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Accretion Disks II

 

1 The dynamical equations for accretion discs

1.1 Setting up the model

r

z

Compact object

Thin accretion disc

2h r( )
φ
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The simplest accretion disc model to construct is that of the thin
disc. We obtain a simplified set of equations by integrating over
the -dimension and by assuming that the flow is steady in the
mean and that it is axisymmetric in the mean. Because of this ap-
proximation, we can regard our ensemble average as an azimuth-
al average, i.e. we average over independent regions around the
annulus of an accretion disc.

 

Assumptions

 

In the following development of the theory of accretion discs, we
assume that:

 

•  The disk is steady in the mean, i.e. time derivatives of the 
mean flow variables are zero.

•  The disk is axisymmetric, i.e. there is no dependence of the 
mean flow on the azimuthal angle 

z

φ
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•  The disk is thin. This means that we can construct useful 
equations by vertical averaging. The validity of this assump-
tion can be justified 

 

a posteriori

 

•  The velocity in the disk is dominated by the Keplerian veloc-

ity . In particular . Again this can be 

justified 

 

a posteriori

 

•  The disk does not have a substantial wind.

 

Coordinates

 

•  In view of the geometry and the physical assumptions, we use 
cylindrical polar coordinates, . 

•  Occasionally use the spherical radius, .

ṽφ GM R⁄= ṽr ṽφ«

r φ z, ,( )
R
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Mathematical approach 

 

•  We develop the accretion disk equations by examining the sta-
tistically averaged equations for conservation of mass, 
momentum and energy in this axisymmetric coordinate sys-
tem.

•  Integrated equations are obtained by integrating the equations 
over a disk height, i.e. between  and .

 

1.2  Continuity

 

(1.2-1)

z h–= z h=

z∂
∂ ρṽz( )

1
r
---

r∂
∂ ρrṽr( )+ 0=
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Multiply by  and integrate over :

 

(1.2-2)

 

We define the mass accretion rate by:

 

(1.2-3)

 

We have assumed that there is no wind from the top and bottom
surfaces of the disc. Therefore  at . Hence,

 

(1.2-4)

2πr z

2π
z∂
∂ ρrṽz( ) z 2π

r∂
∂ ρrṽr( ) zd

h–
h
∫+d

h–
h
∫ 0=

2πrρṽz
h–

h d
dr
----- 2π ρrṽr( ) zd

h–
h
∫+ 0=⇒

Ṁa 2π ρrṽr zd
h–

h
∫–=

ṽz 0= z h±=

d
dr
-----Ṁa 0= Ṁa⇒ constant=
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i.e. the accretion rate is constant with radius.

1.3  Momentum
All three components of the momentum equations

(1.3-1)

 give us essential information. 

x j∂
∂ ρṽiṽ j( )

x j∂
∂ ρv′iv′ j〈 〉+ p∂

xi∂
-------– ρ

xi∂
∂ GM

R
---------– 

 –=

p∂
xi∂

-------–
ρGM xi

R3
------------------–=
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Since the accretion disc is confined to near  (i.e. ) we
treat the gravitational term in the following way. The spherical
polar radius

(1.3-2)

 Therefore:

(1.3-3)

In the following we write the hydrodynamical equations in cy-
lindrical polars. This can be accomplished in a number of ways

1.Use the Christoffel symbols for a cylindrical coordinate sys-
tem to calculate the divergence terms etc.

2.Look up the equations in Landau & Lifshitz

z 0= h r«

R r2 z2+( )1 2/= r≈ at z 0≈

GM

R2
--------- R̂

GM

R3
--------- r 0 z, ,( )=

GM

r2
--------- 0

GM

r3
---------z, , 

 ≈
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1.4 Radial momentum
The radial momentum balance is given by:

(1.4-1)

 

1
r
---

r∂
∂

rρṽr
2( )

z∂
∂ ρṽr ṽz( )

1
r
---ρṽφ

2–+

1
r
---

r∂
∂

r ρvr ′
2〈 〉( )

z∂
∂ ρvr ′vz′〈 〉+ +

ρ
GM

r2
---------– p∂

r∂
------–=



High Energy Astrophysics: Accretion Disks II 9/59

We integrate  times this equation with respect to  and ob-
tain:

(1.4-2)

2πr z

d
dr
----- 2πr ρṽr

2 zd
h–

h
∫ 2πrρṽr ṽz

h–

h
2π

Vφ
2

r
------- ρ zd

h–
h
∫–+

d
dr
----- 2πr ρvr ′

2〈 〉 zd
h–

h
∫ 2π ρvr ′vz′〈 〉

h–

h
+ +

2π
GM

r2
--------- ρ zd

h–
h
∫–

d
dr
----- 2πr p zd

h–
h
∫–=
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We neglect all but the blue terms since:

(1.4-3)

The last inequality is equivalent to:

(1.4-4)

that is, the azimuthal speed is highly supersonic. This is justified
a posteriori below.

ṽr vr ′, ṽφ« ṽz h±( ) 0=

ρvr ′vz′〈 〉 h±( ) 0= p ρṽφ
2«

p
ρ
--- ṽφ

2 cs
2 ṽφ

2«
ṽφ

2

cs
2

------ 1»⇒ ⇒«
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Surface density

This important parameter is defined by

(1.4-5)

The radial momentum balance equation therefore has the form:

(1.4-6)

Σ r( ) ρ zd
h–

h
∫=

2πΣ r( )
ṽφ

2

r
------ 2πΣ r( )

GM

r2
---------=

ṽφ
2⇒ GM

r
---------=
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Keplerian speed

The Keplerian speed (i.e. the speed of a particle in a circular or-
bit around the central object) is given by

(1.4-7)

Hence, the radial momentum equation tells us that

(1.4-8)

Disks in which this equation is valid are called Keplerian.

vK
2

r
------- GM

r2
---------= vK

2 GM
r

---------=⇒

ṽφ vK=
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1.5 Azimuthal momentum
The -component of the momentum equations is:

(1.5-1)

Multiply through by :

(1.5-2)

φ

1

r2
-----

r∂
∂

r2ρṽr ṽφ( )
z∂
∂ ρṽφṽz( )+

1

r2
-----+

r∂
∂

r2 ρv′rv′φ〈 〉[ ]
z∂
∂ ρv′φv′z〈 〉+ 0=

2πr2

r∂
∂ 2πr2ρṽr ṽφ[ ]

z∂
∂ 2πr2ρṽφṽz[ ]+

r∂
∂ 2πr2 ρv′rv′φ〈 〉[ ]+

z∂
∂ 2πr2 ρvφ′vz′〈 〉[ ]+ 0=
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Integrate over :

(1.5-3)

Since  and  are both zero at the sur-

face of the disk,

(1.5-4)

z

rd
d 2πrρṽr( )

h–
h
∫ rṽφ( )dz 2πρr2ṽφṽz h–

h+

d
dr
-----+ 2πr2 ρv′rv′φ〈 〉 z 2πr2 ρv′φv′z〈 〉

h–
h+d

h–
h
∫ 0=

ṽz 0= ρv′φv′z〈 〉 h±( ) 0=

d
dr
-----

2πrρṽr( )
h–

h
∫ rṽφ( )dz 2πr2 ρv′rv′φ〈 〉 zd

h–
h
∫+

0=
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The term  is the -component of angular momentum per unit

mass.

Write the first term in the brackets as:

 (1.5-5)

Integrate the above equation:

(1.5-6)

rṽφ z

rṽφ 2π rρṽr zd
h–

h
∫× Ṁa rṽφ( )–=

Ṁarṽφ– 2πr2 ρv′rv′φ〈 〉 zd
h–

h
∫+ Constant=
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Evaluate the constant using values at
the innermost stable orbit.

Also define:

(1.5-7)

Hence the azimuthal equation reads:

(1.5-8)

r

r0

Grφ r( ) ρv′rv′φ〈 〉 zd
h–

h
∫=

Ṁarṽφ r( )– 2πr2Grφ r( )+

Ṁar0ṽφ r0( )– 2πr0
2Grφ r0( )+=
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Physical meaning of the angular momentum equation

Consider 

(1.5-9)

(1.5-10)

(1.5-11)

Therefore:

(1.5-12)

2πrρṽr( )
h–

h
∫ rṽφ( )dz

rṽφ
z component of angular 

momentum per unit mass
=

ρṽr( ) rṽφ×
Flux of z component of angular 

momentum in r  direction
=

2πrdz Element of area=

2πrρṽr( )
h–

h
∫ rṽφ( )dz

Flux of angular momentum

in r  direction
=
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As we have seen this flux is nega-
tive and we have put it equal to

, i.e. accretion implies that

there is a flux of angular momen-
tum inwards.

Also, since  is constant, the flux

of angular momentum is larger at

larger r because 

This means that as a result of the accretion there is more angular
momentum transported by accretion into the annulus between 
and  than is transported out at the smaller radius . 

Ṁa– rṽφ r( )

Ṁa– r0ṽφ r0( )

r0

r

Ṁa– rṽφ

Ṁa

rṽφ r( ) GMr( )1 2/=

r
r0 r r0=
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Now consider:

(1.5-13)

(1.5-14)

(1.5-15)

Therefore

(1.5-16)

2πr2 ρv′rv′φ〈 〉 zd
h–

h
∫

ρv′rv′φ〈 〉
Flux of turbulent φ momentum density

in r  direction
=

r ρv′rv′φ〈 〉
Flux of z component of turbulent

angular momentum in r  direction
=

2πr r ρv′rv′φ〈 〉 zd
h–

h
∫

Turbulent flux of angular 

momentum in r  direction
=
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It is this flux that balances the build up of angular momentum be-
tween  and .

The equation:

(1.5-17)

tells us that

(1.5-18)

r r0

Ṁarṽφ r( )– 2πr2Grφ r( )+

Ṁar0ṽφ r0( )– 2πr0
2Grφ r0( )+=

Flux of angular momentum

through r

Flux of angular 

momentum through r0
=



High Energy Astrophysics: Accretion Disks II 21/59

That is angular momentum is conserved in between  and .

This is correct since there are no torques acting on the disk ma-
terial. 

Note also that this analysis applies to any annulus, not just one
involving the innermost stable orbit.

We can now solve for :

(1.5-19)

r r0

Grφ ρv′rv′φ〈 〉 zd
h–

h
∫=

Grφ r( )
r0
r
----- 
 

2
Grφ r0( )=

Ṁaṽφ
2πr

-------------- 1
r0ṽφ r0( )

rṽφ r( )
----------------------–+

r0
r
----- 
 

2
Grφ r0( )

Ṁaṽφ
2πr

-------------- 1
r0
r
----- 
 

1 2/
–+=
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The effect of the inner boundary condition decreases quite rap-
idly with  so that we often neglect it and take:

(1.5-20)

1.6 Vertical equilibrium
The momentum equation in the —direction reads:

(1.6-1)

r

Grφ r( )
Ṁaṽφ
2πr

-------------- 1
r0
r
----- 
 

1 2/
–=

z

1
r
---

r∂
∂

r ρvr ′vz′〈 〉 ρṽr ṽz+[ ]
z∂
∂ ρvz

2[ ]+

z∂
∂

p ρvz′
2〈 〉+[ ]–

GM

r2
---------z–=
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We assume:

1. There is no wind ( ).

2. The turbulent stresses are much less than the pressure 

( ). This means that we can neglect the terms involv-

ing  and . 

Thus the equation for vertical equilibrium reduces to:

(1.6-2)

Isothermal disk

In order to get a quantitative feel for the implications of this
equation, let us assume that the disk is isothermal.

ṽz 0=

ρv′2〈 〉 p«

ρvr ′vz′〈 〉 ρvz′
2〈 〉

z∂
∂

p ρ
GMz

r3
------------–=
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We put

(1.6-3)

With 

(1.6-4)

p ρ
kT̃

µmp
-----------=

T̃ constant=

kT̃
µmp
-----------1

ρ
---

z∂
∂ ρ

GM

r3
---------z–=

ρ
ρc
-----⇒

µGMmp

2kT̃ r3
---------------------z2–exp=
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This defines the disk scale height

(1.6-5)

Hence the condition that the disc be thin is equivalent to the con-
dition that the Mach number of the Keplerian flow be superson-
ic. 

hs
2 2kT r3

µGMmp
---------------------=

hs
r
----- 
 

2
⇒ 2

kT
µmp
----------- 
  GM

r
--------- 
  1–

=

2
as

2

vK
2

-------= 2

MK
2

---------=
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1.7 The energy equation
In the following we take a sec-
tion of an accretion disk and
calculate the radiation emitted
from the surface as a result of
the dissipation within the disk.

Radiation

Dissipation

z h–=

z h=
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Rate of production of turbulent energy

Knowing the Reynolds stress from the angular momentum equa-
tion, we can evaluate the local rate of production of turbulent en-
ergy. This is

(1.7-1)

where the  component of shear is given by:

(1.7-2)

The angular velocity is given by the Keplerian value

(1.7-3)

ρvi′v j′〈 〉 s̃ij 2 ρvr ′vφ′〈 〉 s̃rφ–≈–

rφ

s̃rφ
1
2
---rΩ′=

Ω
GM

r3
--------- 
  1 2/

=
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The derivative of this quantity is:

(1.7-4)

The production rate per unit volume of turbulent energy is there-
fore

(1.7-5)

Ω′
3
2
--- GM( )1 2/

r5 2/
-----------------------–

3
2
---Ω

r
----–= =

Λ r z,( ) ρvi′v j′〈 〉 s̃ij ρvr ′vφ′〈 〉 rΩ′–≈–=

3
2
--- ρvr ′vφ′〈 〉Ω=
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The production rate of turbulent energy per unit area of the disk
is

(1.7-6)

where we have used the result from the analysis of the angular
momentum equation:

(1.7-7)

Λ r( ) ρvr ′vφ′〈 〉 rΩ′– zd
h–

h
∫

3Ω
2

------- ρvr ′vφ′〈 〉 zd
h–

h
∫= =

3Ω
2

-------Grφ r( )=
3ṀvKΩ

4πr
-------------------- 1

r0
r
----- 
 

1 2/
–=

Grφ r( )
Ṁaṽφ
2πr

-------------- 1
r0
r
----- 
 

1 2/
–=
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Now

(1.7-8)

so that 

(1.7-9)

vKΩ
GM

r
--------- 
  1 2/ GM

r3
--------- 
  1 2/ GM

r2
---------= =

Λ r( ) 2 ρvr ′vφ′〈 〉 s̃rφ– zd
h–

h
∫=

3GMṀa

4πr3
--------------------- 1

r0
r
----- 
 

1 2/
–=
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Radiative flux

We assume that the production of turbulence per unit area is
equal to the dissipation into heat per unit area and that this heat
is radiated in a quasi steady state away from the surface of the
disk. The luminosity of   the disk emitted between radii  and

 is

r1

r2
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(1.7-10)

The total luminosity emitted by the disc is obtained by integrat-
ing between  and :

(1.7-11)

Ldisc r1 r2,( )
3GMṀa

4π
--------------------- 1

r3
----- 1

r0
r
----- 
 

1 2/
– 2πr rd

r1

r2
∫=

3GMṀa
2r0

---------------------
r0
r
----- 
 

2
1

r0
r
----- 
 

1 2/
–

r
r0
----- 
 d

r1

r2
∫=

3GMṀa
2

--------------------- 1
r1
----- 1

2
3
---

r0
r1
-----
 
 
  1 2/

–
1
r2
----- 1

2
3
---

r0
r2
-----
 
 
  1 2/

––
 
 
 

=

r0 ∞

L Ldisc r0 ∞,( )
GMṀa

2r0
------------------= =
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Relationship to overall energetics

Consider the energy of a parcel of gas with a mass, , at radius
. This is:

(1.7-12)

This gas has been accreted, essentially from  so that this
represents the energy that has been lost by this parcel of gas dur-
ing the time that it has spiralled in from  to .

m
r

Eb
1
2
---mvK

2 GMm
r

--------------– m
1
2
---GM

r
--------- GM

r
---------– 

 = =

1
2
---–

GMm
r

--------------=

r ∞=

r ∞= r
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By the time the gas has reached the innermost stable orbit, the
energy lost per unit mass is:

(1.7-13)

The mass accreted per unit time is . Hence, the total power

associated with the accretion is

(1.7-14)

Hence the total luminosity of the disk is the power associated
with the energy lost per unit mass at radius  times the mass

flux.

GM
2r0
---------

Ṁa

Ṁa
GM
2r0
---------×

GMṀa
2r0

------------------=

r0



High Energy Astrophysics: Accretion Disks II 35/59

The gravitational radius

With black holes or neutron stars in mind, we express the radius
in units of the gravitational radius

(1.7-15)

In terms of the gravitational radius, the luminosity is

(1.7-16)

rg
GM

c2
---------=

L
GMṀa

2r0
------------------

GMṀa
2rg r0 rg⁄( )
----------------------------

Ṁac2

2 r0 rg⁄( )
-----------------------= = =
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For a spherical black hole, the innermost stable orbit is at 6 grav-
itational radii. If our Newtonian treatment were to be adequate at
such radii

(1.7-17)

i.e. approximately 8% of the infalling rest mass energy is con-
verted into radiation. The exact answer from the general relativ-

istic treatment is . That is, 5.7% of the mass

energy is converted into luminosity. For a rotating black hole the
figure goes up to 42%. Typically, for order of magnitude purpos-
es, we assume that black holes are 10% efficient.

Neutron stars are actually slightly more efficient than spherical
black holes because the kinetic energy of the infalling material
is converted into radiation at a shock on the surface.

L 0.083Ṁac2≈

L 0.057Ṁac2≈
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2 Accretion disk temperature

2.1 Use of Stefan’s law for an optically thick disk
If we assume that the disc is optically thick (true in a large
number of cases) then the dissipation per unit area appearing in
radiation from each side of the disc is

(2.1-1)

The temperature of the disk surface  is given by

(2.1-2)

1
2
---Λ r( )

3GMṀa

8πr3
--------------------- 1

r0
r
----- 
 

1 2/
–=

σT 4 3c6

4πG2
--------------

Ṁa

M2
-------- r

rg
----- 
  3–

1
r0
r
----- 
 

1 2/
–=
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Hence,

(2.1-3)

The constant

  (2.1-4)

T
3c6

4πσG2
------------------ 
  1 4/ Ṁa

1 4/

M1 2/
-------------
 
 
  r

rg
----- 
  3 4/–

1
r0
r
----- 
 

1 2/
–

1 4/
=

3c6

4πσG2
------------------ 
  1 4/

2.88
19

×10  SI units=
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Typical parameters for a galactic mass black hole are

 and  giving

(2.1-5)

Ṁa 1014 Kg/s= M 3MO=

L 7.5
29

×10 W=

T 3.7
7

×10
r
rg
----- 
  3 4/–

1
r0
r
----- 
 

1 2/
–

1 4/
°K=
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Typical parameters for an extragalactic supermassive black hole

in an AGN are  and  giving:

(2.1-6)

Ṁa 0.1MO/yr= M 108MO=

L 4.7
37

×10  W≈

T 5.7
5

×10
r
rg
----- 
  3 4/–

1
r0
r
----- 
 

1 2/
–

1 4/
   °K≈
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The emission for a
galactic mass black
hole therefore peaks
in the X-ray; that
from a supermassive
black hole peaks in
the UV.

This the reason pro-
posed for the UV
bumps  shown in the
spectra of AGN at
the left.
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3 The Eddington Luminosity

3.1 Derivation for spherically symmetric accretion
The luminosity of an accreting object cannot increase indefinite-
ly. There is a fundamental limit, known as the Eddington limit,
which limits accretion by the radiation force on the accreting
matter.

An electron in a radiation field
feels a force proportional to the
momentum flux density, ,

of the radiation field. This is
given by

(3.1-1)

Electron

Radiation field
Prad

F σT Prad=
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(Intuitively, one can think of this expression as
.)

 is the Thomson cross-section given by

(3.1-2)

where the electron radius,

(3.1-3)

Force Pressure Area×=

σT

σT
8π
3

------ e2

4πε0mec2
-------------------------
 
 
  2 8πr0

2

3
------------ 6.65

29–
×10   m2= = =

r0
e2

4πε0mec2
------------------------- 2.818

15–
×10  m= =
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Calculation of momentum flux density

The momentum flux density per unit frequency is given by:

(3.1-4)

and the flux density is

(3.1-5)

Pν
1
c
--- Iν θcos2 Ωd

source
∫=

Fν Iν θcos Ωd
source
∫=
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For distances large compared to
the dimensions of the source

(3.1-6)
∆Ω

Source

r Fν Iν∆Ω≈

Pν

Iν
c
-----∆Ω≈

Fν
c

------=
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For an isotropic emitter the total luminosity is spread over the ra-
dius of a sphere at the distance . Hence,

(3.1-7)

where  and  both involve integrations over the frequency,

. Hence, the force on an electron is

(3.1-8)

r

Fν 4πr2× Lν= Fν⇒
Lν

4πr2
------------=

Pν⇒
Lν

4πr2c
--------------- Prad⇒ L

4πr2c
---------------= =

Prad L

ν

F
LσT

4πr2c
---------------=
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Now consider a hydrogen plasma consisting of electrons and
protons in the gravitational field of an object of mass . Consid-
er the nett outward force exerted on each electron-proton pair.

The radiation force is primarily exerted on the electron but the
gravitational force is primarily exerted on the proton. However,
the two cannot move apart since this would result in a large
charge separation. The nett force on the electron-proton pair is:

(3.1-9)

M

Fnett

LσT

4πr2c
---------------

GMmp

r2
-----------------–=
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If the above nett force is greater than zero, accretion cannot oc-
cur. Thus, for accretion,

(3.1-10)

The parameter

(3.1-11)

LσT

4πr2c
---------------

GMmp

r2
----------------- 0<–

L
4πGMmpc

σT
---------------------------<⇒ 1.3

31
×10=

M
Solar mass
-------------------------- 
   W

Ledd

4πGMcmp
σT

---------------------------=
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is known as the Eddington luminosity. Although this limit has
been derived here for the case of spherical accretion, this limit is
an important benchmark in all accretion scenarios. This limit
was originally derived by Eddington in the context of stars.

For compact objects of order a solar mass in size, the Eddington

luminosity is of order . For black holes of order  so-

lar masses, the Eddington luminosity is of order . It is
therefore not surprising that these luminosities represent the up-
per limits of what is normally observed in these environments.

1031 W 109

1040 W
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3.2 The Eddington accretion rate
Consider now the case where the luminosity of the central source
is actually derived from accretion. As we have seen for an accre-
tion disc, we can represent the total luminosity in the form:

(3.2-1)

where  for a black hole. Hence, in order to satisfy the Ed-
dington constraint:

(3.2-2)

L αṀac2=

α 0.1∼

αṀac2
4πGMmpc

σT
---------------------------<

Ṁa α 1–
4πGMmp

cσT
------------------------<⇒
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The parameter

(3.2-3)

Thus,  is the maximum sort of accretion rate that one
expects in a solar mass sized object. For an object with a size of

order  solar masses, one expects accretion rates up to about
a solar mass per year.

Ṁedd

4πGMmp
cσT

------------------------ 1.4
14

×10
M

Msolar
---------------- 
   kg s 1–= =

2.2
9–

×10
M

Msolar
---------------- 
 Msolar yr 1–=

1014 kg s 1–

109
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4  The viscosity prescription – the  parameter

4.1  General approach
A large number of the relationships we have derived have been
without a specific prescription for the Reynolds stress. All of our
results have been expressed in terms of the accretion rate. This
is typical of what we often do when modelling turbulent flows,
e.g. jets. However, to derive other information e.g. the inflow ve-

locity  we need to be more prescriptive about the turbulent

model.

α

Ṽ r
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As we indicated earlier the closure relations for turbulence are
difficult to obtain. Shakura & Sunyaev in their classic paper on
accretion discs lumped all of the unknowns into one simple
equation:

(4.1-1)

Hence 

(4.1-2)

Normally, in a turbulent flow, the turbulent velocity is less than
the sound speed. There are 2 reasons for this:

1. In a turbulent flow sound waves are emitted and the rate of 
emission goes up as the 8th power of the Mach number of the 

ρvr ′vφ′〈 〉 αP≈

α
ρv′2〈 〉

P
---------------- v′2

cs
2

-------∼ ∼
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turbulence. This means that the emission of these waves would 
be a very effective dampener of supersonic turbulence.

2.Supersonic turbulence would very quickly form shocks.

Therefore, we usually assume that

(4.1-3)

and frequently we find that 

(4.1-4)

α 1<

α 1«
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4.2  Use of the –parameter to obtain the inflow veloc-
ity
We already have:

(4.2-1)

and using the  prescription

(4.2-2)

That is,

(4.2-3)

α

2πr2 ρvr ′vφ′〈 〉 zd
∞–

∞
∫ rṀavK 1

r0
r
----- 
 

1 2/
–=

α

2πr2α ρ
p
ρ
--- 
  zd

h–
h
∫ rṀavK 1

r0
r
----- 
 

1 2/
–=

2πr2α ρ
kT̃

µmp
----------- 
  zd

h–
h
∫ rṀavK 1

r0
r
----- 
 

1 2/
–=
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Assuming isothermality:

(4.2-4)

Now the mass accretion rate is 

(4.2-5)

2πr2α
kT̃

µmp
----------- 
  Σ rṀavK 1

r0
r
----- 
 

1 2/
–=

2πrΣ α 1– kT
µmp
----------- 
  1–

ṀavK 1
r0
r
----- 
 

1 2/
–=⇒

Ṁa 2πr ρṽr zd
h–

h
∫– Σ2πrṽr–= =

ṽr⇒
Ṁa

2πrΣ
-------------–=
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Therefore:

(4.2-6)

Hence, for  the inflow velocity is much less than the sound
speed.

ṽr α
kT

µmp
----------- 
  vK

1– 1
r0
r
----- 
 

1 2/
–

1–
=

α
as

2

vK
------ 1

r0
r
----- 
 

1 2/
–

1–
=

αasMK
1– 1

r0
r
----- 
 

1 2/
–

1–
=

α 1<
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5  The effect of magnetic fields

The influence of magnetic fields on accretion disc dynamics is
very much a current research topic. Let me just note the equation
for the angular momentum of the disc (the —component of the
momentum equations) which reads

(5.0-1)

The term  are related to the flux of the —component of

angular momentum in the radial direction by the magnetic field.

φ

rd
d

Ṁarṽφ
1
2
---r2 Br ′Bφ′〈 〉 2πr2 ρv′rv′φ〈 〉 zd

∞–
∞
∫–+

0=

Br ′Bφ′〈 〉 z
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It is important to consider the magnetic field since it is impossi-
ble to make an unmagnetised Keplerian disc turbulent. However,
it has been shown by Balbus and Hawley that a weak magnetic
field produces instability. Hence, the present focus on using
magnetic fields to transport angular momentum (cf. the case for
winds). The  and  components which are responsible for

this are supposed to be generated by the Balbus-Hawley instabil-
ities. If this is the case then the dissipation in the disc will be
through reconnection of magnetic fields. Much of the analysis
that we have carried out here for unmagnetised disks carries
through for magnetised disks.

 

Br Bφ


