emission may be considered to be the random 
superposition of a number of anisotropic emitters, e.g. 
synchrotron emission from a tangled magnetic field.

j
1

4
------P=

Radiated power 
per unit volume
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Effect on specific intensity

Energy added to beam from emission from within
 is given by:

(31)

ds
dA

d

dV dAds=

dE jdVddtd jdAdsddtd= =
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This is radiated into the solid angle  emerging from 
so that the change in specific intensity is given by:

(32)

d dA

dIdAddtd jdAdsddtd=

dI
ds
-------- j=
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2.10 Absorption
Often absorption is presented in the following form:

(33)

and we shall see examples of this later on.

dI
ds
-------- I–=

Coefficient of 
absorption
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3 The radiative transfer equation

3.1 The fundamental equation
Putting emission and absorption into the one equation, we
have

(34)

Note that the emissivity can include scattering of photons
from other directions into the direction being considered.
This is what makes the solution of radiative transfer equa-
tions a challenging problem in general.

dI
ds
-------- j I–=
High Energy Astrophysics: Radiation Field                                       33/113



3.2 Solution for emission only (optically thin emission)

Emitting (and absorb-
ing) region

I 0 
Free 
space

I
Ray

s 0= s s1=

Emergent intensity
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 (35)

In many cases:

•   

•We approximate the medium by one with constant prop-
erties. This gives,

(36)

dI
ds
-------- j= I s  I 0  j s  sd

0

s
+=

I 0  j s  sd
0

s1
+=

I 0  0=

I js1=
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Once outside the emitting region, the specific intensity is
constant, unless another emitting or absorbing region is en-
countered.

3.3 Absorption only

(37)

dI
ds
-------- I–=

I s  I s0   s  sd
0

s
–exp=
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This introduces the optical depth between  and 

(38)

In terms of , the specific intensity along a ray is given by:

(39)

3.4 Both emission and absorption
The differential form of the optical depth is

(40)

0 s

 s   s  sd
0

s
=



I s  I 0 e
 s –

=

d ds=
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We can write the radiative transfer equation in the form:

(41)

where

(42)

dI
ds
------------ S I–=

i.e.
dI
d
-------- S I–=

S
j

------ Source function= =
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
Write the transfer equation as

(43)

The integrating factor is  so that

(44)

dI
d
--------- I+ S=

e


d
d
--------- e

I Se
= e

I I 0  e
S  d

0


+=

I e
–

I 0  e
 – –

S   d
0


+=
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The optical depth delineates the region which contributes
most significantly to the intensity of an emerging ray. To
see this, consider

(45)

 –  s  sd
0

s
  s  sd

0
s
–=

 s  sd
s

s
=

 s s =
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It is obvious that the dominant contribution to the integral
comes from regions wherein the optical depth, .

Emitting (and absorb-
ing) region

I 0 
Emergent inten-

Free 

I
Ray

s 0=

s
s

This part gives  s s 

 s s  1
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3.5 Relationship between flux and luminosity

The flux density received at the telescope is given by:

(46)

(We put  because for a distant source, all rays differ
very little in their direction.)

Telescope


I

F I cos d
source

= I d



 0
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Let  be the cross-sectional area of the bundle of light
rays at the source. For a distant source (distance ), the el-
ement of solid angle is given by

(47)

dA

ds dV dA ds=

dA
R

d dA

R2
-------=
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where  is approximately the same for all parts of the
source and  is the cross-sectional area of a bundle of
light rays as shown. Hence,

(48)

For optically thin radiation

(49)

R
dA

F
1

R2
------ I Ad




I j sd
ray
=

F 1

R2
------ j Ad s

1

R2
------ j Vd

Source
=d

Source
=
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y

where  is the volume (element ).

The equation

(50)

shows the origin of the inverse square law for flux density.

V dV

F
1

R2
------ j Vd

Source


1

R2
------ Volume integrated emissivit= =
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3.6 Isotropic emissivity
If the emissivity is isotropic

(51)

where 

(52)

j
1

4
------P

Total power emitted per unit volume
4 solid angle

----------------------------------------------------------------------------------------= =

F 1

4R2
------------- P Vd

Source


L

4R2
-------------= =

L Monochromatic luminosity=

Luminosity per unit frequency=
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3.7 Calculation of luminosity
Knowing the flux density, one can calculate the monochro-
matic luminosity, from

(53)

(54)

3.8 Example: The luminosity of a radio source
A typical extragalactic radio source would have a flux den-
sity at 1.4 GHz of a Jansky at a redshift of 0.1.

L 4R2F=

Total luminosity Ltot 4R2 F d
0


= =
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The distance (for small redshifts) is

(55)

so that the monochromatic luminosity is 

(56)

D
cz
H0
-------

300 000 0.1
70

---------------------------------- Mpc= =

430Mpc

L 4 430 3.1
2210 2 10 26–  WHz 1–=

2.2
2510 WHz 1–
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Typical spectrum of 
an extragalactic ra-
dio source

F  –

u 10 100GHz–=

Flog

log
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Typically such a source has a spectral index of 
between a generally undefined lower frequency, , and an

upper cutoff frequency , so that the to-

tal luminosity,

 0.7=
l

u 10 100GHz–=
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(57)

Ltot L0


0
------ 
  –

d
l

u
 L0

0

0
------ 
  – 

0
------ 
 d

l 0

u 0
=

L0
0

1 –
---------------


0
------ 
  1 –

l 0

u 0
=

L0
0

1 –
---------------

u
0
------
 
 
  1 –


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Thus, for the parameters of our source,

 (58)
Ltot

2.2
2510 1.4

910
0.3

------------------------------------------------
10
1.4
------- 
  0.3

 2.7
3510 W 

7
810 Lsun
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kn
4 Polarisation

4.1 Monochromatic plane wave
Plane wave solutions of Maxwell’s equations:

(59)

E E0 i t k x– exp= B B0 i t k x– exp=

 circular frequency ck= = k wave number= =

E0 amplitude of Electric field=

B0 Amplitude of magnetic field 
k E0


----------------=

n E0

c
----------------= =

B0 n E0 n 0= =
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The electric vector deter-
mines all of the parameters
of the wave. Since there
are two independent com-
ponents of  there are

two modes of polarisation. 

In general, we put

(60)

where  and  are the unit vectors in the  and  direc-

tions.

E0

B0

n

x

y

Direction
of propa-

Plane of electric &
magnetic field

E0

E0 E0 1 e1 E0 2 e2+=

e1 e2 x y
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Electromagnetic waves, far from the point of origin can be
considered to be locally plane.

Electric vector at a point in space

Consider a wave at the location . In component

form the electric field of the wave may be written

(61)

x x0=

E Ae
ie

i t k x0– 
Aeite

i  k x0– 
= =

Ae
i t – 

=
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Hence the real part of this wave may be expressed as

(62)

The parameters  are the phases of the two modes. They

are not both free parameters since the origin of time is ar-
bitrary. However, the difference  is a free

parameter.

E A t – cos=  1 2=



 2 1–=
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4.2 The polarisation ellipse

Consider a general elliptically polarised monochromatic
wave. The electric vector is given by:

(63)


e1

e2 e1e2 Definition of axes for polarisa-
tion ellipse.  is the angle of ro-
tation from the original axes to 
the principal axes (primed).

E

E A1 t 1– cos e1 A2 t 2– cos e2+=
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N.B. The phases of both component are not free parameters
since one phase can be adjusted by a change of the time or-
igin. However, the relative phase  is a free parame-

ter.

4.2.1 What we are aiming for

Write the electric field in axes corresponding to the princi-
pal axes of the ellipse:

(64)

2 1–

E E1 tcos e1 E2 tsin e2+=
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 e1

e2 e1e2

E2 E0 sin=

E1 E0 cos=

Relationship between parameters

Polarisa-
tion ellipseE
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The aim of the following is to determine the parameters 

and  in terms of  and . To do so, we

use the relations between primed and unprimed unit vec-
tors:

(65)

E1

E2 A1 A2 2 1–  

e1

e2
cos sin

sin– cos

e1

e2

=
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Then write the electric field in the principal axis system in
terms of the electric field in the original axes:
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(66)

E E1 t e1cos e2sin+ cos=

E2 t e1sin– e2cos+ sin+

E1  tcoscos E2  tsinsin– e
1

=

E1  t E2  tsincos+cossin e2+

A1 t 1– cos e1 A2 t 2– e2cos+=

A1 t 1 A1 tsin 1sin+coscos e1=

A2 t 2coscos A2 t 2sinsin+ e2+
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Equate the coefficients of  and  within

those terms.

(67)

e1 e2 tsin tcos

A1 1cos E1 cos=

A1 1sin E2 sin–=

A2 2cos E1 sin=

A2 2sin E2 cos=
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So far, so good, but this is not the best form in which to de-
scribe the relationship between these coefficients. The fol-
lowing quadratic relationships are easy to verify:

(68)
A1

2 E1
2 cos2 E2

2 sin2+=

A2
2 E1

2 sin2 E2
2 cos2+=
High Energy Astrophysics: Radiation Field                                       64/113



together with:

(69)

A1A2 1 2coscos E1
2  cossin=

A1A2 1 2sinsin E2
2  cossin–=

A1A2 1 2cossin E1E2 sin2–=

A1A2 1 2sincos E1E2 cos2=
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We now form the following combinations of the above: 

(70)

A1
2 A2

2+ E1
2 E2

2+=

A1
2 A2

2– E1
2 E2

2–  cos2 sin2– =

E1
2 E2

2–  2cos=
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(71)

A1A2 2 1– cos E1
2 E2

2–   cossin=

E1
2 E2

2– 

2
------------------------ 2sin=

A1A2 2 1– sin E1E2=
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Now define the additional angle , the parameter  and the
phase difference  by:

(72)

 t


E1 E0 cos= E2 E0 sin=

t
E1
E2
------ cot= =

Ratio of semi-major to semi-minor axis=

2 1– =
High Energy Astrophysics: Radiation Field                                       68/113



The above quadratic relations become:

(73)

So the amplitudes  and the phase difference  de-

fine the parameters  and . 

E0
2 A1

2 A2
2+=

E0
2 2 2coscos A1

2 A2
2–=

E0
2 2 2sincos 2A1A2 cos=

E0
2 2sin 2A1A2 sin=

A1 A2 

E0  
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 e1

e2 e1e2

E2 E0 sin=

E1 E0 cos=

Relationship between parameters

Polarisa-
tion ellipseE
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4.3 Interdependence of parameters
Note that the 4 above equations are not independent. Take
the last 3 equations; the sum of the squares of the left-hand

sides is . The sum of the squares of the right hand sides

is 

(74)

E0
4

A1
2 A2

2– 2 4A1
2A2

2 cos2 sin2+ +

A1
2 A2

2– 2 4A1
2A2

2+=

A1
2 A2

2+ 2=
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So the sum of the squares of these 3 equations gives:

(75)

which of course is the first equation.

E0
4 A1

2 A2
2+ 2=

E0
2 A1

2 A2
2+=
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5 The Stokes parameters – definitions

(76)

I
c0
2

--------E0
2

c0
2

-------- A1
2 A2

2+ = =

Q
c0
2

--------E0
2 2 2coscos

c0
2

-------- A1
2 A2

2– = =

U
c0
2

--------E0
2 2 2sincos

c0
2

-------- 2A1A2 cos = =

V
c0
2

--------E0
2 2sin

c0
2

-------- 2A1A2 sin = =
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(The reason for the factor of  is the relation to the

Poynting flux in the following.)

These equations can also be expressed in the form:

(77)

Squaring each equation and adding:

(78)

c0  2

Q I 2 2coscos=

U I 2 2sincos=

V I 2sin=

I2 Q2 U2 V2+ +=
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Note the close correspondence between these equations for
 and defining these angles as polar coordinates.

This correspondence is exploited when we discuss the
Poincare sphere.

I 2 2 
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5.1 Fractional polarisation
We define the fractional polarisation of a wave by:

(79)

q
Q
I
---- 2 2coscos= =

u
U
I
---- 2 2sincos= =

v
V
I
--- 2sin= =
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The direction of the principal axis is therefore given by:

(80)2tan
u
q
---

U
Q
----= =
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5.2 The Poincare sphere
Polarised light can be represented in terms of the Poincare

q

v

2

u2

P (81)

q 2 2coscos=

u 2 2sincos=

v 2sin=
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sphere. The Stokes parameters for fractional polarisation
can be represented in terms of the parameters  and 
as polar angles.

The Poincare sphere makes it easy to determine the rele-
vant ranges of  and . From the diagram it is obvious that

(82)

Physically, the reason for this is as follows: 

1.Rotation of an ellipse by  and  give the same 

2 2

 

0 2 2

2
---– 2 

2
--- 

0   

4
---–  

4
--- 



  +
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ellipse. 

2. Recall the definition of 

(83)

When  varies between ,  varies between .

This is the appropriate range for the semi-minor axis.



E1 E0 cos= E2 E0 sin=

t
E1
E2
------ cot= = t 1–

E2
E1
------ tan= =

  4 E2 E1
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5.3 Linear and circular polarisation

5.3.1 Linear polarisation
If the phase difference between the two components in the
original reference system is , then 

(84)

The only value of  in the appropriate range is .

This implies that

(85)

 0=

V c0A1A2 sin 0 2sin 0= = =

2 0 =

  0=

E1 E0 cos E0= = E2 E0 sin 0= =
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Hence the electric field is:

(86)

i.e. the electric vector oscillates in one direction – hence the
name linear polarisation.

5.3.2 Circular polarisation
A purely circularly polarised wave is defined by equal am-
plitudes of the two components, differing in phase by ,
i.e.

(87)

E E0 tcos e1=

 2

A1 A2=   2=
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Since,

(88)

then 

(89)

Q
c0
2

-------- A1
2 A2

2– =

U
c0
2

-------- 2A1A2 cos =

q Q 0= =

u U 0= =
High Energy Astrophysics: Radiation Field                                       83/113



The only remaining Stokes parameter in this case is:

(90)

V
c0
2

-------- 2A1A2 sin =

v

c0
2

-------- 2A1A2 sin 

c0
2

-------- A1
2 A2

2+ 

---------------------------------------------- 1= =
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The equations defining  and  are:

(91)

The solution for this is

(92)

and

(93)

 

2 2coscos 0=

2 2sincos 0=

2sin 1=

2 
2
---=  

4
---=

 arbitrary=
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Hence

(94)

and the two waves are:

(95)

The first solution represents a vector moving anti-clock-
wise in a circle as seen by an observer facing the wave –
This is known as left circularly polarised or positive helic-
ity.

E2 E1=

E E0 tcos e1 E0 te2sin+=

E E0 te1cos E0 te2sin–=
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The second represents a vector moving clockwise in a cir-
cle as seen by an observer facing the wave – This is known
as right circularly polarised or negative helicity.

5.3.3 General elliptical polarisation
In the general case when

(96)

(97)

When  and consequently  then  rotates anti-
clockwise (since  and ) and the wave is
left-polarised.

q u v  0

E E0 cos tcos e1= E0  te2sinsin+

v 0  0 E
 0cos sin 0
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When  and consequently ,  rotates clockwise
(since  and ) and the wave is right-polar-
ised.

5.3.4 Direction of the major axis
Take

(98)

v 0  0 E
 0cos sin 0

q 2 2coscos=

u 2 2sincos=

v 2sin=
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then it is clear that

(99)

In the case of linear polarisation this is the direction of the
line of oscillation of the electric field.

2tan
u
q
---=  1

2
---tan

1– u
q
---=
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5.4 The Poincare sphere revisited

q

v

2

u2

P

The point  on the Poin-
care sphere represents 
the fractional polarisa-
tion of a monochromatic 
wave.

The North and South 
poles of the sphere, 

 and  respec-
tively, represent left-
handed and right-handed 
circular polarisation. 

P

v 1= v 1–=

Right-polarised

Left-polarised

Pure linear polari-
sation
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5.5 Relationship to the Poynting flux
The Poynting flux is

(100)

For a transverse wave with wave-vector  and normal

:

(101)

S
E B
0

--------------=

k

n
k
k
---=

B
k E


-------------
E B
0

-------------- E2

0
----------n= =
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With ,

(102)

Averaged over a period, the Poynting flux is:

(103)

Hence, the Stokes parameter  is the Poynting flux of elec-
tromagnetic energy. 

 ck=

S
E2

0c
---------n c0E2n c0 E1

2 tcos2 E2
2 tsin2+ n= = =

S  c0

E1
2

2
------

E2
2

2
------+

 
 
  c0E0

2

2
--------------- I= = =

I
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6 Polarisation of a quasi-monochromatic wave

6.1 The electric field
As before, we write the electric field as

(104)

E A1 t 1– cos e1 A2 t 2– cos e2+=

Re A1 t e
i– 1 t 

eit e1=

Re A2 t e
i– 2 t 

eit e2+
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The previous section is concerned with the case in which
the waves are purely monochromatic so that  and  are

constant. In the following a complex notation based on the
above is used.

 We consider quasi-monochromatic waves for which

(105)

A 

E E1 t eite1 E2 t eite2+=

E1 t  A1 t e
i1 t –

= E2 t  A2 t e
i2 t –

=
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where the time scale of variation of the waves is much
longer than the wave period. This is relevant to the situa-
tion where the estimate of the Stokes parameters involves
averages over many periods. For example, to consider a ra-
dio wave as a monochromatic wave, one would have to

sample at the rate of once every  or so. In reality,
measurements at a radio telescope require integration times
of about 5 minutes.

10 9–  s
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6.2 Stokes parameters for quasi-monochromatic waves
We define the Stokes parameters as time averages with an-
gular brackets <>:
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(106)

I
c0
2

-------- A1
2 A2

2+ 
c0
2

-------- E1E1
*  E2E2

* + = =

Q
c0
2

-------- A1
2 A2

2– 
c0
2

-------- E1E1
*  E2E2

* – = =

U c0 A1A2 cos 
c0
2

-------- E1
*E2  E1E2

* + = =

V c0 A1A2 sin  
c0
2i

-------- E1
*E2  E1E2

* – = =
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In this case , as we now show. Denote

, then

(107)

I2 Q2 U2 V2+ +

C
c0
2

--------=

I2 C2 E1E1
* 2 E2E2

* 2 2 E1E1
*  E2E2

* + + =

Q2 C2 E1E1
* 2 E2E2

* 2 2 E1E1
*  E2E2

* –+ =

U2 C2 E1E2
* 2 E2E1

* 2 2 E1E2
*  E2E1

* + + =

V2 C2 E1E2
* 2 E2E1

* 2 2 E1E2
*  E2E1

* +–– =
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These imply that

(108)

Since we dealing with time averages, e.g.

(109)

I2 Q2 U2 V2+ + – 4C2[ E1E1
*  E2E2

* =

E1E2
*  E2E1

*  –

E1E1
*  1

T
--- E1 t E1

* t   td
0

T
=
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where  is the time of integration. We now employ the
Cauchy-Schwarz inequality. For complex functions 
and  , this is:

(110)

Here, we put  and  giving

 

(111)

T
f x 

g x 

f x g x  xd
a

b


2
f x  2 xd

a

b
 g x  2 xd

a

b


E1 t  f t = E2 t  g t =

E1E2
*  E2E1

*  E1E1
*  E2E2

* 

E1E1
*  E2E2

*  E1E2
*  E2E1

* 
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and

(112)

Hence:

(113)

(114)

or

(115)

E1E1
*  E2E2

*  E1E2
*  E2E1

*  0–

I2 Q2 U2 V2+ + – 0

Q2 U2 V2 I2+ +
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7 Superposition of independent waves

Another important case to consider is where the radiation
received by a detector is composed of a number of inde-
pendent components - “independent” meaning that the am-
plitudes and phases of the components are uncorrelated.
We put:
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(116)

E E
i

i
=  1 2=

E
i A

i e
i– 

i
=

A
i Amplitude of  part of ith component=


i Phase of  part of ith component=
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The Stokes parameters consist of terms of the form

 which we can write as:

(117)

Now,

(118)

EE
* 

EE
*  E

i E
* j  

j


i
=

E
i E

* j A
i A

j e
i– 

i 
j– 

A
i A

j e
i– 

ij
= =


ij Phase difference between the  and 

parts of components i and j
=
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The essence of independent waves is that the phase differ-
ences between them be randomly distributed over .
For this reason,

(119)

Hence,

(120)

0 2 

E
i E

* j  0 when i j=

E
i E

* j  E
i E

* i 
i
=
High Energy Astrophysics: Radiation Field                                       105/113



and

(121)

i.e. the Stokes parameters are the sums of the Stokes pa-
rameters of the individual waves.

I Ii

i
= Q Qi

i
=

U Ui

i
= V Vi

i
=
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8 Partially polarised radiation

8.1 Separation into polarised and unpolarised compo-
nents
Consider the relations for the Stokes parameters for a qua-
si-monochromatic wave:
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(122)

If, on average, the amplitudes of the two parts of the wave
are the same, then

(123)

I C E1E1
*  E2E2

* + =

Q C E1E1
*  E2E2

* – =

U C E1E2
*  E2E1

* + =

V
C
i
---- E1E2

*  E2E1
* – =

Q E1E1
*  E2E2

* – 0= =
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Consider

(124)

If the phase difference between the two components varies
in such a way, that it averages to zero, then . Simi-
larly for . Radiation with these properties is called unpo-
larised and is distinguished by:

(125)

U E1E2
*  E2E1

* + 2A1A2 cos = =

U 0=
V

I 0 Q U V 0= = =
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Similarly, if radiation is composed of a number of inde-

pendent components and the phase difference  is ran-

domly distributed, then we also have 

. (126)

12
ii

Q U V 0= = =
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We separate EM radiation into polarised and unpolarised
components as follows:

(127)

I

Q

U

V

I Q2 U2 V2+ + 1 2/–

0

0

0

Q2 U2 V2+ + 1 2/

Q

U

V

+=

Unpolar-
ised compo-

Polarised 
component
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The fractional polarisation is:

(128)

8.2 Polarisation from astrophysical sources 
In general, radiation from astrophysical sources is only
weakly polarised – at the level of 1 or 2%. However, radi-
ation from synchrotron sources can be very highly polar-
ised – up to 50-70% in some cases and this is often a good
indication of the presence of synchrotron emission. 

r
Ipol

I
---------

Q2 U2 V2+ + 1 2/

I
-----------------------------------------------= =
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Nevertheless, even polarisation at the level of 1 or 2% can
be extremely important.
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	(9)
	The flow of energy per unit area per unit time per unit frequency through a surface with normal is given by:

	(10)
	The density in this case refers to the “per unit frequency” part. More about this below.
	2.3 Relationship of flux density to power at telescope
	Source of cosmic radiation
	The solid angle of the bundle of rays is usually defined by the resolving power of the telescope. The power per unit area received by the telescope is . Frequently in radio astronomy, you will hear people refer to the flux density of a source.

	2.4 Surface brightness
	For a small region of solid angle normal to the direction in which a telescope is pointing, we have:


	(11)
	Hence, the specific intensity is the flux received per unit of telescope area per unit of solid angle. For this reason, some astronomers, and particularly radio astronomers, refer to the specific intensity as surface brightness.
	This equation is also frequently used to estimate surface brightness of a source from an image when the image is represented in terms of flux density per beam. More about this later.
	Units of flux density
	Often, especially in radio astronomy, we use the unit of a Jansky (after one of the discoveries of cosmic radio radiation)


	(12)
	2.5 Momentum flux density
	Since the energy passing through a surface in a given direction is


	(13)
	then the magnitude of momentum passing through the surface in the same direction is

	(14)
	However, momentum is a vector quantity. The component of momentum in the direction of the normal is

	(15)
	The momentum flux density, , is the momentum per unit time per unit frequency per unit area passing in all directions through the surface, so that

	(16)
	2.6 Integration over frequency
	The total flux of energy per unit area between two frequencies and is just the integral of the flux density between these limits.


	(17)
	Pressure is force per unit area, or equivalently, momentum flux density per unit area, so that the total radiation pressure on the surface can be found by integrating the momentum flux density over frequency.

	(18)
	The total intensity is just the integral of the specific intensity over frequency.

	(19)
	In particular the total flux is the frequency-integrated flux density. Sometimes people loosely refer to flux density as flux and I have seen pedantic thesis examiners insist on such carelessness being expunged from a thesis before it can be accepted.
	2.7 Radiation energy density
	Define


	(20)
	Consider a cylinder of length , cross-sectional area
	The energy of radiation in cylinder within a cone of solid angle is:

	(21)
	All of the radiation within the cylinder passes through in the time . Hence,

	(22)
	Therefore, the total energy density at a point within the volume is given by:

	(23)
	2.8 Constancy of specific intensity in free space

	(24)
	Consider the energy flux through an elementary surface within solid angle . Consider all of the photons which pass through in this direction which then pass through . We take the solid angle of these photons to be . By conservation of energy the ener...

	(25)
	The solid angles are given by:

	(26)
	This implies that:

	(27)
	Since , then

	(28)
	2.9 Spontaneous emission
	Various emission processes along a ray contribute to the specific intensity. The emissivity, in principle, is angle-dependent, e.g. synchrotron emission depends upon the angle between the emission direction and the magnetic field. The emissivity is d...


	(29)
	Emissivity
	If the emissivity is isotropic, then

	(30)
	Radiated power per unit volume
	The emission may be considered to be isotropic for two reasons:
	1. The emission mechanism is independent of direction.
	2. The emission may be considered to be the random superposition of a number of anisotropic emitters, e.g. synchrotron emission from a tangled magnetic field.
	Effect on specific intensity
	Energy added to beam from emission from within is given by:


	(31)
	This is radiated into the solid angle emerging from so that the change in specific intensity is given by:

	(32)
	2.10 Absorption
	Often absorption is presented in the following form:


	(33)
	Coefficient of absorption
	and we shall see examples of this later on.
	3 The radiative transfer equation
	3.1 The fundamental equation
	Putting emission and absorption into the one equation, we have


	(34)
	Note that the emissivity can include scattering of photons from other directions into the direction being considered. This is what makes the solution of radiative transfer equations a challenging problem in general.
	3.2 Solution for emission only (optically thin emission)
	Emitting (and absorbing) region


	(35)
	In many cases:
	•
	• We approximate the medium by one with constant properties. This gives,

	(36)
	Once outside the emitting region, the specific intensity is constant, unless another emitting or absorbing region is encountered.
	3.3 Absorption only

	(37)
	This introduces the optical depth between and

	(38)
	In terms of , the specific intensity along a ray is given by:

	(39)
	3.4 Both emission and absorption
	The differential form of the optical depth is


	(40)
	We can write the radiative transfer equation in the form:

	(41)
	where

	(42)
	Write the transfer equation as

	(43)
	The integrating factor is so that

	(44)
	The optical depth delineates the region which contributes most significantly to the intensity of an emerging ray. To see this, consider

	(45)
	Emitting (and absorbing) region
	It is obvious that the dominant contribution to the integral comes from regions wherein the optical depth, .
	3.5 Relationship between flux and luminosity
	The flux density received at the telescope is given by:


	(46)
	(We put because for a distant source, all rays differ very little in their direction.)
	Let be the cross-sectional area of the bundle of light rays at the source. For a distant source (distance ), the element of solid angle is given by

	(47)
	where is approximately the same for all parts of the source and is the cross-sectional area of a bundle of light rays as shown. Hence,

	(48)
	For optically thin radiation

	(49)
	where is the volume (element ).
	The equation

	(50)
	shows the origin of the inverse square law for flux density.
	3.6 Isotropic emissivity
	If the emissivity is isotropic


	(51)
	where

	(52)
	3.7 Calculation of luminosity
	Knowing the flux density, one can calculate the monochromatic luminosity, from


	(53)
	(54)
	3.8 Example: The luminosity of a radio source
	A typical extragalactic radio source would have a flux density at 1.4 GHz of a Jansky at a redshift of 0.1.
	The distance (for small redshifts) is


	(55)
	so that the monochromatic luminosity is

	(56)
	Typical spectrum of an extragalactic radio source
	Typically such a source has a spectral index of between a generally undefined lower frequency, , and an upper cutoff frequency , so that the total luminosity,

	(57)
	Thus, for the parameters of our source,

	(58)
	4 Polarisation
	4.1 Monochromatic plane wave
	Plane wave solutions of Maxwell’s equations:


	(59)
	The electric vector determines all of the parameters of the wave. Since there are two independent components of there are two modes of polarisation.
	Direction of propagation
	In general, we put

	(60)
	where and are the unit vectors in the and directions.
	Electromagnetic waves, far from the point of origin can be considered to be locally plane.
	Electric vector at a point in space
	Consider a wave at the location . In component form the electric field of the wave may be written


	(61)
	Hence the real part of this wave may be expressed as

	(62)
	The parameters are the phases of the two modes. They are not both free parameters since the origin of time is arbitrary. However, the difference is a free parameter.
	4.2 The polarisation ellipse
	Definition of axes for polarisation ellipse. is the angle of rotation from the original axes to the principal axes (primed).
	Consider a general elliptically polarised monochromatic wave. The electric vector is given by:


	(63)
	N.B. The phases of both component are not free parameters since one phase can be adjusted by a change of the time origin. However, the relative phase is a free parameter.
	4.2.1 What we are aiming for
	Write the electric field in axes corresponding to the principal axes of the ellipse:


	(64)
	The aim of the following is to determine the parameters and in terms of and . To do so, we use the relations between primed and unprimed unit vectors:

	(65)
	Then write the electric field in the principal axis system in terms of the electric field in the original axes:

	(66)
	Equate the coefficients of and within those terms.

	(67)
	So far, so good, but this is not the best form in which to describe the relationship between these coefficients. The following quadratic relationships are easy to verify:

	(68)
	together with:

	(69)
	We now form the following combinations of the above:

	(70)
	(71)
	Now define the additional angle , the parameter and the phase difference by:

	(72)
	The above quadratic relations become:

	(73)
	So the amplitudes and the phase difference define the parameters and .
	4.3 Interdependence of parameters
	Note that the 4 above equations are not independent. Take the last 3 equations; the sum of the squares of the left-hand sides is . The sum of the squares of the right hand sides is


	(74)
	So the sum of the squares of these 3 equations gives:

	(75)
	which of course is the first equation.
	5 The Stokes parameters – definitions

	(76)
	(The reason for the factor of is the relation to the Poynting flux in the following.)
	These equations can also be expressed in the form:

	(77)
	Squaring each equation and adding:

	(78)
	Note the close correspondence between these equations for and defining these angles as polar coordinates. This correspondence is exploited when we discuss the Poincare sphere.
	5.1 Fractional polarisation
	We define the fractional polarisation of a wave by:


	(79)
	The direction of the principal axis is therefore given by:

	(80)
	5.2 The Poincare sphere
	Polarised light can be represented in terms of the Poincare sphere. The Stokes parameters for fractional polarisation can be represented in terms of the parameters and as polar angles.


	(81)
	The Poincare sphere makes it easy to determine the relevant ranges of and . From the diagram it is obvious that

	(82)
	Physically, the reason for this is as follows:
	1. Rotation of an ellipse by and give the same ellipse.
	2. Recall the definition of

	(83)
	When varies between , varies between . This is the appropriate range for the semi-minor axis.
	5.3 Linear and circular polarisation
	5.3.1 Linear polarisation
	If the phase difference between the two components in the original reference system is , then



	(84)
	The only value of in the appropriate range is .
	This implies that

	(85)
	Hence the electric field is:

	(86)
	i.e. the electric vector oscillates in one direction – hence the name linear polarisation.
	5.3.2 Circular polarisation
	A purely circularly polarised wave is defined by equal amplitudes of the two components, differing in phase by , i.e.


	(87)
	Since,

	(88)
	then

	(89)
	The only remaining Stokes parameter in this case is:

	(90)
	The equations defining and are:

	(91)
	The solution for this is

	(92)
	and

	(93)
	Hence

	(94)
	and the two waves are:

	(95)
	The first solution represents a vector moving anti-clockwise in a circle as seen by an observer facing the wave – This is known as left circularly polarised or positive helicity.
	The second represents a vector moving clockwise in a circle as seen by an observer facing the wave – This is known as right circularly polarised or negative helicity.
	5.3.3 General elliptical polarisation
	In the general case when


	(96)
	(97)
	When and consequently then rotates anti- clockwise (since and ) and the wave is left-polarised.
	When and consequently , rotates clockwise (since and ) and the wave is right-polarised.
	5.3.4 Direction of the major axis
	Take


	(98)
	then it is clear that

	(99)
	In the case of linear polarisation this is the direction of the line of oscillation of the electric field.
	5.4 The Poincare sphere revisited
	The point on the Poincare sphere represents the fractional polarisation of a monochromatic wave.
	The North and South poles of the sphere, and respectively, represent left- handed and right-handed circular polarisation.

	5.5 Relationship to the Poynting flux
	The Poynting flux is


	(100)
	For a transverse wave with wave-vector and normal :

	(101)
	With ,

	(102)
	Averaged over a period, the Poynting flux is:

	(103)
	Hence, the Stokes parameter is the Poynting flux of electromagnetic energy.
	6 Polarisation of a quasi-monochromatic wave
	6.1 The electric field
	As before, we write the electric field as


	(104)
	The previous section is concerned with the case in which the waves are purely monochromatic so that and are constant. In the following a complex notation based on the above is used.
	We consider quasi-monochromatic waves for which

	(105)
	where the time scale of variation of the waves is much longer than the wave period. This is relevant to the situation where the estimate of the Stokes parameters involves averages over many periods. For example, to consider a radio wave as a monochro...
	6.2 Stokes parameters for quasi-monochromatic waves
	We define the Stokes parameters as time averages with angular brackets <>:


	(106)
	In this case , as we now show. Denote , then

	(107)
	These imply that

	(108)
	Since we dealing with time averages, e.g.

	(109)
	where is the time of integration. We now employ the Cauchy-Schwarz inequality. For complex functions and , this is:

	(110)
	Here, we put and giving

	(111)
	and

	(112)
	Hence:

	(113)
	(114)
	or

	(115)
	7 Superposition of independent waves
	Another important case to consider is where the radiation received by a detector is composed of a number of independent components - “independent” meaning that the amplitudes and phases of the components are uncorrelated. We put:


	(116)
	The Stokes parameters consist of terms of the form which we can write as:

	(117)
	Now,

	(118)
	The essence of independent waves is that the phase differences between them be randomly distributed over . For this reason,

	(119)
	Hence,

	(120)
	and

	(121)
	i.e. the Stokes parameters are the sums of the Stokes parameters of the individual waves.
	8 Partially polarised radiation
	8.1 Separation into polarised and unpolarised components
	Consider the relations for the Stokes parameters for a quasi-monochromatic wave:


	(122)
	If, on average, the amplitudes of the two parts of the wave are the same, then

	(123)
	Consider

	(124)
	If the phase difference between the two components varies in such a way, that it averages to zero, then . Similarly for . Radiation with these properties is called unpolarised and is distinguished by:

	(125)
	Similarly, if radiation is composed of a number of independent components and the phase difference is randomly distributed, then we also have

	. (126)
	We separate EM radiation into polarised and unpolarised components as follows:

	(127)
	Unpolarised component
	The fractional polarisation is:

	(128)
	8.2 Polarisation from astrophysical sources
	In general, radiation from astrophysical sources is only weakly polarised – at the level of 1 or 2%. However, radiation from synchrotron sources can be very highly polarised – up to 50-70% in some cases and this is often a good indication of the ...
	Nevertheless, even polarisation at the level of 1 or 2% can be extremely important.




