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1  Overview

Accretion disks are important in a number of areas of astrophys-
ics

•  Accretion on stellar mass size compact objects (white dwarfs, 
neutron stars, black holes).

•  Accretion onto newly forming protostars.

•  Accretion onto supermassive ( ) black 
holes in Active Galactic Nuclei.

The physics of accretion in these different environments is ge-
neric and much can be understood from a general theory. In this
set of lectures therefore, we are concerned with the generic phys-
ics of accretion discs. This involves:

107 9–  solar masses
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1. Some general characteristics of turbulent flow. Turbulence is 
important in accretion discs as a source of “viscosity” which 
drives the accretion.

2.The derivation of equations of turbulent flow which are spe-
cific to accretion discs

3.The radiation properties of accretion discs.

4.The importance of magnetic fields to understanding the fun-
damental properties of accretion discs. We shall begin by 
deriving equations which relate to unmagnetised discs. How-
ever, we shall see that we cannot do without magnetic fields. 
This effectively brings us to current research on accretion 
discs.
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2 The equations of fluid dynamics with viscosity

2.1  General equations 
In accretion discs, dissipation is important and only avenue of
dissipation available in an unmagnetised fluid is viscosity. We
return to the general equations of fluid dynamics. Note that in the
following we do not include the dynamical effects of magnetic
fields. This suffices to introduce us to the general concepts of ac-
cretion discs. However, in the long run, we cannot do without
magnetic fields. These are the ultimate source of the dynamic
stresses which lead to accretion. 
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Continuity

(2.1-1)

Momentum:

(2.1-2)
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The quantity  is the viscous tensor which is expressed in the

form

(2.1-3)

The parameters  and  are the coefficients of shear and bulk dy-
namic molecular viscosity. The corresponding coefficients of
kinematic viscosity are

, (2.1-4)

ij

ij 2Sij vk k ij+=
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and to order of magnitude

(2.1-5)

Note that the dimensions of kinematic viscosity are
.

In classical applications of viscous flow, e.g. fluid flow in a pipe,
the detailed form of the viscous tensor is important. However,
for our application to turbulent flow, it is not important.

2.2  Reynolds number
The Reynolds number is defined as:

(2.2-1)

and in most astrophysical flows is large.

   Mean free path Thermal speed

length velocity

R
VL


-------=
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2.3 Dissipation due to viscosity
The heat generated by a viscous fluid is described by:

(2.3-1)

(2.3-2)

Since the rate of change of the entropy per unit mass can be ex-
pressed in the form:

(2.3-3)

kT
ds
dt
----- vi j ij qj j–=

qi Heat flux=
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xi
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then we have the equation for the change of internal energy as a
result of viscous dissipation:

(2.3-4)

This equations tells us that there is dissipation resulting from vis-
cosity and loss of energy from a comoving volume resulting
from the heat flux.

td
d  p+ 

xi

vi+ ijvi j xi

qi–=
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3 Equations for statistically averaged turbulent flow

3.1 Definitions of mean dynamic variables

Means of density and velocity

The following formalism is suitable for treating all turbulent
flows. We envisage a turbulent flow as consisting of a mean plus
a fluctuating component so that we express the density and ve-
locity in the form:

(3.1-1)

and the means of the fluctuating components are defined by

(3.1-2)

  +=

vi vi
˜ vi+=

  0= vi  0=
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“Mean” in this case refers to either an ensemble mean (i.e. we
envisage an infinite population of accretion discs, or a time av-
eraged mean in which we average over a large enough time scale
that the averaged flow has a smooth character).

Note that the velocity is defined by a mass-weighted mean. This
is similar to the way in which we define the bulk velocity  of

a fluid – by defining it in terms of the velocity of the frame in
which the total momentum is zero. 

Vi
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Means of other quantities

Other variables are also averaged and whether they are mass-
weighted or not depends upon their dimensions and the way in
which they appear in the hydrodynamic equations:

(3.1-3)

and so on. We do not need to average the potential, in this case,
since it is fixed, e.g. by the potential of the black hole.

p p p+= ij ij ij+=

h h̃ h+= T T̃ T+=
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3.2 Continuity equation
When we substitute the above into the continuity equation, we
obtain

(3.2-1)

Taking the average of this equation gives

(3.2-2)

The averaged equation of continuity has the same form as the
non-averaged version – mass is conserved in the mean flow. 
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3.3 Momentum equation
The momentum equation becomes:

(3.3-1)

t
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In constructing an average of this equation, we use 

(3.3-2)

so that the momentum equation becomes:

(3.3-3)
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This introduces the non-zero Reynolds stresses

(3.3-4)

which is the negative of the  component of the flux of turbu-
lent momentum ( ). 

Equivalently,  is the mass-weighted correlation of the turbu-

lent velocity components. This term is fundamental to all turbu-
lent flows and describes the turbulent diffusion of momentum in
such flows. 

tij
R vivj –=

jth

vi

tij
R–
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The momentum equation may be put in the form:

(3.3-5)

and the Reynolds stresses appear as an additional force driving
the mean motion.

In the above equations, the gravitational potential  is regarded

as prescribed (e.g. by the potential of the central black hole) so
that no averaging of it is required.
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3.4 Importance of Reynolds stress in high Reynolds 
number flows
This formalism introduces two additional terms that we do not
usually deal with in classical gas dynamics applications

(3.4-1)

In high Reynolds number flows, we can ignore the contribution

of  to the momentum, and we represent the mean momentum

equations as

(3.4-2)
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 ṽiṽj +

p
xi

-------–
vivj 

xj
-------------------------– 

xi

G–=
High Energy Astrophysics: Accretion Disks I 19/60



For this reason the Reynolds stress is associated with the concept
of turbulent viscosity, although that it is not a term which I per-
sonally like and which can also lead to misunderstandings of the
physics.

3.5 The problem of closure
The fundamental problem in modelling turbulent flows is that it
is not obvious what has to be done to express the Reynolds
stresses in terms of the fundamental dynamical variables. This is
known as the Problem of Closure and has concerned hydrody-
namicists since the 1900s. It is one of the outstanding theoretical
physics problems. We shall see one approach to this when we
discuss accretion discs.
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One approach to closure that has been used is to specify a so-
called turbulent viscosity and to put

(3.5-1)

In this case the turbulent viscosity is written as

(3.5-2)

where  and  are appropriate turbulent length and velocity

scales. That is the momentum transport associated with the tur-
bulence is treated as having some of the features of momentum
transport associated with molecular processes.

Note the distinction between molecular and turbulent viscosity.
The former is usually small; the latter can be significant.

tij
R ts̃ij=

t ltvt

lt vt
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4  Characterisation of turbulent flows

4.1 The turbulent cascade
One of the features of fluid dynamic turbulence is the existence
of the turbulent cascade. We regard turbulence as being con-
structed of turbulent eddies and that the energy in these eddies is
dissipated on the eddy turnover timescale. What happens to the
energy – it makes smaller eddies, of course!
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L0

L

Eddies in turbulent flow
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Let  be the turbulent velocity in the largest eddy of size ,

then the kinetic energy density is  and the eddy turno-

ver time is . The volume rate of energy dissipation associated

with this turnover time is:

(4.1-1)

Units are energy per unit time per unit volume.
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In incompressible flow, this energy ends up in smaller eddies
since there are no wave modes by which it can be radiated away.
With a turbulent velocity  and length scale , the volume rate

of dissipation is:

(4.1-2)

Vt L

1
2
---
vt

3

L
---------
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This is equal to the volume rate of energy dissipation resulting
from the largest eddies, so that

(4.1-3)

This is a classic result for incompressible hydrodynamic turbu-
lence. The numerical situation is different for compressible tur-
bulence and for turbulence in a magnetised fluid but the general
physical principles are the same. 
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4.2  The eventual fate of the cascaded energy
We have just described what is referred to as a turbulent cascade.
The energy which ends up on smaller and smaller scales is even-
tually dissipated by viscosity as we shall now show. First note,
however, that the turbulent kinetic energy density is dominated
by the large scale, since the kinetic energy density associated
with each eddy,

. (4.2-1)T
1
2
---vt

2 1
2
--- vt

0 2 L
L0
------ 
  2 3/

 
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Consider the contribution of each eddy to the dissipation
. We have

(4.2-2)

since the coefficients of viscosity have the same order of magni-
tude. Hence, the dissipation of turbulent energy into heat in an
eddy of size  is given by:

(4.2-3)
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The volume rate of dissipation goes up as the length scale of the
eddy decreases. Hence the rate of dissipation balances the rate of
increase of energy within the eddy, when

(4.2-4)

i.e. when the length scale is small enough that

(4.2-5)

where  is the Reynolds number of the turbulence. 
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Now, the coefficient of kinematic viscosity is given to order of
magnitude by

. (4.2-6)

Thus, the dissipative length scale , is determined from

(4.2-7)

Normally, the mean free path is much smaller than the typical
length scale and the turbulent velocity may range (typically)
from about  times the sound speed, to the sound speed. Thus
in general  is a very small length compared to the largest rel-

evant length scale.
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The above describes the characteristics of all turbulence:

•  An energy containing scale which determines the eventual 
dissipation rate

•  An inertial range in which the velocity scales with the size of 
the eddy. This is the turbulent cascade

•  A dissipative scale on which the turbulence is dissipated.

4.3  A famous poem
The above physics is neatly encapsulated in the following fa-
mous poem:

“Larger whirls have lesser whirls that feed on their velocity

And lesser whirls have smaller whirls 

And so on to viscosity”
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This has been corrupted to the following:

“Larger fleas have lesser fleas upon their backs to bite’em

And lesser fleas have smaller fleas

And so on ad infinitum”

5 The generation and dissipation of turbulent kinetic 
energy

5.1 Development of the TKE equation
It is important in any turbulent flow to know how turbulent en-
ergy is generated. The way we determine this is to construct an
equation for the turbulent kinetic energy. 
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The turbulent kinetic energy is defined by:

(5.1-1)

We derive an equation for the TKE by first forming an equation
for the kinetic energy. This is formed by taking the scalar prod-
uct of the momentum equations with the velocity. That is,

(5.1-2)
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Using,

(5.1-3)

and the equation of continuity, we can put the above equation in
the form:

(5.1-4)
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We now take the average of this equation using:

(5.1-5)
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and 

(5.1-6)
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Thus the averaged equation for the total kinetic energy is:

(5.1-7)
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---ṽ2ṽj vivj  ṽi++
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The next step is to take the scalar product of the velocity with the
averaged momentum equation. This enables us to subtract out
the parts of the above equation relating to the mean kinetic ener-
gy. We take the averaged momentum equation in the form:

(5.1-8)
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The scalar product of  with this equation is:

(5.1-9)

We rearrange the terms on the left of this equation in a similar
way to the unaveraged equation, using this time, the mean con-
tinuity equation.
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The result is:

(5.1-10)
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ṽi
p
xi

-------– ṽi xj
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The next step is to subtract this equation from the averaged en-
ergy equation. Let us put the equations together so that the terms
that cancel can be seen clearly:

(5.1-11)
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(5.1-12)
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---ṽ2ṽi 
  ṽi xj
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The resulting TKE equation is:

(5.1-13)
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The following terms give:

(5.1-14)

The TKE equation becomes:

(5.1-15)

xj
 vivj  ṽi  ṽi xj

 vivj –

vivj vi j=

t
 1

2
---v2 

xj
 1

2
---v2  ṽj

1
2
---v2vi ++

vi xi
p  vi xj

ij  vivj vi j–+–=
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5.2 Interpretation of terms
The meanings of the various turbulent terms are as follows:

(5.2-1)

1
2
---v2  Turbulent kinetic energy=

vivj  ṽi
Rate of work done by turbulent stresses

on mean velocity
=

1
2
---v2  ṽi Flux of TKE due to mean velocity=

1
2
---v2vi  Turbulent flux of TKE=
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and

(5.2-2)

Note also that:

(5.2-3)

only involves the symmetric components of  since 

is symmetric. 

vi xi
p – vi xj

ij +
Work done by pressure and viscous

stresses on turbulent fluctuations
=

vivj vi j–
Rate of production of 

turbulent energy
=

vivj vi j

vi j vivj 
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We put for the symmetric part of :

(5.2-4)

where  is the shear associated with the mean velocity. 

ṽi j

ṽ i j 
1
2
--- ṽi j ṽj i

2
3
--- ṽk k ij–+ 

  1
3
--- ṽk k ij+=

s̃ij
1
3
--- ṽk k ij+=

s̃ij
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The TKE equation then becomes:

(5.2-5)

t
 1

2
---v2 

xj
 1

2
--- v2  ṽj

1
2
---v2vj ++

2
3
---

1
2
---v2  ṽk k+

vi xi
p  vi xj

ij  vivj  s̃ij–+–=
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One final rearrangement

Put

(5.2-6)

vi xj

ij 
xj
 ijvi  vi j ij –=

vi xi
p –

xi


pvi – pvi i +=
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Our final form of the TKE equation is then:

(5.2-7)

t
 1

2
---v2 

xj
 1

2
--- v2  ṽi

1
2
---v2vi  pvj  ijvi –+ ++

2
3
---+

1
2
---v2  ṽk k

pvi i  vi j ij – vivj  s̃ij–=
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6 The dissipation of TKE into internal energy

6.1 The averaged internal energy equation
The other energy equation we need to bring into play here is the
equation for the internal energy density, As we shall see this
complements the TKE equation that we have just derived. 

In unaveraged from this is:

(6.1-1)

Using the relations:

(6.1-2)

kT
ds
dt
----- ijvi j qi i–=

kTds d hd–=

kTds dh dp–=
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implies:

(6.1-3)

This energy equation then becomes:

(6.1-4)

kT
t

s
t

  P+ 


-----------------
t


–

t


h
t


–= =

kTvi xi
s vi xi

h
vi xi
p

–=

kT
ds
dt
-----

t


xi
 hvi  vi xi

p
–+=

t


xi
 hvi  vi xi

p
–+ ijvi j qi i–=
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The averaged form of this equation is:

(6.1-5)

Again, we write

(6.1-6)


t

-----
xi
 h̃ṽi hvi +  vi xi

p –+

ijvi j  qi i–=

vi xi
p  ṽi

p
xi

------- vi xi
p +=

ijvi j  ijṽi j ijvi j +=
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The averaged energy equation is therefore:

(6.1-7)


t

-----
xi
 h̃ṽi hvi +  ṽi

p
xi

-------–+

vi xi
p  ijṽi j qi i– ijvi j + +=
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6.2 Interpretation of terms
The interpretation of the terms in this equation are:

(6.2-1)


t

----- Time rate of change of mean internal energy=

h̃ṽi Mean heat flux=

hvi  Heat flux due to turbulent diffusion=

ṽi
p
xi

------- Mean rate of work of pressure gradient on fluid=
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The terms on the right hand side:

(6.2-2)

In a turbulent fluid of high Reynolds number the important dis-
sipation term is the last one:  – the rate of dissipation

resulting from viscous stresses acting on the turbulent velocity.

vi xi
p 

Rate of work on turbulent

velocity by pressure
=

ijṽi j
Rate of viscous dissipation 

due to mean velocity
=

qi i Mean heat flux=

ijvi j  Viscous dissipation due to turbulent velocity=

ijvi j 
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This equation tells us that the internal energy density of a fluid
can increase as a result of the dissipation due to viscosity, that
heat is removed from a given volume via mean heat flux due to

the bulk motion of the fluid , turbulent diffusion

 and molecular heat flux . In a turbulent fluid at

rest in the mean, the turbulent diffusive heat flux is the most im-
portant way of diffusing heat. 

6.3 Relation to the TKE equation
In the TKE equation the term

(6.3-1)

h̃ṽi 

hvi   qi i 

vi j ij –
High Energy Astrophysics: Accretion Disks I 57/60



appears with the opposite sign to the corresponding term in the
energy equation. In the TKE equation this term represents a sink;
in the energy equation it represents a source of internal energy.
The physics of this is that TKE is being generated as a result of
the term

(6.3-2)

and is being dissipated as a result of the term

(6.3-3)

The last term (with the opposite sign) becomes a source term in
the energy equation.

vivj  s̃ij–

vi j ij –
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6.4 Turbulence in a quasi steady state

The presence of the term  on the right hand side of

the above equation shows clearly that the turbulent kinetic ener-
gy is viscously dissipated. However, other things happen as well.

The presence of the term  also shows that it can be

diffused away from the point where it is created. One of the sin-
gle most important terms in the above is the term 

which is the rate at which the Reynolds stresses work on the
mean shear and is the major source term for turbulence. 

ijvi j  –

1
2
---v2vi 

vivj  s̃ij–
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6.5 Difference from standard accretion disc theory
Note that in just about every treatment of accretion discs it is as-
sumed that  is the rate at which turbulence is dis-

sipated into heat. This is only true if we have the balance:

(6.5-1)

This is generally not locally true, but it is reasonable to assume
that it is true in an averaged sense. The reason for this confusion
in the literature is that the term turbulent viscosity which is really
only in a model for the turbulent Reynolds stress but which has
been used to treat the turbulent viscosity in a similar way to real
viscosity. As we have seen the Reynolds stress governs the pro-
duction of turbulent energy

vivj  s̃ij–

ijvi j  s̃ij vivj –=
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